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A Unified Formulation of Gaussian Versus
Sparse Stochastic Processes—Part II:
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Abstract— This paper is devoted to the characterization of
an extended family of continuous-time autoregressive moving
average (CARMA) processes that are solutions of stochastic
differential equations driven by white Lévy innovations. These
are completely specified by: 1) a set of poles and zeros that fixes
their correlation structure and 2) a canonical infinitely divisible
probability distribution that controls their degree of sparsity
(with the Gaussian model corresponding to the least sparse
scenario). The generalized CARMA processes are either station-
ary or nonstationary, depending on the location of the poles in
the complex plane. The most basic nonstationary representatives
(with a single pole at the origin) are the Lévy processes, which
are the non-Gaussian counterparts of Brownian motion. We
focus on the general analog-to-discrete conversion problem and
introduce a novel spline-based formalism that greatly simplifies
the derivation of the correlation properties and joint probability
distributions of the discrete versions of these processes. We also
rely on the concept of generalized increment process, which
suppresses all long range dependencies, to specify an equivalent
discrete-domain innovation model. A crucial ingredient is the
existence of a minimally supported function associated with the
whitening operator L; this B-spline, which is fundamental to our
formulation, appears in most of our formulas, both at the level of
the correlation and the characteristic function. We make use of
these discrete-domain results to numerically generate illustrative
examples of sparse signals that are consistent with the continuous-
domain model.

Index Terms— Sparsity, non-Gaussian stochastic processes,
innovation modeling, continuous-time signals, stochastic differ-
ential equations, sampling, exponential B-splines, Lévy process,
CARMA processes, infinite divisibility.

I. INTRODUCTION

IN OUR companion paper, we have set the foundations of a
general innovation framework that leads to the specification
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Fig. 1. Innovation model of a generalized stochastic process. The process is
generated by application of the inverse operator L−1 to a continuous-domain
innovation process w. The generation mechanism is general in the sense that it
extends to the complete family of (non-Gaussian) noises w = Ẇ that formally
correspond to the weak derivative of some classical Lévy process W (t).
Gaussian processes are recovered by taking W (t) to be the Wiener process
(a.k.a. Brownian motion). The output process s(t) is stationary iff. L−1 is
shift-invariant.

of a broad class of continuous-time stochastic processes [1].
The powerful aspect of the formulation is that it unifies the
classical theories of stationary Gaussian processes [2], on the
one hand, and Lévy processes on the other [3], the idea being
that these processes can all be generated by applying a proper
integral operator (L−1) to some admissible (white) innovation
process. We have also shown that switching to a non-Gaussian
excitation (within the class of admissible solutions) necessarily
induces a sparse behavior. An intriguing consequence of the
latter is that it improves the performance of wavelet-like
transformations: in the non-Gaussian regime, these tend to
provide better N-term signal approximations than the classical
KLT (or the DCT) does, which is the reverse of what happens
in the classical Gaussian setup (cf. [1, Sections II, V.D]). This
suggests that this type of modeling is highly relevant for mod-
ern signal processing, which is presently very much focused on
the design of signal recovery algorithms that promote sparsity
in some transformed domain. While the proposed generation
mechanism is remarkably simple conceptually, it is not quite as
straightforward to formulate rigorously because the underlying
innovations (admissible white noise excitations = Lévy noise)
can only be properly defined in the sense of distributions
[4], [5]. Statisticians usually work around the difficulty by
defining processes through stochastic integrals (Itô calculus)
which avoids the explicit reference to white noise [6], [7]; the
downside of this widely-used framework is that it partly hides
the system-theoretic aspects.

The innovation model described in Fig. 1 is attractive to
engineers because it establishes a direct link between stochas-
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TABLE I

TYPOLOGY OF CONTINUOUS-TIME STOCHASTIC PROCESSES

tic processes and linear system theory. It also suggests that it is
possible to transpose some standard deterministic techniques
(e.g., determination of impulse responses, filtering, sampling
of signals, cardinal spline interpolation) to the stochastic
setting, which is mostly what this work is about. In other
words, once one has gone through the effort of properly
defining and understanding the notion of a continuous-domain
white Lévy noise, the remaining characterization problem can
be addressed by relying on the powerful (deterministic) tools
of functional and harmonic analysis. The non-trivial aspect
is that one needs to resolve some instabilities (in the form
of singular integrals), both at the system level to allow for
non-stationary processes, and at the stochastic level because
the most interesting sparsity patterns are associated with
unbounded Lévy measures (cf. [1, Section III.D]).

In the present paper, we investigate the discrete-time impli-
cations of the theory for the extended class of continuous-time
processes that are ruled by ordinary differential equations (cf.
the typology of processes shown in Table I). The stationary
Gaussian members of the family are well studied and play a
central role in traditional system modeling, signal processing
and control theory [2], [8], [9]. There is also a well-known
discrete connection in the sense that the sampled version of
a Gaussian ARMA process is itself a discrete ARMA process
with the discrete and continuous-domain poles being related
by the exponential map: {zn = eαn }N

n=1 [8], [10], [11]. Less
obvious is the determination of the MA component of the dis-
crete model which is jointly dependent upon the continuous-
domain poles and zeros [12]. Another classical instance is
provided by the Lévy processes, including Brownian motion,
which are commonly used in financial mathematics [13], [14].
Lévy process are especially interesting in that context because
of their ability to replicate jumps in price assets [14], [15].
They are not as popular in signal processing circles, proba-
bly due to the fact that they are non-stationary; yet, it has
been pointed out recently that they are actually very relevant
because they are the processes for which some of present
sparsity-based algorithms (e.g., TV-denoising) are statistically
optimal [16]. The final important subclass is made up of the so-
called CARMA processes—the non-Gaussian extension of the
classical ARMA processes [17]. Special instances of such sta-
tionary processes have been applied to financial modeling [18]
and, to a lesser extent, signal processing [19]–[21].

In the sequel, we present a systematic characterization
of the sampled versions of these processes. The primary
contributions along the way are:

• An addition to the non-stationary branch of the CARMA
family via the introduction of generalized boundary

conditions and “regularized” inverse operators for the
solution of unstable stochastic differential equations
(SDE).

• The specification of the generalized increment process

which is a stationarized and “localized” version of the
signal with the shortest possible range of dependencies.

• The uncovering of the fundamental role of the expo-
nential B-splines in the statistical characterization of the
CARMA processes. Not only do such B-splines corre-
spond to the autocorrelation function of the generalized
increment processes, but they do allow for a remarkably
concise description of the joint characteristic functions of
the discrete versions of these processes.

• The derivation of the discrete counterpart (finite dif-
ference equation) of the continuous-domain innovation
model. The proposed formulation also extends to the
non-Gaussian and/or non-stationary variants of these
processes.

The paper is organized as follows. In Section II, we briefly
review the general innovation model which specifies the
broadest possible class of continuous-time linear stochastic
processes. We also recall the inverse-operator method of
solution which results in a complete characterization of the
generalized CARMA processes [1]. In Section III, we show
how we can use finite-difference operators to partly decouple
CARMA and generalized Lévy processes. In Section IV, we
investigate the discrete-domain aspects of the theory by con-
sidering the sampled versions of these processes. In particular,
we establish exponential-spline-based interpolation formulas
that connect the discrete and continuous-domain correlations
of the CARMA processes. We explicitly determine the K th-
order characteristic function of the samples of the correspond-
ing generalized increment processes, which are maximally
decoupled. This naturally leads to the specification of some
equivalent discrete-domain ARMA-type innovation model.
In Section V, we use those results in conjunction with expo-
nential spline calculus to develop numerical algorithms for the
generation of CARMA processes with a special attention to
the non-Gaussian, non-stationary scenarios. We conclude the
paper with the presentation of illustrative examples of sparse
processes in Section VI.

II. REVIEW OF CONTINUOUS-TIME RESULTS

We start with a brief review and discussion of the key results
of our theory of generalized stochastic processes [1]. We also
provide a summary of the notations in Table II.

A. Generalized Innovation Models

The continuous-time stochastic processes s(t) under consid-
eration satisfy the general innovation model in Fig. 1. They
correspond to the solution of the (linear) operator equation

Ls = w, (1)

where the driving term w is a continuous-domain white noise
process. The model has the ability to generate Gaussian
processes, as well as a broad variety of sparse processes,
depending upon the type of excitation noise. The delicate
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TABLE II

SUMMARY OF NOTATIONS

aspect is that the underlying innovations w do not admit
a standard (pointwise) interpretation as functions of t because
they are highly singular. They can only be properly specified
as distributions (a.k.a. generalized functions). Thus, the correct
interpretation of (1) is in the “weak” sense of distributions:

⟨ϕ, Ls⟩ = ⟨ϕ, w⟩, for all ϕ ∈ S

where the equality must hold true for any smooth and rapidly-
decreasing test function ϕ in Schwartz’s class S. The guiding
principle is that, for any given ϕ, the scalar product (or linear
functional) ⟨ϕ, w⟩ is a well-defined scalar random variable no
matter how rough the actual innovation process w is.

As for the class of admissible1 input innovations, we have
pointed out that each brand is uniquely characterized by a
canonical infinitely divisible distribution pid(x) (or, equiva-
lently, a Lévy exponent f ) which specifies the pdf of its

1A stochastic process is called white noise iff. it is stationary and inde-
pendent at all points. In our framework, this is equivalent to requiring that
the random observation variables X1 = ⟨ϕ1, w⟩ and X2 = ⟨ϕ2, w⟩ are:
1) identically-distributed whenever ϕ2(t) = ϕ1(t − t0) for any t0 ∈ R

(translated observations), and 2) independent whenever ϕ1 × ϕ2 = 0
(observation windows with disjoint support).

“pixelated” observation (through a rectangular window) X =

⟨w, rect(· − t0)⟩ which is i.i.d. and independent upon t0
(stationarity).

The above innovation model is exploitable only if the
whitening operator L has an inverse that is well-defined
over an appropriate subset of S

′ (the space of tempered
distributions). The equation is then solved formally as

s = L−1w

⇔ ∀ϕ ∈ S, ⟨ϕ, s⟩ = ⟨ϕ, L−1w⟩ = ⟨L−1∗ϕ, w⟩ (2)

where we are using a standard duality argument to move the
action of the inverse operator (via its adjoint L−1∗) onto the
test function ϕ. We have shown [1, Theorem 4] that this
method of solution yields a well-defined stochastic process
s provided that L−1∗ is a continuous map S → S or, by
extension, S → L p for some p ≥ 1, which puts some
mathematical constraints on the class of admissible operators
and excitation noises. In particular, the latter L p scenario
requires that the excitation noise be p-admissible, which is
a condition imposed on its Lévy exponent f (ω) = log p̂id(ω)

(cf. Definition 1, Section II-C).
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B. Nth-Order Stochastic Differential Equations

We have demonstrated that the above operator method could
be deployed for finding the solutions of the complete class of
linear stochastic differential equations of the form

N∑

n=0

anDns =

M∑

m=0

bmDmw (3)

with N > M , where an and bm are arbitrary complex
coefficients with the normalization constraint aN = 1, irre-
spective of any stability considerations. The driving noise w,
which constitutes the input of the system, is assumed to be
white by default. The output s(t) is our generalized stochastic
process whose sample values are generally well-defined due
to the smoothing effect of the inverse operator L−1. The
characteristic polynomial of the underlying N th-order system
with Laplace variable ζ ∈ C is

PN (ζ ) = ζ N + aN−1ζ
n−1 + · · · + a0

=

N∏

n=1

(ζ − αn) = Pα(ζ ), (4)

and is also specifiable in term of its (complex) roots; these
are collected in the vector of poles α = (α1, . . . ,αN ) with
the understanding that the notations PN (ζ ) and Pα(ζ ) are
equivalent.

The linear system specified by (3) is causal-stable iff.
all its poles are in the left complex half-plane. Under this
classical assumption, its impulse response ρL(t) = L−1{δ}(t)

is exponentially decaying. It is obtained by taking the inverse
Fourier transform of the rational transfer function

ρ̂L(ω) =
QM ( jω)

PN ( jω)
= bM

∏M
m=1( jω − γn)∏N
n=1( jω − αn)

=
1

L̂(ω)
, (5)

where QM (ζ ) = bMζ M + bM−1ζ
M−1 + · · · + b1ζ + b0 is

a polynomial of degree M < N . The roots of QM (ζ ) are
the so-called zeros: γ = (γ1, . . . , γM ). The solution (output
of the system) is then given by s(t) = (ρL ∗ w)(t) and
is stationary by construction (because of the shift-invariant
filtering). When the excitation is Gaussian, one obtains the
conventional continuous-time ARMA processes, but one can
also generate a large variety of sparse counterparts of these
processes by switching to appropriate types of non-Gaussian
Lévy innovations.

Remarkably, the proposed framework can also handle
the unstable scenarios, the general rule being that each
pole located on the imaginary axis induces one degree of
non-stationarity. Our extended formulation requires a special
ordering of the poles where the n0 purely-imaginary roots
(if present) are coming last. This gets translated in the
following representation of the characteristic polynomial (4):

Pα( jω) =

(
N−n0∏
n=1

( jω − αn)

) (
n0∏

m=1
( jω − jωm)

)
(6)

with αN−n0+m = jωm and ωm ∈ R. It allows us to write the
factorized version of the differential equation (3):

(Pα1 · · · PαN−n0
)(P jω1 · · · P jωn0

){s} = QM (D){w} (7)

where Pαn = (D − αnId) is the operator counterpart of the
Fourier multiplier ( jω − αn) and QM (D) =

∑M
m=0 bmDm .

Each component Pαn with Re(αn) ̸= 0 has a stable linear
shift-invariant (LSI) inverse P−1

αn
, which is either causal or

anti-causal depending on the polarity of αn . The only delicate
step in solving (7) is the inversion of the second operator factor
on the left which is ill-posed. Our contribution has been to
propose a stable inversion mechanism that makes use of some
“regularized” left inverse of P jω0 . The canonical solution is

Iω0,δϕ(t) =

∫

R

ϕ̂(ω)

(
e jωt − e jω0t

j (ω − ω0)

)
dω

2π
(8)

which, in accordance with (33), forces the output signal to van-
ish at t = 0. This ultimately yields the global inverse operator

L−1 = Iωn0 ,δ · · · Iω1,δ︸ ︷︷ ︸
shift-variant

P−1
N−n0

· · · P−1
α1

QM (D)
︸ ︷︷ ︸

LSI part

, (9)

to be substituted in (2); the latter imposes the n0 boundary
conditions on the output

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

s(0) = 0
(D − jωn0Id){s}(0) = 0

...

(D − jω2Id) · · · (D − jωn0Id){s}(0) = 0.

(10)

We have shown that this method of solution yields a
generalized CARMA process s = L−1w that is mathematically
well-defined. Such processes will exhibit a n0 degree of
non-stationarity due to the lack of shift-invariance of the
elementary inverse operators Iωm ,δ . While the above inversion
method is uniquely tied to the boundary conditions (10), it is
not the only possible approach. In the appendix, we show that
one can impose other boundary conditions (in the form of n0
generalized linear constraints: ⟨s,ϕm⟩ = 0, m = 1, . . . , n0),
while retaining the required functional properties of the
corresponding inverse operators Iωm ,ϕm and their adjoint.

The simplest example of unstable scenario is Ds = w,
which corresponds to a single pole at the origin: α1 = jω1 = 0
and N = n0 = 1. The solution s(t) = I0,δw(t) =

∫ t

0 w(τ ) dτ ,
which enforces the boundary condition s(0) = 0, perfectly
maps into the Lévy processes, although these are usually
described quite differently [3], [22]. The interest here is that
we are constructing the Lévy processes as the (unstable) limit
of the non-Gaussian AR(1) family. We will see that this
novel point of view facilitates the transposition of standard
signal processing techniques to the non-stationary/non-
Gaussian Lévy setting, including the higher-order extensions
of such processes.

C. Characteristic Functional

We have shown that the generalized stochastic process
s(t) satisfying the innovation model (1) is completely
and uniquely characterized by its characteristic functional
(cf. [1, Theorem 4]):

P̂s(ϕ) = E{e j ⟨s,ϕ⟩}

= exp

(∫

R

f
(
L−1∗ϕ(t)

)
dt

)
(11)
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under the constraint that the so-called Lévy exponent f (ω) is
p-admissible and L−1∗ is a continuous map S → L p .

Definition 1: f (ω) is a p-admissible Lévy exponent for
some p > 0 iff. (i) it admits a Lévy-Khinchine representation
(cf. [1, Eq. (8)]) with some Lévy triplet (b1, b2, v(a)), and
(ii) | f (ω)| + |ω| | f ′(ω)| < C|ω|p .

The powerful aspect of the formulation is that the functional
P̂s(ϕ) : S → C, which is the conceptual equivalent of
an infinite-dimensional characteristic function, condenses all
the statistical information about the process. The underlying
principle is that the inverse operator L−1 (generalized shaping
filter) specifies the covariance structure (or generalized spec-
trum) of the process s, while the Lévy exponent f (ω) fully
embodies the statistical properties of the innovation w.

The classical choice of Lévy exponent in (11) is
fGauss(ω) = −b2|ω|2 which results in the specification of
the complete class of Gaussian processes. The remarkable
aspect of the theory is that any other admissible choice
induces a sparse behavior. For instance, the generic Lévy
triplet (0, 0,λpA(a)) where λ > 0 and pA(a) is a valid pdf
results in the definition of the extended class of generalized
Poisson processes with fPoisson(ω; λ, pA) = λ

∫
R

(
e j aω − 1

)

pA(a) da [16]. The latter is p-admissible with p = 1
(provided that

∫
R

|a|pA(a) da < ∞) and/or p = 2
when pA(a) is symmetric. The corresponding innovation
is a sequence of randomly scattered Dirac impulses with
Poisson parameter λ > 0 (average number of singularities per
unit time) and amplitude distribution pA(a)—the prototypical
example of a (random) signal with a finite rate of innova-
tion [23]. Also included in the framework are the symmetric-
alpha-stable (SαS) processes (with fα(ω) = −bα|ω|α), which,
for 0 < α < 2, have the intriguing property that their second-
order moments are unbounded (heavy tail behavior) [24]. For
more details, refer to [1, Sections III.C-D]. Note that the rate
of innovation of these latter processes is infinite, although
they are intrinsically even sparser that the generalized Poisson
processes.

III. GENERALIZED INCREMENT PROCESS

Since L−1 is typically an integral operator, its effect on
s = L−1w is to induce long range dependencies. These
need to be suppresses if one wishes to obtain a sparse signal
representation. The first approach investigated in [1] is to apply
a wavelet transform where the wavelets act as multiresolution
versions of the whitening operator L. While the decoupling
effect of such an analysis is adequate within a given scale,
we have seen that it is not quite as favorable between scales
because of the overlap of the underlying smoothing kernels.

In principle, we may get back to the innovation by simply
applying L = (L−1)−1 to s. Unfortunately, this is not feasible
in practice since we only have the samples of the process
available. The best computational strategy is to apply a discrete
version of the operator L which we shall denote by Ld.
The main point that we shall make in this section is that
applying Ld to s is equivalent to smoothing the innovation with
a localized kernel βL (generalized B-spline):

Lds(t) = (βL ∗ w)(t) (12)

where βL = LdL−1δ = LdρL. To get the best decou-
pling effect, we need to select Ld such that βL is most
localized—ideally, compactly supported. The good news is
that we can rely on spline mathematics to identify the shortest
solution. As far as statistics are concerned, it is also useful to
recall that the innovation process w is completely and uniquely
specified by its characteristic form

P̂w(ϕ) = E{e⟨w,ϕ⟩} = exp

(∫

R

f
(
ϕ(t)

)
dt

)
(13)

and hence by its Lévy exponent f : R → C which is such
that f (0) = 0.

A. Exponential B-Splines and Finite Difference Operators

The foundation of exponential spline calculus is that we
can always factor an N th-order differential operator into a
cascade of first-order operators Pαn = (D − αnId) where
the αn (complex poles) are the roots of the characteristic
polynomial; i.e.,

PN (D) = DN + aN−1DN−1 + · · · + a1D + a0Id

= PαN · · · Pα1 = P(α1,...,αN )

where the right-hand side concatenated operator notation is
self-explanatory. This allows us to express the Green’s function
of Pα with pole vector α = (α1, . . . ,αN ) as the convolution
of the Green’s functions of its elementary constituents

ρα(t) = (ρα1 ∗ ρα2 · · · ∗ ραN )(t) (14)

with

ρα(t) =

{
+(t)eαt if Re(α) ≤ 0

− +(−t)eαt otherwise.
(15)

The so-defined Green’s function ρα(t) is necessarily of slow
growth; it specifies the impulse response of the LSI inverse
operator P−1

α
, which is well-defined over S,

P−1
α

ϕ(t) = (ρα ∗ ϕ)(t),

but not necessarily bounded (when some of the poles are
purely imaginary).

Next, we observe that by applying the finite difference
operator

,α f (t) = f (t) − eα f (t − 1)

to the function ρα(t), we are able to construct a compactly-
supported function: the first-order exponential B-spline with
parameter α ∈ C

βα(t) = ,αρα(t) = [0,1)(t)e
αt

The generalization of this scheme yields the N th-order
B-spline with parameter vector α = (α1, . . . ,αN )

βα(t) = ,αρα(t) = (βα1 ∗ βα2 · · · ∗ βαN )(t). (16)

These functions have the following properties (cf [25]):
• They are smooth and well-localized: compactly supported

in [0, N], bounded, and Hölder continuous of order N−1.
• They are piecewise-exponential with joining points

at the integer and a maximal degree of smoothness
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(spline property). For α = (0, . . . , 0), one recovers
Schoenberg’s classical polynomial B-splines of degree
N − 1 [26], [27].

• They are the shortest elementary constituents of splines:
the functions {βα(t − n)}n∈Z forms a Riesz basis of the
corresponding family of exponential splines with knots at
the integers.

The crucial formula for our purpose is the equivalent operator
interpretation of the B-spline formula (16):

,αP−1
α

ϕ = ,αρα ∗ ϕ = βα ∗ ϕ, (17)

which we will now put to good use in order to partially undo
the effect of the inverse operator (9), or any variant thereof
that imposes other linear boundary conditions.

Theorem 1: Let {I∗ωm,ϕm
}
n0
m=1 with ωm ∈ R be a series of

generalized (adjoint) inverse operators of the type defined
by (36) and let {,∗

jωm
}
n0
m=1 be some corresponding adjoint

localization operators with ,∗
jωm

ϕ(t) = ϕ(t) − e jωm ϕ(t + 1).
Then, for all ϕ ∈ S,

I∗ω1,ϕ1
· · · I∗ωn0 ,ϕn0

,∗
jωn0

· · · ,∗
jω1

ϕ = β∨
( jω1,..., jωn0 ) ∗ ϕ

, jω1 · · · , jωn0
Iωn0 ,ϕn0

· · · Iω1,ϕ1ϕ = β( jω1,..., jωn0 ) ∗ ϕ

where β( jω1,..., jωn0 ) an exponential B-spline kernel as defined
by (16). Since the latter is bounded and compactly-supported,
the resulting convolution operators are BIBO-stable and
S-continuous.

Proof: First, we observe that ,̂∗
jωm

f (ω) = (1− e jωm e jω)

f̂ (ω). Using Definition (36), we then evaluate the Fourier
transform of g(t) = I∗ωm ,ϕm

,∗
jωm

f (t) as

ĝ(ω) =
(1 − e jωm e jω) f̂ (ω)

− j (ω + ωm)

−
(

=0︷ ︸︸ ︷
1 − e jωm e− jωm ) f̂ (−ωm)e− j (w+wm)tm

− j (ω + ωm)

= f̂ (ω)

(
1 − e jωm+ jω

− jω − jωm

)
,

where we identify the right-hand side factor as β̂ jωm (−ω)

where β̂α(ω) = 1−eα− jω

jω−α
is the Fourier transform of the first-

order exponential B-spline with parameter α. This proves that
I∗ωm ,ϕm

,∗
jωm

f = β∨
jωm

∗ f for any ωm ,ϕm ∈ R. Using the
property that the order of application of stable convolution
operators such as ,∗

jωm
can be changed (commutativity), we

start with I∗ωn0 ,ϕn0
,∗

jωn0
f and progressively work our way

outwards to show that I∗ω1,ϕ1
· · · I∗ωn0 ,ϕn0

,∗
jωn0

· · · ,∗
jω1

ϕ =

β∨
jω1

∗ · · ·∗β∨
jωn0

∗ϕ, which, thanks to (16), yields the desired
result. The second formula is established in the same way.

The interpretation of the second relation is that the differ-
ence operators , jωn annihilate the sinusoidal components that
are in the null space of (D− jωnI) so that the effect of Iωm ,ϕm

becomes indistinguishable from that of the non-regularized
shift-invariant inverse Iωm . By combining this result with (17),
we obtain a stable LSI substitute for the original inverse
operator with the added benefit of a much better localization.

Corollary 1: Let L−1 be the N th-order (not necessarily
shift-invariant) inverse operator specified by (9). Then,

L−1∗,∗
α
ϕ = β∨

L ∗ ϕ

,αL−1ϕ = βL ∗ ϕ,

where β∨
L (t) = βL(−t) and βL is the generalized B-spline

kernel

βL(t) = QM (D)βα(t) =

M∑

m=0

bmDmβα(t). (18)

The latter is a linear combination of derivatives of the N th-
order exponential B-spline βα(t) with parameter vector α =

(α1, . . . ,αN ), and is therefore compactly-supported over the
time-interval [0, N].

The intuition behind this result is that we are localizing
the system’s response by canceling the poles of its frequency
response; i.e., a pole at jω = αn is neutralized by a corre-
sponding zero of 1− eαn− jω (the frequency response of ,αn ).

B. Generalized Increments and Decoupling

of Sparse Processes

We shall now see that the application of the N th-order
difference operator ,α = ,α1 · · · ,αN has the ability to
partially decouple s. This results in the natural extension of
the classical notion of increments for Brownian motion and
Lévy processes (cf. [1, Section VI.B]).

Proposition 1 (Generalized Increment Processes): Let s be
a generalized stochastic process whose characteristic form is
P̂s(ϕ) = P̂w(L−1∗ϕ) where P̂w and L−1 are specified by
(13) and (9), respectively (differential system of order N with
pole vector α and driving operator QM (D) =

∑M
m=0 bmDm ).

The corresponding generalized increment process

u(t) = ,αs(t)

is well-defined and stationary (irrespective of any stability
consideration). Its characteristic form is given by P̂u(ϕ) =

P̂w(β∨
L ∗ ϕ) where βL is the generalized B-spline kernel

defined by (18).
The result is also valid for all the variants of L−1∗ described

in the appendix, irrespective of the actual choice of boundary
conditions (cf. Eqs. (37) and (38)), since ,α removes the
signal components in the null space of L.

Proof: Corollary 1 implies that ,αL−1w = βL ∗ w.
Since the convolution with the compactly-supported kernel
βL defines a continuous LSI operator on S, we can invoke
[1, Proposition 3] with ρL = βL, which yields the desired
result.

Since the generalized B-spline βL is Hölder-continuous of
order N − M − 1, the above characterization allows us to
infer that the two processes u and s are (N − M − 2) times
differentiable in the classical sense. In fact, the processes
are well-defined pointwise as soon as N > M , which is
the minimum requirement for continuity in the mean-square
sense [28]. The other direct implication is that the samples
of the generalized increment process, u(t1) and u(t2), are
independent as soon as |t1 − t2| > N (due to the finite support
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property of the exponential B-spline βL). This means that
working with the increment process u(t) has the remarkable
feature of completely suppressing long-range dependencies.

Property 1 (Reduction of Correlation Distances): Let s be
a generalized stochastic process whose characteristic form is
P̂s(ϕ) = P̂w(L−1∗ϕ) where P̂w is a white noise functional
(13) and where L−1∗ is given by (37) (differential system of
order N with pole vector α and driving operator QM (D) =∑M

m=0 bmDm). Then, the correlation form of u(t) = ,αs(t)

can be written as

Bu(ϕ1,ϕ2) = E{⟨ϕ1, u⟩⟨ϕ2, u⟩}

= σ 2
0 ⟨β∨

L ∗ ϕ1,βL
∨

∗ ϕ2⟩,

where βL is the generalized B-spline defined by (18). The
corresponding covariance function is

Ru(t1, t2) = E

{
,αs(t1) · ,αs(t2)

}

= σ 2
0

(
βL ∗ β∨

L

)
(t2 − t1)

which vanishes for (t2 − t1) /∈ [−N, N].
The above result is universal in the sense that it does not
distinguish between the stable and unstable cases; it can handle
N th-order systems in full generality.

IV. CONNECTION WITH DISCRETE-TIME

STOCHASTIC PROCESSES

We will now show that there is an elegant connection
between the continuous-time and discrete-time formulations
of stochastic processes which is analogous to the connection
that can be drawn between the corresponding deterministic
linear system theories [25], [29]. The story in a nutshell is
as follows: continuous-time processes are ruled by differential
equations, while their discrete counterparts are solutions of
difference equations. The equations and correlation structures
are linked functionally through some generalized compactly-
supported B-splines. The use of these B-splines also greatly
facilitates the transposition of the methods of solution from
one domain to the other.

A. Discrete-Domain Notations

Discrete processes and sequences are indexed using square
brackets (e.g, s[k], h[k]) to differentiate them from their
continuous counterparts (e.g., s(t) and h(t)). A sequence h[k]

of slow growth (i.e., h[k] does not grow faster at infinity
than a polynomial of k) is characterized by its z-transform
H (z) =

∑
k∈Z

h[k]z−k , which yields the discrete-time Fourier
transform for z = e jω. If h[k] = h(t)|t=k is the sampled
version of the continuous function h(t) with sufficient decay,
then one can relate their discrete and continuous-time Fourier
transforms using Poisson’s summation formula: H (e jω) =∑

n∈Z
ĥ(ω + 2πn).

The localization operator ,α in Proposition 1 is transfer-
able to the discrete domain; its discrete impulse response,
denoted by dα[k], is the inverse Fourier transform of
Dα(e jω) =

∏N
n=1(1 − eαn− jω), which coincides with the

frequency response of the continuous-domain operator. The
corresponding discrete notation is ,αs[k] = (dα ∗ s) [k] =

∑
n∈Z

dα[n]s[k − n], where the use of the square brackets
indicates that the convolution operation is discrete.

B. Sampled Processes

Here we will consider (ordinary) discrete stochastic
processes that are sampled versions of the generalized ones:

s[k] = ⟨s, δ(· − k)⟩ = s(t)|t=k

where s(t) is the continuous-time solution of (3). It should
be clear now that the statistics of this discrete process are
completely specified by P̂s(ϕ) in (11). For instance, we
may obtain its K th-order characteristic function E{e j ⟨s,ω⟩} =∫
RK ps(s)e

j ⟨s,ω⟩ ds with s = (s[k], s[k −1], . . . , s[k − K +1])

and ω = (ω1, . . . ,ωK ) for any finite K by substituting
ϕ = ω1δ + ω2δ(· − 1) + · · · + ωK δ(· − K + 1) in the
characteristic form. Likewise, one can determine its correlation
sequence by sampling the continuous-time correlation function
(as given by [1, Property 1]) on the integer grid: Rs [k1, k2] =

Rs(t1, t2)|t1=k1,t2=k2
.

Our objective is now to relate these quantities to the
Hermitian-symmetric Green’s function of the operator LL∗.
The latter, which is the distributional solution of LL∗ρLL∗ = δ,
can formally be specified as

ρLL∗(t) =

∫ +∞

−∞

e jωt

|L̂(−ω)|2

dω

2π
(19)

where L̂(ω) (resp., |L̂(−ω)|2) is the transfer function of
the LSI whitening operator L (resp., LL∗). Note that in the
singular case, the above integral has to be interpreted as a
finite part (F.P.) integral in the sense of Hadamard. In the event
where L−1 is LSI BIBO-stable with impulse response ρL, then
ρLL∗ = ρL ∗ ρ∨

L . However, in the unstable case, the latter
convolution product is generally undefined; e.g., ρDD∗(t) =

F−1
{

1
|ω|2

}
(t) = − 1

2 |t| ̸= ( [0,+∞) ∗ (−∞,0])(t) where the
right-hand side expression is not converging anywhere. Next,
we make the link with exponential splines by expressing the
Green’s function as a weighted sum of augmented B-splines:

ρLL∗(t) =
∑

k∈Z

qα[k]βLL∗(t − k) (20)

where qα[k] is the Hermitian-symmetric sequence whose
discrete-time Fourier transform is

Qα(z) =
1

|Dα(e− jω)|2
=

1

|,̂α(−ω)|2
.

The augmented B-spline kernel βLL∗ is given by

βLL∗ = βL ∗ β∨
L = ,α,∗

α
ρLL∗ (21)

where βL is defined by (18). Establishing (20) is a simple
matter of factorization in the Fourier domain. What is not
so obvious at first sight is that the above entities are always
well-defined, irrespective of any stability considerations. The
generalized exponential B-spline βLL∗(t), in particular, is
compactly-supported in [−N,+N] and guaranteed to yield
a stable expansion (Riesz basis property) [29, Theorem 1].
ρLL∗(t) and qα[k], on the other hand, are both infinitely-
supported; they are either exponentially-decaying (stable sce-
nario with Re(αn) ̸= 0) or, at worst, of slow (polynomial)
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growth when n0 > 0. Our final theoretical tool is a corre-
sponding exponential spline interpolation mechanism.

Property 2 (Exponential Spline Interpolation): Let f (t) be
a function (at most of slow growth) that is included in the
exponential spline space VLL∗ = span{βLL∗(t − k)}k∈Z ⊂ S ′

where βLL∗ is specified by (21) and compactly-supported in
[−N, N]. Then,

f (t) =
∑

k∈Z

f (k)ϕint(t − k)

where ϕint(x) ∈ VLL∗ is an exponentially-decaying interpola-
tion function whose Fourier-domain expression is

ϕ̂int(ω) =
β̂LL∗(ω)

BL(e jω)

with

BL(z) =

N∑

k=−N

βLL∗(k)z−k . (22)

Proof: The statement f (t) ∈ VLL∗ is equivalent to
f (t) =

∑
k∈Z

c[k]βLL∗(t − k) where c[k] is a sequence of
(possibly slowly-growing) B-spline coefficients. By sampling
this expression at the integers and taking the z-transform,
we obtain F(z) =

∑
k∈Z

f (k)z−k = C(z)BL(z) so that
C(z) = F(z)/BL(z). The time-domain interpretation is that
c[k] = (hint ∗ f )[k] where hint is the impulse response of the
(inverse) digital filter whose frequency response is Hint(e

jω) =

1/BL(e jω). Whenever the purely-imaginary poles of 1/L̂(ω)

are such that jωn − jωm ̸= j2πk for any n ̸= m and k ̸= 0,
then βL generates a Riesz basis [29, Theorem 1], which is
equivalent to 0 < A < BL(e jω) < B for any ω ∈ R (A and B

are the lower and upper Riesz bounds of the B-spline basis).
Therefore, by Wiener’s lemma, we have the guarantee that the
sequence hint is well-defined (hint ∈ ℓ1) and exponentially-
decreasing because βLL∗(k) is compactly-supported. This leads
to the conclusion that f (t) =

∑
k∈Z

(hint ∗ f )[k]βLL∗(t − k) =∑
k∈Z

f [k]ϕint(t −k) where ϕint(t) =
∑

k∈Z
hint[k]βLL∗(t −k)

is exponentially-decaying as well. The Fourier transform of
this last expression is ϕ̂int(ω) = Hint(e

jω)β̂LL∗(ω).
We are now ready to uncover the relation between the

second-order statistical characterizations of the continuous-
time and discrete-time versions of our stochastic processes.
For simplicity, we focus on the stationary case where the
underlying N th-order system is stable (cf. [1, Proposition 3]).

Property 3 (Conversion from Discrete to Continuous):

Let s be a generalized (Gaussian or non-Gaussian) stationary
process that satisfies the N th-order stochastic differential
equation (3) with a white noise excitation. Then, the
correlation functions of the continuous-time and discrete-time
(e.g., sampled) instances of the process are linked through
the interpolation formula

rs(t) = E{s(t ′) · s(t ′ + t)} =
∑

k∈Z

rs [k]ϕint(t − k)

where ϕint(x) is specified in Property 2 and rs [k] = rs(t)|t=k .
The Fourier-domain counterpart of this expression provides the
exact link between the continuous and discrete-domain power

spectra of the process:

/s(ω) = ϕ̂int(ω)/s(e
jω).

Remark on Notation: While we are using a common symbol
to denote the continuous and discrete autocorrelation (resp.,
power spectrum) of s, we are relying on the index variables
to distinguish between the two settings. Specifically, /s(ω) =

F{rs(t)}(ω) is the Fourier transform of the continuous-time
autocorrelation function rs(t), while /s(z) is the z-transform
of the discrete-time correlation sequence rs [k] (or, equiva-
lently, the discrete-time Fourier transform if we set z = e jω).

Proof: Since the discrete process is the sampled version
of the continuous one, we have that rs [k] = rs(t)|t=k , or
equivalently, /s(e

jω) =
∑

n∈Z
/s(ω + 2πn). We also know

that rs(t) = σ 2
0 ρLL∗(t) and /s(ω) =

σ 2
0

|L̂(−ω)|2
, as a direct

consequence of the innovation model. Putting these elements
together, we find that

/s(ω)

/s(e jω)
=

1
|L̂(−ω)|2∑

n∈Z

1
|L̂(−ω+2πn)|2

, (23)

where L̂(ω) is the frequency response of the whitening filter
specified by the reciprocal of (5). We then use the B-spline
connection to show the above ratio is well-defined and equal to
ϕ̂int(ω). To that end, we consider the Fourier-domain version
of (21)

β̂LL∗(ω) =
|Dα(e− jω)|2

|L̂(−ω)|2
.

together with its periodized counterpart
∑

n∈Z
β̂LL∗(ω +

2πn) =
∑

n∈Z

|Dα(e− jω)|2

|L̂(−ω+2πn)|2
= BL(e jω) (by Poisson’s sum-

mation formula and the 2π-periodicity of Dα(e jω)). It now
suffices to express the right-hand side of (23) as the ratio of
these two entities, which yields the desired result. The main
point of this manipulation is that BL(e jω) is guaranteed to be
non-vanishing (due to suitable pole-zero cancellations), while
it is not necessarily so for the denominator of (23).

C. Discrete Increment Process

The important point that has been brought out by the above
analyses is that the present class of discrete (or continuous-
time) processes exhibit long-range dependencies due to the
infinite support of their autocorrelation function. This behavior
is further exacerbated in the non-stationary case where the
(asymptotic) decay is linear at best. Fortunately, we have
seen that there is a simple way to obtain a much better
conditioned signal by applying the localization operator ,α

(cf. Proposition 1). The good news is that this concept is
directly transposable to the discrete domain as well, and that it
substantially simplifies the statistical characterization of such
signals, irrespective of any stability considerations.

Specifically, the discrete generalized increment process of
s[k] is defined as:

u[n] = ,αs(t)|t=n =

N∑

m=0

dα[m]s[n − m] (24)
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where s(t) is a generalized N th-order stochastic process with
whitening operator L and pole vector α = (α1, . . . ,αN );
the discrete AR-type filtering coefficients on the right hand
side of (24) are given by

Dα(z) =

N∑

m=0

dα[m]z−m =

N∏

n=1

(1 − eαn z−1). (25)

Property 4 (Characterization of Discrete Increment

Process): Let u[k] be the discrete increment process
associated with a (possibly non-stationary) N th-order
generalized process whose characteristic functional P̂s(ϕ)

is given by (11) where L−1∗ is the adjoint of L−1 specified
by (9) (see also [1, Eq. (26)]). Then, u[k] is stationary with
an N th-order of dependency: pu (u[k] |{u[k − m]}m∈Z+) =

pu(u[k] |u[k − 1], . . . , u[k − (N − 1)] ). The characteristic
function of its K th-order joint probability density function
pu

(
u[k], u[k − 1], . . . , u[k − (K − 1)]

)
is given by

p̂u(ω1, . . . ,ωK ) = P̂w

(
K∑

k=1

ωkβ
∨
L (t − k + 1)

)
(26)

where βL is the generalized B-spline defined by (18). The auto-
correlation sequence of the process is compactly-supported:

rd [k] = E

{
u[k ′] · u[k ′ + k]

}
= σ 2

0 βLL∗(k)

where βLL∗(t) = (βL ∗ β∨
L )(t), while its power spectrum is

simply

/u(e jω) = σ 2
0 BL(e jω)

where BL(e jω) is defined by (22).
Proof: The result is a consequence of Proposition 1. The

pointwise specification (characteristic function of order K ) is
obtained by making the substitution ϕ = ω1δ + · · ·+ωK δ(·−

K + 1) in the characteristic form P̂u(ϕ) = P̂w(β∨
L ∗ ϕ).

The independence between u[k] and u[k ′] for any k ′ such that
|k −k ′| ≥ N then follows from the fact that the corresponding
B-splines are non-overlapping (since the support of βL is
of size N). Indeed, the generic Lévy noise functional (13)
with f (0) = 0 has the property that P̂w(ϕ1 + ϕ2) =

P̂w(ϕ1) · P̂w(ϕ2) whenever ϕ1 and ϕ1 have non-overlapping
support, which is synonymous with independence. As for the
autocorrelation sequence, it is simply the sampled version of
the one given in Property 1. Likewise, the power spectrum,
whose generic form is

/u(e jω) =
∑

n∈Z

/u(ω + 2πn)

= σ 2
0

∑

n∈Z

|β̂L(ω + 2πn)|2,

reduces to the finite sum σ 2
0

∑N
k=−N βLL∗(k)e− jωk , thanks to

the compact support of βLL∗(t).
We would like to emphasize that the statistical character-

ization of the discrete increment process in Property 4 is
complete and that it covers the full class of Gaussian and non-
Gaussian stochastic processes specified by the generic stochas-
tic differential equation (3), including the unstable scenarios
which are outside the classical theory of stationary processes.

Noteworthy is the omni-presence of the exponential B-spline
kernel βL, which has a fundamental role in all aspects of the
characterization. For instance, we observe that the argument
ϕ(t) =

∑K
k=1 ωnβ∨

L (t − k + 1) in the noise functional P̂w

in (26) actually corresponds to the generic form of a cardinal
exponential spline with the Fourier variables taking over the
role of the B-spline coefficients. Likewise, the correlation
structure is entirely specified by the integer samples of βLL∗(t)

(the autocorrelation of βL), while the power spectrum is
proportional to BL(e jω), the so-called discrete B-spline filter,
which also enters the definition of the spline interpolator in
Property 2.

The link of course is not coincidental. In spline theory, the
construction of B-splines is motivated by the desire to find the
shortest possible basis functions to represent a certain family
of spline functions. Here, the introduction of the generalized
increment process is aimed at producing a derived signal
with the simplest possible statistical structure; in particular,
the shortest dependency distance. The proposed solution is
optimal in the sense that it achieves the shortest possible
order of dependency, as a consequence of the minimal support
property of the B-spline. The localization sequence dα[k] is
obviously not arbitrary; the guiding principle is that ,α must
have the same null space as L such as to annihilate all the long-
ranging exponential/polynomial modes of L−1. Concretely,
this is achieved by mapping the continuous-domain poles of
the system into the discrete-domain zeros of Dα(z) via the
exponential map z = es (cf. Eq. (25)); this also implies that
the minimal length of dα[k] is N + 1, which puts a lower
bound of N on the size of the B-spline.

D. Discrete Innovation Models

Given that the discrete processes s[k] and u[k] are linked
through the difference equation (24), it is tempting to investi-
gate whether or not it is possible to go one step further and
specify s[k] through a discrete ARMA-type model. Ideally,
we would like to come up with an equivalent discrete-domain
innovation model that is easier to exploit numerically than
the defining stochastic differential equation (3). To that end,
we perform the spectral factorization of the discrete B-spline
kernel

BL(z) =

N∑

k=−N

βLL∗(k)z−k = B+
L (z)B−

L (z) (27)

where B+
L (z) =

∑N−1
k=0 b+

L [k]z−k = B−
L (z−1) specifies a

causal finite impulse response (FIR) filter of size N . The cru-
cial point for the argument below is that B+

L (e jω) (or, equiv-
alently BL(e jω) as in Property 2) is non-vanishing, which is
equivalent to the requirement that βL generates a valid Riesz
basis [29].

Property 5 (Stochastic Difference Equation): The sampled
process of order N with parameters (L,α) satisfies the discrete
ARMA-type whitening equation

N∑

n=0

dα[n]s[k − n] =

N−1∑

m=0

b+
L [m]e[k − m]
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where dα and b+
L are defined by (25) and (27), respectively.

The driving term e[k] is a discrete stationary white noise
(white meaning fully decorrelated or with a flat power spec-
trum). However, e[k] is a valid innovation sequence with
independent, identically-distributed samples only if the cor-
responding continuous-domain process is Gaussian, or, in full
generality (i.e., non-Gaussian case), if it is a first-order Markov
or Lévy-type process with N = 1.

Proof: Since |B+
L (e jω)| =

√
BL(e jω) is non-vanishing

and a trigonometric polynomial of e jω whose roots are
inside the unit circle, we have the guarantee that the inverse
filter whose frequency response is 1

B+
L (e jω)

is causal-stable.

It follows that /e(e
jω) = σ 2

0

∑
n∈Z

|β̂L(ω+2πn)|2

BL(e jω)
= σ 2

0 ,
which proves the first part of the statement. As for the
second part, we recall that decorrelation is equivalent to
independence in the Gaussian case only. In the non-Gaussian
case, the only way to ensure independence is by restricting
ourselves to a first-order process, which results into an
AR(1)-type equation with e[n] = u[n]. Indeed, Property 4
implies that, for N = 1, pu (u[k] |{u[k − m]}m∈Z+) =

pu(u[k]). This is equivalent to s[k] having the
Markov property since ps (s[k] |{s[k − m]}m∈Z+) =

pu(u[k]) = ps (s[k] |s[k − 1]) .
The fact that continuous-time and discrete-time ARMA

models are linked to each other is a classical result in the
theory of Gaussian stationary processes [10]. The present
contribution to the topic is: 1) to make the connection com-
pletely explicit thanks to the introduction of the localization
filter Dα(z) and the discrete B-spline kernel BL(z), and
2) the extension of the result for the non-stationary and/or
non-Gaussian scenarios.

V. NUMERICAL GENERATION OF STOCHASTIC PROCESSES

A. Determination of B-Splines

The generalized exponential B-splines were introduced in
[29] in order to establish a formal link between the continuous-
time and discrete-time theories of linear systems. These func-
tions are slightly more general than the classical ones specified
by (16), which are missing “zeros”. Since a differential LSI
system is characterized by its poles α = (α1, . . . ,αN ) and
zeros γ = (γ1, . . . , γM ) with M < N , the idea is to associate
it with an identifying exponential B-spline function:

β(α;γ )(t)

= F
−1

{(
M∏

m=1

( jω − γm)

)
N∏

n=1

1 − eαn− jω

jω − αn

}
(t). (28)

Such B-splines can be computed explicitly on a case-by-
case basis using the mathematical software described in
[29, Appendix A]; Matlab code is also available from the
authors on request. The connection with Eq. (18) is βL(t) =

bM β(α;γ )(t) where the αn and γm are the roots to the
polynomial PN (ζ ) = ζ N + aN−1ζ

N−1 + · · · + a1ζ + a0 and
QM (ζ ) = bMζ M + bM−1ζ

N−1 + · · · + b1ζ + b0, respectively.
The basic operations of the corresponding B-spline calculus
are:

• Convolution by concatenation of parameter vectors:
(β(α1;γ 1) ∗ β(α2;γ 2))(t) = β(α1:α2; γ 1:γ 2)(t)

• Mirroring by sign change: β(α;γ )(−t) = (−1)M(∏N
n=1 eαn

)
β(−α;−γ )(t + N)

• Complex-conjugation: β(α;γ )(t) = β(α;γ )(t)

• Modulation by parameter shifting: e jω0tβ(α;γ )(t) =

β(α+ jω0;γ+ jω0)(t) with the convention that j =

( j, . . . , j).

It follows that the autocorrelation B-spline βLL∗ = βL ∗ β∨
L

that is central to our formulation is given by

βLL∗(t) = b2
M

(
β(α;γ ) ∗ β∨

(α;γ )

)
(t)

= b2
M (−1)M

(
N∏

n=1

eαn

)
β(α:−α; γ :−γ )(t + N) (29)

B. Discrete Inverse Operators

We have seen that the discrete increment process has a much
simpler statistical structure than the process from which it is
derived. This is not only advantageous for the analysis of
such stochastic processes, but also exploitable for synthesis
purposes. The latter calls for a discrete operator mechanism
for inverting the difference equation (24). The technique that
we propose is in all points analogous to the continuous-
domain method presented in Section II-B. The principle is to
factorize ,α = ,αN · · · ,α1 where each individual operator
,αn actually corresponds to a discrete FIR filter with transfer
function Dαn (z) = 1 − eαn z−1.

Formally, the inverse operator of ,α is the digital filter
whose impulse response hα[k] is the inverse z-transform of

1
1−eαz−1 = −e−αz

1−e−αz
. Classical system theory tells us that such a

first-order filter is causal-stable iff. its z-domain pole z p = eα

is inside the unit circle, which is equivalent to Re(α) < 0. It is
also possible to change the domain of stability to Re(α) > 0
by switching to an anti-causal response instead of a causal
one. The corresponding definition of the impulse response is

hα[k] =

{
+[k]eαk if Re(α) ≤ 0

− +[−k − 1]eαk else

which is the sampled version of ρα(t) in (15) (if one excludes
the point of discontinuity of +(t) at t = 0). The critical
configuration is Re(α) = 0 in which case hα[k] is still
bounded—but not in ℓ1—meaning that the filter is no longer
stable.

At any rate, the main point is that ,−1
αn

x[k] = (hαn ∗ x)[k],
and that these first-order inverse filters can be implemented
recursively as:

Causal recursion for Re(αn) ≤ 0

y[k] = (hαn ∗ x)[k] = eαn y[k − 1] + x[k]

Anti-causal recursion for Re(αn) > 0

y[k] = (hαn ∗ x)[k] = e−αn (y[k + 1] − x[k + 1])

The final ingredient is the discrete counterpart of the operator
Iω0,δ specified by (8); that is, the unique right inverse of , jω0
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that sets the output signal to zero at k = 0. This operator,
which is denoted by ,−1

jω0,δ
, is given by

,−1
jω0,δ

{x}[k] = (h jω0 ∗ x)[k] − e jω0k(h jω0 ∗ x)[0]

where the second term is a properly-weighted complex sinu-
soid that is in the null space of , jω0 . For k ≥ 0, the above
formula simplifies to

,−1
jω0,δ

{x}[k] =

k∑

m=0

x[m]e jω0(k−m),

which is an expression that can also be updated recursively.
If k < 0, the summation bounds are simply interchanged.
Using the same notation and pole ordering as in Section II-B,
we are then able to specify a global right inverse of ,α as

,−1
α

= ,−1
jωn0 ,δ · · ·,−1

jω1,δ︸ ︷︷ ︸
shift-variant

,−1
αN−n0

· · · ,−1
α1︸ ︷︷ ︸

LSI part

, (30)

which are used to specify the corresponding continuous-
domain boundary conditions (10). Let s[k] = ,−1

α
r [k] where

r [k] be an arbitrary input signal. Then, the above operator
imposes the n0 boundary conditions

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

s[0] = 0
, jωn0

{s}[0] = 0
...

, jω2 · · · , jωn0
{s}[0] = 0,

(31)

while its right-inverse property ensures that ,αs[k] =

,α,−1
α

r [k] = r [k]. In the stationary case where n0 = 0 (i.e.,
Re(αn) ̸= 0, n = 1, . . . , N), we also have that ,−1

α
,αr [k] =

r [k] (left-inverse property).
A small word of caution is in order here. The above

discrete-domain boundary conditions are only equivalent to
the continuous-domain ones in (10) for n0 ≤ 1. Indeed,
it is illusory to attempt imposing exact constraints on the
derivatives of such signals if all we have at our disposal are
samples on a discrete grid. The good news, however, is that
, jωn is, by construction, the best first-order approximation of
the continuous-domain operator D − jωnI with the property
that : , jωn s(t) =

(
β jωn ∗ (D − jωnId)s

)
(t) where β jωn is

the corresponding first-order B-spline. In particular, the latter
equation ensures convergence to the exact derivatives as the
reconstruction grid gets finer (in the same way as finite
differences tend to derivatives as the step size goes to zero).

The theoretical alternative is to accept the discrete-domain
boundary conditions as they are, assuming that we can prop-
erly map them back into the continuous domain. This is
indeed feasible by extending our notion of continuous-domain
boundary conditions, as shown in the appendix. The main
point is that there is a unique right inverse of L that is
admissible (in the sense of [1, Theorem 4]) and compatible
with the “discrete” boundary conditions (31): it is described
in the last paragraph of the appendix.

C. Algorithms

1) Gaussian Case: The generation of the samples of a
generalized Gaussian random process is straightforward since

we can rely on the equivalent discrete innovation (ARMA)
model in Property 5. Given a set of parameters α (poles),
γ (zeros), and σ 2

0 (noise variance), the procedure is then as
follows:

• Computation of BL(z) and spectral factorization as
in (27).

• Generation of the innovation signal e[k] which is a
random sequence of i.i.d. Gaussian random variables with
zero mean and variance σ 2

0 .
• FIR filtering with b+

L and inversion of the model via the
application of the inverse operator ,−1

α
which may be

time-invariant or not, depending on the type of process.

2) Poisson Case: This case is slightly more difficult, but
can still be handled exactly by starting from the generalized
increment process u[k]. Here, we are using the fact that a
realization of a Poisson noise with parameter (λ; pA(a)) has
the explicit form

w(t) =
∑

n

Anδ(t − tn)

where tn are random, uniformly-distributed locations over the
real line (point process) with an average density of λ, and
where the amplitudes An are i.i.d. random variables with pdf
pA(a). If we now restrict the observation of the process over
a time interval [0, T ], the generation may proceed as follows:

• Analytical computation of the B-spline βL(t) =

bM β(α;γ )(t) using formula (28).
• Generation of the point process (tn) over the slightly

enlarged interval [−N, T + N] together with the ampli-
tude variables An . This is controlled by first drawing a
Poisson-distributed random variable which provides the
number of Dirac impulses within the interval.

• Exact computation of the corresponding discrete incre-
ment process by appropriate resampling of the B-spline
functions:

u[k] = (βL ∗ w)(t)|t=k =
∑

n

AnβL(k − tn)

• Inversion of the model via the application of the inverse
operator ,−1

α
which, again, may be time-invariant or not.

In effect, the continuous-time realization of the stochastic
process s is a non-uniform L-spline with knots at the tn . Its
explicit analytical form is s(t) = p0(t) +

∑
n AnρL(t − tn)

where p0(t) is a component that is in the null space of L and
ρL(t) is a Green’s function of L. In the stationary scenario,
p0(t) may be seen as a random component that condenses
all impulsive noise contributions from outside the generation
interval. In the non-stationary case, it has the stricter role of
enforcing the n0 boundary conditions imposed by the presence
of poles on the imaginary axis.

3) Alpha-Stable Case: Here, we can benefit from the key
property that any filtered version of an alpha-stable innovation
remains alpha-stable. Indeed, the characteristic function of the
variable X = ⟨w,ϕ⟩ where w is an SαS noise (cf. specification
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of fα(ω) in Section II-C) is given by

E{e− jω⟨w,ϕ⟩} = P̂w(ωϕ)

= exp
(
−bα∥ωϕ∥α

Lα

)

= exp
(
−bα∥ϕ∥α

Lα
· |ω|α

)

where ∥ϕ∥α
Lα

=
∫
R

|ϕ(t)|α dt is a normalization constant that
is shift-invariant; that is, ∥ϕ(·− t0)∥

α
Lα

= ∥ϕ∥α
Lα

. This implies
that X has an alpha-stable distribution, and by extension, that
any linear transformation of an alpha-stable process s is alpha-
stable as well [24], [30]. It is therefore a simple matter to
generate an alpha-stable Markov process (N = 1) whose incre-
ments are independent (cf. Property 5). The situation gets more
delicate for higher-order processes because of the necessity of
generating an alpha-stable discrete increment sequence with
an N th-order of dependency. The first approach that comes to
mind is to run an adapted version of the Gaussian algorithm
where the discrete input innovation is alpha-stable instead of
Gaussian. Since alpha-stable laws are preserved through linear
combinations, this will at least ensure that the marginals are
alpha-stable and that the second-order dependencies are the
correct ones. This discrete innovation approach, however, is
not entirely satisfactory because decorrelation is not rigorously
equivalent to independence.

The alternative approach that we propose is to use a
piecewise-constant approximation of the B-spline βL with an
oversampling factor of m:

βL,m(t) =

mN∑

k=0

βL(k/m)β0

(
m(t −

k

m
)

)
.

where β0(mt) = [0, 1
m

)(t) is a rectangular function of

size 1/m. The basic results from approximation theory
ensure that limm→∞ βL,m(t) = βL(t) pointwise and in all
L p-norms with the error decaying like 1/m (since piecewise-
constant splines have first-order of approximation). Starting
from the oversampled version of the first-order alpha-stable
increment process sd,1(k/m) =

(
β0(m·) ∗ w

)
(k/m), which is

an i.i.d. alpha-stable sequence, we are then able to compute
the samples of the discrete increment process by applying the
following convolution-like equation

(βL,m ∗ w)(t)
∣∣
t=k′ =

mN∑

k=0

βL(k/m)sd,1

(
m(k ′ −

k

m
)

)
.

The approximation can be made arbitrary close by increasing
the over-sampling factor m. The computational overhead is
essentially that of generating m times more i.i.d. random
variables as in the Gaussian algorithm. The remainder of the
procedure is the same as in the Poisson case. Note that this
algorithm is generic and applicable to other types of Lévy
innovations as well.

We conclude this section by indicating that we can also
arbitrarily change the sampling step (which had been set to
T = 1 for simplicity) via a simple rescaling of the poles,
zeros and noise variance. The main point of the argument is
that L̂(α;γ )(T ω) = T M−N L̂(α/T ;γ /T )(ω) and that the white
noise property is invariant to dilation (up to a normalization
factor).

Fig. 2. Example 1: Generation of generalized stochastic processes with
whitening operator L = D

(
pole vector α = (0)

)
: (a) B-spline functions

βL(t) = rect
(
t− 1

2

)
and βLL∗ (t) = tri(t), (b) Brownian motion, (c) Compound

Poisson process with λ = 1/32 and Gaussian amplitude distribution pA(a) =

(2π)−1/2e−a2/2, (d) SαS Lévy motion with α = 1.2.

Fig. 3. Example 2: Generation of generalized stochastic processes with
whitening operator L = D2 (

pole vector α = (0, 0)
)
: (a) B-spline functions

βL(t) = tri(t) and βLL∗ (t) (cubic B-spline), (b) Gaussian process, (c) gen-
eralized Poisson process with λ = 1/32 and Gaussian amplitude distribution,
(d) generalized SαS process with α = 1.2.

VI. ILLUSTRATIVE EXAMPLES

Examples of realizations of Gaussian versus sparse sto-
chastic processes are shown in Figs. 2–5. These signals were
generated using the algorithms described in Section V-C for
the three types of driving noises: Gaussian (panel b), impulsive
Poisson (panel c), and symmetric-alpha-stable (SαS) with
α = 1.2 (panel d).

The relevant operators are:

• Example 1: L = D (Lévy process)
• Example 2: L = D2 (second-order extension of Lévy

process)
• Example 3: L = (D − α1Id)(D − α2Id) and α =

( j3π/4,− j3π/4) (generalized Lévy process)
• Example 4: L = (D−α1Id)(D−α2Id) and α = (−0.05+

jπ/2,−0.05 − jπ/2) (CAR(2) process)

The corresponding B-splines (βL and βLL∗) are shown in the
upper left panel of each figure.

The signals that are displayed side-by-side share the same
whitening operator, but they differ in their sparsity patterns
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Fig. 4. Example 3: Generation of generalized stochastic processes with
whitening operator L = (D − α1Id)(D − α2Id) and α = ( j3π/4,− j3π/4):
(a) B-spline functions βL and βLL∗ , (b) Gaussian process, (c) generalized
Poisson process with λ = 1/32 and Gaussian amplitude distribution, (d)
Generalized SαS process with α = 1.2.

Fig. 5. Example 4: Generation of generalized stochastic processes with
whitening operator L = (D − α1Id)(D − α2Id) and α = (−0.05 +
jπ/2, −0.05 − jπ/2): (a) B-spline functions βL and βLL∗ , (b) Gaussian
AR(2) process, (c) Generalized Poisson process with λ = 1/32 and Gaussian
amplitude distribution, (d) SαS AR(2) process with α = 1.2.

which come in three flavors: none (Gaussian), finite rate of
innovation (Poisson), and heavy-tailed statistics (SαS). The
Gaussian signals are uniformly textured, while the generalized
Poisson ones are piecewise-smooth by construction.

A. Self-Similar Processes

The classical Lévy processes (Fig. 2) are obtained by
integration of white Lévy innovation; they go hand-in-hand
with the B-spline of degree 0 (rect), and its autocorrelation
(triangle function) which is a B-spline de degree 1. The
Gaussian version [Fig. 2(b)] is a Brownian motion. It is quite
rough and nowhere differentiable in the classical sense. Yet,
it is mean-square continuous due to the presence of the single
pole at the origin. The Poisson version (compound Poisson
process) is piecewise-constant, each jump corresponding to the
occurrence of a Dirac impulse. The SαS Lévy motion exhibits
local fluctuations punctuated by large (but rare) jumps, as is
characteristic for this type of process [24], [31]. Overall, it is
the jump behavior that dominates making it even sparser than
its Poisson counterpart.

The example in Fig. 3 (second-order extension of a
Lévy process) corresponds to one more level of integration
which yields smoother signals (i.e., one-time differentiable
in the classical sense). The corresponding Poisson process
is piecewise-linear, while the SαS version looks globally
smoother than the Gaussian one, except for a few sharp
discontinuities in its slope. The basic B-spline here is a
triangle, while βLL∗ is a cubic B-spline. The signals in
Figs. 2 and 3 are non-stationary; the underlying processes have
the remarkable property of being self-similar (fractals) due
to the scale-invariance of the pure derivative operators. The
Gaussian and SαS stable processes are strictly self-similar in
the sense that the statistics are preserved through rescaling.
By contrast, the scaling of the Poisson processes necessitates
some corresponding adjustment of the rate parameter λ [16].

B. Bandpass Processes

The second-order signals in Fig. 4 are non-stationary as
well, but no longer self-similar. They are real-valued, and
C1-continuous almost everywhere (pair of complex-conjugate
poles in the left complex plane). They constitute some kind of
modulated (or bandpass) counterpart of the Lévy processes
which appears to be much better suited for the modeling
of acoustic signals. As in the other examples, the Gaussian
version is looking cluttered. The Poisson signal is somewhat
stereotyped (stretches of pure oscillating regime) and not quite
as realistic looking as its SαS counterpart.

As soon as the poles are moved away from the imaginary
axis, the processes become stationary. This is illustrated in
Fig. 5 with some CAR(2) (continuous autoregressive) exam-
ples, the non-Gaussian versions of which having a marked
tendency to exhibit characteristic bursts associated with the
impulse response of the system. These latter processes are
part of the stationary CARMA family characterized by Brock-
well using an alternative stochastic integration/state-space
formulation [17].

C. Mixed Processes

One can also construct signals with a more complex struc-
ture by simple addition of independent elementary processes.
This results into a mixed process, smix = s1 +· · ·+ sM , whose
characteristic form is the product of the characteristic forms
of the individual constituents:

P̂smix(ϕ) =

M∏

m=1

P̂sm (ϕ) = exp

(∫

R

M∑

m=1

fm

(
L−1∗

m ϕ(t)
)

dt

)

where sm is some elementary process with whitening operator
Lm and Lévy exponent fm(ω). As a demonstration of concept,
we have synthesized some acoustic samples by mixing random
signals associated with elementary musical notes (pair of poles
at the corresponding frequency). These can be downloaded
from the web at http://bigwww.epfl.ch/sparse.
The Gaussian versions are diffuse, cluttered and boring to
listen to. Our generalized Poisson and SαS samples are more
interesting perceptually—reminiscent of chimes—with the lat-
ter sounding less dry and more realistic. Note that mixing does
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not gain us anything in the Gaussian case because the resulting
signal is still part of the traditional family of Gaussian ARMA
processes (this follows from Parseval’s relation and the fact

that
∑M

m=1
σ 2

0

|L̂m(−ω)|2
is expressible as an equivalent rational

power spectrum). This is not so for the non-Gaussian members
of the family, which are generally not decomposable, meaning
that the mixing of sparse processes opens up new modeling
perspectives. Interestingly, the Gaussian acoustic samples are
almost impossible to compress using mp3/AAC, while the
generalized Poisson and SαS ones can be faithfully reproduced
at a much lower bit rate.

VII. CONCLUSION

The main point of this paper has been to show that the
spline interpretation that links the continuous- and discrete-
time deterministic linear system theories has a direct coun-
terpart in the linear theory of stochastic processes. While the
connection between SDEs and stochastic difference equations
is well understood in the classical framework of Gaussian
stationary processes, it is much less so when (i) the excitation
noise is non-Gaussian, and/or (ii) when the underlying system
is unstable. We have argued that these two extensions are
essential for producing signals that are sparse—which calls
for non-Gaussian excitations—and compressible in a wavelet
basis (because self-similar processes are solutions of unstable
SDEs). Our main effort in this series of papers has been to
address these issues by setting the foundation of a general
framework that extends the bounds of the traditional theory
of Gaussian stationary processes. The good news is that our
generalized formulation leads to a simple universal conver-
sion scheme by which a stochastic differential equation is
mapped into some corresponding stochastic finite difference
equation. The cornerstone of this approach is the existence of
a compactly supported exponential B-spline, βL, which acts
as the mathematical translator between the continuous domain
operator L and its discrete version Ld. The elucidation of this
A-to-D connection has direct implications for signal synthe-
sis (generation of sparse stochastic processes) and statistical
analysis (proper specification of likelihood functions, optimal
signal estimation). Most importantly, it provides a functional
approach that facilitate the derivation of the joint statistics of
such processes, especially in the non-Gaussian cases.

While the proposed framework opens up new modeling per-
spectives, it also calls for further mathematical investigations.
In particular, more work is required to quantify the sparsify-
ing properties of wavelet-like expansions and to investigate
the existence of optimal representations for non-Gaussian
processes. We are also postulating that the smoothness prop-
erties (Hölder and Sobolev exponents) of our extended family
of CARMA processes are directly related to those of the
underlying B-splines. While this is justifyable in the Gaussian
and Poisson cases [16], [28], the details still need to be worked
out for the other brands of innovation, especially the ones
with unbounded variance (e.g., SαS) for which a mean-square
interpretation cannot be provided.

APPENDIX

GENERALIZED BOUNDARY CONDITIONS

The guiding principle for defining non-stationary processes
with generalized boundary conditions is to extend the class of
inverse operators considered in [1, Section IV-C]. To that end,
we introduce the linear operator

Iω0,ϕ0 f (t) = Iω0 f (t) − e jω0t ⟨Iω0 f,ϕ0⟩

ϕ̂0(−ω0)
, (32)

where Iω0 is the traditional shift-invariant inverse operator
specified by the inverse Fourier integral

Iω0 f (t) =

∫

R

f̂ (ω)

(
1

j (ω − ω0)
+ πδ(ω − ω0)

)
e jωt dω

2π
,

and where ϕ0(t) is some given compactly-supported function
such that ϕ̂0(−ω0) ̸= 0. We note that the above operator is
well-defined pointwise for any f ∈ L1 and that it is a right
inverse of (D − jω0Id) because the sinusoidal correction on
the right is in the null space of the operator. By design, Iω0,ϕ0

is such that it imposes the generalized boundary condition

⟨Iω0,ϕ0 f,ϕ0⟩ = 0 (33)

for any input function f .
Our next task is to show that the adjoint of this operator is

admissible. To identify I∗ω0,ϕ0
, we perform the inner-product

manipulation

⟨Iω0,ϕ0 f, g⟩ = ⟨Iω0 f, g⟩ − ⟨e jω0t , g⟩
⟨Iω0 f,ϕ0⟩

ϕ̂0(−ω0)

= ⟨ f, I∗ω0
g⟩ − ĝ(−ω0)

⟨ f, I∗ω0
ϕ0⟩

ϕ̂0(−ω0)

which, by identification with ⟨ f, I∗ω0,ϕ0
g⟩, yields

I∗ω0,ϕ0
g(t) = I∗ω0

{
g −

ĝ(−ω0)

ϕ̂0(−ω0)
ϕ0

}
(t) (34)

where I∗ω0
is the anti-causal convolution operator whose

impulse response is ρ∨
jω(t) = +(−t)e− jω0t . The right-inverse

property of Iω0,ϕ0 automatically gets transposed into a left-
inverse property for its adjoint I∗ω0,ϕ0

. Next, by using the fact

that
∫ +∞

−∞
e jω0t

(
f (t) −

f̂ (−ω0)
ϕ̂0(−ω0)

ϕ0(t)
)

dt = 0 and applying
the same technique as in the proof of [1, Proposition 2], we
show that

∣∣I∗ω0,ϕ0
f (t)

∣∣ < Cϕ0

∥ f ∥∞,r

1 + |t|r−1

for any f ∈ L∞,r (the space of functions with algebraic
decay of order r ) where Cϕ0 is a constant that solely depends
upon ϕ0. This proves that I∗ω0,ϕ0

is a continuous operator
on R (the space of rapidly-decreasing functions), and, by
implication, a continuous map from S into L p with p ≥ 1.
The same holds true for any combination (iteration) of such
elementary operators.

For completeness, we are giving the equivalent2 Fourier-
based definition of the relevant pair of inverse operators which

2The derivation of the first formula relies on the duality-product version
of Parseval’s relation: ⟨s, ϕ0⟩ =

∫
R

s(t)ϕ0(t) dt = 1
2π

∫
R

ŝ(ω)ϕ̂0(−ω) dω

where ϕ̂0(−ω) = F{ϕ0}.
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are valid for distributions as well:

Iω0,ϕ0 f (t) =

∫

R

f̂ (ω)

⎛
⎝e jωt − e jω0t ϕ̂0(−ω)

ϕ̂0(−ω0)

j (ω − ω0)

⎞
⎠ dω

2π
(35)

I∗ω0,ϕ0
f (t) =

∫

R

⎛
⎝ f̂ (ω) −

f̂ (−ω0)
ϕ̂0(−ω0)

ϕ̂0(ω)

− j (ω + ω0)

⎞
⎠ e jωt dω

2π
. (36)

Observe that both Fourier integrals are non-singular and that
we recover the formulas in [1, Table 1], as well as (8), by
setting ϕ0 = δ(· − t0) and ϕ0 = δ, respectively.

We can now replicate the construction of an admissible left-
inverse operator L−1∗ for the general N th-order differential
system in [1, Section IV-C]. In the case of an n0th-order of
singularity, the generic form of stabilized inverse operator is

L−1∗ = T∗
LSII

∗
ω1,ϕ1

· · · I∗ωn0 ,ϕn0
(37)

where TLSI is some “standard” S-continuous convolution oper-
ator. The adjoint L−1 = Iωn0 ,ϕn0

· · · Iω1,ϕ1TLSI, which is the
right-inverse of L, is then such that it imposes the generalized
boundary conditions on the output signal s = L−1w

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

⟨ϕn0 , s⟩ = 0
⟨ϕn0−1, (D − jωn0Id)s⟩ = 0

...

⟨ϕ1, (D − jω2Id) · · · (D − jωn0Id)s⟩ = 0,

(38)

for any driving term w.
Interestingly, if we select ϕn0 = δ, ϕn0−1 = β∨

jωn0
, ϕn0−2 =

β∨
( jωn0−1, jωn0 ), …, ϕ1 = β∨

( jω2,··· jωn0 ), we end up with a set
of continuous-time boundary conditions (38) that is rigorously
equivalent to the “discrete” one in (31). Since the specification
of boundary conditions is somewhat arbitrary anyway, this is
clearly our preferred choice. It has the advantage of ensuring
a perfect compatibility between the continuous and discrete-
domain specifications of these processes.
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