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Abstract— We introduce a general distributional framework
that results in a unifying description and characterization of
a rich variety of continuous-time stochastic processes. The
cornerstone of our approach is an innovation model that is
driven by some generalized white noise process, which may be
Gaussian or not (e.g., Laplace, impulsive Poisson, or alpha stable).
This allows for a conceptual decoupling between the correlation
properties of the process, which are imposed by the whitening
operator L, and its sparsity pattern, which is determined by
the type of noise excitation. The latter is fully specified by a
Lévy measure. We show that the range of admissible innovation
behavior varies between the purely Gaussian and super-sparse
extremes. We prove that the corresponding generalized stochastic
processes are well-defined mathematically provided that the
(adjoint) inverse of the whitening operator satisfies some L p
bound for p ≥ 1. We present a novel operator-based method that
yields an explicit characterization of all Lévy-driven processes
that are solutions of constant-coefficient stochastic differential
equations. When the underlying system is stable, we recover
the family of stationary continuous-time autoregressive moving
average processes (CARMA), including the Gaussian ones. The
approach remains valid when the system is unstable and leads
to the identification of potentially useful generalizations of the
Lévy processes, which are sparse and non-stationary. Finally, we
show that these processes admit a sparse representation in some
matched wavelet domain and provide a full characterization of
their transform-domain statistics.

Index Terms— Sparsity, non-Gaussian stochastic processes,
innovation modeling, continuous-time signals, stochastic differ-
ential equations, wavelet expansion, Lévy process, infinite divis-
ibility

I. INTRODUCTION

IN RECENT years, the research focus in signal process-
ing has shifted away from the classical linear paradigm,

which is intimately linked with the theory of stationary
Gaussian processes [1], [2]. Instead of considering Fourier
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transforms and performing quadratic optimization, researchers
are presently favoring wavelet-like representations and have
adopted sparsity as design paradigm [3]–[8]. The property that
a signal admits a sparse expansion can be exploited elegantly
for compressive sensing, which is presently a very active area
of research (cf. special issue of the Proceedings of the IEEE
[9], [10]). The concept is equally helpful for solving inverse
problems and has resulted in significant algorithmic advances
for the efficient resolution of large scale �1-norm minimization
problems [11]–[13].

The current formulations of compressed sensing and sparse
signal recovery are fundamentally deterministic. Also, they are
predominantly discrete and based on finite-dimensional mathe-
matics, with the notable exception of the works of Eldar [14],
Adcock and Hansen [15]. By drawing on the analogy with
the classical theory of signal processing, it is likely that
further progress may be achieved by adopting a statistical
(or estimation theoretic) point of view for the description
of sparse signals in the analog domain. This stands as our
primary motivation for the investigation of the present class
of continuous-time stochastic processes, the greater part of
which is sparse by construction. These processes are specified
as a superset of the Gaussian ones, which is essential for
maintaining backward compatibility with traditional statistical
signal processing.

The present construction is a generalization of a classical
idea in communication theory and signal processing which is
to view a stochastic process as filtered version of a white noise
(a.k.a. innovation) [16]. The fundamental aspect here is that
the modeling is done in the continuous domain, which, as we
shall see, imposes strong constraints on the class of admissible
innovations; that is, the generalized white noise that constitutes
the input of the innovation model. The second ingredient is a
powerful operational calculus (the generalization of the idea
of filtering) for solving stochastic differential equations (SDE),
including unstable ones, which is essential for inducing inter-
esting (non-stationary) behaviors such as self-similarity. The
combination of these ingredients results in the specification
of an extended class of stochastic processes that are either
Gaussian or sparse, at the exclusion of any other type. The
proposed theory has a unifying character in that it connects a
number of contemporary topics in signal processing, statistics
and approximation theory:

sparsity (in relation to compressed sensing) [3], [4]
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signals with a finite rate of innovation [17], [18]
the classical theory of Gaussian stationary processes [1],

[16]
non-Gaussian continuous-domain modeling of signals

[19], [20]
stochastic differential equations [21], [22]
splines, wavelets and linear system theory [5], [23].

Most importantly, it explains why certain classes of processes
admit a sparse representation in a matched wavelet-like basis
(see introductory example in Section II where the Haar trans-
form outperfoms the classical Karhunen-Loève transform).
Since these models are the natural functional extension of the
Gaussian stationary processes, they may stimulate the develop-
ment of novel algorithms for statistical signal processing. This
has already been demonstrated in the context of biomedical
image reconstruction [24], the derivation of statistical priors
for discrete-domain signal representation [25], optimal signal
denoising [26], and MMSE interpolation [27].

Because the proposed model is intrinsically linear, we have
adopted a formulation that relies on generalized functions,
rather than the traditional mathematical concepts (random
measures and Itô integrals) from the theory of stochastic
differential equations [21], [22], [28]. We are then taking
advantage of the theory of generalized stochastic processes
of Gelfand (arguably, the second most famous Soviet math-
ematician after Kolmogorov) and some powerful tools of
functional analysis (Minlos-Bochner’s theorem) [29] that are
not widely known to engineers nor statisticians. While this
may look like an unnecessary abstraction at first sight, it is
very much in line with the intuition of an engineer who prefers
to work with analog filters and convolution operators rather
than with stochastic integrals. We are then able to use the
whole machinery of linear system theory and the power of the
characteristic functional to derive the statistics of the signal in
any (linearly) transformed domain.

The paper is organized as follows. The basic flavor
of the innovation model is conveyed in Section II by
focusing on a first-order differential system which results in
the generation of Gaussian and non-Gaussian AR(1) stochastic
processes. We use of this model to illustrate that a properly-
matched wavelet transform can outperform the classical
Karhunen-Loève transform (or the DCT) for the compres-
sion of (non-Gaussian) signals. In Section III, we review
the foundations of Gelfand’s theory of generalized stochas-
tic processes. In particular, we characterize the complete
class of admissible continuous-time white noise processes
(innovations) and give some argumentation as to why the
non-Gaussian brands are inherently sparse. In Section IV,
we give a high-level description of the general innova-
tion model and provide a novel operator-based method
for the solution of SDE. In Section V, we make use of
Gelfand’s formalism to fully characterize our extended class of
(non-Gaussian) stochastic processes including the special
cases of CARMA and N th-order generalized Lévy processes.
We also derive the statistics of the wavelet-domain representa-
tion of these signals, which allows for a common (stationary)
treatment of the two latter classes of processes, irrespective
of any stability consideration. Finally, in Section VI, we

turn back to our introductory example by moving into the
unstable regime (single pole at the origin) which yields a non-
conventional system-theoretic interpretation of classical Lévy
processes [28], [30], [31]. We also point out the structural
similarity between the increments of Lévy processes and
their Haar wavelet coefficients. For higher-order illustrations
of sparse processes, we refer to our companion paper [32],
which is specifically devoted to the study of the discrete-time
implication of the theory and the way to best decouple (e.g.
“sparsify”) such processes. The notation, which is common to
both papers, is summarized in [32, Table II].

II. MOTIVATION: GAUSSIAN VS. NON-GAUSSIAN

AR(1) PROCESSES

A continuous-time Gaussian AR(1) (or Gauss-Markov)
process can be formally generated by applying a first-order
analog filter to a Gaussian white noise process w:

sα(t) = (ρα ∗ w)(t) (1)

where ρα(t) = �+(t)eαt with Re(α) < 0 and �+(t) is the
unit-step function. Next, we observe that ρα = (D −αId)−1δ
where δ is the Dirac impulse and where D = d

dt and Id are the
derivative and identity operators, respectively. These operators
as well as the inverse are to be interpreted in the distributional
sense (see Section III-A). This suggests that sα satisfies the
“innovation” model (cf. [1], [16])

(D − αId)sα(t) = w(t), (2)

or, equivalently, the stochastic differential equation (cf. [22])

dsα(t)− αsα(t)dt = dW (t),

where W (t) = ∫ t
0 w(τ)dτ is a standard Brownian motion

(or Wiener process) excitation. In the statistical literature,
the solution of the above first-order SDE is often called the
Ornstein-Uhlenbeck process.

Let (sα[k] = sα(t)|k=t )k∈Z denote the sampled version of
the continuous-time process. Then, one can show that sα[·] is
a discrete AR(1) autoregressive process that can be whitened
by applying the first-order linear predictor:

sα[k] − eαsα[k − 1] = u[k] (3)

where u[·] (prediction error) is an i.i.d. Gaussian sequence.
Alternatively, one can decorrelate the signal by computing its
discrete cosine transform (DCT), which is known to be asymp-
totically equivalent to the Karhunen-Loève transform (KLT) of
the process [33], [34]. Eq. (3) provides the basis for classical
linear predictive coding (LPC), while the decorrelation prop-
erty of the DCT is often invoked to justify the popular JPEG
transform-domain coding scheme [35].

In this paper, we are concerned with the non-Gaussian
counterpart of this story, which, as we shall see, will result
in the identification of sparse processes. The idea is to retain
the simplicity of the classical innovation model, while substi-
tuting the continuous-time Gaussian noise by some generalized
Lévy innovation (to be properly defined in the sequel). This
translates into Eqs. (1)–(3) remaining valid, except that the
underlying random variates are no longer Gaussian. The more
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Fig. 1. Wavelets vs. KLT (or DCT) for the M-term approximation of
Gaussian vs. sparse AR(1) processes with α = −0.1: (a) classical Gaussian
scenario, (b) sparse scenario with symmetric Cauchy innovations. The E-spline
wavelets are matched to the innovation model. The displayed results (relative
quadratic error as a function of M/N ) are averages over 1000 realizations
for AR(1) signals of length N = 1024; the performance of DCT and KLT is
undistinguishable.

significant finding is that the KLT (or its discrete approxi-
mation by the DCT) is no longer optimal for producing the
best M-term approximation of the signal. This is illustrated in
Fig. 1, which compares the performance of various transforms
for the compression of two kinds of AR(1) processes with
correlation e−0.1 ≈ 0.90: Gaussian vs. sparse where the latter
innovation follows a Cauchy distribution. The key observation
is that the E-spline wavelet transform, which is matched to the
operator L = D − αId, provides the best results in the non-
Gaussian scenario over the whole range of experimentation
[cf. Fig. 1(b)], while the outcome in the Gaussian case is as
predicted by the classical theory with the KLT being superior.
Examples of orthogonal E-spline wavelets at two successive
scales are shown in Fig. 2 next to their Haar counterparts.
We selected the E-spline wavelets because of their ability
to decouple the process which follows from their operator-
like behavior: ψi = L∗φi where i is the scale index and φi

a suitable smoothing kernel [36, Theorem 2]. Unlike their
conventional cousins, they are not dilated versions of each
other, but rather extrapolations in the sense that the slope
of the exponential segments remains the same at all scales.
They can, however, be computed efficiently using a perfect
reconstruction filterbank with scale-dependent filters [36].

The equivalence with traditional wavelet analysis (Haar)
and finite-differencing (as used in the computation of total
variation) for signal “sparsification” is achieved by letting
α → 0. The catch, however, is that the underlying system
becomes unstable! Fortunately, the problem can be fixed,
but it calls for an advanced mathematical treatment that is
beyond the traditional formulation of stationary processes. The
reminder of the paper is devoted to giving a proper sense to
what has just been described informally, and to extending the
approach to the whole class of ordinary differential operators,

Fig. 2. Comparison of operator-like and conventional wavelet basis functions
at two successive scales: (a) first-order E-spline wavelets with α = −0.5.
(b) Haar wavelets. The vertical axis is rescaled for full range display.

including the non-stable scenarios. The non-trivial outcome,
as we shall see, is that many non-stable systems are linked
with non-stationary stochastic processes. These, in turn, can be
stationarized and “sparsified” by application of a suitable
wavelet transformation. The companion paper [32] is focused
on the discrete aspects of the theory, including the generaliza-
tion of (3) for decoupling purposes and the full characteriza-
tion of the underlying processes.

III. MATHEMATICAL BACKGROUND

The purpose of this section is to introduce the distribu-
tional formalism that is required for the proper definition of
continuous-time white noise that is the driving term of (1)
and its generalization. We start with a brief summary of some
required notions in functional analysis, which also serves us to
set the notation. We then introduce the fundamental concept
of characteristic functional which constitutes the foundation
of Gelfand’s theory of generalized stochastic processes. We
proceed by giving the complete characterization of the possible
types of continuous-domain white noises—not necessarily
Gaussian—which will be used as universal input for our inno-
vation models. We conclude the section by showing that the
non-Gaussian brands of noises that are allowed by Gelfand’s
formulation are intrinsically sparse, a property that has not
been emphasized before (to the best of our knowledge).

A. Functional and Distributional Context

The L p-norm of a function f = f (t) is ‖ f ‖p =
(∫

R
| f (t)|pdt

) 1
p for 1 ≤ p < ∞ and ‖ f ‖∞ =

ess supt∈R | f (t)| for p = +∞ with the corresponding
Lebesgue space being denoted by L p = L p(R). The concept is
extendable for characterizing the rate of decay of functions. To
that end, we introduce the weighted L p,α spaces with α ∈ R

+

L p,α = {
f ∈ L p : ‖ f ‖p,α < +∞}

where the α-weighted L p-norm of f is defined as

‖ f ‖p,α = ‖(1 + | · |α) f (·)‖p .

Hence, the statement f ∈ L∞,α implies that f (t) decays
at least as fast as 1/|t|α as t tends to ±∞; more precisely,
that | f (t)| ≤ ‖ f ‖∞,α

1+|t |α almost everywhere. In particular, this
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allows us to infer that L∞, 1
p +ε ⊂ L p for any ε > 0 and

p ≥ 1. Another obvious inclusion is L p,α ⊆ L p,α0 for any
α ≥ α0. In the limit, we end up with the space of rapidly-
decreasing functions R = {

f : ‖ f ‖∞,m < +∞, ∀m ∈ Z
+}

,
which is included in all the others.1

We use ϕ = ϕ(t) to denote a generic function in Schwartz’s
class S of rapidly-decaying and infinitely-differentiable test
functions. Specifically, Schwartz’s space is defined as:

S = {
ϕ ∈ C∞ : ‖Dnϕ‖∞,m < +∞, ∀m, n ∈ Z

+}
,

with the operator notation Dn = dn

dt n and the convention that
D0 = Id (identity). S is a complete topological vector space
with respect to the topology induced by the series of semi-
norm ‖Dn · ‖∞,m with m, n ∈ Z

+. Its topological dual is
the space of tempered distributions S ′; a distribution φ ∈ S ′
is a continuous linear functional on S that is characterized
by a duality product rule φ(ϕ) = 〈φ, ϕ〉 = ∫

R
φ(t)ϕ(t)dt

with ϕ ∈ S where the right-hand side expression has a literal
interpretation as an integral only when φ(t) is true function
of t . The prototypical example of a tempered distribution is the
Dirac distribution δ, which is defined as δ(ϕ) = 〈δ, ϕ〉 = ϕ(0).
In the sequel, we will drop the explicit dependence of the
distribution on the generic test function ϕ ∈ S and simply
write φ, φ(·) or even φ(t) (with an abuse of notation) where t
stands as our generic time index. For instance, we shall denote
the shifted Dirac impulse2 by δ(· − t0), or δ(t − t0) which is
the conventional notation used by engineers.

Let T be a continuous3 linear operator that maps S into
itself (or eventually some enlarged topological space such
as L p). It is then possible to extend the action of T over
S ′ (or an appropriate subset of it) based on the definition
〈Tφ, ϕ〉 = 〈φ,T∗ϕ〉 for φ ∈ S ′ if T∗, which is the adjoint
of T, maps ϕ to another test function T∗ϕ ∈ S continuously.
An important example is the Fourier transform whose classical
definition is F{ f }(ω) = f̂ (ω) = ∫

R
f (t)e− jωt dt . Since F is

a S-continuous operator, it is extendable to S ′ based on the
adjoint relation 〈Fφ, ϕ〉 = 〈φ,Fϕ〉 for all ϕ ∈ S (generalized
Fourier transform).

A linear, shift-invariant (LSI) operator that is well-defined
over S can always be written as a convolution product:

TLSI{ϕ} = h ∗ ϕ =
∫

R

h(τ )ϕ(· − τ )dτ

where h = TLSI{δ} is the impulse response of the system.
The adjoint operator is the convolution with the time-reversed
version of h:

h∨(t) ≡ h(−t).

The better-known categories of LSI operators are the
BIBO-stable (bounded input, bounded output) filters, and
the ordinary differential operators. While the latter are not
BIBO-stable, they do work well with test functions.

1The topology of R is defined by the family of semi-norms ‖ · ‖∞,m ,
m = 1, 2, 3, . . .

2The precise definition is 〈δ(· − t0), ϕ〉 = ϕ(t0) for all ϕ ∈ S .
3An operator T is continuous from a sequential topological vector space

V into another one iff. ϕk → ϕ in the topology of V implies that Tϕk → Tϕ
in the topology (or norm) of the second space. If the two spaces coincide, we
say that T is V-continuous.

1) L p-Stable LSI Operators: The BIBO-stable filters corre-
spond to the case where h ∈ L1, or, more generally, when h
corresponds to a complex-valued Borel measure of bounded
variation. The latter extension allows for discrete filters of the
form hd = ∑

n∈Z
d[n]δ(·−n) with d[n] ∈ �1. We will refer to

these filters as L p-stable because they specify bounded oper-
ators in all the L p spaces (by Young’s inequality). L p-stable
convolution operators satisfy the properties of commutativity,
associativity, and distributivity with respect to addition.

2) S-Continuous LSI Operators: For an L p-stable filter to
yield a Schwartz function as output, it is necessary that its
impulse response (continuous or discrete) be rapidly-decaying.
In fact, the condition h ∈ R (which is much stronger than inte-
grability) ensures that the filter is S-continuous. The nth-order
derivative Dn and its adjoint Dn∗ = (−1)nDn are in the
same category. The nth-order weak derivative of the tempered
distribution φ is defined as Dnφ(ϕ) = 〈Dnφ, ϕ〉 = 〈φ,Dn∗ϕ〉
for any ϕ ∈ S. The latter operator—or, by extension, any
polynomial of distributional derivatives PN (D) = ∑N

n=1 anDn

with constant coefficients an ∈ C—maps S ′ into itself. The
class of these differential operators enjoys the same properties
as its classical counterpart: shift-invariance, commutativity,
associativity and distributivity.

B. Notion of Generalized Stochastic Process

Classically, a stochastic process is a random function
s(t), t ∈ R whose statistical description is provided by the
probability law of its point values {s(t1), s(t2), . . . , s(tn), . . . }
for any finite sequence of time instants {tn}N

n=1. The implicit
assumption there is that one has a mechanism for probing the
value of the function s at any time t ∈ R, which is only
achievable approximately in the real physical world.

The leading idea in Gelfand and Vilenkin’s theory of
generalized stochastic processes is to replace the point mea-
surements {s(tn)} by a series of scalar products {〈s, ϕn〉} with
suitable “test” functions ϕ1, . . . , ϕN ∈ S [29]. The physical
motivation that these authors give is that Xn = 〈s, ϕn〉 may
represent the reading of a finite-resolution detector whose
output is some “averaged” value

∫
R

s(t)ϕn(t)dt , which is a
more plausible form of probing than ideal sampling. The
additional hypothesis is that the linear measurement X = 〈s, ϕ〉
depends continuously on ϕ and that the quantities Xn = 〈s, ϕn〉
obtained for different test functions {ϕn} are mutually compat-
ible. Mathematically, this translates into defining a generalized
stochastic process as a continuous linear random functional on
some topological vector space such as S.

Let s be such a generalized process. We first observe
that the scalar product X1 = 〈s, ϕ1〉 with a given test
function ϕ1 is a conventional (scalar) random variable that
is characterized by its probability density function (pdf)
pX1(x1); the latter is in one-to-one correspondence (via the
Fourier transform) with the characteristic function p̂X1(ω1) =
E{e jω1 X1} = ∫

R
e jω1x1 pX1(x1)dx1 = E{e j 〈s,ω1ϕ1〉} where E{·}

is the expectation operator. The same applies for the 2nd-order
pdf pX1,X2(x1, x2) associated with a pair of test functions ϕ1
and ϕ2 which is the inverse Fourier transform of the 2-D
characteristic function p̂X1,X2(ω1, ω2) = E{e j 〈s,ω1ϕ1+ω2ϕ2〉},
and so forth if one wants to specify higher-order dependencies.
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The foundation for the theory of generalized stochastic
processes is that one can deduce the complete statistical
information about the process from the knowledge of its
characteristic form

P̂s(ϕ) = E{e j 〈s,ϕ〉} (4)

which is a continuous, positive-definite functional over S such
that P̂s(0) = 1. Since the variable ϕ in P̂s(ϕ) is completely
generic, it provides the equivalent of an infinite-dimensional
generalization of the characteristic function. Indeed, any finite
dimensional version can be recovered by direct substitution of
ϕ = ω1ϕ1 +· · ·+ωNϕN in P̂s(ϕ) where the ϕn are fixed and
where ω = (ω1, · · · , ωN ) takes the role of the N-dimensional
Fourier variable.

In fact, Gelfand’s theory rests upon the principle that speci-
fying an admissible functional P̂s(ϕ) is equivalent to defining
the underlying generalized stochastic process (Bochner-Minlos
theorem). To explain this remarkable result, we start by
recalling the fundamental notion of positive-definiteness for
univariate functions [37].

Definition 1: A complex-valued function f of the real
variable ω is said to be positive-definite iff.

N∑

m=1

N∑

n=1

f (ωm − ωn)ξmξ n ≥ 0

for every possible choice of ω1, . . . , ωN ∈ R, ξ1, . . . , ξN ∈ C

and N ∈ Z
+.

This is equivalent to the requirement that the N × N matrix
F whose elements are given by [F]mn = f (ωm − ωn) is
positive semi-definite (that is, non-negative definite) for all
N , no matter how the ωn’s are chosen.

Bochner’s theorem states that a bounded, continuous func-
tion p̂ is positive-definite if and only if it is the Fourier
transform of a positive and finite Borel measure P:

p̂(ω) =
∫

R

e jωx P(dx).

In particular, Bochner’s theorem implies that a function p̂X (ω)
is a valid characteristic function—that is, p̂X (ω) = E{e jωX } =∫
R

e jωx PX (dx) = ∫
R

e jωx pX (x)dx where X is a random
variable with probability measure PX (or pdf pX )—iff. p̂X is
continuous, positive-definite and such that p̂X (0) = 1.

The power of functional analysis is that these concepts
carry over to functionals on some abstract nuclear space X ,
the prime example being Schwartz’s class S of smooth and
rapidly-decreasing test functions [29].

Definition 2: A complex-valued functional F(ϕ) defined
over the function space X is said to be positive-definite iff.

N∑

m=1

N∑

n=1

F(ϕm − ϕn)ξmξ n ≥ 0

for every possible choice of ϕ1, . . . , ϕN ∈ X , ξ1, . . . , ξN ∈ C

and N ∈ Z
+.

Definition 3: A functional F : X → R (or C) is said to
be continuous (with respect to the topology of the function

space X ) if, for any convergent sequence (ϕi ) in X with limit
ϕ ∈ X , the sequence F(ϕi ) converges to F(ϕ); that is,

lim
i

F(ϕi ) = F(lim
i
ϕi ).

Theorem 1 (Minlos-Bochner): Given a functional P̂s(ϕ)
on a nuclear space X that is continuous, positive-definite and
such that P̂s(0) = 1, there exists a unique probability measure
Ps on the dual space X ′ such that

P̂s(ϕ) = E{e j 〈s,ϕ〉} =
∫

X ′
e j 〈s,ϕ〉P(ds),

where 〈s, ϕ〉 is the dual pairing map. One further has the
guarantee that all finite dimensional probabilities measures
derived from P̂s(ϕ) by setting ϕ = ω1ϕ1 + · · · + ωNϕN are
mutually compatible.

The characteristic form therefore uniquely specifies the
generalized stochastic process s = s(ϕ) (via the infinite-
dimensional probability measure Ps) in essentially the
same way as the characteristic function fully determines
the probability measure of a scalar or multivariate random
variable.

C. White Noise Processes (Innovations)

We define a white noise w as a generalized random process
that is stationary and whose measurements for non-overlapping
test functions are independent. A remarkable aspect of the
theory of generalized stochastic processes is that it is
possible to deduce the complete class of such noises based
on functional considerations only [29]. To that end, Gelfand
and Vilenkin consider the generic class of functionals of the
form

P̂w(ϕ) = exp

(∫

R

f
(
ϕ(t)

)
dt

)

(5)

where f is a continuous function on the real line and ϕ
is a test function from some suitable space. This functional
specifies an independent noise process if P̂w is continuous
and positive-definite and P̂w(ϕ1 + ϕ2) = P̂w(ϕ1)P̂w(ϕ2)
whenever ϕ1 and ϕ2 have non-overlapping support. The latter
property is equivalent to having f (0) = 0 in (5). Gelfand
and Vilenkin then go on to prove that the complete class of
functionals of the form (5) with the required mathematical
properties (continuity, positive-definiteness and factorizability)
is obtained by choosing f to be a Lévy exponent, as defined
below.

Definition 4: A complex-valued continuous function f (ω)
is a valid Lévy exponent if and only if f (0) = 0 and gτ (ω) =
eτ f (ω) is a positive-definite function of ω for all τ ∈ R

+.
In doing so, they actually establish a one-to-one corre-

spondence between the characteristic form of an indepen-
dent noise processes (5) and the family of infinite-divisible
laws whose characteristic function takes the form p̂X (ω) =
e f (ω) = E{e jωX } [38], [39]. While Definition 4 is hard to
exploit directly, the good news is that there exists a complete
constructive, characterization of Lévy exponents, which is a
classical result in probability theory:
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Theorem 2 (Lévy-Khintchine Formula): f (ω) is a valid
Lévy exponent if and only if it can be written as

f (ω) = jb′
1ω − b2ω

2

2

+
∫

R\{0}
[e jaω − 1 − jaω�{|a|<1}(a)] V (da)

(6)

where b′
1 ∈ R and b2 ∈ R

+ are some constants and V is a
Lévy measure, that is, a (positive) Borel measure on R\{0}
such that ∫

R\{0}
min(1, a2) V (da) < ∞. (7)

The notation �(a) refers to the indicator function that takes
the value 1 if a ∈  and zero otherwise. Theorem 2 is funda-
mental to the classical theories of infinite-divisible laws and
Lévy processes [28], [31], [39]. To further our mathematical
understanding of the Lévy-Khintchine formula (6), we note
that e jaω − 1 − jaω�{|a|<1}(a) ∼ − 1

2 a2ω2 as a → 0. This
ensures that the integral is convergent even when the Lévy
measure V is singular at the origin to the extent allowed by
the admissibility condition (7). If the Lévy measure is finite or
symmetrical (i.e., V (E) = V (−E) for any E ⊂ R), it is then
also possible to use the equivalent, simplified form of Lévy
exponent

f (ω) = jb1ω − b2ω
2

2
+

∫

R\{0}
(
e jaω − 1

)
V (da) (8)

with b1 = b′
1 − ∫

0<|a|<1 aV (da). The bottomline is that
a particular brand of independent noise process is thereby
completely characterized by its Lévy exponent or, equivalently,
its Lévy triplet (b1, b2, v) where v is the so-called Lévy density
associated with V such that

V (E) =
∫

E
v(a)da

for any Borel set E ⊆ R. With this latter convention, the
three primary types of innovations encountered in the signal
processing and statistics literature are specified as follows:

1) Gaussian: b1 = 0, b2 = 1, v = 0

fGauss(ω) = −|ω|2
2
,

P̂w(ϕ) = e
− 1

2 ‖ϕ‖2
L2 . (9)

2) Compound Poisson [18]: b1 = 0, b2 = 0, v(a) =
λ pA(a) with

∫
R

pA(a)da = p̂A(0) = 1,

fPoisson(ω; λ, pA) = λ

∫

R

(
e jaω − 1

)
pA(a)da,

P̂w(ϕ) = exp

(

λ

∫

R

∫

R

(e jaϕ(t) − 1) pA(a)dadt

)

.

(10)

3) Symmetric alpha-stable (SαS) [40]: b1 = 0, b2 =
0, v(a) = Cα

|a|α+1 with 0 < α < 2 and Cα = sin( πα2 )
π a

suitable normalization constant,

fα(ω) = −|ω|α
α! ,

P̂w(ϕ) = e− 1
α! ‖ϕ‖αLα . (11)

The latter follows from the fact that −|ω|α
α! is the generalized

Fourier transform of Cα
|t |α+1 with the convention that α! =

�(α + 1) where � is Euler’s Gamma function [41].
While none of these innovations has a classical interpre-

tation as a random function of t , we can at least provide an
explicit description of the Poisson noise as an infinite random
sequence of Dirac impulses (cf. [18, Theorem 1])

wλ(t) =
∑

k

Akδ(t − tk)

where the tk are random locations that are uniformly distrib-
uted over R with density λ, and where the weights Ak are
i.i.d. random variables with pdf pA(a). Remarkably, this is
the only innovation process in the family that has a finite rate
of innovation [17]; however, it is, by far, not the only one that
is sparse as explained next.

D. Gaussian Versus Sparse Categorization

To get a better understanding of the underlying class of
white noises w, we propose to probe them through some
localized analysis window ϕ, which will yield a conventional
i.i.d. random variable X = 〈w,ϕ〉 with some pdf pϕ(x). The
most convenient choice is to pick the rectangular analysis
window ϕ(t) = rect(t) = �[− 1

2 ,
1
2 ](t) when 〈w, rect〉 is

well-defined. By using the fact that e jaωrect(t)−1 = e jaω−1 for
t ∈ [− 1

2 ,
1
2 ], and zero otherwise, we find that the characteristic

function of X is simply given by

p̂rect(ω) = P̂w (ω · rect(t)) = exp ( f (ω)) ,

which corresponds to the generic (Lévy-Khinchine) form asso-
ciated with an infinitely-divisible distribution [31], [39], [42].
The above result makes the mapping between generalized
white noise processes and classical infinite-divisible (id) laws4

explicit: The “canonical” id pdf of w, pid(x) = prect(x), is
obtained by observing the noise through a rectangular window.
Conversely, given the Lévy exponent of an id distribution,
f (ω) = log (F{pid}(ω)), we can specify a corresponding
innovation process w via the characteristic form P̂w(ϕ) by
merely substituting the frequency variable ω by the generic
test function ϕ(t), adding an integration over R and taking
the exponential as in (5).

We note, in passing, that sparsity in signal processing may
refer to two distinct notions. The first is that of a finite rate
of innovation; i.e., a finite (but perhaps random) number of
innovations per unit of time and/or space, which results in a
mass at zero in the histogram of observations. The second
possibility is to have a large, even infinite, number of
innovations, but with the property that a few large innovations
dominate the overall behavior. In this case the histogram of
observations is distinguished by its ‘heavy tails’. (A combina-
tion of the two is also possible, for instance in a compound
Poisson process with a heavy-tailed amplitude distribution.
For such a process one may observe a change of behavior
in passing from one dominant type of sparsity to the other).

4A random variable X with pdf pX (x) is said to be infinitely divisible (id)
if for any n ∈ Z

+ there exist i.i.d. random variables X1, . . . , Xn with pdf say
pn(x) such that X = X1 + · · · + Xn in law.
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Our framework permits us to consider both types of sparsity,
in the former case with compound Poisson models and in the
latter with heavy-tailed infinitely-divisible innovations.

To make our point, we consider two distinct scenarios.
1) Finite Variance Case: We first assume that the second

moment m2 = ∫
R\{0} a2 V (da) of the Lévy measure V in (6)

is finite. This allows us to rewrite the classical Lévy-Khinchine
representation as

f (ω) = jc1ω − b2ω
2

2
+

∫

R\{0}
[e jaω − 1 − jaω] V (da)

with c1 = b′′
1 + ∫

|a|>1 aV (da) and where the Poisson part
of the functional is now fully compensated. Indeed, we are
guaranteed that the above integral is convergent because
|e jaω − 1 − jωa| � |aω|2 as a → 0 and |e jaω − 1 − jωa| ∼
|aω| as a → ±∞. An interesting non-Poisson example of
infinitely-divisible probability laws that falls into this category
(with non-finite V ) is the Laplace distribution with Lévy triplet
(0, 0, v(a) = e−|a|

|a| ) and pid(x) = 1
2 e−|x |. This model is

particularly relevant for sparse signal processing because it
provides a tight connection between Lévy processes and total
variation regularization [18, Section VI].

Now, if the Lévy measure is finite
∫
R

V (da) = λ < ∞,
the admissibility condition yields

∫
R\{0} a V (da) < ∞, which

allows us to pull the bias correction out of the integral. The
representation then simplifies to (8). This implies that we
can decompose X into the sum of two independent Gaussian
and compound Poisson random variables. The variances of
the Gaussian and Poisson components are σ 2 = b2 and∫
R

a2V (da), respectively. The Poisson component is sparse
because its pdf exhibits a mass distribution e−λδ(x) at the
origin, meaning that the chances for a continuous amplitude
distribution of getting zero are overwhelmingly higher than
any other value, especially for smaller values of λ > 0. It is
therefore justifiable to use 0 ≤ e−λ < 1 as our Poisson sparsity
index.

2) Infinite Variance Case: We now turn our attention to
the case where the second moment of the Lévy measure
is unbounded, which we like to label as the “super-sparse”
one. To substantiate this claim, we invoke the Ramachandran-
Wolfe theorem which states that the pth moment E{|X |p}
with p ∈ R

+ of an infinitely divisible distribution is finite
iff.

∫
|a|>1 |a|p V (da) < ∞ [43], [44]. For p ≥ 2, the

latter is equivalent to
∫
R\{0} |a|p V (da) < ∞ because of the

admissibility condition (7). It follows that the cases that are
not covered by the previous scenario (including the Gaussian
+ Poisson model) necessarily give rise to distributions whose
moments of order p are unbounded for p ≥ 2. The proto-
typical representatives of such heavy tail distributions are the
alpha-stable ones or, by extension, the broad family of infinite
divisible probability laws that are in their domain of attraction.
Note that these distributions all fulfill the stringent conditions
for �p compressibility [45], [46].

IV. INNOVATION APPROACH TO CONTINUOUS-TIME

STOCHASTIC PROCESSES

Specifying a stochastic process through an innovation model
(or an equivalent stochastic differential equation) is attractive

conceptually, but it presupposes that we can provide an inverse
operator (in the form of an integral transform) that transforms
the innovation back into the initial stochastic process. This is
the reason why, after laying out general conditions for exis-
tence, we shall spend the greater part of our effort investigating
suitable inverse operators.

A. Stochastic Differential Equations

Our aim is to define the generalized process with whitening
operator L : S ′ → S ′ and Lévy exponent f as the solution of
the stochastic linear differential equation

Ls = w, (12)

where w is an innovation process, as described in
Section III-C. This definition is obviously only usable if we
can construct an inverse operator T = L−1 that solves this
equation. For the cases where the inverse is not unique, we will
need to select one preferential operator, which is equivalent
to imposing specific boundary conditions. We are then able
to formally express the stochastic process as a transformed
version of a white noise

s = L−1w. (13)

The requirement for such a solution to be consistent with (12)
is that the operator satisfies the right-inverse property LL−1 =
Id over the underlying class of tempered distributions. By
using the adjoint relation 〈s, ϕ〉 = 〈L−1w,ϕ〉 = 〈w,L−1∗ϕ〉,
we can then transfer the action of the operator onto the test
function inside the characteristic form and obtain a com-
plete statistical characterization of the so-defined generalized
stochastic process

P̂s(ϕ) = P̂L−1w(ϕ) = P̂w(L−1∗ϕ), (14)

where P̂w is given by (5) (or one of the specific forms in the
list at the end of Section III-C) and where we are implicitly
requiring that the adjoint L−1∗ is mathematically well-defined
(continuous) over S, and that its composition with P̂w is
well-defined for all ϕ ∈ S.

In order to realize the above idea mathematically, it is
usually easier to proceed backwards: one specifies an operator
T that satisfies the left-inverse property: ∀ϕ ∈ S, TL∗ϕ = ϕ,
and that is continuous (i.e., bounded in the proper norm(s))
over the chosen class of test functions. One then characterizes
the adjoint of T, which is the operator T∗ : S ′ → S ′ (or an
appropriate subset thereof) such that, for a given φ ∈ S ′,

∀ϕ ∈ S, 〈φ, ϕ〉 = 〈LT∗φ, ϕ〉 = 〈φ, TL∗
︸︷︷︸

Id

ϕ〉.

Finally, we set L−1 = T∗, which yields the proper distribu-
tional definition of the right inverse of L in (13).

B. General Conditions for Existence

To validate the proposed innovation model, we need to
ensure that the solution s = L−1w is a bona fide generalized
stochastic process.

In order to simplify the analysis, we shall restrict our
attention to an appropriate subclass of Lévy exponents.
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Definition 5: A Lévy exponent f with derivative f ′ is
p-admissible with 1 ≤ p ≤ 2 if there exists a positive constant
C such that | f (ω)| + |ω| · | f ′(ω)| ≤ C|ω|p for all ω ∈ R.

Note that this p-admissibility condition is not very con-
straining and that it is satisfied by the great majority of
members of the Lévy-Kintchine family (see Section III-C).
For instance in the compound Poisson case, we can show that
|ω| · | f ′(ω)| ≤ λ|ω| E{|A|} and f (ω) ≤ λ|ω| E{|A|} by
using the fact |e j x − 1| ≤ |x |; this implies that the bound
in Definition 5 with p = 1 is always satisfied provided
that the first (absolute) moment of the amplitude pdf pA(a)
in (10) is finite. Similarly, all symmetric Lévy exponents with
− f ′′(0) < ∞ (finite variance case) are p-admissible with
p = 2, the prototypical example being the Gaussian. The only
cases we are aware of that do not fulfill the condition are the
alpha-stable noises with 0 < α < 1, which are notorious for
their exotic behavior.

The first advantage of imposing p-admissibility is that it
allows us to extend the set of acceptable analysis functions
from S to L p which is crucial if we intend to do conventional
signal processing.

Theorem 3: If the Lévy exponent f is p-admissible, then
the characteristic form P̂w(ϕ) = exp

(∫
R

f
(
ϕ(t)

)
dt

)
is a

continuous, positive-definite functional over L p .
Proof: Since the exponential function is continuous, it is

sufficient to consider the functional

F(ϕ) = log P̂w(ϕ) =
∫

R

f (ϕ(t))dt,

which is such that F(0) = 0. To show that F(ϕ)
(
and hence

P̂w(ϕ)
)

is well-defined over L p , we note that

|F(ϕ)| ≤
∫

R

| f (ϕ(t))| dt ≤ C‖ϕ‖p
p,

which follows from the p-admissibility condition. The positive
definiteness of P̂w(ϕ) over S is a direct consequence of f
being a Lévy exponent and is therefore also transferable to
L p . For the interested reader, this can be shown quite easily
by proving that F(ϕ) is conditionally positive-definite of order
one (see [20]).

The only remaining work is to establish the L p-continuity
of F(ϕ). To that end, we observe that

| f (u)− f (v)| =
∣
∣
∣

∫ u

v
f ′(t)dt

∣
∣
∣

≤ C
∣
∣
∣

∫ u

v
t p−1dt

∣
∣
∣

(by the assumption on f )

≤ C max(|u|p−1, |v|p−1)|u − v|
≤ C(|v|p−1 + |u − v|p−1)|u − v|.

(by the triangle inequality)

Next, we pick a convergent sequence in L p , {ϕn}∞n=1, whose
limit is denoted by ϕ. The convergence in L p is expressed as

lim
n→∞ ‖ϕn − ϕ‖p = 0. (15)

We then have
∣
∣
∣

∫

R

f (ϕn(t))dt −
∫

R

f (ϕ(t))dt
∣
∣
∣

≤C
∫

R

|ϕ(t)|p−1|ϕn(t)− ϕ(t)| + |ϕn(t)− ϕ(t)|pdt

≤C
(
‖ϕ‖p−1

p ‖ϕn − ϕ‖p + ‖ϕn − ϕ‖p
p

)

(by Hölder’s inequality)

→0 as n → ∞, (by (15))

which proves the continuity of the functional P̂w on L p .
Thanks to this result, we can then rely on the Minlos-

Bochner theorem (Theorem 1) to state basic conditions on
T = L−1∗ that ensure that s = T∗w is a well-defined
generalized process over S ′.

Theorem 4 (Existence of Generalized Process): Let f be a
valid Lévy exponent and T be an operator acting on ϕ ∈ S
such that any one of the conditions below is met:

1) T is a continuous linear map from S into itself,
2) T is a continuous linear map from S into L p and the

Lévy exponent f is p-admissible.

Then, P̂s(ϕ) = exp
(∫

R
f
(
Tϕ(t)

)
dt

)
is a continuous, positive-

definite functional on S such that P̂s(0) = 1.
Proof: We already know that P̂w is a continuous

functional on S (resp., on L p when f is p-admissible) by
construction. This, together with the assumption that T is a
continuous operator on S (resp., from S to L p), implies that
the composed functional P̂s(ϕ) = P̂w(Tϕ) is continuous
on S.

Given the functions ϕ1, . . . , ϕN in S and some complex
coefficients ξ1, . . . , ξN ,

∑

1≤m,n≤N

P̂s(ϕm − ϕn)ξmξn

=
∑

1≤m,n≤N

P̂w

(
T(ϕm − ϕn)

)
ξmξn

=
∑

1≤m,n≤N

P̂w(Tϕm − Tϕn)ξmξn

(by the linearity of the operator T)

≥ 0. (by the positivity of P̂w over S or L p)

This proves the positive definiteness of the functional P̂s

on S.
Lastly, P̂s(0) = P̂w(T0) = P̂w(0) = 1.
The final fundamental issue relates to the interpretation

of s = L−1w as an ordinary stochastic process; that is, a
random function s(t) of the time variable t . This presupposes
that the shaping operator L−1 performs a minimal amount of
smoothing since the driving term of the model, w, is too rough
to admit a pointwise representation.

Theorem 5 (Interpretation as Ordinary Stochastic Process):
Let s be the generalized stochastic process whose
characteristic function is given by (14) where f is a
p-admissible Lévy exponent and L−1∗ is a continuous
operator from S to L p (or a subset thereof). We also define
the (generalized) impulse response

h(t, τ ) = L−1{δ(· − τ )}(t), (16)
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with a slight abuse of notation since h is not necessarily
an ordinary function. Then, s = L−1w admits the pointwise
representation for t ∈ R

s(t) = 〈w, h(t, ·)〉 (17)

provided that h(t, ·) ∈ L p (with t fixed).
The form of h(t, τ ) in (16) is the “time-domain” transcrip-

tion of Schwartz’s kernel theorem which gives the integral
representation of a linear operator in terms of a (generalized)
kernel h ∈ S ′ × S ′ (the infinite-dimensional generalization of
a matrix multiplication). The more standard definition used
in the theory of generalized functions is 〈h(·, ·), ϕ1 ⊗ ϕ2〉 =
〈L−1∗{ϕ1}, ϕ2〉, where ϕ1 ⊗ ϕ2(t, τ ) = ϕ1(t)ϕ2(τ ) for all
ϕ1, ϕ2 ∈ S.

Proof: The existence of the generalized stochastic process
s = L−1w is ensured by Theorem 4. We then consider the
observation of the innovation X0 = 〈w,ϕ0〉 where ϕ0 =
h(t0, ·) with ϕ0 ∈ L p . Since P̂w admits a continuous exten-
sion over L p (by Theorem 3), we can specify the characteristic
function of X0 as

p̂X0(ω) = E{e jωX0} = P̂w(ωϕ0)

with ϕ0 fixed. Thanks to the functional properties of P̂w,
p̂X0(ω) is a continuous, positive-definite function of ω such
that p̂X0(0) = 1 so that we can invoke Bochner’s theorem
to establish that X0 is a well-defined conventional random
variable with pdf pX0 (the inverse Fourier transform of p̂X0 ).

C. Inverse Operators

Before presenting our general method of solution, we need
to identify a suitable set of elementary inverse operators that
satisfy the continuity requirement in Theorem 4.

Our approach relies on the factorization of a differen-
tial operator into simple first-order components of the form
(D−αnId) with αn ∈ C, which can then be treated separately.
Three possible cases need to be considered.

1) Causal-Stable: Re(αn) < 0. This is the classical textbook
hypothesis which leads to a causal-stable convolution system.
It is well known from the theory of distributions and linear
systems (e.g., [47, Section 6.3], [48]) that the causal Green
function of (D−αnId) is the causal exponential function ραn (t)
already encountered in the introductory example in Section II.
Clearly, ραn (t) is absolutely integrable (and rapidly-decaying)
iff. Re(αn) < 0. It follows that (D − αnId)−1 f = ραn ∗ f
with ραn ∈ R ⊂ L1. In particular, this implies that T =
(D − αnId)−1 specifies a continuous LSI operator on S. The
same holds for T∗ = (D − αnId)−1∗, which is defined as
T∗ f = ρ∨

αn
∗ f .

2) Anti-Causal Stable: Re(αn) > 0. This case is usu-
ally excluded because the standard Green function ραn (t) =
�+(t)eαn t grows exponentially, meaning that the system does
not have a stable causal solution. Yet, it is possible to consider
an alternative anti-causal Green function ρ′

αn
(t) = −ρ∨−αn

(t) =
ραn (t)− eαnt , which is unique in the sense that it is the only

Green function5 of (D−αnId) that is Lebesgue-integrable and,
by the same token, the proper inverse Fourier transform of

1
jω−αn

for Re(αn) > 0. In this way, we are able to specify
an anti-causal inverse filter (D − αnId)−1 f = ρ′

αn
∗ f with

ρ′
αn

∈ R that is L p-stable and S-continuous. In the sequel,
we will drop the ′ superscript with the convention that ρα(t)
systematically refers to the unique Green function of (D−αId)
that is rapidly-decaying when Re(α) �= 0. For now on, we shall
therefore use the definition

ρα(t) =
{
�+(t)eαt if Re(α) ≤ 0
−�+(−t)eαt otherwise.

(18)

which also covers the next scenario.
3) Marginally Stable: Re(αn) = 0 or, equivalently, αn =

jω0 with ω0 ∈ R. This third case, which is incompatible
with the conventional formulation of stationary processes, is
most interesting theoretically because it opens the door to
important extensions such as Lévy processes, as we shall see in
Section V. Here, we will show that marginally-stable systems
can be handled within our generalized framework as well,
thanks to the introduction of appropriate inverse operators.

The first natural candidate for (D − jω0Id)−1 is the inverse
filter whose frequency response is

ρ̂ jω0(ω) = 1

j (ω − ω0)
+ πδ(ω − ω0).

It is a convolution operator whose time-domain definition is

Iω0ϕ(t) = (ρ jω0 ∗ ϕ)(t)
= e jω0t

∫ t

−∞
e− jω0τ ϕ(τ )dτ. (19)

Its impulse response ρ jω0(t) is causal and compatible with
Definition (18), but not (rapidly) decaying. The adjoint of Iω0

is given by

I∗ω0
ϕ(t) = (ρ∨

jω0
∗ ϕ)(t)

= e− jω0t
∫ +∞

t
e jω0τ ϕ(τ )dτ. (20)

While Iω0ϕ(t) and I∗ω0
ϕ(t) are both well-defined when ϕ ∈ L1,

the problem is that these inverse filters are not BIBO stable
since their impulse responses, ρ jω0(t) and ρ∨

jω0
(t), are not

in L1. In particular, one can easily see that Iω0ϕ (resp., I∗ω0
ϕ)

with ϕ ∈ S is generally not in L p with 1 ≤ p < +∞,
unless ϕ̂(ω0) = 0 (resp., ϕ̂(−ω0) = 0). The conclusion is
that I∗ω0

fails to be a bounded operator over the class of test
functions S.

This leads us to introduce some “corrected” version of the
adjoint inverse operator I∗ω0

,

I∗ω0,t0ϕ(t) = I∗ω0

{
ϕ − ϕ̂(−ω0)e

− jω0t0δ(· − t0)
}
(t)

= I∗ω0
ϕ(t)− ϕ̂(−ω0)e

− jω0t0ρ∨
jω0
(t − t0), (21)

where t0 ∈ R is a fixed location parameter and where
ϕ̂(−ω0) = ∫

R
e jω0tϕ(t)dt is the complex sinusoidal moment

5: ρ is a Green functions of (D −αn Id) iff. (D −αn Id)ρ = δ; the complete
set of solutions is given ρ(t) = ραn (t)+Ceαn t which is the sum of the causal
Green function ραn (t) plus an arbitrary exponential component that is in the
null space of the operator.
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associated with the frequency ω0. The idea is to correct for
the lack of decay of I∗ω0

ϕ(t) as t → −∞ by subtracting
a properly weighted version of the impulse response of the
operator. An equivalent Fourier-based formulation is provided
by the formula at the bottom of Table I; the main difference
with the corresponding expression for Iω0ϕ is the presence of a
regularization term in the numerator that prevents the integrant
from diverging at ω = ω0. The next step is to identify the
adjoint of I∗ω0,t0 , which is achieved via the following inner-
product manipulation

〈ϕ, I∗ω0,t0φ〉 = 〈ϕ, I∗ω0
φ〉 − φ̂(−ω0)e

− jω0t0〈ϕ, ρ∨
jω0
(· − t0)〉

= 〈Iω0ϕ, φ〉 − 〈e jω0·, φ〉 e− jω0t0 Iω0ϕ(t0)

(using(19))

= 〈Iω0ϕ, φ〉 − 〈e jω0(·−t0)Iω0ϕ(t0), φ〉.
Since the above is equal to 〈Iω0,t0ϕ, φ〉 by definition, we obtain
that

Iω0,t0ϕ(t) = Iω0ϕ(t)− e jω0(t−t0) Iω0ϕ(t0). (22)

Interestingly, this operator imposes the boundary condition
Iω0,t0ϕ(t0) = 0 via the subtraction of a sinusoidal component
that is in the null space of the operator (D − jω0Id), which
gives a direct interpretation of the location parameter t0.
Observe that expressions (21) and (22) define linear operators,
albeit not shift-invariant ones, in contrast with the classical
inverse operators Iω0 and I∗ω0

.
For analysis purposes, it is convenient to relate the proposed

inverse operators to the anti-derivatives corresponding to the
case ω0 = 0. To that end, we introduce the modulation
operator

Mω0ϕ(t) = e jω0tϕ(t)

which is a unitary map on L2 with the property that
M−1
ω0

= M−ω0 .
Proposition 1: The inverse operators defined by (19), (20),

(22), and (21) satisfy the modulation relations

Iω0ϕ(t) = Mω0 I0 M−1
ω0
ϕ(t),

I∗ω0
ϕ(t) = M−1

ω0
I∗0 Mω0ϕ(t),

Iω0,t0ϕ(t) = Mω0 I0,t0 M−1
ω0
ϕ(t),

I∗ω0,t0ϕ(t) = M−1
ω0

I∗0,t0 Mω0ϕ(t).

Proof: These follow from the modulation property of
the Fourier transform (i.e, F{Mω0ϕ}(ω) = F{ϕ}(ω − ω0))
and the observations that Iω0δ(t) = ρ jω0(t) = Mω0ρ0(t) and
I∗ω0
δ(t) = ρ∨

jω0
(t) = M−ω0ρ

∨
0 (t) with ρ0(t) = �+(t) (the unit

step function).
The important functional property of I∗ω0,t0 is that it essentially
preserves decay and integrability, while Iω0,t0 fully retains sig-
nal differentiability. Unfortunately, it is not possible to have the
two simultaneously unless Iω0ϕ(t0) and ϕ̂(−ω0) are both zero.

Proposition 2: If f ∈ L∞,α with α > 1, then there exists
a constant Ct0 such that

|I∗ω0,t0 f (t)| ≤ Ct0
‖ f ‖∞,α

1 + |t|α−1 ,

which implies that I∗ω0,t0 f ∈ L∞,α−1.

Proof: Since modulation does not affect the decay properties
of a function, we can invoke Proposition 1 and concentrate on
the investigation of the anti-derivative operator I∗0,t0 . Without
loss of generality, we can also pick t0 = 0 and transfer the
bound to any other finite value of t0 by adjusting the value of
the constant Ct0 . Specifically, for t < 0, we write this inverse
operator as

I∗0,0 f (t) = I∗0 f (t)− f̂ (0)

=
∫ +∞

t
f (τ )dτ −

∫ ∞

−∞
f (τ )dτ

= −
∫ t

−∞
f (τ )dτ.

This implies that

|I∗0,0 f (t)| =
∣
∣
∣
∣

∫ t

−∞
f (τ )dτ

∣
∣
∣
∣ ≤ ‖ f ‖∞,α

∫ t

−∞
1

1 + |τ |α dτ

≤
(

2α

α − 1

) ‖ f ‖∞,α

1 + |t|α−1

for all t < 0. For t > 0, I∗0,0 f (t) = ∫ ∞
t f (τ )dτ so that the

above upper bounds remain valid.
The interpretation of the above result is that the inverse

operator I∗ω0,t0 reduces inverse polynomial decay by one order.
Proposition 2 actually implies that the operator will preserve
the rapid decay of the Schwartz functions which are included
in L∞,α for any α ∈ R

+. It also guarantees that I∗ω0,t0ϕ belongs
to L p for any Schwartz function ϕ. However, I∗ω0,t0 will spoil
the global smoothness properties of ϕ because it introduces a
discontinuity at t0, unless ϕ̂(−ω0) is zero in which case the
output remains in the Schwartz class. This allows us to state
the following theorem which summarizes the higher-level part
of those results for further reference.

Theorem 6: The operator I∗ω0,t0 defined by (22) is a continu-
ous linear map from R into R (the space of bounded functions
with rapid decay). Its adjoint Iω0,t0 is given by (21) and has the
property that Iω0,t0ϕ(t0) = 0. Together, these operators satisfy
the complementary left- and right-inverse relations

{
I∗ω0,t0(D − jω0Id)∗ϕ = ϕ

(D − jω0Id)Iω0,t0ϕ = ϕ

for all ϕ ∈ S.
Having a tight control on the action of I∗ω0,t0 over S allows

us to extend the right-inverse operator Iω0,t0 to an appropriate
subset of tempered distributions φ ∈ S ′ according to the rule
〈Iω0,t0φ, ϕ〉 = 〈φ, I∗ω0,t0ϕ〉. Our complete set of inverse oper-
ators is summarized in Table I together with their equivalent
Fourier-based definitions which are also interpretable in the
generalized sense of distributions. The first three entries of
the table are standard results from the theory of linear systems
(e.g., [49, Table 4.1]), while the other operators are specific
to this work.

D. Solution of Generic Stochastic Differential Equation

We now have all the elements to solve the generic stochastic
linear differential equation

N∑

n=0

anDns =
M∑

m=0

bmDmw (23)
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TABLE I

FIRST-ORDER DIFFERENTIAL OPERATORS AND THEIR INVERSES

where the an and bm are arbitrary complex coefficients with the
normalization constraint aN = 1. While this reminds us of the
textbook formula of an ordinary N th-order differential system,
the non-standard aspect in (23) is that the driving term is a
innovation process w, which is generally not defined point-
wise, and that we are not imposing any stability constraint.
Eq. (23) thus covers the general case (12) where L is a shift-
invariant operator with the rational transfer function

L̂(ω) = ( jω)N + aN−1( jω)N−1 + · · · + a1( jω)+ a0

bM ( jω)M + · · · + b1( jω)+ b0

= PN ( jω)

QM ( jω)
. (24)

The poles of the system, which are the roots of the charac-
teristic polynomial PN (ζ ) = ζ N + aN−1ζ

n−1 + · · · + a0 with
Laplace variable ζ ∈ C, are denoted by {αn}N

n=1. While we
are not imposing any restriction on their locus in the complex
plane, we are adopting a special ordering where the purely
imaginary roots (if present) are coming last. This allows us to
factorize the numerator of (24) as

PN ( jω) =
N∏

n=1

( jω− αn)

=
(

N−n0∏

n=1

( jω− αn)

) (
n0∏

m=1

( jω− jωm)

)

(25)

with αN−n0+m = jωm , 1 ≤ m ≤ n0, where n0 is the number
of purely-imaginary poles. The operator counterpart of this
last equation is the decomposition

PN (D) = (D − α1Id) · · · (D − αN−n0 Id)
︸ ︷︷ ︸

regular part

◦ (D − jω1Id) · · · (D − jωn0 Id)
︸ ︷︷ ︸

critical part

which involves a cascade of elementary first-order compo-
nents. By applying the proper sequence of right-inverse oper-
ators from Table I, we can then formally solve the system as
in (13). The resulting inverse operator is

L−1 = Iωn0 ,tn0
· · · Iω1,t1

︸ ︷︷ ︸
shift-variant

TLSI (26)

with

TLSI = (D − αN−n0 Id)−1 · · · (D − α1Id)−1 QM (D),

which imposes the n0 boundary conditions
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s(t)|t=tn0
= 0

(D − jωn0 Id)s(t)
∣
∣
t=tn0−1

= 0
...

(D − jω2Id) · · · (D − jωn0 Id)s(t)
∣
∣
t=t1

= 0.

(27)

Implicit in the specification of these boundary conditions is
the property that s and its derivatives up to order n0 −1 admit
a pointwise interpretation in the neighborhood of (t1, . . . , tn0).
This can be shown with the help of Theorem 5. For instance,
if n0 = 1 and ω1 = 0, then s(t) with t fixed is given by (17)
with h(t, ·) = T∗

LSI{�[0,t)} ∈ R ⊂ L p .
The adjoint of the operator specified by (26) is

L−1∗ = T∗
LSI I∗ω1,t1 · · · I∗ωn0 ,tn0︸ ︷︷ ︸

shift-variant

, (28)

and is guaranteed to be a continuous linear mapping from
S into R by Theorem 6, the key point being that each of
the component operators preserves the rapid decay of the test
function to which it is applied. The last step is to substitute
the explicit form (28) of L−1∗ into (14) with a P̂w that is
well-defined on R, which yields the characteristic form of the
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stochastic process s defined by (23) subject to the boundary
conditions (27).

We close this section with a comment about commutativity:
while the order of application of the operators QM (D) and
(D − αnId)−1 in the LSI part of (26) is immaterial (thanks to
the commutativity of convolution), it is not so for the inverse
operators Iωm ,t0 that appear in the “shift-variant” part of the
decomposition. The latter do not commute and their order of
application is tightly linked to the boundary conditions.

V. SPARSE STOCHASTIC PROCESSES

This section is devoted to the characterization and inves-
tigation of the properties of the broad family of stochastic
processes specified by the innovation model (12) where L is
LSI. It covers the non-Gaussian stationary processes (V-A),
which are generated by conventional analog filtering of a
sparse innovation, as well as the whole class of processes
that are solution of the (possibly unstable) differential equa-
tion (23) with a Lévy noise excitation (V-B). The latter
category constitutes the higher-order generalization of the
classical Lévy processes, which are non-stationary. The pro-
posed method is constructive and essentially boils down to
the specification of appropriate families of shaping operators
L−1 and to making sure that the admissibility conditions in
Theorem 4 are met.

A. Non-Gaussian Stationary Processes

The simplest scenario is when L−1 is LSI and can be
decomposed into a cascade of BIBO-stable and ordinary differ-
ential operators. If the BIBO-stable part is rapidly-decreasing,
then L−1 is guaranteed to be S-continuous. In particular, this
covers the case of an N th-order differential system without
any pole on the imaginary axis, as justified by our analysis in
Section IV-D.

Proposition 3 (Generalized StationaryProcesses): Let L−1

(the right-inverse of some operator L) be a S-continuous
convolution operator characterized by its impulse response
ρL = L−1δ. Then, the generalized stochastic processes
that are defined by P̂s(ϕ) = exp

(∫
R

f
(
ρ∨

L ∗ ϕ(t))dt
)

where f (ω) is of the generic form (6) are stationary and
well-defined solutions of the operator equation (12) driven by
some corresponding innovation process w.

Proof: The fact that these generalized processes are
well-defined is a direct consequence of the Minlos-Bochner
Theorem since L−1∗ (the convolution with ρ∨

L ) satisfies the
first admissibility condition in Theorem 4. The stationarity
property is equivalent to P̂s(ϕ) = P̂s(ϕ(· − t0)) for all
t0 ∈ R; it is established by simple change of variable in
the inner integral using the basic shift-invariance property of
convolution; i.e.,

(
ρ∨

L ∗ ϕ(· − t0)
)
(t) = (ρ∨

L ∗ ϕ)(t − t0).
The above characterization is not only remarkably con-

cise, but also quite general. It extends the traditional theory
of stationary Gaussian processes, which corresponds to the

choice f (ω) = − σ 2
0
2 ω

2. The Gaussian case results in the

simplified form
∫
R

f (L−1∗ϕ(t))dt = − σ 2
0
2 ‖ρ∨

L ∗ ϕ‖2
L2

=
− 1

4π

∫
R
�s(ω)|ϕ̂(ω)|2dω (using Parseval’s identity) where

�s(ω) = σ 2
0

|L̂(−ω)|2 is the spectral power density that is associ-
ated with the innovation model. The interest here is that we get
access to a much broader family of non-Gaussian processes
(e.g., generalized Poisson or alpha-stable) with matched spec-
tral properties since they share the same whitening operator L.

The characteristic form condenses all the statistical
information about the process. For instance, by setting
ϕ = ωδ(· − t0), we can explicitly determine P̂s(ϕ) =
E{e j 〈s,ϕ〉} = E{e jωs(t0)} = F{p

(
s(t0)

)}(−ω), which yields
the characteristic function of the first-order probability den-
sity, p(s(t0)) = p(s), of the sample values of the
process. In the present stationary scenario, we find that
p(s) = F−1{exp

(∫
R

f
( − ωρL(t)

)
dt

)}(s), which requires
the evaluation of an integral followed by an inverse Fourier
transform. While this type of calculation is only tractable
analytically in special cases, it may be performed numerically
with the help of the FFT. Higher-order density functions are
accessible as well as at the cost of some multi-dimensional
inverse Fourier transforms. The same applies for moments
which can be obtained through a simpler differentiation
process, as exemplified in Section V-C.

B. Generalized Lévy Processes

The further reaching aspect of the present formulation is that
it is also applicable to the characterization of non-stationary
processes such as Brownian motion and Lévy processes, which
are usually treated separately from the stationary ones, and
that it naturally leads to the identification of a whole variety
of higher-order extensions. The commonality is that these non-
stationary processes can all be derived as solutions of an
(unstable) N th-order differential equation with some poles on
the imaginary axis. This corresponds to the setting in Section
IV-D with n0 > 0.

Proposition 4 (Generalized Nth-order Lévy Processes):
Let L−1 (the right-inverse of an N th-order differential
operator L) be specified by (26) with at least one
non-shift-invariant factor Iω1,t1 . Then, the generalized
stochastic processes that are defined by P̂s(ϕ) =
exp

(∫
R

f
(
L−1∗ϕ(t)

)
dt

)
where f is a p-admissible

Lévy exponent are well-defined solutions of the stochastic
differential equation (23) driven by some corresponding
Lévy innovation w. These processes satisfy the boundary
conditions (27) and are non-stationary.

Proof: The result is a direct consequence of the
analysis in Section IV-D—in particular, Eqs. (26)–(28)—and
Proposition 2. The latter implies that L−1∗ϕ is bounded in all
L∞,m norms with m ≥ 1. Since S ⊂ L∞,m ⊂ L p and the
Schwartz topology is the strongest in this chain, we can infer
that L−1∗ is a continuous operator from S onto any of the L p

spaces with p ≥ 1. The existence claim then follows from the
combination of Theorem 4 and Minlos-Bochner. Since L−1∗ϕ
is not shift-invariant, there is no chance for these processes
to be stationary, not to mention the fact that they fulfill the
boundary conditions (27).

Conceptually, we like to view the generalized stochastic
processes of Proposition 4 as “adjusted” versions of the
stationary ones that include some additional sinusoidal (or
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polynomial) trends. While the generation mechanism of these
trends is random, there is a deterministic aspect to it because
it imposes the boundary conditions (27) at t1, · · · , tn0 . The
class of such processes is actually quite rich and the formalism
surprisingly powerful. We shall illustrate the use of
Proposition 4 in Section V with the simplest possible operator
L = D which will gets us back to Brownian motion and the
celebrated family of Lévy processes. We shall also show how
the well-known properties of Lévy processes can be readily
deduced from their characteristic form.

C. Moments and Correlation

The covariance form of a generalized (complex-valued)
process s is defined as:

Bs(ϕ1, ϕ2) = E{〈s, ϕ1〉 · 〈s, ϕ2〉}.
where 〈s, ϕ2〉 = 〈s, ϕ2〉 when s is real-valued. Thanks to
the moment generating properties of the Fourier transform,
this functional can be calculated from the characteristic form
P̂s(ϕ) as

Bs(ϕ1, ϕ2) = (− j)2
∂2P̂s(ω1ϕ1 + ω2ϕ2)

∂ω1∂ω2

∣
∣
∣
∣
∣
ω1=0,ω2=0

, (29)

where we are implicitly assuming that the required partial
derivative of the characteristic functional exists. The autocor-
relation of the process is then obtained by making the formal
substitution ϕ1 = δ(· − t1) and ϕ2 = δ(· − t2):

Rs(t1, t2) = E{s(t1)s(t2)} = Bs (δ(· − t1), δ(· − t2)) .

Alternatively, we can also retrieve the autocorrelation
function by invoking the kernel theorem: Bs(ϕ1, ϕ2) =∫
R2 Rs(t1, t2)ϕ1(t1)ϕ(t2)dt1dt2.

The concept also generalizes for the calculation of the
higher-order correlation form6

E{〈s, ϕ1〉 · 〈s, ϕ2〉 · · · 〈s, ϕN 〉}
= (− j)N ∂N P̂s(ω1ϕ1 + · · · + ωNϕN )

∂ω1 · · · ∂ωN

∣
∣
∣
∣
∣
ω1=0,··· ,ωN =0

which provides the basis for the determination of higher-order
moments and cumulants.

Here, we concentrate on the calculation of the second-order
moments, which happen to be independent upon the specific
type of noise. For the cases where the covariance is defined
and finite, it is not hard to show that the generic covariance
form of the innovation processes defined in Section III-C is

Bw(ϕ1, ϕ2) = σ 2
0 〈ϕ1, ϕ2〉,

where σ 2
0 is a suitable normalization constant that depends on

the noise parameters (b1, b2, v) in (7)–(10). We then perform
the usual adjoint manipulation to transfer the above formula
to the filtered version s = L−1w of such a noise process.

Property 1 (Generalized Correlation): The covariance
form of the generalized stochastic process whose characteristic

6For simplicity, we are only giving the formula for a real-valued process.

form is P̂s(ϕ) = P̂w(L−1∗ϕ) where P̂w is a white noise
functional is given by

Bs(ϕ1, ϕ2) = σ 2
0 〈L−1∗ϕ1,L−1∗ϕ2〉 = σ 2

0 〈L−1L−1∗ϕ1, ϕ2〉,
and corresponds to the correlation function

Rs(t1, t2) = E{s(t1) · s(t2)} = σ 2
0 〈L−1L−1∗δ(· − t1),δ(·−t2)〉.

The latter characterization requires the determination of the
impulse response of L−1L−1∗. In particular, when L−1 is LSI
with convolution kernel ρL ∈ L1, we get that

Rs(t1, t2) = σ 2
0 L−1L−1∗δ(t2 − t1) = rs(t2 − t1)

= σ 2
0 (ρL ∗ ρ∨

L )(t2 − t1),

which confirms that the underlying process is wide-sense sta-
tionary. Since the autocorrelation function rs(τ ) is integrable,
we also have a one-to-one correspondence with the traditional

notion of power spectrum: �s(ω) = F{rs}(ω) = σ 2
0

|L̂(−ω)|2 ,

where L̂(ω) is the frequency response of the whitening oper-
ator L.

The determination of the correlation function for the non-
stationary processes associated with the unstable versions
of (23) is more involved. We shall see in [32] that it can be
bypassed if, instead of s(t), we consider the generalized incre-
ment process sd(t) = Lds(t) where Ld is a discrete version
(finite-difference type operator) of the whitening operator L.

D. Sparsification in a Wavelet-Like Basis

The implicit assumption for the next properties is that
we have a wavelet-like basis {ψi,k }i∈Z,k∈Z available that is
matched to the operator L. Specifically, the basis functions
ψi,k (t) = ψi (t − 2i k) with scale and location indices (i, k)
are translated versions of some normalized reference wavelet
ψi = L∗φi where φi is an appropriate scale-dependent
smoothing kernel. It turns out that such operator-like wavelets
can be constructed for the whole class of ordinary differential
operators considered in this paper [36]. They can be specified
to be orthogonal and/or compactly supported (cf. examples in
Fig. 2). In the case of the classical Haar wavelet, we have that
ψHaar = Dφi where the smoothing kernels φi ∝ φ0(t/2i ) are
rescaled versions of a triangle function (B-spline of degree 1).
The latter dilation property follows from the fact that the
derivative operator D commutes with scaling.

We note that the determination of the wavelet coefficients
vi [k] = 〈s, ψi,k 〉 of the random signal s at a given scale i is
equivalent to correlating the signal with the wavelet ψi (con-
tinuous wavelet transform) and sampling thereafter. The goods
news is that this has a stationarizing and decoupling effect.

Property 2 (Wavelet-Domain Probability Laws): Let
vi (t) = 〈s, ψi (· − t)〉 with ψi = L∗φi be the i th channel of
the continuous wavelet transform of a generalized (stationary
or non-stationary) Lévy process s with whitening operator
L and p-admissible Lévy exponent f . Then, vi (t) is a
generalized stationary process with characteristic functional
P̂vi (ϕ) = P̂w(φi ∗ϕ) where P̂w is defined by (5). Moreover,
the characteristic function of the (discrete) wavelet coefficient
vi [k] = vi (2i k)—that is, the Fourier transform of the pdf
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pvi (v)—is given by p̂vi (ω) = P̂w(ωφi ) = e fi (ω) and is
infinitely divisible with modified Lévy exponent

fi (ω) =
∫

R

f
(
ωφi (t)

)
dt .

Proof: Recalling that s = L−1w, we get

vi (t) = 〈s, ψi (· − t)〉 = 〈L−1w,L∗φi (· − t)〉
= 〈w,L−1∗L∗φi (· − t)〉 = (

φ∨
i ∗ w)

(t)

where we have used the fact that L−1∗ is a valid (continuous)
left-inverse of L∗. The wavelet smoothing kernel φi ∈ R has
rapid decay (e.g., compactly-support or, at worst, exponential
decay); this allows us to invoke Proposition 3 to prove the first
part.

As for the second part, we start from the definition of the
characteristic function:

p̂vi (ω) = E{e jωvi } = E{e jω〈s,ψi,k 〉} = E{e j 〈s,ωψi 〉}
(by stationarity)

= P̂s(ωψi ) = P̂w(L
−1∗L∗φiω)

= P̂w(ωφi ) = exp

(∫

R

f
(
ωφi (t)

)
dt

)

where we have used the left-inverse property of L−1∗ and
the expression of the Lévy noise functional. The result then
follows by identification. 7

We determine the joint characteristic function of any two
wavelet coefficients Y1 = 〈s, ψi1 ,k1〉 and Y2 = 〈s, ψi2 ,k2 〉 with
indices (i1, k1) and (i2, k2) using a similar technique.

Property 3 (Wavelet Dependencies): The joint characteris-
tic function of the wavelet coefficients Y1 = vi1 [k1] =
〈s, ψi1 ,k1 〉 and Y2 = vi2 [k2] = 〈s, ψi2 ,k2 〉 of the generalized
stochastic process s in Property 2 is given by

p̂Y1,Y2(ω1, ω2) = exp

(∫

R

f
(
ω1φi1(t − 2i1 k1)

+ω2φi2 (t − 2i2 k2)
)
dt

)

where f is the Lévy exponent of the innovation process w.
The coefficients are independent if the kernels φi1(t − 2i1 k1)
and φi2 (t − 2i2 k2) have disjoint support; their correlation is
given by

E{Y1Y2} = σ 2
0 〈φi1 (· − 2i1 k1), φi2 (· − 2i2 k2)〉.

under the assumption that the variance σ 2
0 of w is finite.

Proof: The first formula is obtained by substitution of
ϕ = ω1ψi1,k1 + ω2ψi2,k2 in E{e j 〈s,ϕ〉} = P̂w(L−1∗ϕ), and
simplification using the left-inverse property of L−1∗. The
statement about independence follows from the exponential
nature of the characteristic function and the property that
f (0) = 0, which allows for the factorization of the charac-
teristic function when the support of the kernels are distinct
(independence of the noise at every point). The correlation
formula is obtained by direct application of the first result

7A technical remark is in order here: the substitution of a non-smooth
function such as φi ∈ R in the characteristic noise functional P̂w is legitimate
provided that the domain of continuity of the functional can be extended
from S to R, or, even less restrictively, to L p when f is p-admissible (see
Theorem 3).

in Property 1 with ϕ1 = ψi1,k1 = L∗φi1(· − 2i1 k1) and
ϕ2 = ψi2 ,k2 = L∗φi2 (· − 2i2 k2).

These results provide a complete characterization of the
statistical distribution of sparse stochastic processes in some
matched wavelet domain. They also indicate that the repre-
sentation is intrinsically sparse since the transformed-domain
statistics are infinitely divisible. Practically, this translates
into the wavelet domain pdfs being heavier tailed than a
Gaussian (unless the process is Gaussian) (cf. argumentation in
Section III-D).

To make matters more explicit, we consider the case where
the innovation process is SαS. The application of Property 2
with f (ω) = −|ω|α

α! yields fi (ω) = −|σiω|α
α! with disper-

sion parameter σi = ‖φi‖Lα . This proves that the wavelet
coefficients of a generalized SαS stochastic process follow
SαS distributions with the spread of the pdf at scale i being
determined by the Lα norm of the corresponding wavelet
smoothing kernels. This strongly suggests that, for α < 2,
the process is compressible in the sense that the essential part
of the “energy content” is carried by a tiny fraction of wavelet
coefficients, as illustrated in Fig. 1.

It should be noted, however, that the quality of the decou-
pling is strongly dependent upon the spread of the wavelet
smoothing kernels φi which should be chosen to be max-
imally localized for best performance. In the case of the
first-order system (cf. example in Section II), the basis func-
tions for i fixed are not overlapping which implies that the
wavelet coefficients within a given scale are independent.
This is not so across scale because of the cone-shaped region
where the support of the kernels φi1 and φi2 overlap, which
induces dependencies. Incidentally, the inter-scale correlation
of wavelet coefficients is often exploited for improving coding
performance [50] and signal reconstruction by imposing joint
sparsity constraints [51].

VI. LÉVY PROCESSES REVISITED

We now illustrate our method by specifying classical Lévy
processes—denoted by W (t)—via the solution of the (mar-
ginally unstable) stochastic differential equation

d

dt
W (t) = w(t) (30)

where the driving term w is one of the independent noise
processes defined earlier. It is important to keep in mind that
Eq. (30), which is the limit of (2) as α → 0, is only a notation
whose correct interpretation is 〈DW, ϕ〉 = 〈w,ϕ〉 for all ϕ ∈
S. We shall consider the solution W (t) for all t ∈ R, but we
shall impose the boundary condition W (t0) = 0 with t0 = 0
to make our construction compatible with the classical one
which is defined for t ≥ 0.

A. Distributional Characterization of Lévy Processes

The direct application of the operator formalism developed
in Section III yields the solution of (30):

W (t) = I0,0w(t)

where I0,0 is the unique right inverse of D that imposes the
required boundary condition at t = 0. The Fourier-based
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expression of this anti-derivative operator is obtained from the
6th line of Table I by setting (ω0, t0) = (0, 0). By using the
properties of the Fourier transform, we obtain the simplified
expression

I0,0ϕ(t) =
{∫ t

0 ϕ(τ)dτ, t ≥ 0
− ∫ 0

t ϕ(τ)dτ, t < 0,
(31)

which allows us to interpret W (t) as the integrated version of
w with the proper boundary conditions. Likewise, we derive
the time-domain expression of the adjoint operator

I∗0,0ϕ(t) =
{ ∫ ∞

t ϕ(τ)dτ, t ≥ 0,
− ∫ t

−∞ ϕ(τ)dτ, t < 0.
(32)

Next, we invoke Proposition 4 to obtain the characteristic form
of the Lévy process

P̂W (ϕ) = P̂w(I∗0,0ϕ) (33)

which is admissible provided that the Lévy exponent f fullfils
the condition in Theorem 4.

We get the characteristic function of the sample values
of the Lévy process W (t1) = 〈W, δ(· − t1)〉 by making the
substitution ϕ = ω1δ(· − t1) in (33): P̂W

(
ω1δ(· − t1)

) =
P̂w

(
ω1I∗0,0δ(·− t1)

)
with t1 > 0. We then use (31) to evaluate

I∗0,0δ(t − t1) = �(0,t1](t). Since the latter indicator function is
equal to one for t ∈ (0, t1] and zero elsewhere, it is easy to
evaluate the integral over t in (5) with f (0) = 0, which yields

E{e jω1W (t1)} = exp

(∫

R

f
(
ω1�(0,t1](t)

)
dt

)

= et1 f (ω1)

This result is equivalent to the celebrated Lévy-Khinchine
representation of the process [31].

B. Lévy Increments vs. Wavelet Coefficients

A fundamental property of Lévy processes is that their
increments at equally-spaced intervals are i.i.d. [31]. To see
how this fits into the present framework, we specify the
increments on the integer grid as the special case of (3) with
α = 0:

u[k] = �0W (k) := W (k)− W (k − 1)

=
∫ k

k−1
w(t)dt = 〈w,β∨

0 (· − k)〉
where β0(t) = �[0,1)(t) = �0ρ0(t) is the causal B-spline of
degree 0 (rectangular function). We are also introducing some
new notation, which is consistent with the definitions given
in [32, Table II], to set the stage for the generalizations to
come.�0 is the finite-difference operator, which is the discrete
analog of the derivative operator D, while ρ0 (unit step) is
the Green function of the derivative operator D. The main
point of the exercise is to show that determining increments
is structurally equivalent to the computation of the wavelet
coefficients in Property 2 with the smoothing kernel φi being
substituted by β∨

0 . It follow that the characteristic function of
u[·] is given by

p̂u(ω) = exp
(∫

R
f (ωβ∨

0 (t)
)
dt

) = e f (ω) = p̂id(ω) (34)

where the simplification of the integral results from the binary
nature of β0 which is either 1 (on a support of size 1) or
zero. This implies that the increments of the Lévy process
are independent (because the B-spline functions β∨

0 (·− k) are
non-overlapping) and that their pdf is given by the canonical
id distribution of the innovation process pid(x) (cf. discussion
in Section III-D).

The alternative is to expand the Lévy process in the
Haar basis which is ideally matched to it. Indeed, the Haar
wavelet at scale i = 1 (lower-left function in Fig. 2) can be
expressed as

ψHaar(t/2) = β0(t)− β0(t − 1) = �0β0 = Dβ(0,0)(t)

(35)

where β(0,0) = β0 ∗ β0 is the causal B-spline of degree 1
(triangle function). Since D∗ = −D, this confirms that
the underlying smoothing kernels are dilated versions of a
B-spline of degree 1. Moreover, since the wavelet-domain
sampling is critical, there is no overlap of the basis
functions within a given scale which implies that the
wavelets coefficients are independent on a scale-by-scale basis
(cf. Property 3). If we now compare the situation with that
of the Lévy increments, we observe that the wavelet analysis
involves one more layer of smoothing of the innovation with
β0 (due to the factorization property of β(0,0)) which slightly
complicates the statistical calculations.

While the smoothing effect on the innovation is qualitatively
the same in both instances, there are fundamental differences,
too. In the wavelet case, the underlying discrete transform
is orthogonal, but the coefficients are not fully decoupled
because of the inter-scale dependencies which are unavoidable,
as explained in Section V-D. By contrast, the decoupling of
the Lévy increments is perfect, but the underlying discrete
transform (finite difference transform) is non-orthogonal. In
our companion paper, we shall see how this latter strategy is
extendable to the much broader family of sparse processes via
the definition of the generalized increment process.

C. Examples of Lévy Processes

Realizations of four different Lévy processes are shown in
Fig. 3 together with their Lévy triplets

(
b1, b2, v(a)

)
. The

first signal is a Brownian motion (a.k.a. Wiener process) that
is obtained by integration of a white Gaussian noise. This
classical process is known to be nowhere differentiable in the
classical sense, despite the fact that it is continuous everywhere
(almost surely) as all the members of the Lévy family. While
the sampled version of �0W is i.i.d. in all cases, it does not
yield a sparse representation in this first instance because the
underlying distribution remains Gaussian. The second process,
which may be termed Lévy-Laplace motion, is specified by
the Lévy density v(a) = e−|a|/|a| which is not in L1. By
taking the inverse Fourier transform of (34), we can show that
its increment process has a Laplace distribution [18]; note that
this type of generalized Gaussian model is often used to justify
sparsity-promoting signal processing techniques based on �1
minimization [52]–[54]. The third piecewise-constant signal is
a compound Poisson process. It is intrinsically sparse since a
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Fig. 3. Examples of Lévy motions W (t) with increasing degrees of sparsity. (a) Brownian motion with Lévy triplet (0, 1, 0). (b) Lévy-Laplace motion with
(
0, 0, e−|a|

|a|
)
. (c) Compound Poisson process with

(
0, 0, λ 1√

2π
e−a2/2)

with λ = 1
32 . (d) Symmetric Lévy flight with

(
0, 0, 1/|a|α+1)

and α = 1.2.

good proportion of its increments is zero by construction (with
probability e−λ). Interestingly, this is the only type of Lévy
process that fulfills the finite rate of innovation property [17].
The fourth example is an alpha-stable Lévy motion (a.k.a.
Lévy flight) with α = 1.2. Here, the distribution of �0W
is heavy-tailed (SαS) with unbounded moments for p > α.
Although this may not be obvious from the picture, this is
the sparsest process of the lot because it is �α-compressible
in the strongest sense [45]. Specifically, we can compress the
sequence such as to preserve any prescribed portion r < 1 of
its average �α energy by retaining an arbitrarily small fraction
of samples as the length of the signal goes to infinity.

D. Link With Conventional Stochastic Calculus

Thanks to (30), we can view a white noise w = Ẇ as the
weak derivative of some classical Lévy processes W (t) which
is well-defined pointwise (almost everywhere). This provides
us with further insights on the range of admissible innovation
processes of Section II.C which constitute the driving terms of
the general stochastic differential equation (12). This funda-
mental observation also makes the connection with stochastic
calculus8 [55], [56], which avoids the notion of white noise
by relying on the use of stochastic integrals of the form

s(t) =
∫

R

h(t, t ′)dW (t ′)

where W is a random (signed) measure associated to some
canonical Brownian motion (or, by extension, a Lévy process)
and where h(t, t ′) is an integration kernel that formally cor-
responds to our inverse operator L−1 (see Theorem 5).

VII. CONCLUSION

We have set the foundations of a unifying framework that
gives access to the broadest possible class of continuous-
time stochastic processes specifiable by linear, shift-invariant

8The Itô integral of conventional stochastic calculus is based on Brownian
motion, but the concept can also be generalized to Lévy driving terms using
the more advanced theory of semimartingales [55].

equations, which is beneficial for signal processing purposes.
We have shown that these processes admit a concise represen-
tation in a wavelet-like basis. We have applied our framework
to the description of the classical Lévy processes, which, in
our view, provide the simplest and most basic examples of
sparse processes, despite the fact that they are non-stationary.
We have also hinted at the link between Lévy increments
and splines, which is the theme that we shall develop in full
generality next [32].

We have demonstrated that the proposed class of
stochastic models and the corresponding mathematical
machinery (Fourier analysis, characteristic functional, and
B-spline calculus) lends itself well to the derivation of
transform-domain statistics. The formulation suggests a variety
of new processes whose properties are compatible with the
currently-dominant paradigm in the field which is focused on
the notion of sparsity. In that respect, the sparse processes that
are best matched to conventional wavelets9 are those generated
by N-fold integration (with proper boundary conditions) of a
non-gaussian innovation. These processes, which are the solu-
tion of an unstable SDE (pole of multiplicity N at the origin),
are intrinsically self-similar (fractal) and non-stationary. Last
but not least, the formulation is backward compatible with the
classical theory of Gaussian stationary processes.
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