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Abstract

In this paper we present a unified factorization al-
gorithm for recovering structure and motion from tm-
age sequences by using point features, line segments
and planes. This new formulation is based on direc-
tional uncertainty model for features. Points and line
segments are both described by the same probabilistic
models and so can be recovered in the same way. Prior
mformation on the coplanarity of features is shown
to fit naturally into the new factorization formulation
and provides additional constraints for the shape recov-
ery. This formulation leads to a weighted least squares
motion and shape recovery problem which is solved by
an efficient quasi-linear algorithm. The statistical un-
certainty model also enables us to recover uncertainty
estimates for the reconstructed three dimensional fea-
ture locations.

1 Introduction

We address the structure from motion problem:
given an image sequence of a scene or rigid object
taken by a camera undergoing unknown motion, re-
construct the three dimensional (3D) geometry of the
scene. While we also recover camera motion, in this
report we focus on 3D structure. Further, we require
that the solution be robust to the inevitable impreci-
sion and small errors involved in imaging and regis-
tration.

Early structure from motion work focused on the
two image problem [5, 17]. Starting from a set of cor-
responding features in the images, the camera motion
and point locations could be recovered. Since then re-
search has shifted to the more difficult multiple-image
problem where more data samples can lead to greater
accuracy which is our motivation.

Much current work focusses on recovering shape us-
ing a full perspective camera model [1, 3, 14, 15, 20].
Solving the perspective equations typically entails
non-linear minimization and the usual problems of
many local minima, and high computational expense,
with convergence and accuracy being sensitive to spe-
cial parameters and initial guesses. Noting this and

that even the perspective model is only a rough ap-
proximation when effects like radial distortion are
large, we follow [10, 12, 16] and side-step many of these
problems by working with an affine camera model.
Very accurate results can still be obtained provided
the perspective distortion effects are small.

Batch factorization methods have typically
weighted features uniformly, or as in [9], allowed
confidence weightings. Registration algorithms can
often provide directional uncertainty measures for
feature location and here we formulate an algorithm
to incorporate these directional uncertainties. We
note that a significant missing aspect of current meth-
ods is their lack of confidence measure in their data
and results. Our algorithm provides an uncertainty
measure for the resulting shape features.

Recent work with line features [4, 12, 18] illus-
trates that, while lines provide valuable constraints
for shape recovery, the reconstruction process using
them 1s more sensitive to noise and being trapped by
local minima than for point features. Further the line
factorization algorithm [12] requires at least seven di-
rections for lines in the scene, a significant practical
problem. Our uncertainty formulation provides a nat-
ural method for modeling line segments, thus avoiding
the above difficulties and, in particular, allowing us to
jointly recover shape from point and line-segment fea-
tures. We also extend the algorithm to incorporate
multiple planar constraints.

We begin by summarizing the factorization algo-
rithm in Section 2. Then, in Section 3, we describe
our uncertainty model and the Bilinear algorithm for
points, lines and planes. Next we present results from
synthetic and real image sequences in Section 4 and
we end with the conclusions.

2 Factorization Algorithm Overview

We provide a brief overview of the Factorization al-
gorithm found in more detail elsewhere [10, 12, 16].
The algorithm 1s feature-based, where a feature is a
distinctive part of an image, such as a corner, edge or
mark on a rigid object. A set of P features in F images
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Figure 1: Feature tracked in an image sequence

with coordinates {w}p. = (U}P, v}p)|f =1,..., E,p =
1,..., P} are tracked in the image sequence as illus-
trated in Figure 1.  Feature coordinates are trans-
formed to object coordinates by subtracting their cen-
ter of mass: w’, is replaced by wg, = W}p — wy,. for
all f and p, where wy, = Zp wep/P. A measurement
matrix, W, is created containing the relative feature
coordinates:

wir v ulp
W= Pl FP
vi1 e+ ulp
Vp1 ottt URP

Assuming orthography, Tomasi and Kanade [16]
showed that W is rank 3 or less, and can be factored
into the product of a motion matrix, M, and shape
matrix, S, i.e.,

W=MS (1)
where
m{
T
m
M = nf and S=[ s - sp ]3><P
T
Dp dopya

The rows of M encode the rotation for each frame,
and the columns of S contain the 3D position of each
feature in the reconstructed object.

When there are errors or noise in the measurement
matrix, we seek a least squares approximation to it.
We define an error function:

Esvp(M,S) = ||W = MS|* = ¢l (2)
e
Ufp — mfsp
Urp — Mg 8p
imize. This can be achieved by performing Singular
Value Decomposition (SVD) on the measurement ma-
trix, W = UXV | and zeroing all but the three largest
singular values in ¥ to get W = UXV. Factoring this

, which we seek to min-
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Figure 2: Feature uncertainty indicated by ellipses

provides least squares estimates for motion and shape:
M =UXY? and S = 2Y2VT We note that M and S
are defined only up to an affine transformation, but we
can obtain FEuclidean coordinates by applying appro-
priate constraints, depending on the projection model,
to the rows of M as in [16]. From here on we drop the
“*” gymbol and assume this step has been performed.

3 Bilinear Factorization Algorithm
To improve the standard factorization algorithm,
we propose using a more general Gaussian feature un-
certainty model and derive our Bilinear algorithm for
this model extending a similar technique in [9].
3.1 Directional Uncertainty Formulation
Since feature tracking and registration algorithms
do not provide exact values for feature positions, we
model the actual feature position, xf,, with a 2D
Gaussian probability density function:

pro(Xpp) = kiyp eXp(_%(Wfp - Xfp)TGfp(Wfp —Xsp))

(3)
where Gy, is the inverse covariance and wy, the mean.
The covariance determines an ellipse of equal prob-
ability density, and the major and minor axes give
the directional uncertainty in feature location as indi-
cated in Figure 2. Assuming independence of feature
densities, the total probability density function for P
features in F' images will be the product of all the
individual density functions:

T = prp (xsp)- (4)
Ip

The maximum likelithood solution to this 1s obtained
by minimizing the cost function, Fg, given by:

1
Ep = Z §(Wfp - Xfp)TGfp (Wip —xpp)  (5)
ir

To recover shape and motion, we assume a 2 X 3
affine projection model, M;, for each image acting
on the 3D object centered point coordinates s, =
[ Spz  Spz  Spz ] Thus, feature locations are con-
strained by the following equation:

Xpp = Mysp = [ mfsp ] (6)

IlfSp



We note that, when this constraint is substituted into
(5) and the covariance matrix is identity, the cost
E'p reduces to the standard factorization cost, Fsyp,
showing that SVD factorization is a special case of our
algorithm.
3.2 Bilinear Minimization

The maximum likelihood solution for shape and
motion is obtained by minimizing E'g with respect to
the shape and motion parameters. We note that the
partial derivatives of Fg are bilinear in these param-
eters: my, ny and s,:

oFp T T

Bm; = Z —cpplugp — m sp)sp — dyp(vsp — ne Sp)Sp
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Here Gy, = [ ;;1’; i;i } Is positive definite and is
split into its components. By setting the partials to
zero and rearranging the resulting equations we obtain

a set of bilinear equations for motion and shape:

T
[ Zp CfpSpSp

T
Zp dfpSpSy

Zp dfpspsg { m; }
Zp efpspsp nf
CtplUtp + dipVey)S
Zp( fptfp FpVip)Sp (8)
Zp(dfp“fp + efpUsp)sy
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{Z,« cpuspmy + dppugply +vppmy) + efpvfp“f} (9)

forp=1,...,Pand f=1,..., F. We start with an
initial guess for motion M,, and use equation (9) to
obtain the least squares solution for S, and then this
new S and equation (8) to solve for the least squares
motion M. This step is repeated iteratively until con-
vergence 1s achieved. We call this our Bilinear Factor-
ization Algorithm.

The complexity of each iteration is O(F P) oper-
ations, compared to SVD which, from [2], has com-
plexity O(FP?) for F > P or O(PF?) otherwise.
The Bilinear algorithm monotonically reduces the cost
function but it is not guaranteed to converge to the
global minimum, hence we usually start with reason-
able estimates for motion or shape such as obtained
from the SVD solution which is a global minimum of
Egsvp. With this estimate our experiments typically
converged within a few iterations.
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Figure 3: Line segment feature uncertainty

3.3 Line Segments

Recent work has extended the factorization algo-
rithm to infinite lines [12], but this involves more
stages and is more sensitive to noise than the point
feature algorithm. The primary reason for this sen-
sitivity is that each line provides a single constraint,
whereas point features provide two constraints. Prac-
tical line registration algorithms actually work with
line segments which are fit to edges the images. The
positions of the recovered line endpoints may corre-
spond to different parts of the edge in any given image,
but they are restricted to fall within the physical lim-
its of the object. Thus, by using line segments which
we know correspond to a particular region of the infi-
nite line, we can extract more constraint information
than is possible for infinite lines. We define line seg-
ments by their end-points and model each end-point
as a Gaussian density function with large uncertainty
along the length of the line and small uncertainty per-
pendicular to the line, as illustrated in Figure 3. Line
segments defined by their end-point density functions
have the same form as point features and so can be
used directly by the Bilinear algorithm on their own
or in conjunction with point features.
3.4 Shape Uncertainty

We seek an estimate for the uncertainty in the re-
covered 3D positions of the features by the factoriza-
tion algorithm. We model second order error terms
with 3D Gaussian distributions around the maximum
likelihood solution to pp from (4). Our inverse covari-
ance for each feature will be the Hessian of Eg in the
shape parameters which we obtain as:

3’Ep 3’ Ep 3°Ep
Hy = asplaiﬂ 85125 aspg,afﬂ = ZMfopr
9%Ep 9°Ep 9?Ep f
dsp19sp3 dsp29sp3 8512)3
(10)

For this to be an exact and full description of the er-
ror probability density, our equations for shape would
need to be linear in measurement values, and indi-
vidual features must be independent of each other,
i.e. the equations could be expressed in the form:
sp = Zf Afwyp + by, Vp with some constants A; and
b,. However, our equations, (8) and (9), are bilinear



in shape and motion, resulting in coupling between
motion and shape, and hence coupling also between
feature positions. To second order this coupling is
described by the cross terms of the large covariance
matrix of the shape vector, s, , formed by stacking the
columns of S vertically. With no inter-feature corre-
lation this would be a 3 x 3 block diagonal matrix,
but with coupling there will be non-zero cross terms.
By performing multiple experiments we can estimate
the value of these cross-terms as well as the accuracy
of our feature covariance estimate Hp_l. Our experi-
ments indicated that in some instances, depending on
the motion and shape of the object, the block diagonal
dominate the cross-terms, but in others there were sig-
nificant cross-correlation effects, see Figure 4(a) and
(b). For the purpose of this report we ignore these
cross-terms but note that, depending on the appli-
cation of our uncertainty models, these terms may
or may not be of significance. Independent of the
cross-terms, however, we found that equation (10) ac-
curately predicted the individual feature covariance
terms as shown in Figure 4(c).
3.5 Planes

A plane can be determined using three non-
collinear points {s1,s2,s3}. Points on the plane can
all be written as a linear combination of the difference

vectors:
sy = s1+ap(sy—s1)+bp(ss —sq)
ap
= [ (52 — Sl) (53 — Sl) S ] bp (11)
1

with some constants a, and b, defining the position
on the plane.

Multiple points in a plane can thus be factored into
two matrices:

aq a9 ap
SIRPI[I‘l ry t] bl bz bp

(12)
The vectors ry and rs are parallel to the plane and t
is a point on the plane. The equation for a point, p,
on the plane is thus:

(p—t) (r1 xr2) =0. (13)

When the shape matrix contains points from more
than one plane, points from each plane can be gath-
ered into blocks and factored separately. For () planes
the global factorization equation becomes:

W=MS=M[ RiPi R:P» RoPg ] (14)
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Figure 4: Error distribution of reconstructed shape
data of the synthetic cube from 1000 runs with equal,
uncorrelated Gaussian noise added to all image fea-
tures. (a) Part of the covariance matrix for s, il-
lustrating the 3 x 3 block diagonal terms dominating
cross-correlation elements. Here there is 60 degrees
pitch and yaw rotation. (b) Part of the covariance
matrix for the same object undergoing different mo-
tion (25 degree rotation around each axis) illustrating
large cross terms. (c¢) A histogram of the actual val-
ues of the elements in the 3 x 3 covariance matrices
for each feature, with the values predicted by equation
(10) marked with a “f}” symbol, showing close agree-
ment. (The variances, 0'2»2]», are scaled by 103, and the
7;; terms are the standard correlation coefficients)



Equation (14) is trilinear in motion, plane and position
parameters. While it could be solved with a trilinear
set of equations analogous to equations (8) and (9),
we choose to break it into two bilinear steps. In the
first step we directly apply the Bilinear algorithm to
solve for motion and shape. In the next step we define
an error function, Ep;, for each plane, P;:

1
Ep; = Z 5(51’ — Rigy)" Hy(sp — Rigy) (15)
peP

where ¢, are the columns of F;, and H, is the inverse
covariance from (10). This error is minimized with a
similar set of bilinear equations to (8) and (9). The
parameter t; can be either solved for in these equa-
tions, or calculated directly as a weighted center of
mass of the points in a plane. This algorithm differs
from simply fitting planes to the resulting shape in
that the camera motion as well as uncertainty esti-
mates are used to guide the fitting using the inverse
covariance matrices [{,,. The two bilinear steps can be
iterated until convergence is achieved.

3.6 Object Centered Coordinates

Past work generally used the center of mass as the
origin for the object coordinate frame which, for equal
density features, is the minimum variance point. Here
we have covariance estimates for each feature in each
frame so we seek an origin, wy. = Zp apWwyp, which
is a weighted sum of individual features in an image,
that has minimum total variance. Since the relative
orientation of features between images is unknown,
we use the non-directional radial variance, U?pr, for
each feature which is equal to the sum of the prin-
cipal components of its covariance matrix, G;pl, le.
U?PT = U?pl + ‘T?pZ' Solving .for the mipimum variance
point we obtain the following coefficient values (see
8):

-1

ZP: Zf:l(o-izpl + 0752)
i=1 Zfﬂ("?ﬂ + o)
Essentially this amounts to weighting each feature by
the inverse of its total uncertainty in all frames. We
note that this uncertainty involves the sum of the di-
rectional uncertainties: U?pl and U?pz, and hence fea-
tures with a large dominant uncertainty, such as a
line segment, will contribute far less than point fea-
tures having small variances in both directions. This
indicates that line segments are generally inferior to
point features for determining object centered coordi-
nates and so provides added motivation for combining
line-segment and point-feature shape recovery.

ap = (16)

4 Experiments

We report results for a synthetic shape, and then
for a real image sequence of a cube. A synthetic cube
was used to create image sequences to which Gaussian
noise was added with standard deviation chosen ran-
domly from the range: 0 < 1,02 < 0.1 which is up
to b percent of the size of the object. The sequence
consisted of 20 frames and rotations of about 50 de-
grees around each axis. The SVD and the Bilinear
algorithms were compared based on their respective
reconstructions from this data. Figure 5 shows sam-
ple reconstructions by both algorithms and compares
planes fit to the SVD reconstruction, with planar fac-
torization. Parts (e) and (f) plot the total error be-
tween the recovered and true shape for point and pla-
nar reconstruction over a sequence of runs. The Bilin-
ear algorithm, which uses knowledge of the covariance
in 1ts reconstruction, gives better results for both of
these cases than the SVD algorithm.

Next, we performed our shape recovery algorithm
on a sequence of 11 images of a cube, the first and last
being shown in Figure 6. Features are represented
as square templates that are tracked in the image se-
quence with a warpable Sum of Squared Difference
technique [6, 8, 13]. Here we permitted skewing of the
templates in the minimization rather than full affine
warping. We took the positional Hessian of each tem-
plate error function to be our estimate for the inverse
covariance of each feature obtaining the ellipses shown
in the figure. The large ellipses indicate poorly lo-
cated features. Figure 7 shows the Bilinear shape re-
construction with ellipsoids representing the relative
uncertainty of features. By fitting planes to the SVD
and Bilinear cube sides, we estimate that the SVD
results have 15 percent larger error than the Bilinear.

Figure 8 shows the end-points of the automatically
tracked line segments with ellipses representing posi-
tional uncertainty for each end-point. Here our un-
certainty estimates were crude; we simply choose the
variance along the line to be proportional to the line
length and the variance perpendicular to the line to
be inversely proportional to the length, since we ex-
pect to localize longer lines more accurately. We plan
to do better in the future by characterizing the line
tracking errors, but, despite this rough estimate, the
results were good. The recovered shape is shown in
Figure 9 with each end-point being represented by an
ellipsoid corresponding to its 3D covariance, and corre-
sponding features are joined to form the recovered line
segments. To test the robustness of the algorithm to
changes in line segment lengths, we added noise along
the line direction to the end-points and compared the
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Figure 5: Recovered shapes with (a) SVD, (b) Bilin-
ear, (c) fitting planes to SVD, and (d) planar factor-
ization. (e) Shows Factorization, and (f) Planar fac-
torization 3D errors for a sequence of runs comparing
SVD (dashed) and Bilinear (solid) reconstruction.
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Figure 6: First and last images in sequence with fea-
ture uncertainty estimates

reconstruction results using SVD and the Bilinear al-
gorithm as shown in Figure 10. Part (c) shows the
improvement gained in this case when point features
are used to help determine the object centered coordi-
nates. Point and line segment reconstruction are easily
combined and the result is illustrated in Figure 11.
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Figure 7: Reconstructed point features with exagger-
ated uncertainty ellipsoids. (a) (left) is a view of the
left face, (b) (right) is a top view.

Figure 8: Ellipses modeling line segments

5 Conclusion

Our new Bilinear factorization algorithm uses a 2D
Gaussian model for points and line segments, and,
along with planar constraints, unifies reconstruction
from points, line segments and planes. The computa-
tion for each iteration is very fast, O(F P), and con-
vergence rapid.

Shape recovery accuracy is improved by incorporat-
ing directional uncertainty measures that weight each
feature’s constraints by our confidence in them. Thus
the algorithm can utilize a wider spectrum of features
than previous algorithms to raise accuracy. The 3D
uncertainty estimates that are generated can be used
in subsequent surface-modeling steps or in active vi-
sion applications.

Further work we would like to do includes investi-
gating the determining factors for correlation between
features and the extension of uncertainty modeling
from the affine to perspective case. We also hope to
investigate better methods to estimate feature uncer-
tainty in the tracking process.
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