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ABSTRACT

The streaming transmissions of 360° videos is a major challenge

for the development of Virtual Reality, and require a reliable head

motion predictor to identify which region of the sphere to send in

high quality and save data rate. Different head motion predictors

have been proposed recently. Some of these works have similar

evaluation metrics or even share the same dataset, however, none

of them compare with each other. In this article we introduce an

open software that enables to evaluate heterogeneous head motion

prediction methods on various common grounds. The goal is to

ease the development of new head/eye motion prediction methods.

We first propose an algorithm to create a uniform data structure

from each of the datasets. We also provide the description of the

algorithms used to compute the saliencymaps either estimated from

the raw video content or from the users’ statistics. We exemplify

how to run existing approaches on customizable settings, and finally

present the targeted usage of our open framework: how to train and

evaluate a new prediction method, and compare it with existing

approaches and baselines in common settings. The entire material

(code, datasets, neural network weights and documentation) is

publicly available.
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· Computing methodologies → Model verification and vali-

dation; Virtual reality.
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1 INTRODUCTION

360° videos are an important part of the Virtual Reality (VR) ecosys-

tem, providing the users the ability to freely explore an omnidi-

rectional scene and a feeling of immersion when watched in a VR

headset. Given the closer proximity of the screen to the eye and

the width of the content, the required data rate is two orders of

magnitude that of a regular video [9]. To decrease the amount of

data to stream, a solution is to send in high resolution only the

portion of the sphere the user has access to at each point in time,

named the Field of View (FoV). These approaches however require

to know the user’s head position in advance, that is at the time of

sending the content from the server.

Owing to this acute need for head motion prediction in 360° video

streaming, a number of recent approaches have proposed deep neu-

ral networks meant to exploit the knowledge of the past positions

and of the content to periodically predict the next positions over a

given horizon (e.g., [4, 7, 16, 17]). Some of these works have simi-

lar evaluation metrics or even use the same dataset, none of them

however compares with their counterparts aiming the exact same

prediction problem.

Our goal is to address the strong need for a comparison of existing

approaches on common ground. For this reason, the main contri-

bution of this work is a framework that allows researchers to study

the performance of their new head motion prediction methods

when compared with existing approaches on the same evaluation

settings (dataset, prediction horizon, and test metrics). This soft-

ware framework therefore contributes to progress towards efficient

360° systems. The entire material (code, datasets, neural network

weights and documentation) is available at [12].

The paper is organized as follows. Section 2 introduces the defi-

nition of the problem of head motion prediction and each of the

methods considered for reproduction and comparison. Section 3

describes the datasets used in these approaches and suggests an

algorithm to create a uniform data structure from these hetero-

geneous dataset formats. Section 4 details the algorithms used to

compute the saliency maps estimated from the raw video content

or from the users’ statistics. Section 5 details how to run existing

approaches on customizable settings, and introduce two reference

baselines. Section 6 presents how to prepare a testbed to assess

comprehensively a new prediction method (on various datasets

against several competitors). Finally, Section 7 concludes the paper.

https://doi.org/10.1145/3339825.3394934
https://doi.org/10.1145/3339825.3394934
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2 REVIEW OF EXISTING HEAD MOTION
PREDICTION METHODS

We first rigorously formulate the prediction problemwhich consists,

at each video playback time 𝑡 , in predicting the future user’s head

positions between 𝑡 and 𝑡 + 𝐻 , as represented in Fig. 1, with the

only knowledge of this user’s past positions and the (entire) video

content. We then provide a description and classification of each of

the existing methods we compare with.

2.1 Problem Formulation

Let us first define some notation. Let P𝑡 = [𝜃𝑡 , 𝜑𝑡 ] denote the vector

coordinates of the FoV at time 𝑡 . Let V𝑡 denote the considered visual

information at time 𝑡 : depending on the models’ assumptions, it can

either be the raw frame with each RGB channel, or a 2D saliency

map resulting from a pre-computed saliency extractor (embedding

the motion information). Let 𝑇 be the video duration. We now

refer to Fig. 1. Let H be the prediction horizon. We define the terms

prediction step and video time-stamp as predicting for all prediction

steps 𝑠 ∈ [0, 𝐻 ] from video time-stamp 𝑡 . For every time-stamp

𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡 ,𝑇 ], we run predictions P̂𝑡+𝑠 , for all prediction steps

𝑠 ∈ [0, 𝐻 ].

We formulate the problem of trajectory prediction as finding the

best model F∗
𝐻
verifying:

F
∗
𝐻 = argminE𝑡

[

𝐷
(

[

P𝑡+1, . . . , P𝑡+𝐻
]

,

F𝐻
(

[P𝑡 , P𝑡−1, . . . , P0,V𝑡+𝐻 ,V𝑡+𝐻−1, . . . ,V0]
)

)]

where 𝐷 (·) is the chosen distance between the ground truth series

of the future positions and the series of predicted positions. For

each 𝑠 , we average the errors 𝐷 (P̂𝑡+𝑠 , P𝑡+𝑠 ) over all 𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡 ,𝑇 ].

Figure 1: Headmotion prediction: For each time-stamp 𝑡 , the

next positions until 𝑡 + 𝐻 are predicted.

2.2 Methods for Head Motion Prediction

Various approaches to predict user motion in 360° video environ-

ments have been published in the last couple of years. Here we con-

sider that the users’ statistics for the specific video are not known

at test time, hence we do not consider methods relying on these

per-video statistics, such as [10, 13]. Each considered method from

the literature is named according to the name of the conference or

journal it was published in, appended with the year of publication.

PAMI18: Xu et al. in [16] design a Deep Reinforcement Learning

model to predict head motion. Their deep neural network only

receives the viewer’s FoV and has to decide to which direction and

with which magnitude the viewer’s head will move. The prediction

horizon is only one frame, around 30ms. By only injecting the FoV,

the authors make the choice not to consider the positional informa-

tion explicitly as input.

IC3D17: The strategy presented by Aladagli et al. in [1] extracts

the saliency from the current frame with an off-the-shelf method,

identifies the most salient point, and predicts the next FoV to be

centered on this most salient point. It then builds recursively. We

therefore consider this method to be a sub-case of PAMI18.

ICME18: Ban et al. in [2] use a linear regressor first learned to

get a prediction of the displacement, which it then adjusts by com-

puting the centroid of the k nearest neighbors corresponding to

other users’ positions at the next time-step, and hence assume more

information than our case of study.

CVPR18: In [17], Xu et al. predict the gaze positions over the next

second in 360° videos based on the gaze coordinates in the past

second, and saliency and motion information on the entire equirect-

angular projection and the FoV of the current frame and next frame.

MM18: Nguyen et al. in [7] first construct a saliency model based

on a deep convolutional neural network and named PanoSalNet.

The so-extracted saliency map is then fed, along with the position

encoded as a mask, into a doubly-stacked LSTM, to finally predict

the tiles that pertain to the FoV.

NOSSDAV17: Fan et al. in [4] propose to concatenate the positional

information, saliency and motion maps then fed into LSTM, they

propose two neural networks to predict the head orientations or the

likelihood that tiles pertain to future FoV in the future𝐻 time-steps.

ChinaCom18: Li et al. in [6] present a similar approach as NOSS-

DAV17, adding a correction module to compensate for the fact that

tiles predicted to be in the FoV may not correspond to the actual

FoV shape. We consider this model to be a sub-case of NOSSDAV17.

TRACK: In [11], we present a neural network that processes inde-

pendently the time-series of positions and the visual features with

dedicated recurrent units (LSTMs), before fusing the two embed-

dings with a third recurrent unit used to predict the sequence of

future 𝐻 time-steps.

Selected methods analyzed. From Sec. 3 we present the analy-

sis of the following methods: PAMI18, NOSSDAV17, MM18 and

CVPR18, the remaining methods are either considered sub-cases of

the selected methods or assume there is more information available

such as the viewers’ position statistics.

3 UNIFORM DATA FORMATS

One of the challenges when evaluating a head motion prediction

method across multiple datasets is to adapt it to the specific at-

tributes of each dataset. Consider the case of a model trained with a

specific sampling rate that is evaluated on a dataset with a different

sampling rate, or where the size or the format of the visual input

is different. It is important to have a convention on the structure

of the datasets, as it becomes easier to read, sort, understand and

compare homogeneous data. In this section, we first describe how

to use our framework to post-process the datasets and get a uniform

structure shared among all datasets considered in this work. We

then provide a way to analyze the datasets.

3.1 Make the Dataset Structure Uniform

The datasets used to evaluate the methods discussed in Sec. 2.2

contain visual and head motion data for 360° videos, stored in

different formats. In Table 1 we describe each of the datasets we

analyze in our repository and we show how each dataset has a
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Reference Head Pos. Log Format Saliency Maps Raw Videos Storage of Head Pos. Traces Code and Neural Network

NOSSDAV17 [4] Yaw, Pitch and Roll in range [-180,

180].
A MP4 file per video of

size 1920 × 3840.

No. A CSV file per trace. No.

PAMI18 [16] Longitude and latitude in range [-

180, 180] and [-180, 180] respec-

tively.

Not provided. MP4 format. MATLAB file with an entry per

video, each with a matrix with a col-

umn per user and alternating lon-

gitude and latitudes in the rows.

Found in [15].

CVPR18 [17] Longitude and latitude in range [-0,

1], origin in bottom-left corner.
Not provided. MP4 format. A folder per user with a text file per

trace.

No.

MM18 [7] 3D position in the unit sphere, (x, y,

z) in range [-0, 1].
A Python array per

video of size 9 × 16.

No. Python dictionary with an entry

per video, each with a list with an

entry per user.

Found in [8].

MMSys18 [3] longitude and latitude in range [-0,

1], origin in top-left corner.
A binary file per video

of size 1024 × 2048.

MP4 format. A CSV file with the traces of all

users per video.
N/A.

Table 1: Features of the file structure and format of the datasets used in each referenced method.

Figure 2: Uniform dataset file structure

particular format and schema. Some of them store the head position

data in language-specific formats (e.g. PAMI18 stores the data in a

Matlab-file andMM18 stores the data in a Python dictionary), others

store the head position data in text files (e.g. CVPR18 groups the

files in a folder per user, MMSys18 uses a CSV file per video, while

NOSSDAV17 uses a CSV file per user and video). Some datasets

contain the saliency maps and the raw videos (MMSys18), others

store only the saliency maps (NOSSDAV17, MM18) while others

contain only the raw videos in mp4 file (PAMI18, CVPR18).

We propose an algorithm that allows to read each of the datasets,

with methods to cleanse the data and produce traces in a uniform

format, common for all the datasets. The uniform dataset structure

is shown in Fig. 2. The following command is used to run the

analysis on each dataset:

python {Fan_NOSSDAV_17, Nguyen_MM_18,

Xu_PAMI_18}/Read_Dataset.py −analyze_data

Thanks to the analysis on the original datasets, we found that: (i)

there are a few missing entries in the PAMI18 dataset, (ii) when

re-implementing the tile mapping algorithm from NOSSDAV17, we

found that there is a discrepancy in the tiles generated and the

tile numbers provided in the dataset, and (iii) when observing the

time-stamps in MM18’s dataset, most of the traces are splitted and

concatenated, and there are intersections between the time-stamps.

By creating this dataset structure, we not only provide ways to read,

parse and analyze the different datasets, we also allow to sample

the datasets with a common sampling rate (by default 0.2 seconds).

To subsample the datasets, we first transform the head position

format from the original dataset to the quaternion representation.

Then, we perform the spherical linear interpolation of the rotations

Figure 3: Exploration of user ł45ž, in video łdrivež from

NOSSDAV17, represented in the unit sphere.

(represented as quaternions) with a constant angular velocity, the

rotations are interpolated at the rate of 0.2 seconds. Finally we

transform the sampled quaternions into 3D coordinates. We provide

a method on each dataset to visualize the exploration of the user

in the unit sphere. For example, to obtain a plot similar to that of

Fig. 3, the following command can be used:

python Fan_NOSSDAV_17/Read_Dataset.py −plot_3d_traces

In our repository [12] we provide a folder łsampled_datasetž

for each of the original datasets (NOSSDAV17, CVPR18, PAMI18,

MM18 and MMSys18), with a sub-folder per video. Inside, a text file

per user stores the head motion trace indicating the time-stamp,

followed by the 3D coordinates of the unit vector (x, y, z).

For example, to create the sampled dataset from the original dataset

of PAMI18, the command to use is:

python Xu_PAMI_18/Read_Dataset.py −creat_samp_dat

We also provide functions to plot and verify that the sampling

is correctly done. For example, the following command is used to

compare the sampled trace against the original trace to get plots

similar to Fig. 4:

python Xu_PAMI_18/Read_Dataset.py −compare_traces

3.2 Analysis of Head Motion in each Dataset

We provide the code to compute the Cumulative Distribution Func-

tion (CDF) of the maximum angular distance from the head position
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Figure 4: Comparison between the original trace (left) and

the sampled trace (right) for user łm1_21ž video łTermina-

torž in PAMI18 dataset.

at the start of the prediction window 𝑡 for different prediction win-

dow lengths 𝐻 ∈ 0.2, 0.5, 1, 2, 5, 15 seconds, as shown in Fig. 5. The

following command can be used to get these plots for each dataset:

python DatasetAnalysis/DatasetAnalysis_{CVPR18, MM18,

MMSys18, NOSSDAV17, PAMI18}.py

We observe that in the MMSys18 dataset [3], 50% of the users have

shifted their FoV by more than its width (100°) after 5 sec., while

in the datasets of CVPR18, NOSSDAV17, MM18 and PAMI18, the

percentage is 30%, 20%, 20% and 15%.

4 SALIENCY EXTRACTION

The saliency map is a heatmap (2D distribution) that identifies

what are the points in the 360° scene that attract the attention of

the viewers the most. Besides the time series of past positions, the

saliency map is one of the considered input modalities of the exist-

ing head motion prediction methods. Each of these methods extract

the visual features in a different way. If we want to fairly compare

different methods for head motion prediction, we would need to

use the same post-processing to obtain the salient visual features.

In our framework, we propose an algorithm to create saliency maps

estimated from the video content using the same saliency detection

model for all the datasets considered for reproduction and compar-

ison. In a second case, if we want our evaluation to be independent

from the imperfection of any saliency prediction model, we use

a method based on users’ statistics, namely ground-truth saliency

map. It is the heatmap of the viewing patterns, obtained at each

point in time from the users’ traces. In this section, we describe

how to compute each of these saliency maps using our code.

4.1 Ground-Truth Saliency Map

To compute the ground-truth saliency maps, we consider the point

at the center of the viewport 𝑃𝑡𝑢,𝑣 for user 𝑢 ∈ 𝑈 and video 𝑣 ∈ 𝑉

at the 𝑡𝑡ℎ time-stamp (𝑡 = 0, . . . ,𝑇 ), where 𝑇 is the length of the

sampled traces. For each head position 𝑃𝑡𝑢,𝑣 , we draw a frame in

equirectangular projection, and compute the orthodromic distance

𝐷 (·) from 𝑃𝑡𝑢,𝑣 to each point𝑄𝑥,𝑦 in the equirectangular frame with

longitude 𝑥 and latitude 𝑦. Then, we use a modification of the radial

basis function (RBF) kernel shown in Eq. 1 to convolve the points

in the equirectangular projection.

𝐺𝑇_𝑆𝑎𝑙𝑡𝑢,𝑣,𝑥,𝑦 = exp

(

−
𝐷 (𝑃𝑡𝑢,𝑣, 𝑄𝑥,𝑦)

2

2𝜎2

)

, (1)

where 𝐷 (𝑃𝑡𝑢,𝑣, 𝑄𝑥,𝑦) is the orthodromic distance, that is computed

using Eq. 2.

𝐷 (𝑃,𝑄) = arccos ( ®𝑃 • ®𝑄), (2)

where • is the dot product operation, and ®𝑃 are the coordinates in

the unit sphere of point 𝑃 . For a point 𝑃 = (𝑥,𝑦), where 𝑥 is the

longitude and 𝑦 is the latitude, the coordinates in the unit sphere

are ®𝑃 = (cos𝑥 cos𝑦, sin𝑥 cos𝑦, sin𝑦).

We compute saliency maps 𝐺𝑇_𝑆𝑎𝑙𝑡𝑢,𝑣 per user 𝑢 ∈ 𝑈 , video

𝑣 ∈ 𝑉 and time-stamp 𝑡 by convolving each head position 𝑃𝑡𝑢,𝑣
with the modified RBF function in Eq 1, a value of 𝜎 = 6° is chosen.

The saliency map per video frame can be calculated as follows

𝐺𝑇_𝑆𝑎𝑙𝑡𝑣 =
1
𝑈

∑

𝑢∈𝑈 𝐺𝑇_𝑆𝑎𝑙𝑡𝑢,𝑣 , where 𝑈 is the total number of

users watching this video-frame. An example of the ground-truth

saliency map is shown in Fig. 6. The file Read_Dataset.py under

the folder of each dataset contains all the methods to create the

ground-truth saliency maps, for example, the command to compute

and store the ground-truth saliency maps for David_MMSys_18

dataset is:

python David_MMSys_18/Read_Dataset.py −creat_true_sal

4.2 Content-Based Saliency Maps

To extract saliency maps from the content, we provide the workflow

that uses PanoSalNet [7, 8], also considered in MM18. The neural

network of PanoSalNet is composed by nine convolution layers, the

first three layers are initialized with the parameters of VGG16 [14],

the following layers are first trained on the images of the SALICON

dataset [5], and finally the entire model is re-trained on 400 pairs

of video frames and saliency maps in equirectangular projection.

To create the content-based saliencymapswe first need to transform

the videos into scaled images. We provide a executable file to create

images from each video with a rate of 5 samples per second (the

same sampling rate used to create our łsampled_datasetž from

Sec. 3). The file for each dataset is:

{Xu_CVPR_18, Xu_PAMI_18, David_MMSys_18}/dataset/

creation_of_scaled_images.sh

The file panosalnet.py under the folder Extract_Saliency contains

the methods to create the content-based saliency maps. As an ex-

ample, we provide the command to create the saliency map for each

frame in each video in CVPR18’s dataset:

python Extract_Saliency/panosalnet.py −gpu_id 0

−dataset_name CVPR_18

However, for the datasets that do not provide the 360° videos, but

directly the saliency maps (NOSSDAV17 and MM18), we can create

the content-based saliency maps using their provided information.

For example, this command can be used for MM18:

python Nguyen_MM_18/Read_Dataset.py −creat_cb_sal

An example of content-based saliency map is shown in Fig. 6.

5 EVALUATION OF ORIGINAL METHODS

We provide the algorithms to run the experiments of PAMI18,

CVPR18, MM18, ChinaCom18 and NOSSDAV17 with their orig-

inal settings, evaluation metrics and datasets. To have a common



A unified evaluation framework for head motion prediction methods in 360° videos MMSys’20, June 8–11, 2020, Istanbul, Turkey

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Motion (°)

D
at
a
p
ro
p
o
rt
io
n

NOSSDAV17

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Motion (°)
D
at
a
p
ro
p
o
rt
io
n

PAMI18

H = 0.2s
H = 0.5s
H = 1s
H = 2s
H = 5s
H = 15s

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Motion (°)

D
at
a
p
ro
p
o
rt
io
n

CVPR18

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Motion (°)

D
at
a
p
ro
p
o
rt
io
n

MM18

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Motion (°)

D
at
a
p
ro
p
o
rt
io
n

MMSys18

Figure 5: From left to right: Motion distribution of the datasets used in NOSSDAV17, PAMI18, CVPR18, MM18, and the

MMSys18-dataset from [3]. The x-axis corresponds to the motion from position t to position t+H in degrees.

Figure 6: Saliency maps computed for frame ł98ž in video

ł160ž from CVPR18 dataset. a) Original frame. b) Content-

based saliency. c) Ground-truth saliency.

reference point on each evaluation experiment, we also present

how to run two different baselines:

• no-motion baseline: Simple baseline that assumes that the head of

the user stays still during the whole prediction horizon, no learning

involved.

• position-only baseline: Sequence-to-sequence LSTM-based archi-

tecture that exploits the time series of past positions only (disre-

garding the video content).

The file Baselines.py under the folder of each dataset contains all

the methods to run the experimental setup of each of the works for

a given method. Depending on the type of result either a plot or a

table is shown at the end of the execution, for the case of MM18, the

figure shown in Fig. 7(left) is obtained by executing this file. The

following command can be used to get the results for the no-motion

baseline in the experimental setup of MM18:

python Nguyen_MM_18/Baselines.py −gpu_id "" −model_name

no_motion

6 TYPICAL USAGE OF THE HEAD MOTION
PREDICTION FRAMEWORK

Importantly, the software framework we propose enables to prepare

a testbed and compare different methods on the same head motion

prediction experiment. It therefore eases the assessment of new

prediction techniques, and compare them with other existing pre-

diction methods and baselines. Our framework allows to train and

evaluate a given prediction model on a chosen dataset, specifying

the prediction horizon and history window, among other parame-

ters described below.We first detail the formatting of the commands

and the available options, before developing some examples.

6.1 Training and Evaluation

To train or evaluate a given neural network in a specific dataset

and configure some basic settings, the following command can be

used:

python training_procedure.py −{evaluate, train} −gpu_id

GPU_ID −dataset_name DATASET_NAME −model_name

MODEL_NAME −init_window T_START −m_window

M_WINDOW −h_window H_WINDOW [−end_window

T_END] −exp_folder FOLDER_NAME [−provided_videos]

−use_true_saliency −metric {orthodromic, mse}

Here is the detail of each option:

• -evaluate/-train: This option allows to decide if we want to train

or evaluate the neural network defined in MODEL_NAME.

• -gpu_id: Specify the GPU_ID to load the neural network, if the

parameter is left empty, the neural network will be loaded on CPU.

• -dataset_name: Select the dataset to use with the parameter

DATASET_NAME, the options are:

Xu_PAMI_18, Xu_CVPR_18, Fan_NOSSDAV_17, Nguyen_MM_18,

Li_ChinaCom_18 and David_MMSys_18.

• -model_name: Select the model to train or evaluate, the options

are: no_motion, pos_only, CVPR18, MM18, TRACK, among others.

• -init_window: In the experiment, the prediction will not be as-

sessed over the first T_START time-stamps of the videos.

• -m_window: The neural network takes into account the last

M_WINDOW time-stamps from time 𝑡 , also named history window

in Fig. 1.

• -h_window: The prediction horizon, we try to predict over the

following H_WINDOW time-stamps from time 𝑡 .

• -end_window:The prediction is not assessed over the last T_END

time-stamps of the videos, by default T_END is equal toH_WINDOW.

• -exp_folder: The folder to read the traces. The default value is

łsampled_datasetž, the folder created when uniformly sampling all

datasets in Sec. 3.

• -provided_videos: Flag to use in case the partition into train

and test videos are provided in the original dataset.

• -use_true_saliency: Flag that tells whether to use true saliency,

if not set, then content-based saliency is used.

• -metric:Metric used for the evaluation, by default orthodromic

distance (orthodromic), but mean squared error (mse) can be used

too. More metrics can be easily added by filling up the Python

dictionary łall_metricsž in the script łUtils.pyž.

6.2 Examples of Usage

We now present a few examples on how to use our framework

to get the results for the methods of CVPR18, MM18 and TRACK

in an experimental setup where the prediction horizon is 𝐻 = 5

seconds, the evaluation metric is the orthodromic distance, using

the dataset of MMSys18, and using the ground-truth saliency for

CVPR18 and MM18 and the content-based saliency for TRACK. The
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plot obtained by running the commands presented below is shown

in Fig. 7(right).

CVPR18

Since the code of CVPR18 is not publicly available, the neural net-

work of CVPR18 used here is a replica from the description in [17].

In our replica of CVPR18, we decided to prune the Saliency En-

coder Module and replace it directly with the ground-truth to be

independent from the imperfection of the saliency encoder module

fed with the visual content. The following command is used to get

the results for the replica of the neural network of CVPR18 on our

experimental setup, trained and tested with ground-truth saliency

maps:

python training_procedure.py −evaluate −gpu_id 0

−dataset_name David_MMSys_18 −model_name CVPR18

−init_window 30 −m_window 5 −h_window 25

−exp_folder original_dataset_xyz −provided_videos

−use_true_saliency

MM18

For the case of MM18, the model and weights are publicly available

in [8]. Since the model of MM18 predicts the head orientation at

time 𝑡 + 𝐻 , we had to retrain the model for each prediction step

in the prediction horizon, i.e., for each 𝑠 ∈ {0.2𝑠, 0.4𝑠, · · · , 𝐻 =

5𝑠}. To get the results for the neural network of MM18 on our

experimental setup, using ground-truth saliency maps, use the

following command:

python training_procedure.py −evaluate −gpu_id 0

−dataset_name David_MMSys_18 −model_name MM18

−init_window 30 −m_window 15 −h_window 25

−exp_folder original_dataset_xyz −provided_videos

−use_true_saliency

TRACK

We provide as example the command to evaluate the neural network

of TRACK:

python training_procedure.py −evaluate −gpu_id 0

−dataset_name David_MMSys_18 −model_name TRACK

−init_window 30 −m_window 5 −h_window 25

−exp_folder original_dataset_xyz −provided_videos
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Figure 7: (Left) Performance of the no-motion baseline and

position-only baseline compared with the results of MM18

in [7]. (Right) Average error of themodels ofMM18, CVPR18

using Ground-truth saliency and the model TRACK using

Content-based saliency, tested on MMSys18’s dataset [3].

7 CONCLUSIONS

In this paper we presented a framework to evaluate and compare

different methods to predict head position in 360° videos. In this

framework, we propose an algorithm to create a uniform data struc-

ture from each of the heterogeneous datasets evaluated in this work.

We described the algorithms used to compute the saliency maps

either estimated from the raw video content or from the users’

statistics, considering a kernel fitted for the equirectangular pro-

jection used to encode 360° videos. To compare each of the head

motion prediction settings to a common reference, we detailed the

commands to estimate the performance of different approaches

in each original evaluation context (prediction horizon, metrics

and datasets). Finally, we presented how to use our framework

to prepare a testbed to assess comprehensively a new prediction

method (on various datasets against several competitors). This soft-

ware framework therefore contributes to progress towards efficient

360° streaming systems. The entire material (codes, datasets, neural

network weights and documentation) is available at [12].
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