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Abstract This paper presents a unified exact method for solving an extended model
of the well-known Capacitated Vehicle Routing Problem (CVRP), called the Het-
erogenous Vehicle Routing Problem (HVRP), where a mixed fleet of vehicles having
different capacities, routing and fixed costs is used to supply a set of customers.
The HVRP model considered in this paper contains as special cases: the Single Depot
CVRP, all variants of the HVRP presented in the literature, the Site-Dependent Vehicle
Routing Problem (SDVRP) and the Multi-Depot Vehicle Routing Problem (MDVRP).
This paper presents an exact algorithm for the HVRP based on the set partitioning for-
mulation. The exact algorithm uses three types of bounding procedures based on the
LP-relaxation and on the Lagrangean relaxation of the mathematical formulation. The
bounding procedures allow to reduce the number of variables of the formulation so
that the resulting problem can be solved by an integer linear programming solver.
Extensive computational results over the main instances from the literature of the dif-
ferent variants of HVRPs, SDVRP and MDVRP show that the proposed lower bound
is superior to the ones presented in the literature and that the exact algorithm can solve,
for the first time ever, several test instances of all problem types considered.
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1 Introduction

The Heterogenous Vehicle Routing Problem (HVRP) considered in this paper has
been introduced by Li et al. [19] and is a generalization of the Capacitated Vehicle
Routing Problem (CVRP). The HVRP can be described as follows.

An undirected graph G = (V ′, E) is given, where V ′ = {0, 1, . . . , n} is the set
of n + 1 nodes and E is the set of edges. Node 0 represents the depot, while the
remaining node set V = V ′\{0} corresponds to n customers. Each customer i ∈ V
requires a supply of qi units from the depot (we assume q0 = 0). A heterogeneous
fleet of vehicles is stationed at the depot and is used to supply the customers. The
vehicle fleet is composed of a set M = {1, . . . , m} of m different vehicle types. For
each type k ∈ M , Uk vehicles are available at the depot, each having a capacity equal
to Qk . With each vehicle type is also associated a fixed cost Fk modelling, e.g., rental
or capital amortization costs. In addition, for each edge {i, j} ∈ E and for each vehicle
type k ∈ M , a routing cost dk

i j is given.
A route R = (0, i1, . . . , ir , 0) performed by a vehicle of type k, is a simple cycle

in G passing through the depot and customers {i1, . . . , ir } ⊆ V , with r ≥ 1, such that
the total demand of the customers visited does not exceed the vehicle capacity Qk

(i.e.,
∑r

h=1 ih ≤ Qk). Note that if r = 1 then route R represents the single-customer
route R = (0, i1, 0). The cost of a route is equal to the sum of the routing costs and the
fixed cost of the associated vehicle. The HVRP consists of designing a set of feasible
routes of minimum total cost such that each customer is visited by exactly one route
and the number of routes performed by the vehicles of type k is not greater than Uk ,
k ∈ M .

This model subsumes the following different classes of vehicle routing problems.

(1) The well-known CVRP, where a given fleet of p vehicles of identical capacity Q
must service customers with known demands from a central depot at minimum
routing cost. The CVRP corresponds to the HVRP where m = 1, Q1 = Q,
F1 = 0 and U1 = p.

(2) The fleet size and mix CVRP with fixed vehicle costs, unlimited number of
vehicles (i.e., Uk = n,∀k ∈ M) and independent routing costs (i.e., dr

i j =
ds

i j ,∀r, s ∈ M , r �= s), called FSMF.
(3) The fleet size and mix CVRP with fixed vehicle costs, unlimited number of

vehicles (i.e., Uk = n,∀k ∈ M) and vehicle dependent routing costs, called
FSMFD.

(4) The heterogeneous CVRP with no fixed vehicle costs (i.e., Fk = 0, ∀k ∈ M) and
vehicle dependent routing costs, called HD.

(5) The fleet size and mix CVRP with no fixed vehicle costs (i.e., Fk = 0, ∀k ∈ M),
unlimited number of vehicles (i.e., Uk = n,∀k ∈ M) and vehicle dependent
routing costs, called FSMD.

(6) The Site-Dependent CVRP, called SDVRP. In the SDVRP, introduced by Nag
et al. [22], a customer i ∈ V can only be served by a subset of vehicle types Mi ⊆
M . The routing costs are vehicle independent and represented by a symmetric
edge cost matrix [di j ] and no fixed costs are associated to the vehicles. Any
SDVRP instance can be converted into an equivalent HD instance by setting for
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Table 1 Characteristics of the different problems

Problem Vehicle fixed Vehicle dependent Heterogenous Limited fleet

costs routing costs vehicle fleet

HVRP Yes Yes Yes Yes

CVRP No No No Yes

FSMF Yes No Yes No

FSMFD Yes Yes Yes No

HD / SDVRP No Yes Yes Yes

FSMD No Yes Yes No

MDVRP No Yes No No

each vehicle type k ∈ M :

Fk = 0 and dk
i j =

{
di j , if k ∈ Mi ∩ M j

∞, otherwise
, ∀{i, j} ∈ E,

where M0 = M .
(7) The Multi-Depot CVRP, called MDVRP. This problem is an extension of the

CVRP where a customer can be served by an unlimited fleet of identical vehicles
of capacity Q, located at p depots, and inter-depot routes are not allowed (see
Cordeau et al. [8]). Let [d̂i j ] be a (n + p)× (n + p) symmetric cost matrix, where
d̂n+k i is the travel cost for going from depot k = 1, . . . , p to customer i ∈ V .
Any MDVRP can be converted into an equivalent HVRP instance generating
m = p different vehicle types and setting for each vehicle type k ∈ M :

Qk = Q, Uk = n, Fk = 0 and dk
i j =

{
d̂n+k j , if i = 0
d̂i j , otherwise

, ∀{i, j} ∈ E .

The main characteristics of the presented problems are summarized in Table 1.
All problems described above are NP-hard as they are natural generalizations of the
CVRP.

1.1 Literature review

Many different heuristics are proposed in the literature for the HVRP and its variants.
Among the various surveys on heuristic algorithms for the CVRP, we mention the
surveys of Laporte and Semet [18] and of Gendreau et al. [14] in the book edited
by Toth and Vigo [27] and the more recent update by Cordeau et al. [10], whereas a
specific survey on heterogeneous vehicle routing problems can be found in Baldacci
et al. [1].

The book edited by Toth and Vigo [27] surveys the most effective exact methods for
the CVRP proposed in the literature up to 2002. A recent survey of the CVRP covering
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exact algorithms can also be found in the chapter of Cordeau et al. [10]. The most
promising exact algorithms for the CVRP are due to Baldacci et al. [4], Lysgaard et al.
[21], Fukasawa et al. [13] and Baldacci et al. [3]. Concerning the other variants, exact
algorithms have been proposed in the literature only for the FSMF and the MDVRP.

The survey of Baldacci et al. [1] also covers lower bounds for the HVRP and its
variants. Lower bounds for the FSMF were proposed by Golden et al. [15], Yaman [28]
and Choi and Tcha [6]. The lower bound of Golden et al. [15] is a combinatorial lower
bound based on the computation of shortest paths on particular layered networks.
Yaman [28] proposed several lower bounds based on cutting-plane techniques used to
strengthen the LP-relaxation of different mathematical formulations. Choi and Tcha [6]
proposed lower bounds for the FSMF based on the Set Partitioning (SP) formulation,
that were computed by using q-route relaxation and column generation techniques.
These latter authors also described lower bounds for the FSMFD and the FSMD.

The only exact method for the FSMF was recently proposed by Pessoa et al. [24].
These authors extend to the FSMF the branch-and-cut-and-price method proposed for
the CVRP by Fukasawa et al. [13]. The computational results show that their lower
bounds dominate the lower bounds proposed by Golden et al. [15], Yaman [28] and
Choi and Tcha [6], and that instances involving up to 75 vertices can be solved to
optimality.

To our knowledge, only two exact algorithms have been proposed for the MDVRP.
Laporte et al. [16,17] have developed exact branch-and-bound algorithms, but these
only work well on relatively small instances (see Crevier et al. [12]).

1.2 Contributions of the paper

In this paper, we present an exact algorithm for the HVRP that generalizes the bounding
procedures and the exact method recently proposed by Baldacci et al. [2] for the
asymmetric VRP on a multi-graph and by Baldacci et al. [3] for the CVRP. Moreover,
it introduces new bounding methods that are particularly effective when the vehicle
fixed cost contribution to the total cost is relevant. Also in this paper, we describe
reduction rules to resize the vehicle fleet.

The main contribution of this paper is a unified exact algorithm for the HVRP that
can solve all different classes of vehicle routing problems shown in Table 1. For the
different problem types considered, we report extensive computational results on test
instances from the literature and on newly generated test instances. The computational
results show that the proposed lower bound is superior to the lower bounds presented in
the literature. Moreover, the exact algorithm outperforms the exact method of Pessoa
et al. [24] and can solve, for the first time ever, several test instances of all problem
types considered.

The paper is organized as follows. In Sect. 2 we describe a mathematical formulation
of the HVRP and three relaxations that are used to derive valid lower bounds. Section
3 presents the exact algorithm and in Sects. 4, 5 and 6 we describe the bounding
procedures based on the three relaxations given in Sect. 2. The overall bounding
method that combines the different bounding procedures is also described in Sect. 2.
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In Sect. 7 we report the computational results on test problems taken from the literature.
Finally, Sect. 8 contains concluding remarks.

2 Mathematical formulation and its relaxations

Let Rk be the index set of all feasible routes of vehicle type k ∈ M and let R =⋃
k∈M Rk . With each route � ∈ Rk is associated a routing cost ck

� . Let Rk
i ⊂ Rk be

the index subset of the routes of a vehicle of type k covering customer i ∈ V . In the
following we use Rk

� to indicate the subset of customers visited by route � ∈ Rk .
Let xk

� be a binary variable that is equal to 1 if and only if route � ∈ Rk is chosen
in the solution. The mathematical formulation of the HVRP, called F , is as follows:

(F) z(F) = min
∑

k∈M

∑

�∈Rk

(Fk + ck
�)xk

� (1)

s.t.
∑

k∈M

∑

�∈Rk
i

xk
� = 1, ∀i ∈ V, (2)

∑

�∈Rk

xk
� ≤ Uk, ∀k ∈ M, (3)

xk
� ∈ {0, 1}, ∀� ∈ Rk,∀k ∈ M. (4)

Constraints (2) specify that each customer i ∈ V must be covered exactly by one
route. Constraints (3) impose the upper bound on the number of vehicles of each type
that can be used.

In the following, we describe three relaxations of problem F that are used to derive
different lower bounds as well as different methods for reducing the size of sets Rk ,
k ∈ M , by eliminating those routes that cannot belong to any optimal HVRP solution.

2.1 Relaxation L F

Let L F be the LP-relaxation of problem F and let z(L F) be its optimal solution
cost. We denote by DL F the dual of problem L F . Let u = (u1, . . . , un) and v =
(v1, . . . , vm) be the dual variable vectors associated with constraints (2) and (3),
respectively.

(DL F) z(DL F) = max
∑

i∈V

ui +
∑

k∈M

Ukvk (5)

s.t.
∑

i∈Rk
�

ui + vk ≤ ck
� + Fk, ∀� ∈ Rk,∀k ∈ M, (6)

ui ∈ R, ∀i ∈ V , (7)

vk ≤ 0, ∀k ∈ M. (8)
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Both problem L F and DL F are impractical to solve, even for moderate size HVRP,
because the number of variables and constraints are typically exponential. However,
it is quite easy to find near optimal solution of DL F without generating constraints
(6) and any feasible DL F solution provides a valid lower bound on the HVRP.

In Sect. 4, we describe two dual ascent heuristics for solving DL F , called H1 and
H2. H1 is based on the q-route relaxation of the HVRP and is an extension of the
method proposed for the CVRP by Christofides et al. [7]. H1 produces a DL F solution
(u1, v1) of cost L H1. H2 is a column generation method that is executed after H1

and uses the dual solution achieved by H1 to generate the initial master problem. It
differs from standard column generation methods as it uses Lagrangean relaxation and
subgradient optimization to solve the master problem. H2 produces a DL F solution
(u2, v2) of cost L H2.

It is easy to show that L H1 ≤ L H2 ≤ z(L F).

2.2 Relaxation R P

One relaxation of the HVRP was presented in Sect. 2.1. A second relaxation of the
HVRP corresponds to an integer problem, called R P , that can provide a better lower
bound than z(L F) for those HVRPs where the vehicle fixed cost contribution to the
optimal cost is relevant or dominates the routing cost contribution.

R P involves two types of integer variables: ξik ∈ {0, 1}, i ∈ V , k ∈ M and
yk ∈ Z

+, k ∈ M . Variable ξik is equal to 1 if and only if customer i ∈ V is served by
a vehicle of type k ∈ M . Variable yk represents the number of vehicles of type k used
in the solution.

Let βik be the marginal routing cost for servicing customer i ∈ V with a vehicle
of type k ∈ M . We assume that the values βik , i ∈ V , k ∈ M , satisfy the following
inequalities: ∑

i∈Rk
�

βik ≤ ck
�, ∀� ∈ Rk, ∀k ∈ M. (9)

Lemma 1, reported in Appendix A, shows that the following integer problem R P
provides a valid lower bound on the HVRP for any solution βik of inequalities (9).

(R P) z(R P) = min
∑

k∈M

∑

i∈V

βikξik +
∑

k∈M

Fk yk (10)

s.t.
∑

k∈M

∑

i∈V

qiξik = q(V ), (11)

∑

i∈V

qiξik ≤ Qk yk, ∀k ∈ M, (12)

yk ≤ Uk, ∀k ∈ M, (13)

ξik ∈ {0, 1}, ∀i ∈ V,∀k ∈ M, (14)

yk ∈ Z
+, ∀k ∈ M. (15)
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The effectiveness of the lower bound obtained by solving R P is strongly dependent
on the values βik used. In Sect. 5 we describe two bounding procedures, called D P1

and D P2, that correspond to two different methods for computing βik satisfying
inequalities (9). D P1 uses q-route relaxation while D P2 uses column generation.
Both procedures use the same dynamic programming algorithm to solve problem R P .
The initial master problem for D P2 is generated by using the cost contributions β1

ik
obtained by D P1. Lower bounds L D1 and L D2 correspond to the cost z(R P) of the
R P solution achieved by D P1 and D P2, respectively.

It is quite easy to show that L D1 ≤ L D2 ≤ z(R P). The computational results
(see Sect. 7) show that no dominance relation exists between z(R P) and z(L F) but, in
practice, both L D1 and L D2 can be greater than L H2 when Fk > 0, for some k ∈ M .

2.3 Relaxation L F

A better relaxation than L F , called L F , is obtained by adding the following valid
inequalities to L F .

(a) Capacity Constraints. These constraints are added to L F only if all vehicle
types have the same capacity Q (i.e., Qk = Q,∀k ∈ M). Let S = {S : S ⊆
V, |S| ≥ 2}, let q(S) = ∑

i∈S qi be the total demand of customers in S, and let
k(S) = �q(S)/Q�. The following inequalities are added to L F :

∑

k∈M

∑

�∈Rk (S)

xk
� ≥ k(S), ∀S ∈ S , (16)

where Rk(S) = {� ∈ Rk : Rk
� ∩ S �= ∅}, k ∈ M .

(b) Clique Inequalities. Let H = (N , E) be the conflict graph where each node
i ∈ N is associated to a route � ∈ R. For each route � ∈ Rk and for a given k,
the corresponding node in graph H has index i = ∑k−1

h=1 |Rh |+ �. We denote by
k(i) and by �(i) the vehicle type and the index of the route represented by node
i ∈ N , respectively.
The edge set E contains every pair {i, j}, i < j such that Rk(i)

�(i) ∩ Rk( j)
�( j) �= ∅. Let

C be the set of all maximal cliques of H . The following inequalities are added
to L F :

∑

i∈C

xk(i)
�(i) ≤ 1, ∀C ∈ C . (17)

Let z(L F) be the optimal solution cost of L F . Relaxation L F is solved by means of
a standard column and cut generation method, called CG, that is described in Sect. 6.
The initial master problem is generated by using either the dual solution (u2, v2) given
by H2 or the marginal routing cost β2

ik obtained by D P2 as described in Sect. 2.2. The
master problem is then solved by using a simplex algorithm where, at each iteration, a
limited subset of inequalities (16) and (17), violated by the current fractional solution,
are added to the master. Lower bound LCG corresponds to the cost z(L F) of the final
L F solution achieved by CG.
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It is easy to observe that z(L F) ≥ z(L F). No dominance relation exists between
z(L F) and z(R P) and, in practice, L D1 and L D2 can be greater than LCG (see
Sect. 7).

3 An exact method for solving the HVRP

In this section we describe an exact algorithm for solving the HVRP. This algorithm
generalizes the method proposed by Baldacci et al. [3] for the CVRP.

The method consists of finding, by means of an integer linear programming solver
(such as CPLEX [11]), an optimal integer solution of a reduced problem F̂ obtained
from F by replacing each set Rk , k ∈ M , with a subset R̂k , and adding two subsets
Ŝ ⊂ S and Ĉ ⊂ C of inequalities (16) and (17), respectively. The subsets R̂k ,
∀k ∈ M , are generated in such a way that any optimal F̂ solution is also optimal for
the HVRP.

The core of the algorithm is the bounding method that combines different bounding
procedures based on the three relaxations described in Sect. 2.

3.1 Bounding method

The bounding method combines the different lower bounds L H1, L H2, L D1, L D2
and LCG as follows.

1. Execute in sequence H1 and H2. Let L H2 be the lower bound corresponding
to the cost of the DL F solution (u2, v2) obtained by bounding procedure H2. If
Fk = 0, ∀k ∈ M , set L D1 = 0, L D2 = 0 and go to Step 3, otherwise perform
Step 2.

2. Execute D P1. If L D1 ≥ L H2, execute D P2 producing lower bound L D2
corresponding to the marginal routing cost β2

ik . If L D1 < L H2 set L D2 = 0.
3. Execute bounding procedure CG, as described in Sect. 6. Compute the final lower

bound L B = max{L D2, LCG}.

3.2 Generating the reduced problem F̂

In generating the route subsets R̂k , k ∈ M , we use either the dual solution of L F
obtained by procedure CG or the marginal routing costs β2

ik obtained by D P2. We
have the following two cases:

(a) L B = LCG. We replace the route sets Rk , k ∈ M , with the route subsets
R̂k , k ∈ M , containing all routes whose reduced costs, with respect to the dual
solution of L F achieved by CG is smaller than the gap zU B − LCG, where zU B

is a valid upper bound on the HVRP. We consider only those constraints (16) and
(17) generated by CG that have zero slack in the final L F solution.

(b) L B = L D2. We generate for each k ∈ M the subset R̂k containing all routes
satisfying the following inequalities:
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ck
� −

∑

i∈Rk
�

β2
ik < zU B − z(L D2), ∀� ∈ R̂k . (18)

It is quite easy to show (see Corollary 1 in Appendix A) that any route� ∈ Rk\R̂k ,
for a given vehicle type k, cannot belong to an optimal HVRP solution of cost
smaller than zU B .

In both cases, the route sets R̂k , k ∈ M , are generated by using procedure genroute
described in Appendix B.

The effectiveness of the proposed exact method strongly depends on the quality of
the lower bounds L D2 and LCG achieved. As the lower bounds L D2 and LCG get
better, the reduced costs of the routes of an optimal HVRP solution get smaller and,
hopefully, the size of subsets R̂k , k ∈ M , that must be generated to find an optimal
HVRP solution gets smaller, and the resulting problem F̂ becomes easier to solve.

4 Bounding procedures based on relaxation L F

In this section we describe the two bounding procedure H1 and H2 that find two
near-optimal feasible solutions of DL F without requiring the generation of the entire
route sets Rk , k ∈ M . Moreover, we present a method, based on procedure H1, for
reducing the upper bound Uk on the number of vehicles of type k ∈ M that can be in
any optimal solution. Both H1 and H2 are based on the following theorem.

Theorem 1 Associate penalties λi ∈ R, ∀i ∈ V , with constraints (2) and penalties
µk ≤ 0, ∀k ∈ M, with constraints (3). Define

bik = qi min
�∈Rk

i

{
ck
� + Fk − λ(Rk

� ) − µk

q(Rk
� )

}

, ∀i ∈ V, ∀k ∈ M, (19)

where λ(Rk
� ) = ∑

i∈Rk
�
λi and q(Rk

� ) = ∑
i∈Rk

�
qi .

A feasible DL F solution (u, v) of cost z(DL F(λ,µ)) is given by setting:

ui = min
k∈M

{bik} + λi , ∀i ∈ V, (a)

vk = µk, ∀k ∈ M. (b)

}

(20)

Proof See Appendix A. ��
Both H1 and H2 use subgradient optimization to solve maxλ,µ{z(DL F(λ,µ))}.

4.1 Bounding procedure H1

We relax the requirement that a route be a simple cycle of graph G. This relaxation
allows us to compute in pseudo-polynomial time a lower bound bik ≤ bik , ∀i ∈ V ,
∀k ∈ M , as follows.
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For a given penalty vector λ, define the modified edge costs d
k
i j as

d
k
i j = dk

i j − 1

2
λi − 1

2
λ j , ∀{i, j} ∈ E, ∀k ∈ M. (21)

By using the modified edge costs d
k
i j , let φ(k, q, i) be the cost of a least cost (not

necessarily simple) cycle C(k, q, i), called q-route, passing through the depot and
vertex i ∈ V , for a vehicle of type k, such that the total demand of the customers
visited is equal to q (qi ≤ q ≤ Qk). φ(k, q, i) provides a lower bound on the cost
ck
� − λ(R�) of any feasible route � ∈ Rk

i of load q(Rk
� ) = q. The values φ(k, q, i),

∀k ∈ M , ∀i ∈ V , and for all integer values of q such that qi ≤ q ≤ Qk , can be
computed by a straightforward extension of the method proposed in Christofides et al.
[7]. Thus, values bik can be computed as follows:

bik = qi min
qi ≤q≤Qk

{
Fk + φ(k, q, i) − µk

q

}

≤ bik, ∀i ∈ V, ∀k ∈ M. (22)

Let qik be the value of q giving the minimum in expression (22).
It can be shown that Theorem 1 remains valid if in expression (20) each bik is

replaced with bik , i ∈ V , k ∈ M .

4.1.1 Computing lower bound L H1

H1 uses subgradient optimization to solve L H1 = maxλ,µ{z(DL F(λ,µ))}. At the
end of H1 we have a DL F solution (u1, v1) of cost L H1.

H1 starts by initializing L H1 = 0, λ = 0, µ = 0. At each iteration, for the current
values of λ and µ, H1 performs the following two steps:

1. Compute the modified edge costs d
k
i j according to expression (21) and functions

φ(k, q, i), ∀k ∈ M , ∀i ∈ V and for all integer values of q such that qi ≤ q ≤ Qk .
Then, compute the values bik by using expressions (22) and the corresponding
DL F solution (u, v) of cost z(DL F(λ,µ)) by using expressions (20), where bik

is replaced with bik .
Let ki , i ∈ V , be the vehicle type giving the minimum in expression (20a), that is
ui = biki + λi = qi (Fki + φ(ki , qiki

, i) − µki )/qiki
+ λi .

If z(DL F(λ,µ)) is greater than L H1, then update L H1 = z(DL F(λ,µ)), u1 =
u, v1 = v, λ1 = λ and µ1 = µ.

2. Let θ j be the number of times that customer j ∈ V is visited and ρk be the number
of vehicles of type k used by the q-routes C(ki , qiki

, i), ∀i ∈ V , respectively. Let
δ j (ki , qiki

, i), i ∈ V , be the number of times that customer j is visited by the
q-route C(ki , qiki

, i). The values of θ and ρ are computed as follows:
- Initialize θ j = 0, ∀ j ∈ V , and ρk = 0, ∀k ∈ M .
- For each i ∈ V , update θ j = θ j + qi

qiki
δ j (ki , qiki

, i),∀ j ∈ V , and ρk =
ρk + qi

qiki
,∀k ∈ M .
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The values of λ and µ are modified as follows: λ j = λ j − εγ (θ j − 1), ∀ j ∈ V
and µk = min{0, µk − εγ (ρk − Uk)}, ∀k ∈ M , where ε is a positive constant and
γ = (zU B − z(DL F(λ,µ)))/(

∑
j∈V (θ j − 1)2 + ∑

k∈M (ρk − Uk)
2).

Procedure H1 terminates in Maxt1 iterations, where Maxt1 is a parameter defined
a priori.

4.1.2 Reduction tests

At the end of H1, for HVRP instances having Fk > 0, ∀k ∈ M , we apply the following
method to reduce the upper bounds Uk , ∀k ∈ M .

Let L BR be the lower bound obtained by performing Maxt1r iterations of bounding
procedure H1 after having set Fk = 0, ∀k ∈ M . L BR is a valid lower bound on the
total routing cost of the solution. Then, the upper bounds Uk can be updated by setting:

Uk = min {Uk, �(zU B − L BR)/Fk�} , ∀k ∈ M. (23)

4.2 Bounding procedure H2

Procedure H2 is a column generation method that computes L H2 as the cost of a near
optimal solution (u2, v2) of the dual problem DL F . H2 differs from standard column
generation methods as the master problem is solved heuristically by using expressions
(19) and (20) and subgradient optimization.

H2 is initialized by setting λ = λ1, µ = µ1 and L H2 = 0 and by generating, for

each k ∈ M , the subset R
k ⊂ Rk of the ∆min routes of minimum reduced cost with

respect to the DL F solution (u1, v1) obtained by H1 (∆min is a parameter defined
a priori). H2 executes an a priori defined number Maxt2 of macro iterations. On each
macro iteration it performs the following two steps:

1. Solve the master problem. The master problem is obtained from L F by replacing

each Rk with R
k
, ∀k ∈ M . The dual solution of the master is computed by means

of an iterative procedure based on subgradient optimization. At each iteration, for
the current λ and µ, the dual solution (u, v) is computed by using expressions

(19) and (20) where Rk is replaced with R
k
, ∀k ∈ M .

The initial values of λ and µ are set equal to the best values achieved at the previous
macro iteration. Penalties λ and µ are modified as described for procedure H1.
Let (u∗, v∗) be the best dual solution of the master, of cost z∗, achieved after
Maxt3 iterations.

2. Check if the master solution (u∗, v∗) is a feasible DL F solution. For each k ∈ M ,

generate the largest subset N k ⊂ Rk \R
k

containing the routes having the largest
negative reduced cost with respect to the dual master solution (u∗, v∗) and such
that |N k | ≤ ∆a , where ∆a is a parameter defined a priori. We have two cases:
(a) if N k = ∅, ∀k ∈ M , and z∗ is greater than L H2, update L H2 = z∗, u2 = u∗

and v2 = v∗.
(b) if N k �= ∅, for some k ∈ M , update R

k = R
k ∪ N k , ∀k ∈ M .
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The initial route subsets R
k
, ∀k ∈ M , and the subsets N k , ∀k ∈ M , are generated

by procedure genroute, described in Appendix B, using different input parameters.

5 Bounding procedures based on relaxation R P

In this section we describe the two methods used by the two bounding procedures
D P1 and D P2 to find a feasible solution of inequalities (9) as well as the dynamic
programming algorithm used by both D P1 and D P2 to solve the integer problem R P .
Also in this section, we present two methods, based on procedure D P1 and D P2, for
computing a lower bound Lk and for reducing the upper bound Uk on the number of
vehicles of type k ∈ M that can be in any optimal solution.

The method used by D P1 and D P2 to find a feasible solution of (9) is based on
the following theorem.

Theorem 2 Let λi ∈ R, ∀i ∈ V , be a set of penalties associated to the customers. A
feasible solution βik of inequalities (9) is given by setting:

βik = qi min
�∈Rk

i

{
ck
� − λ(Rk

� )

q(Rk
� )

}

+ λi , ∀i ∈ V, ∀k ∈ M. (24)

Proof See Appendix A. ��
The value of the lower bound on the HVRP achieved from relaxation R P is a

function of the penalty vector λ used in computing the values of βik according to
expression (24). Thus, the value of the lower bound can be maximized by using
subgradient optimization.

5.1 Bounding procedure D P1

This procedure is based on the q-route relaxation of the HVRP for computing the
values βik and uses subgradient optimization to maximize lower bound L D1.

Let functions φ(k, q, i), introduced in Sect. 4.1, be computed by using the modified

edge costs d
k
i j that are defined with respect to a given penalty vector λ, according to

expressions (21). It is easy to show that a solution of inequalities (9) is given by setting:

βik = qi min
qi ≤q≤Qk

{
φ(k, q, i)

q

}

+ λi , ∀i ∈ V, ∀k ∈ M. (25)

D P1 is an iterative procedure that performs at most Maxt1 subgradient iterations
to compute lower bound L D1. D P1 is initialized by setting λi = 0, ∀i ∈ V , and
L D1 = 0. At each iteration, D P1 performs the following steps:

1. For the current penalty vector λ, compute functions φ(k, q, i) and values βik by
using expressions (25).
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2. Solve problem R P , as described in Sect. 5.3. Let (ξ∗, y∗) be the optimal R P
solution of cost z(R P). If z(R P) is greater than L D1, update L D1 = z(R P) and
β1

ik = βik , ∀i ∈ V , ∀k ∈ M .
3. Update penalties λi , ∀i ∈ V . Because any feasible HVRP solution must satisfy∑

k∈M ξik = 1, ∀i ∈ V , a valid subgradient to the Lagrangean function z(R P) is
given by the vector θ = (θi , . . . , θn), where θi = ∑

k∈M ξ∗
ik − 1, i ∈ V . Penalty

vector λ is updated as λi = λi + εγ θi , ∀i ∈ V , where ε is a positive constant and
γ = (zU B − z(R P))/

∑
i∈V θ2

i .

5.2 Bounding procedure D P2

D P2 is an iterative procedure that uses column generation for computing the values
βik by means of expressions (24) and subgradient optimization to maximize the value
of the lower bound L D2.

The core of D P2 consists in solving problem R P that is derived from R P by
replacing cost βik with the solution β ik of the reduced set of inequalities (9) obtained

after replacing each set Rk with a subset R
k ⊂ Rk of limited size. The values β ik are

obtained, for a given λ, by means of expressions (24) by using the subsets R
k

instead
of sets Rk , ∀k ∈ M .

Let z(R P) be the optimal cost of R P . It is simple to notice that z(R P) represents
a valid lower bound on the HVRP if and only if the values β ik given by expressions
(24) satisfy all inequalities (9) for all routes Rk , ∀k ∈ M . At each iteration of D P2,
a limited number of routes, whose inequalities (9) are violated by the values β ik are

added to R
k
, k ∈ M .

D P2 is initialized by generating for each k ∈ M the subset R
k ⊂ Rk containing

the ∆min routes of minimum reduced cost with respect to the values β1
ik achieved by

D P1 and by setting λi = 0, ∀i ∈ V , and L D2 = 0.
D P2 executes an a priori defined number, Maxt2, of macro iterations. On each

iteration it performs the following steps:

1. Maximize z(R P) with respect to λ. Initialize z∗ = 0 and perform Maxt3 iterations
of the following procedure:

(i) By using the current penalty vector λ, compute β ik by means of expressions

(24), where each Rk is replaced with R
k
, ∀k ∈ M .

(ii) Solve R P by using the algorithm described in Sect. 5.3. If z(R P) is greater
than z∗, then update z∗ = z(R P) and set β∗

ik = β ik , ∀i ∈ V , ∀k ∈ M .
(iii) Update penalties λi , ∀i ∈ V , as described for algorithm D P1 in Sect. 5.1.

2. Use procedure genroute to generate the subset of routes N k ⊆ Rk\Rk
, ∀k ∈

M , such that |N k | ≤ ∆a and whose inequalities (9) are maximal violated by the
values β∗

ik . We have two cases:
(i) N k = ∅, ∀k ∈ M . Then, the values β∗

ik satisfy all inequalities (9) and z∗
is a valid lower bound on the HVRP. If z∗ is greater than L D2, then update
L D2 = z∗ and β2

ik = β∗
ik , ∀i ∈ V , ∀k ∈ M .

(ii) N k �= ∅, for some k ∈ M . Update R
k = R

k ∪ N k , ∀k ∈ M .
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5.3 Solving problem R P

In this section we describe a dynamic programming algorithm for solving problem
R P .

Let hk
w be the contribution to the objective function of R P if a load w ∈ Wk is deliv-

ered by the vehicles of type k ∈ M , where Wk = {w : w = mini∈V {qi }, . . . , QkUk}.
Each value hk

w, w ∈ Wk , k ∈ M , is the optimal solution cost of the following sub-
problem:

(K P(k, w)) hk
w = min

∑

i∈V

βikξik (26)

s.t.
∑

i∈V

qiξik = w, (27)

ξik ∈ {0, 1}, ∀i ∈ V, ∀k ∈ M. (28)

We denote by V (k, w) = {i ∈ V : ξik = 1} the subset of customers belonging to
the optimal solution of problem K P(k, w). We assume hk

w = ∞ if K P(k, w) has no
feasible solution for some pair (k, w).

An alternative formulation of problem R P is as follows. Let ζkw be a 0-1 integer
variable that is equal to 1 if and only if the vehicles of type k deliver to customers a
load w. For any optimal R P solution (ξ , y) we have:

∑

w∈Wk

wζkw =
∑

i∈V

qiξik, ∀k ∈ M, (29)

∑

w∈Wk

ζkw ≤ 1, ∀k ∈ M, (30)

∑

w∈Wk

⌈
w

Qk

⌉

ζkw = yk, ∀k ∈ M. (31)

Therefore, problem R P can be reformulated as the following problem R P2:

(R P2) z(R P) = min
∑

k∈M

∑

w∈Wk

(

hk
w + Fk

⌈
w

Qk

⌉)

ζkw (32)

s.t.
∑

k∈M

∑

w∈Wk

wζkw = q(V ), (33)

∑

w∈Wk

ζkw ≤ 1, ∀k ∈ M, (34)

ζkw ∈ {0, 1}, ∀w ∈ Wk, ∀k ∈ M. (35)

The method used to solve problem R P2 consists of the following two-phase procedure.

1. Computing hk
w, ∀w ∈ Wk, ∀k ∈ M . It is easy to note that, for a given k, all

values hk
w, w ∈ Wk , can be obtained by solving problem K P(k, QkUk) by using

a dynamic programming recursion.
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2. Solving problem R P2. R P2 can be solved by dynamic programming as follows.
Let gk(w) be the optimal solution cost of R P2 by using vehicle types 1, 2, . . . , k
and by replacing the term q(V ) in Eq. (33) with w ≤ q(V ). The recursion for
computing function gk(w) is:

gk(w) = min

{

gk−1(w), min
w′≤w

{

gk−1(w − w′) + hk
w + Fk

⌈
w

Qk

⌉}}

(36)

for k = 2, . . . , m and ∀w ∈ Wk .
The recursion is initialized by setting g1(w) = h1

w + F1�w/Qk�, ∀w ∈ W1 and
gk(0) = 0, k = 0, . . . , m, g0(q) = ∞, q = 1, . . . , q(V ). Then, the optimal
solution cost of R P2 is z(R P) = gm(q(V )).
Usual backtracking can be used to derive the optimal R P2 solution ζ . Moreover,
given ζ and the sets V (k, w) associated to hk

w, ∀w ∈ Wk , ∀k ∈ M , we can derive
the optimal R P solution (ξ∗, y∗) of cost z(R P) by setting:
- for each k ∈ M such that

∑
w∈Wk

ζ ∗
kw = 1, define ξ∗

ik = 1, ∀i ∈ V (k, w),
ξ∗

ik = 0, ∀i /∈ V (k, w) and y∗
k = �w/Qk�, where w satisfies ζ ∗

kw = 1;
- for each k ∈ M such that

∑
w∈Wk

ζ ∗
kw = 0, define ξ∗

ik = 0, ∀i ∈ V , and y∗
k = 0.

5.4 Reduction tests

In this section, we describe two reduction methods to define both lower and upper
bounds on the number of vehicles of each type to be used in the solution. To this
end, in addition to the upper bound Uk , k ∈ M , we introduce a lower bound Lk that
represents the minimum number of vehicles of type k that must be used in any optimal
solution. We assume that lower bounds Lk , ∀k ∈ M , are all initialized equal to 0. The
two methods are applied at the end of both procedures D P1 and D P2.

Let hk
w be the optimal cost of problem K P(k, w) obtained by replacing the values

βik in expression (26) either with β1
ik or with β2

ik if the reductions are applied after
D P1 or D P2, respectively. Moreover, let g−1

k (w) be the optimal solution cost of R P2
by using vehicle types k, k + 1, . . . , m and by replacing in Eq. (33) the term q(V )

with w ≤ q(V ). Function g−1
k (w) can be computed by using a dynamic programming

recursion similar to the one used for computing function gk(w) [see expression (36)].

5.4.1 Reduction R1: computing Lk, ∀k ∈ M

By means of function gk(w), g−1
k (w) and hk

w we can compute a valid lower bound
L Bk(w) on the HVRP with the restriction that vehicles of type k deliver a total load
w as follows:

L Bk(w) = min
q,q ′

q+q ′=q(V )−w

{

gk−1(q) + hk
w + Fk

⌈
w

Qk

⌉

+ g−1
k+1(q

′)
}

(37)
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for w = 0, . . . , QkUk . We assume g−1
m+1(0) = 0 and g−1

m+1(q) = ∞, q = 1, . . . , q(V ).
Let wmin

k be the minimum value of w = 1, . . . , QkUk such that

L Bk(w
min
k − 1) ≥ zU B and L Bk(w

min
k ) < zU B, (38)

then Lk = max{Lk, �wmin
k /Qk�} is a valid lower bound on the minimum number of

vehicles of type k in any optimal solution.

5.4.2 Reduction R2: updating Uk, ∀k ∈ M

Let L BUk(r) be a lower bound on the HVRP with the additional requirement that
exactly r vehicles of type k are in the solution. We have:

L BUk(r) = Fkr + min
q,q ′,w

q+q ′=q(V )−w
w≤min{q(V ),Qkr}

{gk−1(q) + hk
w + g−1

k+1(q
′)} (39)

for r = Uk, . . . , max{Lk, 1}.
For any k ∈ M such that L BUk(Uk) ≥ zU B , the value Uk can be reduced as

follows. Let rmax
k be the maximum value of r < Uk such that

L BUk(r
max
k + 1) ≥ zU B and L BUk(r

max
k ) < zU B . (40)

Then, update Uk = min{Uk, rmax
k }.

6 Bounding procedure based on relaxation L F

Procedure CG computes lower bound LCG as the cost of an optimal solution of
problem L F . Whenever D P1 and D P2 are executed before CG, we add to L F the
following constraints: ∑

�∈Rk

xk
� ≥ Lk, ∀k ∈ M. (41)

CG solves problem L F by using cut and column generation. The initial master problem

is obtained from L F by replacing the sets Rk with the route subsets R
k
, ∀k ∈ M ,

generated by H2 and by setting S = ∅ and C = ∅.
At each iteration (say t), CG performs the following steps:

1. Solve problem L F . Let x and (u, v, w, g) be the optimal primal and dual solutions
of L F , respectively. Vector v is the sum of the dual vectors associated to constraints
(3) and (41). Vectors w and g represent the dual variables associated to inequalities
(16) and (17), respectively.

2. Generate the route subsets N k , ∀k ∈ M, having negative reduced cost. Generate

the largest route subsets N k ⊂ Rk\Rk
, ∀k ∈ M , of routes having the largest

negative reduced cost with respect to (u, v, w, g), such that |N k | ≤ ∆a , ∀k ∈ M .
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If N k = ∅, ∀k ∈ M , then CG terminates; otherwise a new iteration is made. At
iteration t + 1, CG solves a new master problem L F by adding to each set R

k

the subset N k , ∀k ∈ M , and the constraints (16) and (17) violated by the L F
solution x achieved at iteration t . Procedure CG terminates whenever N k = ∅,
∀k ∈ M .

3. Separate violated inequalities. Both capacity constraints and clique inequalities
are separated as described by Baldacci et al. [3] for the CVRP.
- Capacity Constraints. For a given L F solution x of the master, define the

weight ωi j for each edge {i, j} ∈ E as follows:

ωi j =
∑

k∈M

∑

�∈Rk

ηk�
i j xk

�, (42)

where the coefficients ηk�
i j are defined, for each � ∈ Rk and k ∈ M , as follows.

- If � is a single customer route covering customer h, then ηk�
0h = 2 and

ηk�
i j = 0, ∀{i, j} ∈ E\{0, h}.

- If � is not a single customer route, then ηk�
i j = 1 for each edge {i, j} ∈ E(Rk

� )

and ηk�
i j = 0, ∀{i, j} ∈ E\E(Rk

� ), where E(Rk
� ) represents the subset of

edges covered by route Rk
� .

It is quite simple to note that any feasible HVRP solution, where all vehicle
types have the same capacity Q, satisfies the constraints

∑

i∈S

∑

j∈V ′\S
i< j

ωi j +
∑

i∈V ′\S

∑

j∈S
i< j

ωi j ≥ 2k(S), ∀S ∈ S . (43)

It can be shown that if the L F solution x violates inequalities (43) for some
S, then it also violates inequalities (16) for the same S. Therefore, we add to
S those sets S violating inequalities (43). These inequalities are separated
by using the package cvrpsep (see Lysgaard [20]) but limiting the separation
routine in order to find a maximum of 70 violated inequalities.

- Clique Inequalities. Let H(x) = (R(x), E(x)) be the subgraph of graph H

induced by the L F solution x where R(x) = {� ∈ R
k : xk

� > 0, k ∈ M}, and
let xk

� be the weight of vertex � ∈ R(x).
The inequalities (17) violated by solution x can be separated by finding all the
maximal cliques in H(x) of weight greater than one. This problem is solved,
as described in Baldacci et al. [3], by using the cliquer 1.1 package (see
Niskanen and Östergård [23]). Every new clique is expanded by adding the ĥ

least reduced cost routes of the current sets R
k
, ∀k ∈ M , and the resulting

lifted clique inequality is added to the set C . In our computational results we
used ĥ = 1, 000.

Let LCG and (u3, v3, w3, g3) be the optimal solution cost and the optimal dual
solution of L F achieved by CG, respectively.
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7 Computational results

This section presents computational results of the exact method described in Sect. 3
and of the bounding procedures described in Sects. 4 and 5.

The algorithms described in this paper were coded in Fortran 77, compiled with
the Compaq Digital Fortran 6.6 compiler and linked with the C source codes of the
packages cvrpsep (see [20]) and cliquer (see [23]). CPLEX 10.1 was used as the
LP solver in procedure CG and as the integer linear programming solver in the exact
method. The experiments were performed on a personal computer equipped with an
AMD Athlon 64 X2 Dual Core 4200+ processor at 2.6 GHz and with 3 GB of RAM.

We considered the following three main sets of instances from the literature corre-
sponding to the different variants of HVRPs, SDVRP and MDVRP.

(a) HVRP instances
All the instances considered are based on the set of twelve symmetric instances
proposed by Golden et al. [15] and Taillard [26]. The data of all instances includ-
ing the best known upper bounds can be found at the Internet address http://or.
ingce.unibo.it/hvrp/.
The relevant data for the twelve HVRP instances considered are summarized in
Table 2, which reports the following for each vehicle type k: (i) the capacity
Qk , (ii) the fixed cost Fk , (iii) the routing cost coefficient rk and (iv) the upper
bound Uk . The coefficient rk is used to compute the edge cost dk

i j as dk
i j = rkei j ,

where ei j is the Euclidean distance between vertices i and j . To the best of
our knowledge, neither exact nor heuristic algorithms have been proposed in the
literature for solving these instances.
The instances for the different variants of the HVRP were obtained from the
above instances as follows. For each variant of the HVRP we considered twelve
instances that are obtained by changing some of the data of the HVRP instances
as follows:
- FSMF: for each k ∈ M set Uk = n and rk = 1.0;
- FSMFD: for each k ∈ M set Uk = n;
- HD: for each k ∈ M set Fk = 0;
- FSMD: for each k ∈ M set Fk = 0 and Uk = n.

(b) SDVRP instances
We considered thirteen test instances involving up to 108 customers proposed
by Nag et al. [22], Chao et al. [5] and Cordeau and Laporte [9]. The data
of all instances can be found at the Internet address http://neumann.hec.ca/
chairedistributique/data/sdvrp, while the best upper bounds were taken from
Pisinger and Ropke [25].

(c) MDVRP instances in the literature
For the MDVRP, we considered a set of nine instances used by Cordeau et al.
[8] involving up to 160 customers and 5 depots. The data of all instances can
be found at the Internet address http://neumann.hec.ca/chairedistributique/data/
mdvrp, while the best upper bounds were taken from Pisinger and Ropke [25].

(d) New MDVRP instances
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In order to further evaluate the performance of our exact algorithm, we generated a
new set of eight MDVRP instances. The instances were generated by considering
the two CVRP instances M-n151-k12 and M-n200-k16 (available at the internet
address http://branchandcut.org/VRP/data). More precisely, for each of the two
CVRP instances, we generated four MDVRP instances by considering as the set
of customers the original set of customers and by varying the vehicle capacity Q
and the number of depots p. In particular, we considered instances with vehicle
capacity Q ∈ {80, 100} and number of depots p ∈ {3, 4}. The depot coordinates
for the instances with p = 3 depots are (20, 40), (45, 25) and (45, 55), while
the depot coordinates for the instances with p = 4 depots are (20, 20), (45, 20),
(20, 50) and (45, 50).

For the SDVRP and MDVRP instances, all the computations were performed by
using real-valued Euclidean distances.

Based on the results of several preliminary experiments to identify good parameter
settings for our method, we decided to use the following parameter settings:

- in procedures H1 and D P1: Maxt1 = 300, ε = 2.0;
- for the reduction tests based on H1: Maxt1r = 100;
- in procedures H2 and D P2: Maxt2 = 25, ε = 1.0, Maxt3 = 400, ∆min = 5, 000,

∆a = 200;
- in procedure CG: ∆a = 200;
- in order to avoid out-of-memory errors, we impose that the size of the final set

R̂ does not exceed the limit of 500, 000 routes (i.e., ∆ = 500, 000 in procedure
genroute, see Appendix B);

- in the exact method described in Sect. 3 we disabled the separation of all the cuts
embedded into CPLEX, because their use increases the overall computing time.

Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 of this section report the following columns:

z∗ : cost of the optimal solution or cost of the best solution found by our exact
method; values printed in bold indicate that the solution cost found is less
than the cost of the best upper bound known;

zU B : best upper bound value available in the literature;
%L H x : percentage ratio of lower bound L H x computed as 100.0 L H x/z∗;
%L Dx : percentage ratio of lower bound L Dx computed as 100.0 L Dx/z∗;
%LCG : percentage ratio of lower bound LCG computed as 100.0 LCG/z∗;

%L B : percentage ratio of the best lower bound obtained computed as %L B =
max{ %LCG, %L D2}; the best of the values %LCG and %L D2 are printed
in bold;

tB M : time in seconds spent by the bounding procedure for computing the final
lower bound;

tC P X : total computing time in seconds spent by CPLEX to solve the final F̂
problem;

tE M : total computing time in seconds of the exact method; tE M includes also
the time spent by procedure genroute for generating the final route subsets
R̂k , ∀k ∈ M ;
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%L BP : percentage ratio of the lower bound L BP produced by Pessoa et al. [24]
computed as 100.0 L BP/z∗;

TL BP ,TP : time in seconds for computing L BP and total computing time of the exact
method of Pessoa et al. [24], respectively. The computing times are in sec-
onds of a Pentium Core 2 Duo 2.13 GHz;

%L BC : percentage ratio of the lower bound L BC produced by Choi and Tcha [6]
computed as 100.0 L BC/z∗.

#I nst : total number of instances considered for the corresponding problem variant;
#Opt : number of instances solved to optimality by the corresponding exact

method;

The last line of each table reports:

- the average percentage ratios and the average running times in seconds of the lower
bounds computed over all instances;

- the average running times in seconds computed over all instances solved to opti-
mality. For the FSMF variant, the average is computed over all instances solved to
optimality by both the method of Pessoa et al. [24] and our exact method.

For HVRP instances and for the new MDVRP instances, for which upper bound
values were not available, the upper bounds were set equal to the solution obtained
with our implementation of the heuristic algorithms proposed by Choi and Tcha [6]
and by Cordeau et al. [8], respectively.

For all the instances of variants HVRP, FSMF, FSMFD, HD, FSMD and SDVRP
except FSMF instance 17, a time limit of 7,200 s was imposed to CPLEX. For MDVRP
instances a time limit of 20,000 s was imposed to CPLEX. Due to the final cardinality
of the subsets of routes R̂, ∀k ∈ M , instance 17 of the FSMF variant was solved
to optimality by running CPLEX using the depth-first search strategy as the node
selection strategy. This strategy let CPLEX to avoid memory overflows but at a higher
computing time.

Table 3 reports the results obtained on FSMF by the reduction tests described in
Sects. 4.1.2 and 5.4. More precisely, for each instance, the table reports the lower and
upper bounds on the number of vehicles of each type together with the number of
vehicles used in the corresponding optimal solution.

Table 4 shows the effectiveness of bounding procedures D P1 and D P2 on FSMF
instances. The table reports under heading “Bounding procedure” the results obtained
by using the procedure described in Sect. 3, and under the heading “H1,H2,CG” the
results obtained without using bounding procedure D P1 and D P2 and the associated
reduction tests.

Table 3 shows that the reduction tests were able to define both tight lower and upper
bounds on the number of vehicles of each vehicle type used in the optimal solutions.
In particular, for four out of twelve instances, the reductions tests were able to exactly
define the composition of the vehicle fleet of the optimal solution. Moreover, as shown
by Table 4, the final procedure CG takes advantage of the reductions made by D P1

and D P2, as testified by the average values %LCG computed with and without using
D P1 and D P2, which are equal to 99.7 and 99.1, respectively. Moreover, the results
obtained for instance 15 of Table 4, show that L D1 and L D2 are not dominated by
lower bound LCG.
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Table 4 Effectiveness of bounding procedures D P1 and D P2 on FSMF

No. n m z∗ H1,H2,CG Bounding procedure

%LCG TB M %L D1 %L D2 %LCG TB M

3 20 5 961.03 100.0 3.1 98.8 0.0 100.0 5.3

4 20 3 6,437.33 99.2 3.9 99.5 99.5 100.0 5.4

5 20 5 1,007.05 99.6 3.9 98.0 0.0 99.6 6.6

6 20 3 6,516.47 99.2 3.3 99.6 99.7 100.0 7.8

13 50 6 2,406.36 100.0 29.5 98.9 0.0 100.0 54.0

14 50 3 9,119.03 96.3 83.0 99.9 99.9 100.0 67.9

15 50 3 2,586.37 99.1 92.0 99.4 99.5 99.1 52.9

16 50 3 2,720.43 99.5 21.9 98.8 0.0 99.7 31.9

17 75 4 1,734.53 99.3 292.3 98.7 0.0 99.3 296.7

18 75 6 2,369.65 99.7 277.5 98.4 0.0 99.7 335.3

19 100 3 8,661.81 97.6 390.8 99.7 99.7 99.9 421.1

20 100 3 4,039.49 99.4 462.7 98.5 0.0 99.4 479.3

99.1 138.7 99.0 99.7 99.7 147.0

Tables 5, 6, 7, 8, 9, 10, 11, 12 report the lower bounds obtained by the bounding
procedure and the results of the exact method for the different variants considered.

On the FSMF variant, a comparison between the lower bound L BP of Pessoa
et al. and our lower bound L B shows that L B is superior to lower bound L BP in all
instances. Taking the computer we used and the computer used by Pessoa et al. into
account in examining the computational results, Table 6 indicates that our bounding
procedure is on average about ten times faster than the one of Pessoa et al. Our exact
method solved to optimality eleven out of twelve instances. Two more instances were
solved to optimality with respect to the instances solved by the method of Pessoa et al.
On the instances solved to optimality by both methods, the new exact method is on
average much faster than the algorithm of Pessoa et al.

On FSMFD and FSMD variants, Tables 7 and 9 show that our lower bound is
superior to lower bound L BC computed by Choi and Tcha [6] in all instances.

For the other variants, for which neither lower bounds nor exact algorithms have
been presented in the literature, our exact method was able to solve to optimality
several test instances.

Table 13 summarizes the results obtained over all variants considered. The unified
solution method proposed in this paper was able to solve to optimality 74 out of 86
instances considered. The table shows that the average percentage ratio of lower bound
L B computed over all 86 instances is equal to 99.5 and that the corresponding average
computing time is 176.2 s. These results show the effectiveness of our bounding
procedure.

Tables 5, 6, 7, 8, 9, 10, 11, 12 show that the new algorithm can solve to optimality
all instances of all problem types involving up to 75 customers and several instances
involving 100 and 199 customers.
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Table 8 Computational results for HD instances

No. n m zU B z∗ Bounding procedure Exact method

%L H1 %L H2 %LCG TB M |R̂| TC P X TE M

13 50 6 1,517.84 1,517.84 98.5 99.3 100.0 28.3 409 0.1 28.4

14 50 3 607.53 607.53 97.3 98.0 98.6 50.4 16,543 420.8 481.6

15 50 3 1,015.29 1,015.29 96.7 97.7 98.6 34.9 16,779 413.1 474.7

16 50 3 1,144.94 1,144.94 97.5 98.1 99.4 38.9 8,081 34.1 80.9

17 75 4 1,061.96 1,061.96 97.4 98.1 98.8 127.1 92,013 1,612.4 1,876.8

18 75 6 1,823.58 1,823.58 98.3 98.8 99.5 255.9 10,136 134.1 413.7

19 100 3 1,117.51 1,117.51 a 97.1 98.3 99.1 376.8 >500,000 7,200.0 9,081.4

20 100 3 1,534.17 1,534.17 98.2 99.2 99.5 118.6 24,851 400.3 597.6

97.6 98.4 99.2 128.9 564.8
a Optimality not proved

Table 9 Computational results for FSMD instances

No. n m zU B z∗ Choi and Bounding procedure Exact method

Tcha (2006)

%L BC %L H1 %L H2 %LCG TB M |R̂| TC P X TE M

3 20 5 623.22 623.22 98.9 98.9 99.0 99.5 3.0 48 0.1 3.0

4 20 3 387.18 387.18 97.4 97.3 97.9 99.7 3.6 214 0.1 3.6

5 20 5 742.87 742.87 99.6 99.6 99.6 100.0 2.0 26 0.0 2.0

6 20 3 415.03 415.03 98.0 98.0 98.2 100.0 3.1 276 0.0 3.1

13 50 6 1,491.86 1,491.86 98.5 98.5 99.5 100.0 28.6 322 0.0 28.7

14 50 3 603.21 603.21 96.5 96.5 97.2 98.0 56.9 50,862 949.9 1,070.4

15 50 3 999.82 999.82 97.8 97.8 98.6 99.6 17.3 5,737 2.2 19.5

16 50 3 1,131.00 1,131.00 97.8 97.8 98.1 99.4 17.8 7,792 26.0 45.2

17 75 4 1,038.60 1,038.60 98.4 98.4 98.7 99.3 144.9 28,935 433.6 679.2

18 75 6 1,801.40 1,800.80 98.8 98.8 99.2 99.3 228.9 22,469 675.2 955.9

19 100 3 1,105.44 1,105.44 97.8 97.7 98.7 99.6 366.5 25,366 348.6 949.3

20 100 3 1,530.43 1,530.43 98.1 98.1 99.1 99.5 110.0 34,758 785.3 1,006.7

98.1 98.1 98.6 99.5 81.9 397.2

The values printed in bold under column z∗ indicate that the solution cost found is less than the cost of the
best upper bound known

Finally, it is also worth mentioning that not only is this algorithm a generalization of
the method described by Baldacci et al. [3] for the CVRP but, when applied to CVRP
instances, it produces the same computational results as those reported by Baldacci
et al. [3].
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Table 10 Computational results for SDVRP instances

No. n m zU B z∗ Bounding procedure Exact method

%L H1 %L H2 %LCG TB M |R̂| TC P X TE M

p07 27 3 391.30 391.30 100.0 100.0 100.0 0.0 0 0.0 0.0

p01 50 3 640.32 640.32 97.7 99.0 99.8 15.4 1,516 0.2 15.6

p02 50 2 598.10 598.10 97.2 97.7 98.7 20.3 15,122 334.9 360.6

p08 54 3 664.46 664.46 100.0 100.0 100.0 14.3 0 0.0 14.3

p13 54 3 1,194.18 1,194.18 91.2 96.9 98.8 109.0 12,875 26.5 164.5

p03 75 3 957.04 954.32 97.4 98.4 99.0 36.5 80,130 3,048.5 3,169.0

p04 75 2 854.43 854.43 97.4 98.1 99.4 84.5 17,276 1,075.7 1,194.3

p09 81 3 948.23 948.23 97.1 100.0 100.0 40.6 0 0.0 40.6

p05 100 3 1,003.57 1,003.57 94.7 98.8 99.2 453.2 149,765 2,185.4 2,966.3

p06 100 2 1,028.52 1,028.52a 94.0 97.5 97.9 438.9 >500,000 7,166.5 8,275.5

p23 100 3 803.29 803.29a 91.5 97.8 98.3 580.1 >500,000 3,688.9 5,970.5

p10 108 3 1,218.75 1,218.75a 94.9 99.0 99.0 138.2 >500,000 3,338.5 3,866.4

p14 108 3 1,960.62 1,960.62a 94.5 98.0 98.1 459.1 >500,000 3,673.6 4,600.3

96.0 98.6 99.1 183.9 880.6

The values printed in bold under column z∗ indicate that the solution cost found is less than the cost of the
best upper bound known
a Optimality not proved

Table 11 Computational results for MDVRP instances

No. n m zU B z∗ Bounding procedure Exact method

%L H1 %L H2 %LCG TB M |R̂| TC P X TE M

p01 50 4 576.87 576.87 98.3 99.0 100.0 10.9 403 0.0 10.9

p02 50 4 473.53 473.53 96.3 98.9 99.7 54.2 1,788 0.2 54.4

p03 75 5 641.19 640.65 98.3 98.9 99.9 92.1 7,067 0.3 92.4

p12 80 2 1,318.95 1,318.95 94.4 98.5 98.6 345.7 37,494 80.7 463.7

p04 100 2 1,001.04 999.21 97.4 98.3 99.3 95.5 167,774 4,579.3 5,106.9

p05 100 2 751.26 751.26a 96.2 97.0 97.5 296.7 >500,000 1,021.0 1,647.6

p06 100 3 876.50 876.50 97.8 98.8 99.6 59.7 22,538 25.0 104.3

p07 100 4 881.97 881.97 96.5 98.3 99.5 187.3 23,536 53.0 294.4

p15 160 4 2,505.42 2,505.42a 95.1 99.2 99.2 1,652.9 56,926 25.2 2,147.9

96.7 98.5 99.2 310.5 875.3

The values printed in bold under column z∗ indicate that the solution cost found is less than the cost of the
best upper bound known
a Optimality not proved
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Table 12 Computational results for new MDVRP instances

Problem n m Q zU B z∗ Bounding procedure Exact method

%L H1 %L H2 %LCG TB M |R̂| TC P X TE M

M-n151-k12 150 3 80 1,374.03 1,374.03 97.3 98.6 99.7 117.4 24,754 229.0 377.8

M-n151-k12 150 4 80 1,200.54 1,200.54 97.8 98.8 99.9 90.1 11,542 5.6 102.1

M-n151-k12 150 3 100 1,197.52 1,197.52 97.1 98.2 99.5 156.1 97,944 9,315.6 9,689.2

M-n151-k12 150 4 100 1,058.38 1,058.38 98.0 98.8 99.7 125.8 17,618 113.8 263.3

M-n200-k16 199 3 80 1,757.86 1,757.86a 97.3 98.5 99.5 266.6 270,938 20,000.0 21,213.3

M-n200-k16 199 4 80 1,535.04 1,534.56 97.8 99.0 99.8 126.3 15,641 73.8 208.1

M-n200-k16 199 3 100 1,511.35 1,511.35 96.9 98.4 99.6 294.4 224,302 17,124.6 18,091.2

M-n200-k16 199 4 100 1,347.19 1,347.19 96.7 98.6 99.7 339.3 41,430 449.9 946.6

97.4 98.6 99.7 189.5 4,788.6

The values printed in bold under column z∗ indicate that the solution cost found is less than the cost of the
best upper bound known
a Optimality not proved

Table 13 Summary results

Variant #Inst Lower bounds Exact methods

Pessoa et al. Choi and Our Pessoa et al. Our

(2007) Tcha (2006) (2007)

%L BP TL BP %L BC %L B TB M #Opt TP #Opt TE M

HVRP 12 − − − 99.6 224.8 − − 10 259.9

FSMF 12 99.6 1,426.7 98.4 99.8 147.0 9 9,501.9 11 125.4

FSMFD 12 − − 98.6 99.7 143.5 − − 11 825.9

HD 8 − − − 99.2 128.9 − − 7 564.8

FSMD 12 − − 98.1 99.5 81.9 − − 12 397.2

SDVRP 13 − − − 99.1 183.9 − − 9 880.6

MDVRP 9 − − − 99.2 310.5 − − 7 875.3

MDVRP 8 − − − 99.7 189.5 − − 7 4,788.6

86 99.5 176.2 74 1,089.7

8 Conclusions

In this paper we described a unified exact method for solving an extended model of the
well-known Capacitated Vehicle Routing Problem (CVRP), called the Heterogenous
Vehicle Routing Problem (HVRP).

We designed an exact algorithm for the HVRP based on the set partitioning for-
mulation and we performed extensive computational results over the main instances
from the literature of the different variants of HVRP. Further, we produced new tight
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lower bounds for some variants of the HVRP for which neither lower bounds nor exact
algorithms have been proposed in the literature. For the variants already studied in the
literature, our computational results reveal that the new lower bounds are tighter than
all other lower bounds proposed in the literature so far. The exact algorithm solved sev-
eral test instances of all problem types considered, and can solve problems involving
up to 199 customers.

Future research will investigate the generalization of the HVRP model described in
this paper to deal with the complexity of real-world applications such as time-window
constraints and multiple vehicle trips.

Acknowledgments The authors would like to express their special thanks to Prof. L. D. Bodin for his
invaluable help and useful discussion. Thanks are also due to anonymous referees for detailed and helpful
comments.

Appendix A: Proofs of lemmas and theorems

Lemma 1 (see Sect. 2.2) The optimal solution cost z(R P) of problem R P provides
a valid lower bound on the HVRP for any solution βik of inequalities (9).

Proof Consider a F solution x of cost z(F) and let J k = {� ∈ Rk : xk
� = 1} and

M = {k ∈ M : ∑
�∈Rk xk

� ≥ 1}.
Let ck

� = ck
� −∑

i∈Rk
�
βik be the reduced cost of route � ∈ Rk , k ∈ M , with respect

to the solution βik of inequalities (9) used in R P . In the following we show that

z(R P) +
∑

k∈M

∑

�∈J k

ck
� ≤ z(F) (44)

that implies z(R P) ≤ z(F) as ck
� ≥ 0, ∀� ∈ Rk , ∀k ∈ M .

By using the definition of the reduced cost ck
� , we derive:

∑

k∈M

∑

�∈J k

ck
� =

∑

k∈M

∑

�∈J k

ck
� −

∑

k∈M

∑

�∈J k

∑

i∈Rk
�

βik . (45)

Let V k = {i ∈ Rk
� : � ∈ J k}, k ∈ M . As x is a F solution, then each customer i

belongs to one of the sets V k , k ∈ M , therefore we have

∑

k∈M

∑

�∈J k

∑

i∈Rk
�

βik =
∑

k∈M

∑

i∈V k

βik . (46)

From expressions (45) and (46) we obtain:

∑

k∈M

∑

�∈J k

ck
� =

∑

k∈M

∑

�∈J k

ck
� −

∑

k∈M

∑

i∈V k

βik . (47)
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Adding and subtracting the term
∑

k∈M |J k |Fk to the right-hand-side of expression
(47) we have:

∑

k∈M

∑

�∈J k

ck
� = z(F) −

⎛

⎝
∑

k∈M

∑

i∈V k

βik +
∑

k∈M

|J k |Fk

⎞

⎠ . (48)

Notice that the second term of the right-hand-side of expression (48) corresponds to
the cost (say z̃(R P)) of a feasible, but not necessarily optimal, R P solution (ξ̃ , ỹ) that
is derived from the F solution x by setting:

ξ̃ik = 1, ∀i ∈ V k, ξ̃ik = 0, ∀i ∈ V \V k, ỹk = |J k |, k ∈ M (49)

and
ξ̃ik = 0, ∀i ∈ V, and ỹk = 0, k ∈ M\M . (50)

As z̃(R P) ≥ z(R P), from expression (48) we obtain

∑

k∈M

∑

�∈J k

ck
� ≤ z(F) − z(R P) (51)

that corresponds to inequality (44). ��
Corollary 1 (see Sect. 3) Let z(R P) be the cost of an optimal R P solution obtained
for a given solution βik of inequalities (9). Any HVRP solution of cost smaller than
zU B cannot contain any route � ∈ Rk , k ∈ M, such that

ck
� −

∑

i∈Rk
�

βik ≥ zU B − z(R P). (52)

Proof It follows directly from Lemma 1. ��
Proof of Theorem 1 (see Sect. 4). For a given route � ∈ Rk of a given vehicle type
k ∈ M , we have that � ∈ Rk

i , ∀i ∈ Rk
� . Thus, the following inequalities hold:

bik ≤ qi
ck
� + Fk − λ(Rk

� ) − µk

q(Rk
� )

, ∀i ∈ Rk
� . (53)

From expression (20a) and inequalities (53) we derive:

∑

i∈Rk
�

ui ≤
∑

i∈Rk
�

qi
ck
� + Fk − λ(Rk

� ) − µk

q(Rk
� )

+
∑

i∈Rk
�

λi

= ck
� + Fk − µk,

(54)

that corresponds to the dual constraint (6), as vk = µk according to expression (20b).
��
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Proof of Theorem 2 (see Sect. 5). Consider a route � ∈ Rk of a given vehicle type
k ∈ M . Since � ∈ Rk

i , ∀i ∈ Rk
� , from expressions (24) we derive:

βik ≤ qi
ck
� − λ(Rk

� )

q(Rk
� )

+ λi , ∀i ∈ Rk
� , (55)

and, adding inequalities (55) for all i ∈ Rk
� , we obtain:

∑

i∈Rk
�

βik ≤
∑

i∈Rk
�

qi
ck
� − λ(Rk

� )

q(Rk
� )

+ λ(Rk
� ) = ck

� . (56)

��

Appendix B: Procedure GENROUTE

genroute is a procedure for generating routes that has been described in Baldacci
et al. [3].

This procedure is used for generating the initial sets R
k
, ∀k ∈ M , required by H2

and D P2, the sets N k , ∀k ∈ M , used by H2, CG and D P2 and the sets R̂k , ∀k ∈ M ,
required by the exact method described in Sect. 3.

Let û, ŵ and ĝ be three vectors of marginal costs associated to customer V , with
subset Ŝ of capacity constraints (16) and with subset Ĉ of clique inequalities (17).
Moreover, let v̂k be a marginal cost associated to vehicle type k ∈ M . For a given
vehicle type k ∈ M , define the reduced cost ĉk

� of route � ∈ Rk with respect to û, ŵ,
ĝ and v̂k as:

ĉk
� = ck

� −
∑

i∈Rk
�

ûi − v̂k −
∑

S∈Ŝ

bk
�(S)ŵS −

∑

C∈Ĉ k
�

ĝC , (57)

where Ĉ k
� = {C ∈ Ĉ : ∃i ∈ C such that k(i) = k and �(i) = �} and bk

�(S) = 1,
∀� ∈ Rk , such that Rk

� ∩ S �= ∅ and bk
�(S) = 0, otherwise.

Given the vectors û, ŵ, ĝ, the cost v̂k for a selected vehicle type k and two user
defined parameters γ and ∆, genroute produces for a vehicle type k the largest subset
Bk ⊆ Rk satisfying the following conditions:

(a) max
�∈Bk

{ĉk
�} ≤ min

�∈Rk\Bk
{ĉk

�}
(b) |Bk | ≤ ∆

(c) max
�∈Bk

{ĉk
�} ≤ γ.

⎫
⎪⎪⎬

⎪⎪⎭

(58)

In order to generate the sets Bk , ∀k ∈ M , genroute must be executed m times, one
time for each k ∈ M . Parameters γ and ∆ permit genroute to generate the different
route sets required by H2, CG, D P2 and the exact method as follows:
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- The initial core problem R
k
, ∀k ∈ M, of H2.

Define û = u1, ŵ = 0, ĝ = 0, γ = ∞ and ∆ = ∆min. For a given k ∈ M , set
v̂k = v1

k .
- N k , ∀k ∈ M, required by H2.

Define û = u∗, ŵ = 0, ĝ = 0, γ = 0 and ∆ = ∆a . For a given k ∈ M , set
v̂k = v∗

k .

- The initial core problem R
k
, ∀k ∈ M, of D P2.

Define ŵ = 0, ĝ = 0, γ = ∞ and ∆ = ∆min. For a given k ∈ M , set ûi = β1
ik ,

∀i ∈ V , and v̂k = 0.
- N k , ∀k ∈ M, required by D P2.

Define ŵ = 0, ĝ = 0, γ = 0 and ∆ = ∆a . For a given k ∈ M , set ûi = β ik ,
∀i ∈ V , and v̂k = 0.

- N k , ∀k ∈ M, required by CG.
Define û = u, ŵ = w, ĝ = g, γ = 0 and ∆ = ∆a . For a given k ∈ M , set
v̂k = vk .

- R̂k , k ∈ M, required by the exact method.
We have two cases:

(i) L D2 > LCG. Define ŵ = 0, ĝ = 0, γ = zU B − L D2 and ∆ = ∞. For a
given k ∈ M , set ûi = β2

ik , ∀i ∈ V , and v̂k = 0.
(ii) L D2 ≤ LCG. Define û = u3, ŵ = w3, ĝ = 0, γ = zU B − LCG and

∆ = ∞. For a given k ∈ M , set v̂k = v3
k .
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