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Abstract. An equation of state (EOS) of neutron star matter, describing both the neutron star crust and the liquid
core, is calculated. It is based on the effective nuclear interaction SLy of the Skyrme type, which is particularly
suitable for the application to the calculation of the properties of very neutron rich matter (Chabanat et al.
1997, 1998). The structure of the crust, and its EOS, is calculated in the T = 0 approximation, and under the
assumption of the ground state composition. The crust-core transition is a very weakly first-order phase transition,
with relative density jump of about one percent. The EOS of the liquid core is calculated assuming (minimal)
npeµ composition. Parameters of static neutron stars are calculated and compared with existing observational
data on neutron stars. The minimum and maximum masses of static neutron stars are 0.094 M� and 2.05 M�,
respectively. Effects of rotation on the minimum and the maximum mass of neutron stars are briefly discussed.
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1. Introduction

The equation of state (EOS) of dense neutron star matter
is one of the mysteries of these objects. The EOS is a basic
input for construction of neutron star models. Its knowl-
edge is needed to calculate the properties of neutron stars,
which in turn are necessary for modelling many astronom-
ical objects and phenomena. In particular, the knowledge
of the EOS is necessary for the determination of the max-
imum mass of neutron stars, Mmax: compact objects with
M > Mmax could not be but black holes.

The EOS is predominantly determined by the nuclear
(strong) interaction between elementary constituents of
dense matter. Even in the neutron star crust, with den-
sity below normal nuclear density ρ0 = 2.7× 1014 g cm−3

(corresponding to baryon density n0 = 0.16 fm−3), nu-
clear interactions are responsible for the properties (and
actually – for the very existence!) of neutron rich nuclei,
crucial for the crust EOS. The knowledge of these inter-
actions is particularly important for the structure of the
inner neutron star crust, where nuclei are immersed in a
neutron gas, and even more so for the EOS of the liquid
core. Nuclear interactions are actually responsible for a
dramatic lifting of Mmax from 0.7 M�, obtained when in-
teractions are switched-off (Oppenheimer & Volkoff 1939),
above measured 1.44 M� of PSR B1913+16, and maybe
even above 2 M�, as suggested by some models of the kHz
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quasi periodic oscillations in 4U 1820-30 (Zhang et al.
1997; Miller et al. 1998; Kluźniak 1998).

The outer envelope of a neutron star with ρ < ρ0 con-
tains the same elementary constituents as ordinary (e.g.
terrestrial) matter, i.e., protons, neutrons, and electrons.
Unfortunately, even within this subnuclear density enve-
lope, calculation of the EOS starting from an experimen-
tally determined bare nucleon-nucleon (NN) interaction
in vacuum, supplemented with a three-nucleon (NNN)
force (which is necessary to fit the properties of 3H and
4He simultaneously with the two body data), is not fea-
sible. This is due to the prohibitive complexity of the
many-body problem to be solved in the case of heavy
nuclei (more generally: for nuclear structures – spheres,
rods, plates etc. Lorenz et al. 1993) immersed in a neu-
tron gas. To make a calculation feasible, one uses a
mean field approximation with an effective NN interac-
tion, an approach used with great success in terrestrial
nuclear physics. The most ambitious application of this
approach to the determination of the structure and EOS
of the neutron star crust remains the classical work of
Negele & Vautherin (1973). Other authors, who treated
this problem, used additional approximations of the quan-
tum mean-field scheme (see: Oyamatsu 1993; Lorenz et al.
1993; Sumiyoshi et al. 1995; Cheng et al. 1997; Douchin
& Haensel 2000, and references therein).

It is clear that in order to describe in a physically (in
particular, thermodynamically) consistent way both the
crust, the liquid core, and the transition between them,
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one has to use the same many-body model and the same
effective NN interaction, on both sides of the crust-core
interface. The mean-field scheme can also be applied for
the description of the spatially uniform npe liquid pro-
vided one uses appropriate effective NN interaction. Note
that in this case the calculation of the ground state of
nucleon matter can be done also, with rather high preci-
sion (at not too high density), starting with bare nuclear
Hamiltonian ĤN (resulting from bare NN and NNN in-
teractions) (Wiringa et al. 1988; Akmal et al. 1998). The
calculated ground state energy 〈Ψ0 | ĤN | Ψ0〉 (here Ψ0

is the actual ground state wave function, which includes
nucleon correlations, and minimizes the energy of the sys-
tem) has then to be approximated, as well as possible,
by 〈Φ0 | Ĥeff

N | Φ0〉, where Φ0 is the Hartree-Fock wave
function, and Ĥeff

N is effective nuclear Hamiltonian.

Some authors formulated the nuclear many-body prob-
lem, relevant for neutron star matter, within relativistic
mean-field models, in which nuclear interactions are de-
scribed by a phenomenological Lagrangian involving cou-
pling of the nucleon fields to the meson fields (Sumiyoshi
et al. 1995; Cheng et al. 1997). While such an approach
has an obvious advantage at very high density (it yields
causal EOS, by construction), its meaning at lower den-
sities is not clear (see, e.g., Heiselberg & Pandharipande
2000). In the present paper we restrict ourselves to the
non-relativistic approach.

Once the many-body approximation was fixed, the in-
put consists of the effective NN interaction, which has to
reproduce a wealth of experimental data on atomic nu-
clei, especially those with high neutron excess, as well as
reproduce the most reliable numerical results concerning
the ground state of dense homogeneous neutron rich nu-
cleon matter. In the case of the calculation of the EOS of
neutron star matter, the latter condition may be reduced
to the limiting case of pure neutron matter; as it turns
out, in such a case many-body calculations with a bare
nucleon Hamiltonian are particularly precise, mostly be-
cause of the less important role played by the tensor forces
(Wiringa et al. 1988).

An effective nucleon Hamiltonian contains a number
of parameters which are usually fixed by fitting experi-
mental data on saturation properties of bulk nuclear mat-
ter and experimental properties of selected atomic nuclei.
The parameters of Ĥeff

N are also constrained by some gen-
eral condition, e.g., of spin stability (Kutschera & Wójcik
1994). Most of the existing effective interactions were fit-
ted to the properties of laboratory atomic nuclei, with
(N − Z)/A < 0.3, while in the bottom layers of the
neutron-star crust, and even more so in the liquid core,
one expects (nn − np)/nb >∼ 0.8. In view of this, ap-
plication of these effective nuclear interactions to neu-
tron star interior involves a rather risky extrapolation to
strongly asymmetric nucleon matter. In order to remove a
part of this uncertainty, modifications of effective nuclear
forces, to make them consistent with available (and possi-
bly reliable) results of microscopic calculations of neutron

matter, have been applied. Such a procedure was used
in the seventies to obtain the Sk1′ force (Lattimer &
Ravenhall 1978), via a rather ad hoc modification of the
Sk1 force constructed originally by Vautherin and Brink
(Vautherin & Brink 1970) to describe terrestrial nuclei. In
this way, Sk1′ became consistent with energy per nucleon
of neutron matter calculated by Siemens & Pandharipande
(1971). Later, generalized types of the Skyrme interac-
tion, FPS (Pandharipande & Ravenhall 1989) and FPS21
(Pethick et al. 1995), with a larger number of fitted
parameters and more general density dependence, were
derived by fitting the temperature and baryon density de-
pendent energies per baryon of nuclear and neutron mat-
ter obtained in microscopic calculations of Friedman &
Pandharipande (1981).

A new set of the Skyrme-type effective N-N interac-
tions has been derived recently, based on an approach
which may be more appropriate, as far as the applications
to a very neutron rich matter are concerned (Chabanat
et al. 1997; Chabanat et al. 1998). While being of a
two-body type, this effective interaction contains, in the
spirit of the Skyrme model, a term resulting from aver-
aging of an original three-body component. Relevant ad-
ditional experimental items concerning neutron rich nu-
clei (including isovector effective masses), constraints of
spin stability and requirement of consistency with the
UV14+VIII equation of state (EOS) of dense neutron
matter of Wiringa et al. (1988) for n0 ≤ nb ≤ 1.5 fm−3

were combined with the general procedure of fitting the
properties of doubly magic nuclei. This procedure led to a
set of the SLy (Skyrme Lyon) effective nucleon-nucleon
interactions which – due to the emphasis put on their
neutron-excess dependence – seem to be particularly suit-
able for the calculations of the properties of neutron-star
interiors. The FPS force was constructed as a general-
ized Skyrme model, by fitting the properties of asymmet-
ric dense, cold and hot, nucleon matter, calculated by
Friedman & Pandhripande (1981); fitting of the ground
state properties of laboratory nuclei was not included in
their derivation. Luckily, the FPS force turned out to re-
produce rather well, without additional adjustement, the
ground state energies of eight doubly closed-shell nuclei
ranging from 16O to 208Pb (Lorenz et al. 1993).

The SLy forces have been constructed so as to be
consistent with the UV14+UVII model of Wiringa et al.
(1988) of neutron matter above n0 (Chabanat et al. 1997;
Chabanat et al. 1998). It is therefore of interest to check
how well these effective N-N interactions reproduce the
UV14+UVII equation of state of neutron matter at sub-
nuclear densities. This feature is quite important for the
correct calculation of the equation of state of the bottom
layers of neutron star crust and of the liquid core, which
contain only a few percent of protons. We do not have
direct access to the “experimental equation of state” of
pure neutron matter at subnuclear densities. However, re-
sults of the best numerical many-body calculations of the
ground state of neutron matter with realistic ĤN seems to
be sufficiently precise at subnuclear densities to be used
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as an ersatz of experimental data (Pethick et al. 1995).
The SLy effective interaction passes this test very well,
in contrast to most of other models of Ĥeff

N (Douchin &
Haensel 2000). In what follows, by the SLy interaction we
will mean the basic SLy4 model of Chabanat et al. (1998).

After our unified EOS was constructed, a new state-of-
the-art microscopic calculation of the EOS of dense matter
(Akmal et al. 1998), which in many respect is superior to
the ten years older models of Wiringa et al. (1988), be-
came available. The nuclear Hamiltonian of Akmal et al.
(1998) is based on a new Argonne two-nucleon interac-
tion AV18, takes into account relativistic boost correc-
tions to the two-nucleon interaction, and includes new
Urbana model of three-nucleon interaction, UIX. In what
follows, the most complete models of the EOS of dense
cold catalyzed matter, AV18 + δv + UIX∗, calculated by
Akmal et al. (1998), will be referred to as APR (Akmal
Pandharipande Ravenhall). It should be stressed, that in
contrast to the FPS and SLy EOS, the APR EOS de-
scribes only the liquid core of neutron star, and therefore
is not a “unified EOS” of the neutron star interior. As we
will show, neutron star models based on the APR EOS of
the liquid core, supplemented with our EOS of the crust,
are not very different from the stellar models calculated
using our complete, unified EOS.

In the present paper we calculate the unified EOS
for neutron star matter using the SLy effective NN in-
teraction. Nuclei in the crust are decribed using the
Compressible Liquid Drop Model, with parameters calcu-
lated using the many-body methods presented in Douchin
et al. (2000) and Douchin & Haensel (2000). The calcula-
tion of the EOS is continued to higher densities, charac-
teristic of the liquid core of neutron star. Using our EOS,
we then calculate neutron star models and compare their
parameters with those obtained using older FPS effective
NN interaction. We consider also effects of rotation on
neutron star structure. Our neutron star models are then
confronted with observations of neutron stars.

The method of the calculation of the EOS for the crust
and the liquid core of neutron star is described in Sect. 2.
Results for the structure and the EOS of the crust are
given in Sect. 3, and those for the liquid core in Sect. 4.
Models of neutron stars are reviewed in Sect. 6. Effects of
rotation on neutron star structure are briefly discussed in
the two last subsections of Sect. 6. Comparison with ob-
servations of neutron stars is presented in Sect. 7. Finally,
Sect. 8 contains summary and conclusion of our paper.

2. Method of solution of the many-body problem

2.1. The crust

Nuclei in the neutron-star crust are described using
the Compressible Liquid Drop Model (CLDM) of nuclei
(Douchin et al. 2000 and references therein). The param-
eters of the model are calculated using the SLy effective
interaction. Within the CLDM, one is able to separate
bulk, surface and Coulomb contributions to total energy

density, E. Electrons are assumed to form a uniform Fermi
gas and yield the rest plus kinetic energy contribution, de-
noted byEe. Total energy density of the neutron-star crust
is given by

E = EN, bulk +EN, surf +ECoul +Ee. (1)

Here, EN, bulk is the bulk contribution of nucleons, which
does not depend on the shape of nuclei. However, both
EN, surf and ECoul do depend on this shape. Actually, in
the case of the bottom layers of the inner crust, one has to
generalize the notion of “nuclei” to “nuclear structures”
formed by denser nuclear matter and the less dense neu-
tron gas. Detailed description of the calculation of EN, surf

and ECoul for the SLy forces was presented in Douchin
(1999) and Douchin et al. (2000). Its application to the
calculation of the properties of the inner crust is presented
in Douchin & Haensel (2000). We restricted ourselves to
three shapes of the nuclear matter – neutron gas inter-
face: spherical, cylindrical, and plane. Consequently, we
considered five types of nuclear structures: spheres of nu-
clear matter in neutron gas, cylinders of nuclear matter
in neutron gas (rods), plane slabs of nuclear matter in
neutron gas, cylindrical holes in nuclear matter filled by
neutron gas (tubes) and spherical holes in nuclear mat-
ter filled by neutron gas (bubbles). In view of a significant
neutron excess, the interface includes neutron skin formed
by neutrons adsorbed onto the nuclear matter surface. In
view of a finite thickness of nuclear surface, the definition
of its spatial location is a matter of convention. Here, we
defined it by the radius of the equivalent constant den-
sity proton distribution, Rp, which determines thus the
radius of spheres, bubbles, cylinders and tubes, and the
half-thickness of plane nuclear matter slabs. The neutron
radius, Rn, was defined by the condition that it yields
a squared-off neutron density distribution with constant
neutron densities, which are equal to the real ones far from
the nuclear matter – neutron gas interface, and reproduces
actual total number of neutrons. The thickness of the neu-
tron skin was then defined as Rn−Rp. The nuclear surface
energy term, EN, surf , gives the contribution of the inter-
face between neutron gas and nuclear matter; it includes
contribution of neutron skin (Pethick & Ravenhall 1995;
Lorenz 1991). In the case of spherical and cylindrical inter-
face, EN, surf includes curvature correction; the curvature
correction vanishes for slabs.

In order to calculate ECoul, we used the Wigner-Seitz
approximation. In the case of spheres, bubbles, rods and
tubes, Wigner-Seitz cells were approximated by spheres
and cylinders, of radius Rcell. In the case of slabs, Wigner-
Seitz cells were bounded by planes, with Rcell being de-
fined as the half-distance between plane boundaries of the
cell. At given average nucleon (baryon) density, nb, and for
an assumed shape of nuclear structures, the energy den-
sity was minimized with respect to thermodynamic vari-
ables, under the condition of an average charge neutral-
ity. Spherical nuclei are energetically preferred over other
nuclear shapes, and also over homogeneous npe matter,
down to nedge = 0.076 fm−3. Within our set of possible
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nuclear shapes therefore, the ground state of neutron-star
crust contains spherical nuclei only. A detailed study of
the bottom layers of the inner crust, including the deter-
mination of its bottom edge, is presented in Douchin &
Haensel (2000).

2.2. The liquid core

For nedge < nb < 2n0 neutron star matter is expected to
be a homogeneous plasma of neutrons, protons and elec-
trons, and – above the threshold density for the appear-
ance of muons (when electron chemical potential µe >
mµc

2 = 105.7 MeV) – also negative muons. Such a npeµ
model of dense matter is expected to be valid at not too
a high density (say, n <∼ 3n0). At still higher densities
one may contemplate possibility of the appearance of hy-
perons. However, in view of a lack of detailed knowledge
of the hyperon-nucleon and hyperon-hyperon interactions,
we prefer to extrapolate the npeµ model to higher densi-
ties (this is the approach used also in Wiringa et al. 1988,
and in more recent calculation of Akmal et al. 1998).

The total energy density of the npeµ matter, E (which
includes rest energy of matter constituents), is a sum of
the nucleon contribution, EN(nn, np), and of the lepton
one. We have

E(nn, np, ne, nµ) = EN(nn, np) + nnmnc
2 + npmpc

2

+Ee(ne) +Eµ(nµ) (2)

where Ee, Eµ are the energy densities, and ne and nµ
are number densities of electrons and muons respectively.
Coulomb contributions are negligible compared to the ki-
netic energies of leptons and therefore they can be treated
as free Fermi gases. Mass density of matter is ρ = E/c2.

The equilibrium of the npeµ matter with respect to
weak interactions implies relations involving chemical po-
tentials of matter constituents,

µn = µp + µe , µµ = µe (3)

where

µj =
∂E

∂nj
, j = n, p, e, µ. (4)

At given nb = nn + np, charge neutrality, np = ne + nµ,
combined with Eq. (3), yield the equilibrium fractions
xj = nj/nb. Using then Eq. (2), one calculates the
equilibrium (ground-state) value of E(nb) (minimum E
at given nb). This gives a one-parameter EOS of npeµ
matter,

ρ(nb) =
E(nb)
c2

, P (nb) = n2
b

d
dnb

(
E(nb)
nb

)
· (5)

3. Structure and equation of state of the crust

3.1. The outer crust

Our calculations have been limited to ρ > 106 g cm−3.
The neutron star envelope with ρ < 106 g cm−3 has a

tiny mass ∼10−10 M�, and moreover its composition and
structure can be influenced by various factors, such as
accretion of interstellar matter, and/or the presence of
strong magnetic field1.

One has to be aware of the simplications and approx-
imations inherent to the CLDM. While the parameters of
this model are determined in quantum-mechanical many-
body calculation, the model itself is par excellence clas-
sical. It does not exhibit therefore the shell effects cor-
responding to the closure of proton or neutron shells in
nuclei or the effect of neutron or proton pairing. Shell
effects imply particularly strong binding of nuclei with
“magic numbers” of Z = 28 and N = 50, 82.
Consequently (except at lowest density) nuclei present
in the ground state of outer crust are expected to have
Z = 28 (at lower density) or N = 50, 82 (at higher den-
sity) (Baym et al. 1971b; Haensel & Pichon 1994). This
feature is absent in the CLDM EOS, which additionally
treats Z andA as continuous variables. As a result, CLDM
EOS at ρ < ρND is softer and has lower value of neutron
drip density (real nuclei are stabilized against neutron drip
by the pairing and the shell effects for neutrons) than that
based on experimental nuclear masses.

Actually, for ρ <∼ 1011 g cm−3, the EOS of the ground
state of the outer crust can be reliably determined us-
ing experimental masses of neutron-rich nuclei (Haensel &
Pichon 1994). The last “experimental” nucleus present in
the ground state of the outer crust is doubly magic 78Ni
(N = 50, Z = 28), with proton fraction Z/A = 0.36.
Then, up to neutron drip density, the EOS can be quite
reliably determined using the extrapolation of nuclear
masses, beyond the experimentally available region, via
semiempirical nuclear mass formulae (Haensel & Pichon
1994). Within such an approach, which makes maximal
use of experimental nuclear data, neutron drip takes place
at 4.3× 1011 g cm−3 and for Z/A = 0.30. In view of this,
we suggest to replace, in neutron star calculations, the SLy
EOS at ρ < ρND = 4.3× 1011 g cm−3 by that of Haensel
& Pichon (1994), and to match it with the SLy EOS for
the inner crust above ρND. This is what we did in our
calculations of neutron star structure.

3.2. The inner crust

The values of A, Z, fraction of nucleons in neutron gas
outside nuclei, and geometrical parameters characteriz-
ing lattice of nuclei in the inner crust are displayed in
Tables 1, 2. The crust-liquid core transition takes place
not because nuclei grow in size but rather because they be-
come closer and closer. The filling fraction u grows rapidly
for nb approaching nedge from only 5% at nb = 0.04 fm−3

to nearly 30% at the bottom edge. Still, less than 30% of

1 A more precise condition for the degenerate neutron star
envelope to be unaffected by the magnetic field is ρ > 2.2 ×
105(A/Z)(B/1013 G)3/2 g/cm3, where A and Z are mass num-
ber and atomic number of the nuclei in the plasma (Yakovlev
& Kaminker 1994).
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Table 1. Structure and composition of the inner neutron-star crust (ground state) calculated within the Compressible Liquid
Drop Model with SLy effective nucleon-nucleon interaction. Xn is the fraction of nucleons in the neutron gas outside nuclei.
Upper part with Xn = 0 corresponds to a shell of the outer crust, just above the neutron drip surface in the neutron-star
interior, and calculated within the same model. The equivalent proton and neutron radii, Rp and Rn, are defined in the text.
Wigner-Seitz cell radius and fraction of volume occupied by nuclear matter (equal to that occupied by protons) are denoted by
Rcell and u, respectively.

nb Z A Xn Rp Rn Rcell u

(fm−3) (fm) (fm) (fm) (%)

1.2126 E-4 42.198 130.076 0.0000 5.451 5.915 63.503 0.063

1.6241 E-4 42.698 135.750 0.0000 5.518 6.016 58.440 0.084

1.9772 E-4 43.019 139.956 0.0000 5.565 6.089 55.287 0.102

2.0905 E-4 43.106 141.564 0.0000 5.578 6.111 54.470 0.107

2.2059 E-4 43.140 142.161 0.0247 5.585 6.122 54.032 0.110

2.3114 E-4 43.163 142.562 0.0513 5.590 6.128 53.745 0.113

2.6426 E-4 43.215 143.530 0.1299 5.601 6.145 53.020 0.118

3.0533 E-4 43.265 144.490 0.2107 5.612 6.162 52.312 0.123

3.5331 E-4 43.313 145.444 0.2853 5.623 6.179 51.617 0.129

4.0764 E-4 43.359 146.398 0.3512 5.634 6.195 50.937 0.135

4.6800 E-4 43.404 147.351 0.4082 5.645 6.212 50.269 0.142

5.3414 E-4 43.447 148.306 0.4573 5.656 6.228 49.615 0.148

6.0594 E-4 43.490 149.263 0.4994 5.667 6.245 48.974 0.155

7.6608 E-4 43.571 151.184 0.5669 5.690 6.278 47.736 0.169

1.0471 E-3 43.685 154.094 0.6384 5.725 6.328 45.972 0.193

1.2616 E-3 43.755 156.055 0.6727 5.748 6.362 44.847 0.211

1.6246 E-3 43.851 159.030 0.7111 5.784 6.413 43.245 0.239

2.0384 E-3 43.935 162.051 0.7389 5.821 6.465 41.732 0.271

2.6726 E-3 44.030 166.150 0.7652 5.871 6.535 39.835 0.320

3.4064 E-3 44.101 170.333 0.7836 5.923 6.606 38.068 0.377

4.4746 E-3 44.155 175.678 0.7994 5.989 6.698 36.012 0.460

5.7260 E-3 44.164 181.144 0.8099 6.059 6.792 34.122 0.560

7.4963 E-3 44.108 187.838 0.8179 6.146 6.908 32.030 0.706

the volume is filled by nuclear matter at the crust-liquid
core transition point. Finally, let us mention that no pro-
ton drip occurs in the ground state of the crust.

As we see in Tables 1 and 2, the number of nucleons in
a nucleus, A, grows monotonically with increasing density
and reaches about 600 at the edge of the crust. However,
the number of protons changes rather weakly, from Z ' 40
near neutron drip, to Z ' 50 near the edge of the crust.
Our results for Z of spherical nuclei are similar to those
obtained in Ravenhall et al. (1972) and Oyamatsu (1993),
but are somewhat higher than those obtained using a rel-
ativistic mean-field model in Sumiyoshi et al. (1995). The
problem of stability of nuclei in the bottom layer of the in-
ner crust with respect to fission was discussed in Douchin
& Haensel (2000).

Actually, under conditions of thermodynamic equilib-
rium, transition from the crust to the uniform liquid takes
place at a constant pressure, and is accompanied by a den-
sity jump (first order phase transition). Using Maxwell
construction, we find that the edge of the crust has den-
sity nedge = 0.076 fm−3, and coexists there with uni-
form npe matter of the density higher by ∆ρ/ρedge '
∆nb/nedge = 1.4%. Crust-liquid core transition is

therefore a very weak first-order phase transition; it takes
place at Pedge = 5.37× 1032 erg cm−3.

4. Composition and equation of state of neutron
star core

Composition of the liquid core is given in Table 4. Muons
appear at nb = 0.12 fm−3. Particularly important for
the rate of the neutron star cooling is the relation be-
tween xn and xp, xe, and xµ. Namely, the powerful di-
rect Urca process of neutrino emission, n −→ p + e + ν̄e,
p + e −→ n + νe, is allowed only if the values of the Fermi
momenta in the npeµ matter satisfy the “triangle con-
dition” pFn < pFp + pFe. Similarly, direct Urca process
involving muons, n −→ p + µ− + ν̄µ, p + µ− −→ n + νµ,
is allowed only if pFn < pFp + pFµ (Lattimer et al. 1991).
The “triangle conditions” can expressed in terms of the
particle fractions xj as

electron direct Urca: x
1
3
n < x

1
3
p + x

1
3
e ,

muon direct Urca: x
1
3
n < x

1
3
p + x

1
3
µ , (6)
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Table 2. Structure and composition of the inner neutron-star crust – continued. Last line corresponds to the bottom edge of
the inner crust.

nb Z A Xn Rp Rn Rcell u

(fm−3) (fm) (fm) (fm) (%)

9.9795 E-3 43.939 195.775 0.8231 6.253 7.048 29.806 0.923

1.2513 E-2 43.691 202.614 0.8250 6.350 7.171 28.060 1.159

1.6547 E-2 43.198 211.641 0.8249 6.488 7.341 25.932 1.566

2.1405 E-2 42.506 220.400 0.8222 6.637 7.516 24.000 2.115

2.4157 E-2 42.089 224.660 0.8200 6.718 7.606 23.106 2.458

2.7894 E-2 41.507 229.922 0.8164 6.825 7.721 22.046 2.967

3.1941 E-2 40.876 235.253 0.8116 6.942 7.840 21.053 3.585

3.6264 E-2 40.219 240.924 0.8055 7.072 7.967 20.128 4.337

3.9888 E-2 39.699 245.999 0.7994 7.187 8.077 19.433 5.058

4.4578 E-2 39.094 253.566 0.7900 7.352 8.231 18.630 6.146

4.8425 E-2 38.686 261.185 0.7806 7.505 8.372 18.038 7.202

5.2327 E-2 38.393 270.963 0.7693 7.685 8.538 17.499 8.470

5.6264 E-2 38.281 283.993 0.7553 7.900 8.737 17.014 10.011

6.0219 E-2 38.458 302.074 0.7381 8.167 8.987 16.598 11.914

6.4183 E-2 39.116 328.489 0.7163 8.513 9.315 16.271 14.323

6.7163 E-2 40.154 357.685 0.6958 8.853 9.642 16.107 16.606

7.0154 E-2 42.051 401.652 0.6699 9.312 10.088 16.058 19.501

7.3174 E-2 45.719 476.253 0.6354 9.990 10.753 16.213 23.393

7.5226 E-2 50.492 566.654 0.6038 10.701 11.456 16.557 26.996

7.5959 E-2 53.162 615.840 0.5898 11.051 11.803 16.772 28.603

Table 3. Equation of state of the inner crust. First line corresponds to the neutron drip point, as calculated within the
Compressible Liquid Drop Model. Last line corresponds to the bottom edge of the crust.

nb ρ P Γ nb ρ P Γ

(fm−3) (g cm−3) (erg cm−3) (fm−3) (g cm−3) (erg cm−3)

2.0905 E-4 3.4951 E11 6.2150 E29 1.177 9.9795 E-3 1.6774 E13 3.0720 E31 1.342

2.2059 E-4 3.6883 E11 6.4304 E29 0.527 1.2513 E-2 2.1042 E13 4.1574 E31 1.332

2.3114 E-4 3.8650 E11 6.5813 E29 0.476 1.6547 E-2 2.7844 E13 6.0234 E31 1.322

2.6426 E-4 4.4199 E11 6.9945 E29 0.447 2.1405 E-2 3.6043 E13 8.4613 E31 1.320

3.0533 E-4 5.1080 E11 7.4685 E29 0.466 2.4157 E-2 4.0688 E13 9.9286 E31 1.325

3.5331 E-4 5.9119 E11 8.0149 E29 0.504 2.7894 E-2 4.7001 E13 1.2023 E32 1.338

4.0764 E-4 6.8224 E11 8.6443 E29 0.554 3.1941 E-2 5.3843 E13 1.4430 E32 1.358

4.6800 E-4 7.8339 E11 9.3667 E29 0.610 3.6264 E-2 6.1153 E13 1.7175 E32 1.387

5.3414 E-4 8.9426 E11 1.0191 E30 0.668 3.9888 E-2 6.7284 E13 1.9626 E32 1.416

6.0594 E-4 1.0146 E12 1.1128 E30 0.726 4.4578 E-2 7.5224 E13 2.3024 E32 1.458

7.6608 E-4 1.2831 E12 1.3370 E30 0.840 4.8425 E-2 8.1738 E13 2.6018 E32 1.496

1.0471 E-3 1.7543 E12 1.7792 E30 0.987 5.2327 E-2 8.8350 E13 2.9261 E32 1.536

1.2616 E-3 2.1141 E12 2.1547 E30 1.067 5.6264 E-2 9.5022 E13 3.2756 E32 1.576

1.6246 E-3 2.7232 E12 2.8565 E30 1.160 6.0219 E-2 1.0173 E14 3.6505 E32 1.615

2.0384 E-3 3.4178 E12 3.7461 E30 1.227 6.4183 E-2 1.0845 E14 4.0509 E32 1.650

2.6726 E-3 4.4827 E12 5.2679 E30 1.286 6.7163 E-2 1.1351 E14 4.3681 E32 1.672

3.4064 E-3 5.7153 E12 7.2304 E30 1.322 7.0154 E-2 1.1859 E14 4.6998 E32 1.686

4.4746 E-3 7.5106 E12 1.0405 E31 1.344 7.3174 E-2 1.2372 E14 5.0462 E32 1.685

5.7260 E-3 9.6148 E12 1.4513 E31 1.353 7.5226 E-2 1.2720 E14 5.2856 E32 1.662

7.4963 E-3 1.2593 E13 2.0894 E31 1.351 7.5959 E-2 1.2845 E14 5.3739 E32 1.644
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Table 4. Composition of the liquid core. Fractions of particles are defined as xj = nj/nb. Neutron fraction can be calculated
using xn = 1− xp.

nb xp xe xµ nb xp xe xµ
(fm−3) (%) (%) (%) (fm−3) (%) (%) (%)

0.0771 3.516 3.516 0.000 0.490 7.516 4.960 2.556

0.0800 3.592 3.592 0.000 0.520 7.587 4.954 2.634

0.0850 3.717 3.717 0.000 0.550 7.660 4.952 2.708

0.0900 3.833 3.833 0.000 0.580 7.736 4.955 2.781

0.1000 4.046 4.046 0.000 0.610 7.818 4.964 2.854

0.1100 4.233 4.233 0.000 0.640 7.907 4.979 2.927

0.1200 4.403 4.398 0.005 0.670 8.003 5.001 3.002

0.1300 4.622 4.521 0.101 0.700 8.109 5.030 3.079

0.1600 5.270 4.760 0.510 0.750 8.309 5.094 3.215

0.1900 5.791 4.896 0.895 0.800 8.539 5.178 3.361

0.2200 6.192 4.973 1.219 0.850 8.803 5.284 3.519

0.2500 6.499 5.014 1.485 0.900 9.102 5.410 3.692

0.2800 6.736 5.031 1.705 0.950 9.437 5.557 3.880

0.3100 6.920 5.034 1.887 1.000 9.808 5.726 4.083

0.3400 7.066 5.026 2.040 1.100 10.663 6.124 4.539

0.3700 7.185 5.014 2.170 1.200 11.661 6.602 5.060

0.4000 7.283 4.999 2.283 1.300 12.794 7.151 5.643

0.4300 7.368 4.984 2.383 1.400 14.043 7.762 6.281

0.4600 7.444 4.971 2.473 1.500 15.389 8.424 6.965

Table 5. Equation of state of the liquid neutron-star core.

nb ρ P Γ nb ρ P Γ

(fm−3) (g cm−3) (erg cm−3) (fm−3) (g cm−3) (erg cm−3)

0.0771 1.3038 E14 5.3739 E32 2.159 0.4900 8.8509 E14 1.0315 E35 2.953

0.0800 1.3531 E14 5.8260 E32 2.217 0.5200 9.4695 E14 1.2289 E35 2.943

0.0850 1.4381 E14 6.6828 E32 2.309 0.5500 1.0102 E15 1.4491 E35 2.933

0.0900 1.5232 E14 7.6443 E32 2.394 0.5800 1.0748 E15 1.6930 E35 2.924

0.1000 1.6935 E14 9.9146 E32 2.539 0.6100 1.1408 E15 1.9616 E35 2.916

0.1100 1.8641 E14 1.2701 E33 2.655 0.6400 1.2085 E15 2.2559 E35 2.908

0.1200 2.0350 E14 1.6063 E33 2.708 0.6700 1.2777 E15 2.5769 E35 2.900

0.1300 2.2063 E14 1.9971 E33 2.746 0.7000 1.3486 E15 2.9255 E35 2.893

0.1600 2.7223 E14 3.5927 E33 2.905 0.7500 1.4706 E15 3.5702 E35 2.881

0.1900 3.2424 E14 5.9667 E33 2.990 0.8000 1.5977 E15 4.2981 E35 2.869

0.2200 3.7675 E14 9.2766 E33 3.025 0.8500 1.7302 E15 5.1129 E35 2.858

0.2500 4.2983 E14 1.3668 E34 3.035 0.9000 1.8683 E15 6.0183 E35 2.847

0.2800 4.8358 E14 1.9277 E34 3.032 0.9500 2.0123 E15 7.0176 E35 2.836

0.3100 5.3808 E14 2.6235 E34 3.023 1.0000 2.1624 E15 8.1139 E35 2.824

0.3400 5.9340 E14 3.4670 E34 3.012 1.1000 2.4820 E15 1.0609 E36 2.801

0.3700 6.4963 E14 4.4702 E34 2.999 1.2000 2.8289 E15 1.3524 E36 2.778

0.4000 7.0684 E14 5.6451 E34 2.987 1.3000 3.2048 E15 1.6876 E36 2.754

0.4300 7.6510 E14 7.0033 E34 2.975 1.4000 3.6113 E15 2.0679 E36 2.731

0.4600 8.2450 E14 8.5561 E34 2.964 1.5000 4.0498 E15 2.4947 E36 2.708

where we have used pFj = h̄(nj/3π2)1/3. The threshold
density above which electron direct Urca process is allowed
is 1.35 fm−3, and that for the muon direct Urca process
is somewhat higher, 1.44 fm−3. The electron direct Urca
threshold for our EOS is much higher than 0.78 fm−3, ob-
tained for the APR model. However, in contrast to proton
fraction at nb <∼ n0, our values of xp at higher density
should be taken with a grain of salt: this feature of our

model is based on an extrapolation from nuclear densities,
and – in contrast to the EOS itself – it was not subjected
to a reliable constraint.

The equation of state of the liquid core is given in
Table 5. Its properties will be discussed in Sect. 5. Here
we will restrict ourselves to a comment referring to its
practical use in neutron star calculations. The tiny den-
sity jump between core and crust is not relevant for the
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applications to calculations of the neutron star structure
(although it can play a role in neutron star dynamics).
One can remove the first line of Table 5 and then match
the resulting EOS of the core to that of the inner crust,
given in Table 3. However, one can also remove the last
line of Table 3, and then match the EOS of the inner crust
to that of the inner core, given in Table 5. In practice, the
difference in neutron star structure, resulting from the dif-
ference in these two prescriptions, is negligibly small.

5. Properties of the EOS

Using the CLDM of dense matter, based on the SLy effec-
tive nucleon-nucleon interaction, we determined the EOS
of cold neutron-star matter in the interval of density from
108 g cm−3 to 4 × 1015 g cm−3. This EOS is displayed
in Fig. 1, where for the sake of clarity of presentation
at higher density, the lower-density limit has been set
at 1010 g cm−3. Our EOS covers three main regions of
neutron-star interior: outer crust, inner crust and liquid
core. In the displayed region of the outer crust the EOS
is well approximated by a polytrope, with nearly constant
adiabatic index (see below). Just after neutron drip, the
EOS softens considerably, gradually stiffens in the higher-
density part of the inner crust and than stiffens consider-
ably after crossing the crust-core interface.

5.1. Adiabatic index Γ

An important dimensionless parameter characterizing the
stiffness of the EOS at given density is the adiabatic index,
defined by

Γ =
nb

P

dP
dnb

=
ρ+ P/c2

P

dP
dρ
· (7)

The three main regions of the neutron star interior are
characterized by distinct behavior of Γ, displayed in Fig. 2.
Precise values of Γ are given in Tables 3 and 5. In the outer
crust, the value of Γ depends quite weakly on density. In
should be mentioned that a weak, smooth decrease of Γ
in the higher-density part of the outer crust, displayed in
Fig. 2, is an artifact of the CLDM of dense matter. Had we
used a model of the outer crust, based on the A,Z table of
nuclear masses (experimental where available, calculated
using semi-empirical mass formula elsewhere), we would
get a sequence of shells with fixed A,Z, and density jump
at the neighboring shells interface (Baym et al. 1971b; for
a recent calculation see Haensel & Pichon 1994). Above
108 g cm−3, adiabatic index within each A,Z shell would
be Γ ' 4/3. This can be easily understood, because the
main component of the matter pressure comes from the
ultrarelativistic electron gas, and the most important cor-
rection from Coulomb (lattice) term in the energy density,
both of which behave as ∝ (Zρ/A)4/3 (Baym et al. 1971b).
Notice that for the outer crust ρ is to a very good approxi-
mation, proportional to nb. In the CLDM, with continuous
variables A,Z, density jumps do not appear, and decrease
of Γ below 4/3 results mostly from the monotonic, smooth

increase of A with increasing density. Actually, such a
behavior within the CLDM simulates “averaging” of the
value of Γ over the density jumps, which effectively soft-
ens (as first-order phase transitions between shells with
different nuclides should do) the EOS of the outer crust.

Neutron drip at ρND implies a dramatic drop in Γ,
which corresponds to strong softening of the EOS. Density
stays continuous at the neutron drip point, with low-
density dripped neutrons contributing to nb and ρ, but ex-
erting a very small pressure, and moreover being in phase
equilibrium with nuclear matter of nuclei. Consequently,
Γ drops by more than a factor of two, a sizable part of
this drop occurring via discontinuous drop at ρND, char-
acteristic of a second-order phase transition. After this
initial dramatic drop, matter stiffens, because pressure
of neutron gas inscreases. The actual value of Γ results
from an interplay of several factors, with stiffening due to
Fermi motion and neutron-neutron repulsion in dripped
non-relativistic neutron gas and, countering this, softening
Coulomb (lattice) contribution, a rather soft contribution
of ultrarelativistic electron gas, and a softening effect of
neutron gas – nuclear matter coexistence. As one sees in
Fig. 2, Γ reaches the value of about 1.6 near the bottom
edge of the inner crust, only slightly lower than 5/3 char-
acteristic of a non-relativistic free Fermi gas.

At the crust-core interface, matter strongly stiffens,
and Γ increases discontinuously, by 0.5, to about 2.2. This
jump results from the disappearence of nuclei: a two-phase
nucleon system changes into a single-phase one, and re-
pulsive nucleon-nucleon interaction is no longer countered
by softening effects resulting from the presence of nuclear
structure and neutron gas – nuclear matter phase coex-
istence. With increasing density, Γ grows above 3 at 2ρ0,
due to increasing contribution of repulsive nucleon inter-
actions.

A tiny notch appears at the muon threshold, at which
Γ undergoes small, but clearly visible, discontinuous drop.
It is due to the appearance of new fermions – muons,
which replace high-energy electrons (electron Fermi en-
ergy µe ≥ 105.7 MeV). Replacing rapidly moving electrons
by slowly moving muons leads to a drop in the sound veloc-
ity (and Γ) just after the threshold. Because lepton contri-
bution to pressure is at this density very small, the overall
effect is small. A discontinuous drop in Γ at muon thresh-
old is characteristic of a second-order phase transition at
which density is continuous but compressibility is not.

At higher densities, ρ > 2ρ0, Γ decreases slowly, which
results from the interplay of the density dependence of
nuclear interactions and of increasing proton fraction.

5.2. Deviations from beta-equilibrium and Γfr

The calculation of the EOS has been done under assump-
tion of full thermodynamic equilibrium. Therefore, Γ de-
termines the response of neutron star matter to a local
change of density when this assumption is valid. In the
case of middle aged or old neutron stars however, the
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timescale of beta processes, which assure beta equilibrium
expressed in Eq. (3), is many orders of magnitude longer
than the characteristic timescales of dynamical phenom-
ena, such as stellar pulsations or sound waves, excited in
neutron star interior. In such a case, proton, electron and
muon fractions in a perturbed element of neutron star
matter cannot adjust to the instantaneous value of nb

because beta processes are too slow, and in practice the
values of xp, xe, and xµ can be considered as fixed at
their unperturbed values. In view of this, the response of
pressure to perturbation of density is determined by Γfr,
calculated under the condition of constant composition
(Gourgoulhon et al. 1995). Both adiabatic indices are re-
lated by

Γ = Γfr +
nb

P

∑
j

(
∂P

∂xj

)
nb

(
∂xj
∂nb

)
eq

, (8)

where the index “eq” indicates that the derivative has
to be calculated assuming beta equilibrium (i.e., from
the EOS), and “fr” indicates a constant (frozen) compo-
sition.

Both Γ and Γfr in the liquid interior are shown in
Fig. 3. Freezing the composition stiffens neutron star mat-
ter, Γfr > Γ, the effect being of the order of a few percent.
Another effect of the composition freezing is removing of
a softening just after the appearence of muons, because of
the slowness of processes in which they are produced or
absorbed.

5.3. Velocity of sound and causality

The adiabatic sound speed is given by

v2
s =

(
∂P

∂ρ

)
S

, (9)

where S is the entropy per baryon. The value of vs may
become comparable to c in dense neutron star core.

The characteristic period of sound waves excited in
the liquid core can be estimated as τs ∼ R/vs ∼ 0.1 ms.
Therefore, τs is much shorter than the timescale of beta
processes, so that in this case

vs = c

√
Γfr

ρc2/P + 1
· (10)

A necessary condition for causality in a liquid medium
is vs ≤ c: sound has to be subluminal. As our many-
body model for the nucleon component of dense matter
is non-relativistic, it is not obvious a priori that the EOS
we have calculated respects this condition at high den-
sity. The calculation shows, that vs ≤ c is valid for our
EOS at all densities relevant for neutron stars (i.e., for
ρ < ρmax, see Sect. 6.1). It should be mentioned, however,
that vs ≤ c is not sufficient for causality to be respected by
a neutron star matter model. Strict conditions for causal-
ity can be only derived using the kinetic theory, which
describes all modes which can propagate in neutron star
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Fig. 1. The SLy EOS of the ground-state neutron star matter.
Dotted vertical line corresponds to the neutron drip and the
dashed one to the crust-liquid core interface.
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Fig. 2. Adiabatic index of the Sly EOS versus matter density.
Matter is assumed to be in full thermodynamic equilibrium.
Dotted vertical line: neutron drip. Dashed vertical line: crust
– liquid core interface. Dashed horizontal line in the region
of the outer crust is Γ = 1.33 obtained using empirical and
semi-empirical (i.e., from mass formulae) masses of nuclei and
removing the points corresponding to the density jumps be-
tween shells with different nuclei (Baym et al. 1971b; Haensel
& Pichon 1994).

matter (Olson 2000). In a simplified case of a schematic
(unrealistic) model of neutron star matter a set of con-
ditions resulting from kinetic equations was obtained by
Olson (2000). However, the problem of a complete set of
causality conditions was not studied for realistic models
of neutron star matter, and we will not attempt to solve
this problem in the present paper.



160 F. Douchin and P. Haensel: Equation of state of neutron star interior

Table 6. Configuration of maximum allowable mass for static neutron stars.

EOS M R nc ρc Pc A zsurf Ebind I

[M�] [km] [fm−3] [1014 g/cm3] [1036 dyn/cm2] [1057] [1053 erg] [1045 g cm2]

SLy 2.05 9.99 1.21 2.86 1.38 2.91 0.594 6.79 1.91

FPS 1.80 9.27 1.46 3.40 1.37 2.52 0.531 5.37 1.36
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Fig. 3. Adiabatic index of the SLy EOS of the liquid core.
Solid line: beta equilibrium of npeµ matter (equilibrium com-
position during compression or decompression). Dashed line:
vanishing rate of weak processes in npeµ matter (frozen com-
position during compression or decompression).

6. Neutron star structure. Static equilibrium
configurations

Configurations of hydrostatic equilibrium of non-rotating
neutron stars have been calculated by solving the Tolman-
Oppenheimer-Volkoff (TOV) equations

dP
dr

=−Gρm
r2

(
1 +

P

ρc2

)(
1 +

4πPr3

mc2

)(
1− 2Gm

rc2

)−1

,

dm
dr

=4πr2ρ, (11)

where r is the radial coordinate in the Schwarzschild met-
ric. The TOV equations are supplemented with an equa-
tion determining number of baryons, a, within the sphere
of radius r,

da
dr

= 4πr2nb

(
1− 2Gm

rc2

)− 1
2

. (12)

Equations (11), (12) were integrated from the center of
the configuration, with boundary condition at r = 0:
P (0) = Pc, m(0) = 0, a(0) = 0. The stellar surface at
r = R was then determined from P (R) = 0. The total
gravitational mass M = m(R), and the total number of
baryons A = a(R).

Fig. 4. Gravitational mass M versus central density ρc, for
the SLy, FPS, and APR EOS of dense matter. Maximum on
the mass-central density curves is indicated by a filled circle.
On the APR curve, configurations to the right of the asterisk
contain a central core with vsound > c. Configurations to the
right of the maxima are unstable with respect to small radial
perturbations, and are denoted by a dotted line. The shaded
band corresponds to the range of precisely measured masses of
binary radio pulsars.

Models of cold, static neutron stars form a one-
parameter family. They can be labeled by their central
pressure, Pc, or equivalently by their central density, ρc.

6.1. Mass, central density, and radius of neutron stars

In Fig. 4 we show dependence of gravitational mass on the
central density, ρc, for ρc > 3×1014 g cm−3, and compare
it with that obtained for the FPS EOS. Actually, on the
lower-density side the curve M(ρc) exhibits a minimum at
Mmin ' 0.09 M�, not shown in the figure. The value of
Mmin depends rather weakly on the EOS. On the higher-
density side, M(ρc) has a maximum. The existence of
Mmax (for any EOS) is an important consequence of gen-
eral relativity. Configuration with M > Mmax cannot exist
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Fig. 5. Gravitational mass versus central density, in the vicin-
ity of the minimum mass, for static neutron stars. Dotted lines
– configurations unstable with respect to small radial pertur-
bations. Minimum mass configuration is indicated by a filled
circle.

Fig. 6. Neutron star radius R versus gravitational mass M ,
with notation as in Fig. 4. Doubly hatched area is prohib-
ited by general relativity, because it corresponds to R < 9

8rg =
9GM/4c2 (for a general proof, see Weinberg 1972). All hatched
triangle (double and single hatched) is prohibited by the gen-
eral relativity and condition vsound < c (necessary but not
sufficient for respecting causality, Olsson 2000) combined. The
shaded band corresponds to the range of precisely measured
masses of binary radio pulsars.

in hydrostatic equilibrium and collapse into black holes.
We get Mmax = 2.05 M�, to be compared with 1.80 M�
for a softer FPS EOS.

Central density of the maximum allowable mass config-
uration is the maximum one which can be reached within
static neutron stars. Models with ρc > ρc(Mmax) ≡ ρmax

Fig. 7. Surface redshift zsurf versus gravitational mass M .
Hatched area is prohibited for EOSs with vsound < c. Shaded
vertical band corresponds to the range of precisely measured
masses of binary radio pulsars. The band limited by two dashed
horizontal lines corresponds to the estimate of zsurf from the
measured spectrum of the gamma-ray burst GB 790305b.

have dM/dρc < 0. They are therefore unstable with re-
spect to small radial perturbations and collapse into black
holes (see, e.g., Shapiro & Teukolsky 1983). The max-
imum central density for static stable neutron stars is,
for our EOS, 2.9 × 1015 g cm−3, to be compared with
3.4×1015 g cm−3 for the FPS EOS. Corresponding maxi-
mum value of baryon density is nmax = 1.21 fm−3 ' 7.6n0,
to be compared with 1.46 fm−3 ' 9.1n0 obtained for the
FPS EOS. A complete set of parameters of configuration
with maximum allowable mass for our EOS is presented
in Table 6, where the corresponding parameters obtained
for the FPS EOS are also given for comparison.

Comparison with the APR EOS is also of interest, and
therefore we show the M(ρc) curve for this EOS. The
curve obtained for our EOS is quite close to the APR one,
especially for 1 ≤ M/M� <∼ 2. It should be mentioned,
that for ρc > 1.73 × 1015 g cm−3 the APR neutron star
models contain a central core with vsound > c, and should
therefore be taken with a grain of salt. Such a problem
does not arise for our EOS, for which vsound < c within
all stable neutron star models.

Precisely measured masses of radio pulsars in binaries
with another neutron star span the range 1.34–1.44 M�
(Thorsett & Chakrabarty 1999), visualized in Fig. 4 by
a shaded band. For neutron stars of such masses, central
density is about 1× 1015 g cm−3, slightly below 4ρ0; this
result is nearly the same as for the APR EOS. For the
FPS EOS, neutron star of such a mass has higher central
density, about 1.3× 1015 g cm−3 ' 5ρ0.
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Fig. 8. Binding energy relative to dispersed 56Fe versus grav-
itational mass. The shaded rectangle corresponds to the esti-
mates of the total energy of the neutrino burst in SN 1987A,
and to the estimates of the mass of neutron star formed in this
event.

Table 7. Configurations of minimum mass for static neutron
stars.

EOS Mmin ρc R Mcore/M Rcore

[M�] [1014 g/cm3] [km] [km]

SLy 0.094 1.6 270 0.02 3.8

FPS 0.088 2.2 220 0.03 4.2

6.2. Minimum mass of neutron stars

With decreasing value of the central density, the mass of
equilibrium configuration decreases. Finally, one reaches
the minimum, Mmin, on the M − ρc curve. The curve
M(ρc) in the neighbourhood of Mmin is shown in Fig. 5.
Parameters of the minimum mass configuration for static
neutron stars are given in Table 7, where for the sake of
comparison we show also corresponding values calculated
for the FPS EOS.

The value of Mmin for the SLy EOS and the FPS EOS
are quite similar: in both cases Mmin ' 0.09 M�. Since
the SLy EOS is stiffer than the FPS one in the vicinity
of the crust-core interface, its Mmin configuration is less
dense and has larger radius. In both cases it has a small
central liquid core, containing 2% of mass in the case of
the SLy EOS and 3% of star mass in the case of a softer
FPS EOS.

Fig. 9. Moment of inertia for slow, rigid rotation versus gravi-
tational mass. The configuration with maximum I is indicated
by a filled triangle, and that of maximum mass – by a filled
circle. A shaded band corresponds to the range of precisely
measured masses of binary radio pulsars.

6.3. Radius versus gravitational mass

The radius-mass relation, obtained for our EOS for static,
cold neutron stars, is shown in Fig. 5, where for the
sake of comparison we show also the R(M) curve for
the FPS EOS. For masses between 1 M� and Mmax =
2.05 M�, the neutron star radius decreases rather weakly
with increasing mass, from 12 km to 10 km. For neu-
tron star masses, measured for some binary radio pulsars
(shaded band), the radius is slightly below 12 km. The in-
sensitivity of R to M for 1 <∼M/M� <∼Mmax is typical of
the realistic EOS without a strong softening at high den-
sity. The reasons for such a weak dependence of R on M
have been explained by Lattimer & Prakash (2001).

At the same value of M between 0.5 M� and 1.5 M�,
the radius of the SLy neutron star is some ∼1 km larger
than that obtained for the FPS EOS; the difference in-
creases with increasing M , and reaches 2 km at 1.80 M�.
It is of interest to compare R(M) curve for our EOS also
with that obtained for the APR EOS. For 1 <∼M/M� <∼ 2
both curves are quite similar. Note that highest-mass seg-
ment (to the right of the asterisk) of the APR curve should
be treated with caution, because stellar models contain
there a central core with vsound > c. It is due to this un-
physical feature that the APR R(M) curve approaches so
closely the prohibited hatched region of the R−M plane.

For a static neutron star, general relativity predicts
that the circular Keplerian orbits (for test particles) with
r > 3rg are stable, and those with r < 3rg are un-
stable, where the gravitational radius rg ≡ 2GM/c2 =
2.95 M/M� km (see, e.g., Shapiro & Teukolsky 1983).
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The radius of the marginally stable orbit, which sepa-
rates these two classes of orbits, is therefore rms = 3rg =
12.4 (M/1.4M�) km. As we see in Fig. 6, for M >∼ 1.4 M�
we have rms > R, and therefore for such neutron stars the
innermost stable circular orbit (ISCO) is separated from
the stellar surface by a gap. A similar situation holds also
for the FPS EOS. Note that the existence of a gap between
the ISCO and neutron star surface might be important for
the interpretation of the spectra of the kiloherhz Quasi
Periodic Oscillations observed in the X-ray radiation of
some Low Mass X-ray Binaries (van der Klis 2000).

6.4. Surface redshift

The surface redshift of photons emitted from neutron star
photosphere is given by

zsurf =
(

1− rg
R

)− 1
2 − 1. (13)

Surface redshift versus gravitational mass is plotted in
Fig. 7. At given M , the SLy value of zsurf is systematically
lower than for softer FPS EOS. However, the maximum
surface redshift for the SLy EOS, 0.59, is some 10% higher
than for the FPS EOS, 0.53. The larger value of Mmax for
stiffer SLy EOS plays a decisive role in determining the
spacetime curvature close to neutron star with maximum
allowable mass. In the range of measured values of masses
of binary pulsars we get zsurf ' 0.22÷0.26, slightly higher
than for the FPS EOS.

For M <∼ 2 M�, the zsurf(M) curve for our EOS is
quite similar to the APR one.

6.5. Binding energy

The binding energy of neutron star, Ebind, is defined as
the mass defect with respect to a dispersed configuration
of matter consisting of the same number of baryons, mul-
tiplied by c2. A dispersed configuration is characterized
by negligible pressure and negligible gravitational interac-
tions. Equivalently, one may define Ebind as a net work,
needed to transform a neutron star into a dispersed con-
figuration of matter. In what follows, we will use standard
definition of Ebind, i.e., with respect to a dispersed config-
uration of a pressureless cloud of 56Fe dust, with mass per
nucleon mFe ≡ mass of 56Fe atom/56 = 1.6587× 10−24 g.
Therefore,

Ebind = (AmFe −M) c2. (14)

With such a definition, Ebind represents a good approxi-
mation of the binding energy of neutron star with respect
to the configuration of a presupernova core from which
the neutron star was formed, via gravitational collapse, as
a by-product of the type II supernova explosion. Binding
energy is plotted versus M in Fig. 7. A given M , it is
somewhat smaller than for a softer FPS EOS. However,
the maximum value of Ebind, reached for Mmax, is sig-
nificantly larger for the SLy EOS than for a softer FPS

one. Binding of the neutron star is due to gravitational
forces and it rises rapidly with M . Significantly larger
value of Mmax (by 10%), combined with approximate scal-
ing Ebind ∝ M2 (Lattimer & Yahil 1989), explain why
maximum binding energy for our SLy model is some 20%
higher than for the FPS one.

The scaling argument is much less precise in the case
of comparison of maximum Ebind for our EOS with the
APR one. However, let us remind that the APR curve
above the asterisk should be treated with caution.

For measured masses of binary pulsars, we get for our
EOS Ebind = 2.3÷2.7×1053 erg; corresponding values for
the FPS EOS are some 2 × 1052 erg higher.

6.6. Moment of inertia

Most observed neutron stars are rotating. However, even
for most rapid millisecond pulsar PSR 1937+21, with ro-
tation period P obs

min = 1.558 ms, and angular frequency
Ωobs

max = 2π/period = 4033 Hz, rotation implies only
small changes of stellar structure for neutron stars with
M > 1 M�. Therefore, for the description of effects of
rotation for observed neutron stars one can use slow rota-
tion approximation, in which effects of rotation (assumed
to be rigid) are treated using a lowest order perturbative
scheme (Hartle 1967). In this approach, one calculates, in
the linear approximation in the angular frequency as mea-
sured by a distant observer, Ω, total angular momentum
of neutron star, J ∝ Ω (next order term is cubic in Ω).
Then, one gets moment of inertia for slow, rigid rotation
as I = J/Ω. Notice that within the slow rotation approx-
imation I is independent of Ω and can be calculated from
the structure of a non-rotating configuration of neutron
star. The values of I are plotted, versus M , in Fig. 8. At
given M , the value of I for our EOS is significantly higher
than for softer FPS EOS. The difference rises rapidly with
increasing M . An even larger difference is noted for the
maximum value of the moment of inertia, Imax, reached
for a mass slightly lower than Mmax. Indeed, Imax de-
pends quite sensitively on the stiffness of the EOS of dense
matter, and this dependence can be approximated by
Imax/1045 g cm2 ' (Mmax/M�)(RMmax/10 km)2 (Haensel
1990). As we noted before, Mmax, and the radius at
Mmax, denoted by RMmax , for the FPS EOS constitute,
respectively, 88% and 93% of the values obtained for our
SLy EOS. The simple approximate relation mentioned be-
fore, derived in (Haensel 1990), implies then that Imax for
the FPS EOS has to be only 76% of Imax obtained with our
EOS, which nicely reproduces results of exact calculations.
The same scaling argument can be applied to “explain”
the difference in Imax for our EOS and the APR one, in
terms of the difference in Mmax and RMmax .

6.7. Effects of rotation at P ≥ 1 .558 ms

As we mentioned in the preceding subsection, the effect of
rotation on the structure of neutron stars with M > 1 M�
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Fig. 10. Apparent radius of neutron star, R∞, versus gravi-
tational mass, M , Long-dash-dot straight line corresponds to
minimum R∞ at a given M (see the text).

is small, and can be treated as a perturbation. Rigid ro-
tation increases the maximum mass of the SLy neutron
stars by less than two percent. The smallness of this effect
is readily understood, because it is quadratic in a dimen-
sionless parameter Ω = Ω/

√
GM/R3 (Hartle 1967). At

present P ≥ 1.558 ms, and therefore Ω
2 ≤ Ω

obs

max = 0.06
at Mmax for the SLy EOS. Now, maximal rotation, at
Ωmax ∼

√
GM/R3, implies increase of Mmax by about

20% (see next subsection). Therefore, fractional increase
of Mmax connected with Ω

2 � 1 is 0.2Ω
2
< 2%.

However, Ω
obs

max increases with decreasing neutron star
mass, and rotational effects at P obs

min = 1.558 ms become
decisive for low-mass neutron stars. Namely, low-mass
neutron stars become significantly flattened and because
of a strongly increasing radius (with decreasing mass) they
approach rapidly the mass shedding limit, at which the
gravitational pull at the equator is exactly balanced by the
centrifugal force. Exact 2-D calculation show that the min-
imum mass of neutron stars rotating rigidly at the mini-
mum observed pulsar period of 1.558 ms is, for our EOS,
Mmin(1.558 ms) = 0.61 M�, some seven times higher than
for static neutron stars (Haensel et al. 2001).

6.8. Maximally rotating neutron star models

The minimum rotation period for rigidly rotating neu-
tron stars, stable with respect to the axisymmetric per-
turbations, was calculated using the 2-D general rela-
tivistic code, based on the pseudospectral method for
solving partial differential equation (Gourgoulhon et al., in

preparation). We get Pmin = 0.55 ms. For subluminal EOS
(vs ≤ c), the values of Pmin can be estimated, with a good
(a few percent) precision, using an “empirical formula”
Pmin/ms = 0.82 · (Mmax/M�)−1/2(RMmax/10 km)3/2,
where Mmax and RMmax are mass and radius of static
configuration with maximum allowable mass (Haensel &
Zdunik 1989; Haensel et al. 1995). This empirical formula
yields Pmin ' 0.57 ms, which is only 4% higher than the
exact result. Using the empirical formula, one gets for the
APR EOS the value of Pmin which is a few percent lower
than for our EOS.

The maximum mass for rigidly rotating neutron stars
is M rot

max = 2.42 M�, 18% higher than the maximum mass
for static configurations. For the FPS EOS, one obtains
M rot

max = 1.95 M� (Cook et al. 1994), also 18% higher than
for the static configuration. Such an increase of Mmax due
to a maximal uniform rotation is characteristic of sublu-
minal realistic baryonic EOS (Lasota et al. 1996).

7. Neutron star models vs. observations

7.1. Masses

The value of Mmax = 2.05 M� is sufficiently high to be
consistent with measured masses of binary radio pulsars
and with estimates of masses of X-ray pulsars and X-ray
bursters. It is a little too low (by a few percent) to explain
the upper-peak frequency 1.06± 0.02 kHz of the QPOs in
4U 1820-30 via the orbital motion of plasma clumps in
the marginally stable circular orbit, which would require
M > 2.1 M�. However, the last constraint may be not
valid because of doubts connected with interpretation of
the kHz QPOs in this and other LMXBs. These doubts
result from observed changes of the difference between the
upper and lower peak frequencies, which within the beat-
frequency model (Miller et al. 1998 and references therein)
is identified with rotation frequency of neutron star, and
should therefore be constant, apart from slight increase
due to the accretion spin-up.

7.2. Apparent radii of isolated closeby neutron stars

Measuring the spectrum of photons emitted from the sur-
face of a solitary neutron star, combined with knowledge
of distance (from the annual parallax) enables one, in
principle, to determine total photon luminosity, effective
surface temperature and apparent radius of neutron star.
Recently, such studies have been carried out for Geminga
(Golden & Shearer 1999) and RX J185635-3754 (Walter
2001; Pons et al. 2001).

The apparent (or radiation) radius, measured by a dis-
tant observer, R∞, is related to R by

R∞ =
R√

1− rg/R
= (1 + zsurf)R. (15)

The values of R∞ versus M are plotted in Fig. 10. The
R∞(M) plot is very different from the R(M) one (Haensel
2001). In particular, R∞(Mmax) is not the minimum value
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of R∞; the minimum is usually reached at M ∼ 0.5 M�,
and for our EOS is 13.1 km, to be compared with slightly
smaller minimum values of 12.3 km and 12.5 km for the
FPS and APR EOS.

A strict lower bound on R∞ at a given M re-
sults from the very definition of R∞, and does not de-
pend on any physical constraint: R∞(M) > R∞,min =
7.66 (M/M�) km (Lattimer & Prakash 2001, see also
Haensel 2001). As one sees in Fig. 10, the values of R∞ at
Mmax are extremely close (within less than 1%) to R∞,min.
This property has been explained in (Haensel 2001).

The central value of R∞ for Geminga, obtained by
Golden & Shearer (1999) using the best-fit model atmo-
sphere spectra, cannot be explained by our EOS, and ac-
tually – by none of existing baryonic EOS of dense matter
(it could be modeled by a small mass strange star covered
by a normal matter layer, to produce the observed pho-
ton spectrum). However, the uncertainty in the extracted
value of R∞ is large: it stems mainly from the uncertainty
in the distance to Geminga (assumed to be d = 159 pc),
but a poor knowledge of the photon spectrum plays also an
important role. One therefore might argue, that because
of these uncertainties the measured value of R∞ cannot
exclude our and other baryonic EOS of dense matter at a
reasonably high confidence level of 95%.

In the case of RX J185635-3754 contradiction between
extracted value of R∞, and theoretical models of neutron
stars based on our EOS (and on other available mod-
els of dense matter) is even more dramatic (Pons et al.
2001)2. The central best-fit value of R∞ is 8.2 km (Fe at-
mosphere) and 7.8 km (Si-ash atmosphere), at assumed
distance d = 61 pc. Non-uniformity of surface tempera-
ture, consistent with observational constraints, does not
allow to remove this conflict between theory and observa-
tions. Unfortunately, proper inclusion of effects of surface
magnetic field is not possible because of non-availability of
magnetized heavy-metal atmosphere models (Pons et al.
2001). One may only hope, that the problem of the conflict
between theoretical and measured R∞ of closeby isolated
neutron stars will be solved in the future studies.

Very recently, Rutledge et al. (2001) proposed a
method of measuring R∞ of neutron stars, observed as
X-transients in globular clusters. They studied transient
X-ray source CXOU 132619.7-472910.8 in NGC 5139.
Fitting its photon spectrum with H-atmosphere model,
they obtained, at 90% confidence level, R∞ = 14.3 ±
2.5 km, which is consistent with our EOS, and with FPS,
APR and many other available EOS of dense matter. This
method of measuring R∞ seems to be very promising, be-
cause both distance and interstellar hydrogen column den-
sity are relatively well known for globular clusters.

2 Low-mass strange quark stars covered with a thin normal
matter envelope are excluded too because the best-fit redshift
zsurf ' 0.3−0.4 (Pons et al. 2001).

7.3. Surface redshift

As of this writing (June 2001), the only reliable evaluation
of zsurf seems to be connected with extraordinary gamma-
ray burst GRB 790305b (of March 5th, 1979) from the
soft-gamma repeater SGR 0526-66 associated with super-
nova remnant N49 in Large Magellanic Cloud. The spec-
trum of this gamma-ray burst exhibited a prominent emis-
sion line at 430±30 keV, with full width at half-minimum
'150 keV (Mazets et al. 1981, 1982). Assuming that the
line originated from e+e− −→ 2γ, and that line broaden-
ing resulted from the thermal motion in the plasma, one
gets, after taking due account of the thermal blueshift (see,
e.g., Higdon & Lingenfelder 1990), zsurf = 0.23± 0.07. As
one sees in Fig. 7, such surface redshift is predicted for
neutron stars of M = 1÷ 1.6 M�, while the central mea-
sured value of 0.23 corresponds for our EOS to a neutron
star with M ' 1.4 M�.

7.4. Binding energy and SN 1987A

The appearence of SN1987A in the UV and optical do-
main was preceded by a burst of neutrinos, detected on
the Earth by neutrino detectors. The total of 25 events
of the absorption of νe on protons were registered within
∼10 s. Analysis of these events, combined with: knowl-
edge of detectors properties, assumption of spherical sym-
metry, knowledge of the distance to Large Magellanic
Cloud, and basic features of the SN II theory, enabled
the evaluation of the total energy of the neutrino burst as
Eν ' (2.5 ± 1) × 1053 erg (Lattimer & Yahil 1989). As
about 99% of the total energy release in a SN II explosion
is emitted in a neutrino burst, this was actually the mea-
surement of the binding energy of a newly born neutron
star, Ebind ' Eν . Stellar evolution theory tells us, that
the neutron star born in SN1987A had M = 1.2÷1.5 M�.
This restricts the area in the Ebind−M plane in Fig. 8 to
a small shaded rectangle. This rectangle is nicely consis-
tent with binding energies of neutron stars predicted by
our EOS.

7.5. Crustal moment of inertia and pulsar glitches

It is widely believed that sudden spin ups of radio pulsars,
called glitches, are due to the angular momentum transfer
from a specific, weakly coupled to the rest of the star, su-
perfluid component (dripped neutrons in the inner crust)
– to the rest of the neutron star body (lattice of nuclei in
the crust plus the liquid core) (Alpar et al. 1984). Since
the discovery of glitches in 1969, more than thirty of them
have been observed. Particularly large number of glitches
have been detected in the timing of the Vela pulsar (thir-
teen during the period 1969–1999). The set of data on the
Vela glitches was used by Link et al. (1999) to derive a
constraint on the neutron star crustal moment of inertia,
Icrust/I > 1.4%. This constraint is satisfied by our EOS,
provided the neutron star mass is below 1.75 M�. Let us
mention that in the case of a softer FPS EOS neutron star
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mass should not not exceed 1.6 M� in order to satisfy this
constraint.

7.6. Neutron star cooling

For our specific SLy model, the threshold density for the
direct electron Urca process, 1.35 fm−3, is above the max-
imum central density of neutron stars. Taken at its face
value, this would mean that the SLy model does not allow
for the direct Urca process involving nucleons in neutron
stars. One should keep in mind however, that the specific
SLy4 model that we used is only one of a larger set of
the SLy family. We remind that for some versions of these
effective nuclear interactions direct Urca process was al-
lowed in massive neutron stars (see Chabanat et al. 1997).
Moreover, the SLy forces were constructed to reproduce
best variational calculations for high density pure neu-
tron matter with realistic neutron-neutron potentials, and
therefore proton fraction they yield should not be con-
sidered at the same footing as the EOS for neutron star
matter, in which protons play a rather small role.

8. Summary and conclusion

We calculated the EOS of neutron star matter, which
describes in a physically unified way both the crust
and the liquid core. The EOS, valid from 108 g cm−3

up to the maximum density reachable within neutron
stars, was based on the recently derived SLy effective
nucleon-nucleon interaction, which, due to its construc-
tion method, is particularly suitable for the description
of strong interactions in the nucleon component of dense
neutron star matter. Calculations were done assuming
ground state of neutron star crust, and the “minimal”
npeµ composition of the liquid core. The minimum and
maximum mass of non-rotating neutron stars are 0.09 M�
and 2.05 M� respectively. Rigid rotation at the minimum
observed pulsar period 1.558 ms increases the maximum
mass by only about 1%, but effect on the minimum mass
is large: it increases up to 0.61 M�.

Our model of matter at supranuclear densities is the
simplest possible, and is based on experimental nuclear
physics and relatively precise many-body calculations of
dense neutron matter. We did not consider possible dense
matter constituents, for which strong interactions are
poorly known (hyperons), or which are hypothetical (pion
and kaon condensates, quark matter). Such a model as
that proposed in the present paper may seem very simple
– as compared to a rich spectrum of possibilities consid-
ered in the literature on the constitution of dense neutron
star cores. However, it has the virtue of giving a unified
description of all the interior of a neutron star, and is
firmly based on the most solid sector of our knowledge of
nuclear interactions.
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Kluźniak, W. 1998, ApJ, 509, L37
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