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ABSTRACT 

In this paper, the segregated SIMPLE algorithm and its variants are reformulated, using 

a collocated variable approach, to predict fluid flow at all speeds. In the formulation, a 

unified, compact, and easy to understand notation is employed. The SIMPLE, 

SIMPLER, SIMPLEST, SIMPLEM, SIMPLEC, SIMPLEX, PRIME, and PISO algorithms 

that are scattered in the literature and appear to a non-versed CFD user as being 

unrelated, are shown to share the same essence in their derivations and to be equally 

applicable for the simulation of incompressible and compressible flows. Moreover, the 

philosophies behind these algorithms in addition to their similarities and differences are 

explained.  
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NOMENCLATURE 

.,a,a EP
φφ Coefficients in the discretized equation for φ. 

φ
Pb  Source term in the discretized equation for φ. 

Cρ Coefficient equals to 1/RT. 

fd̂  Covariant unit vector (i.e. in the direction of ). fd

][D φ  The D operator. 

][D~ φ  The modified D operator. 

][φD  The vector form of the D operator. 

][~ φD  The vector form of the modified D operator 

Ff Convective flux at cell face 'f'. 

ff Interpolation factor. 

H[φ] The H operator. 

H[φ] The vector form of the H operator. 

][H~ φ   The modified H operator. 

][~ φH   The vector form of the modified H operator. 

i Unit vector in the x-direction. 

j Unit vector in the y-direction. 

P Pressure. 

φQ  Source term in the conservation equation for φ. 

R Gas constant. 

RM Momentum residual. 

fŝ  Contravariant unit vector (i.e. in the direction of ). fS

fS  Surface vector. 

T Temperature. 
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t Time. 

u, v Velocity components in the x- and y- directions. 

fU  Interface flux velocity ( ) . ff .Sv

V Cell volume. 

v Velocity vector (ui + vj). 

x, y Cartesian coordinates. 

GREEK SYMBOLS 

α Under-relaxation factor. 

β Thermal expansion coefficient.  

δt Time step. 

∆[ φ] The ∆ operator. 

φ Dependent variable. 

φf  Scalar value at cell face 'f'. 

Φ Dissipation term in energy equation. 

γ Scaling factor. 

Γφ Diffusion coefficient for φ. 

fκ  Space vector equal to ( ) fff Sˆˆ dn γ−  

µ Viscosity. 

ρ Density. 

b,a  The maximum of a and b. 

SUBSCRIPTS 

e, w, . Refers to the east, west, … face of a control volume. 

E,W,.. Refers to the East, West, … neighbors of the main grid point. 
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f Refers to control volume face f. 

F Refers to main grid point F. 

P Refers to the P grid point. 

SUPERSCRIPTS 

C Refers to convection contribution. 

D Refers to diffusion contribution. 

(n) Refers to value from the previous iteration. 

sx Refers to SIMPLEX. 

x Refers to component in x-direction. 

y Refers to component in y-direction. 

φ Refers to dependent variable. 

*, **, .. Refers to first, second, … updated value at the current iteration. 

° Refers to values from the previous time step. 

‘ Refers to correction field. 



INTRODUCTION 

Over the last two decades important advances in Computational Fluid Dynamics (CFD), 

pertaining to the development and maturity of solution algorithms, have been achieved. 

In this work, a solution algorithm, such as the SIMPLE [1,2] algorithm, denotes the 

procedure used to resolve the coupling that arises in the solution of Navier-Stokes 

equations between velocity, density, and pressure. Many difficulties connected with 

these algorithms have been resolved and better insight gained. In specific, work has 

been directed towards settling a number of pending issues related to the choice of 

primitive variables (density-based versus pressure based), the grid arrangement 

(staggered versus collocated arrangement), and the solution approach (semi-direct 

versus segregated approach). Developments in these areas are briefly reviewed next.  

In the choice of primitive variables, density-based algorithms, in which the continuity 

equation acts as an equation for density while pressure is obtained from the energy 

(enthalpy) and state equations, have been successfully used in the simulation of highly 

compressible flows. For low Mach number flows, however, as small disturbances in 

density result in large variations in the pressure field, density-based algorithms become 

unstable and their convergence rate greatly diminishes. Moreover, despite the 

extension of this class of algorithms to predicting incompressible flows through the use 

of the so-called pseudo or artificial compressibility technique [3,4,5], the difficulties 

encountered in efficiently avoiding the stiff solution matrices generated by these 

methods have led a number of researchers [6,7,8,9,10] to work on extending the 

pressure-based algorithms, originally developed to solve incompressible flows, to this 

class of flows, thus encompassing the entire subsonic to hypersonic spectrum.  

 



A Unified Formulation of the Segregated Class of Algorithms for Fluid Flow at All Speeds 6 

With pressure-based solution algorithms, two different approaches have been followed 

that are denoted in the literature by the semi-direct approach and the segregated 

approach, respectively. In the semi-direct method, first proposed by Caretto et al. [11], 

the discretized forms of the momentum and continuity equations are linked together 

and the resulting system of equations are solved simultaneously. This technique 

guaranties a close connection between the velocity components and the pressure, 

which enhances the convergence rate and hence the efficiency of the method. 

However, the memory required to store the various coefficients at all grid nodes is often 

prohibitive, particularly for multidimensional and multiphase flows. This storage problem 

can be alleviated by subdividing the domain into parts and solving the system of 

equations over each sub-domain separately. These so-called sub-domain solvers, 

which degenerate to point solvers when the domain is confined to one volume, suffer a 

connectivity problem and require iterations among the various parts of the domain, 

leading to a drastic loss of the convergence rate [12,13,14]. In the second much more 

popular segregated approach, the discretized forms of the various differential equations 

are solved separately, but over the whole domain. This has the advantage of requiring 

considerably less computer storage than the semi-direct method in addition to providing 

the flexibility of easily solving additional partial differential equations (such as 

turbulence kinetic energy, turbulence dissipation rate, concentration of chemical 

species, etc…) when needed. In this technique, while the velocity components are 

obtained from the corresponding momentum equations, there is no apparent equation 

governing pressure. To derive a pressure or an equivalent pressure-correction 

equation, the discretized forms of the continuity and momentum equations are 

combined together. Moreover, for compressible flows, density is replaced by pressure 

through the equation of state. For an incompressible flow, this pressure or pressure-
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correction equation is elliptic while for a compressible flow it is hyperbolic. Once the 

pressure (or pressure correction) field is calculated the velocity and density fields are 

updated to satisfy the continuity equation.  Hence, in compressible flow simulations the 

pressure plays a dual role by acting on both the density and the velocity through the 

equation of state and momentum conservation, respectively, so that mass conservation 

is satisfied. Obviously, for low speed flow, the pressure gradient required to drive the 

velocities through momentum conservation is of such magnitude that the density is not 

significantly affected and the flow can be considered nearly incompressible. In the 

hypersonic limit where variations in velocity become relatively small as compared to the 

velocity itself, the changes in pressure do significantly affect density.  In fact, in this 

limit, the pressure can be viewed to act on density alone through the equation of state 

so that mass conservation is satisfied [6]. This dual role played by the pressure field 

explains why pressure-based algorithms have been applied with success to both 

incompressible and compressible flows.  

The cell-centered or collocated variable scheme has been used quite successfully with 

density-based algorithms. With pressure-based algorithms however, the use of this grid 

layout is not as straightforward. While the momentum equations link the velocity to the 

respective pressure gradients, the continuity equation, apparently having no direct link 

to pressure, acts as a constraint on the velocity field. Consequently, the convergence 

and stability of pressure-based algorithms depend largely on how the pressure 

gradients and velocities are evaluated in the continuity and momentum equations. Early 

attempts to use collocated variables in pressure-based algorithms failed to give 

converged solutions, producing spurious oscillations, and resulting in the so-called red-

black checkerboard splitting of the pressure field [1]. This undesirable behavior stems 

from the linear interpolation practice used in evaluating the velocity at the control 
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volume faces in the continuity equation which causes the velocity there to be related to 

the pressure difference between two alternating, rather than consecutive, nodes. The 

use of staggered grids, first proposed by Harlow and Welsh [15], in which pressure is 

stored at the control volume center and velocities at the cell faces, removes the need 

for interpolation of pressure in the momentum equations and of velocity in the continuity 

equation. This is a considerable advantage and hence staggered grids became very 

popular and have been used with great success to solve a wide range of problems in 

Cartesian, polar, and also more general orthogonal coordinates. However, the primary 

disadvantage of the staggered grid arrangement is the greater geometrical, and related 

mathematical, complexity associated with the use of different grid systems for the 

various variables that becomes overwhelming in curvilinear coordinates. Another 

disadvantage of the staggered grid approach is related to the choice of the 

contravariant, covariant, or even Cartesian velocity components at the control volume 

faces [16]. A better solution to avoid the checkerboard splitting of the pressure field was 

proposed independently, at the beginning of the 80s, by several workers through the 

use of a special interpolation procedure for evaluating the control volume face 

velocities. Depending on the path followed, two collocated methods have been devised 

that are denoted in the literature by the Pressure-Weighted Interpolation Method 

[17,18,19,20] (PWIM) and the Momentum-Weighted Interpolation Method 

[21,22,23,24,25] (MWIM), respectively. Both methods reconstruct the momentum 

equations at the cell faces by interpolating the coefficients at the cell centers.   

It is apparent that while decisions on the above mentioned points at a time seemed 

difficult, the direction followed by the CFD community (in connection with the Finite 

Volume Method (FVM)) is now much more distinct. Although the semi-direct versus 

segregated approach dichotomy is still not clearly resolved, especially with the 
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increasing use of multigrid techniques [8,26,27,28,29], it is now widely believed that 

collocated pressure-based solution algorithms for predicting fluid flow at all speeds are 

optimum in the use of resources. Moreover, the segregated approach when combined 

with multigrid acceleration techniques, at least for the near future, still represents the 

most efficient approach. 

Within this context, a large number of solution algorithms [1,2,30,31,32,33,34,35,36,37] 

have been proposed. The first of these algorithms was the SIMPLE (Semi-Implicit 

Method for the Pressure Linked Equation) algorithm of Patankar and Spalding [1,2] 

developed in the late 60’s beginning 70’s. Over the years, a number of modifications to 

the SIMPLE algorithm have been suggested with the aim of improving the robustness 

and/or convergence rate. The SIMPLER (SIMPLE Revised) algorithm of Patankar [1] 

proposed in 1981, the SIMPLEC (SIMPLE Consistent) algorithm of Van Doormaal and 

Raithby [30] proposed in 1984, the SIMPLEST algorithm (SIMPLE ShorTened) of 

Spalding [31], the SIMPLEX algorithm of Van Doormal and Raithby [32], the SIMPLEM 

algorithm (SIMPLE-Modified) of Acharya and Moukalled [33], The PISO (Pressure 

Implicit with Split Operator) algorithm of Issa [34], the PRIME (PRessure Implicit 

Momentum Explicit) algorithm of Maliska and Raithby [35] are the most important 

attempts to improve on the original solution algorithm. Sometimes minor changes were 

introduced to these algorithms such as in the MSIMPLEC [36], MPISO [36], 

SIMPLESSEC [37], and SIMPLESSE [37] algorithms.  

These SIMPLE-like algorithms, scattered in the literature using different notation and 

appearing to a non-versed CFD user as being unrelated, in fact, are very similar and 

share the same essence in their derivations. Thus, the main objective of this work is to 

derive these algorithms using a unified, compact, and easy to understand notation that 

can be expanded systematically to yield the coefficients of the pressure correction 
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equation, hence facilitating the implementation of these algorithms for new CFD users. 

In the process, the philosophies behind these algorithms in addition to their similarities 

and differences are explained. Moreover, because they were originally developed for 

incompressible flow calculations, the majority of these algorithms has not yet been 

extended to simulate hypersonic flows (compressible), even though such extension has 

been successfully applied to the original SIMPLE solution algorithm [6,8,10,17]. 

Therefore, a second objective of this work is to extend all above mentioned algorithms 

to solve for fluid flow at all speeds, and to demonstrate in so doing that the 

incompressibility limitation is not inherent to these algorithms. 

In what follows the governing equations for compressible flow are presented and their 

discretization outlined so as to lay the ground for the derivation of the pressure and 

pressure correction equations, which are developed using a unified notation and shown 

to be equivalent mathematically. Moreover, the use of a unified notation also helps in 

understanding the importance of the different influences affecting the convergence 

properties of the various algorithms. However, it should be stressed that the purpose of 

the paper is not to compare the relative performance of the different SIMPLE-like 

algorithms, rather, the aim is to unify their formulation.  

GOVERNING EQUATIONS 

The equations governing the flow of a two-dimensional compressible fluid are: the 

continuity equation, the momentum equations, and the energy equation. This set of 

non-linear, coupled equations is solved for the unknowns ρ, v, T and P. In vector form, 

these equations may be written as: 

( ) 0
t

=ρ⋅∇+
∂
ρ∂ v  (1) 
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( ) ( ) ( vvvvv
⋅∇µ∇+∇µ⋅∇+−∇=ρ⋅∇+

∂
ρ∂

3
1P )

t
)(  (2) 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

+Φ+⎥⎦
⎤

⎢⎣
⎡ ⋅∇−⋅∇+

∂
∂

β+∇⋅∇=ρ∇+
∂
ρ∂ qPP

t
PTTk

c
1)T(

t
)T(

p

&vvv.  (3) 

where  

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

µ=Φ 2
222

3
2

x
v

y
u

y
v

x
u2 .v  (4) 

and β the thermal expansion coefficient which is equal to 1/T for an ideal fluid. In 

addition to the above differential equations, an auxiliary equation of state relating 

density to pressure and temperature (ρ=f(P,T)) is needed. For an ideal fluid, this 

equation is given by: 

PC
RT
P

ρ==ρ  (5) 

where R is the gas constant. 

A review of the above differential equations reveals that they are similar in structure.  If 

a typical representative variable is denoted by φ, the general differential equation may 

be written as, 

( ) ( ) φφ +φ∇Γ⋅∇=φρ⋅∇+
∂
ρφ∂ Q
t

)( v  (6) 

where the expressions for Γφ and Qφ can be deduced from the parent equations.  The 

four terms in the above equation describe successively unsteadiness, convection (or 

advection), diffusion, and generation/dissipation effects. In fact, all terms not explicitly 

accounted for in the first three terms are included in the catchall source term Qφ. 

FINITE VOLUME DISCRETIZATION 

The general transport equation (Eq. (6)) is discretized using the control volume 

approach. In this method, the solution domain is divided into a number of control 
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volumes, each associated with a main grid point P (Fig. 1). The discretized form is 

obtained by first integrating the general transport equation over the control volume 

shown in Fig. 1 and then reducing the integrated equation into an algebraic equation by 

expressing the variation in the dependent variable and its derivatives, using 

interpolation profiles, in terms of the grid point values. This results in the following 

algebraic equation linking the value of the dependent variable at the control volume 

center to the neighboring dependent variable values: 

φφφ +φ=φ ∑ P
)P(NB

NBNBPP baa  (7) 

In the above equation,  are the coefficients multiplying the value of φ at the 

neighboring nodes NB(P)=(E,W,N,S) surrounding the central node P,  is the 

coefficient of φ

φ
NBa

φ
Pa

P, and  contains all terms that are not expressed through the nodal 

values of the dependent variable. An equation similar to Eq. (7) is obtained at every 

grid point in the domain and the collection of these equations form a system of 

algebraic equations that is solved to obtain the φ field. Since the coefficients in these 

equations are in general dependent on φ, an iterative solution scheme should be 

employed for handling this non-linearity. During the iterative process, it is often 

desirable to slow the changes, from iteration to iteration, in the values of the dependent 

variable.  This process is called under-relaxation. It is an important tool that prevents 

divergence of the iterative solution for strongly nonlinear problems, as is the case here. 

If  and φ

φ
Pb

*
Pφ p are the values from the previous and current iterations, respectively, then 

Eq. (7) can be written as 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

φ−
+φ

+φ=φ φ

φφ∑
*
P

P

)P(NB
PNBNB

*
PP a

ba
 (8) 

In the above equation, the underlined term represents the change in φp produced by the 
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current iteration. This change can be varied by introducing and under-relaxation factor 

α (0≤α≤1), so that  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

φ−
+φ

α+φ=φ φ

φφ∑
*
P

P

)P(NB
PNBNB

*
PP a

ba
 (9) 

or 

( ) *
P

P

)P(NB
PNBNBP

P a1baa
φ

α
α−++φ=φ

α

φ
φφ

φ

∑  (10) 

At the state of convergence,  and φ*
Pφ p are equal and the original equation is satisfied. 

There are no general rules for choosing the optimum value of α and a suitable value for 

a given problem is usually found from exploratory computations.   Equation (10) can be 

rewritten in the form of equation (7) by redefining  and  as follows: φ
Pa φ

Pb

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

φ
α

α−+←

α
←

φ
φφ

φ
φ

*
P

P
PP

P
P

a1bb

aa
 (11) 

THE SEGREGATED APPROACH FOR SOLVING FLOW PROBLEMS 

The need for a solution algorithm arises in the simulation of flow problems because a 

scalar equation does not exist for pressure. Rather, the pressure field acts indirectly on 

the velocity field to constraint it to satisfy the continuity equation. Hence, if a segregated 

approach is to be adopted, coupling between the u, v, ρ, and P primitive variables within 

the continuity and momentum equations will be required. Evidently, the whole set of 

equations could be solved directly (after linearization) since the number of equations 

equals the number of unknowns. However, the computational effort and storage 

requirements needed by such an approach are often prohibitive, particularly for 

multidimensional and multiphase flows. This has forced researchers to seek less 
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expensive methods and resulted in the development of the various segregated solution 

algorithms.   

The segregated approach is iterative in nature and involves a predictor and a 

corrector step. In the predictor step, the velocity field is calculated based on a 

guessed or estimated pressure field. In the corrector step, a pressure (or a pressure-

correction) equation is derived and solved. Then, the variation in the pressure field is 

accounted for within the momentum equations by corrections to the velocity and density 

fields.  Thus, the velocity, density, and pressure fields are driven, iteratively, to better 

satisfying the momentum and continuity equations simultaneously and convergence is 

achieved by repeatedly applying the above-described procedure. 

Before deriving the pressure or pressure correction equation, the discretized 

momentum equations are first written in the following notationally more suitable form: 

( )

( ) .j

.i

P
v
P

)P(NB
NB

v
NBP

v
P

P
u
P

)P(NB
NB

u
NBP

u
P

PVbvava

PVbuaua

∇−+=

∇−+=

∑

∑
 (12) 

This form can be simplified to 

[ ]
[ ]

( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧

∇
∇

⎭
⎬
⎫

⎩
⎨
⎧

−=
⎭
⎬
⎫

⎩
⎨
⎧

−
⎭
⎬
⎫

⎩
⎨
⎧

.j

.i

P

P

P

P

P

P

P

P

P
P

D[v]0
0D[u]

vH
uH

v
u

 (13) 

where  

( ) [ ]
φφ

φφ

=φ
+φ

=φ∇=∇
∑

∫
P

P
P

)P(NB
PNBNB

P
V

P a
V][D

a

ba
HPdV

V
1P       (14) 

In the above equations, V is the volume of cell P, and the subscripts e, w, n, and s refer 

to values at the east, west, north, and south faces of the control volume (Fig. 1). 

Defining the vector forms of the above operators as, 

[ ] ( ) ( )
( )

( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

∇

∇
=⎥

⎦

⎤
⎢
⎣

⎡
∇
∇

=∇⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

y
P

x
P

P

P
P

P

P
P

P

P
P

P

P
P
P

P
]v[D0
0]u[D

]v[H
]u[H

.j

.i
DvH  (15) 

the momentum equations in vector form become 
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( )PPPP P][ ∇−=− DvHv  (16) 

For later use, modified forms of the H and D operators are defined as follows: 

[ ] [ ]
P

P
P

P

P
P

P

)P(NB
NBNB

P ]1[~1
~and

]v[H~
]u[H~~and

a

a
H~

H
DDvH

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

φ
=φ φ

φ∑
 (17) 

Since an equation for pressure will be derived by combining momentum and continuity, 

the discretized form of the continuity equation is needed and is obtained as (Fig.1):  

( )

( ) ( ) 0d.V
t

0dVdV
t

S

PP

VV

=ρ+
δ

ρ−ρ

=ρ⋅∇+
∂
ρ∂

∫

∫∫
°

Sv

v

 (18) 

which can be written as 

( ) [ ]

( ) [ ] 0UV
t

0.V
t

P
PP

P
PP

=ρ∆+
δ

ρ−ρ

=ρ∆+
δ

ρ−ρ

°

°

Sv
 (19) 

where  

snwePfff ][andU φ+φ+φ+φ=φ∆= .Sv  (20) 

For the calculation of the mass fluxes across the control volume faces and for checking 

mass conservation, the values of the velocity components are needed there.  In order 

to avoid oscillations, which may result if a simple linear interpolation is used, a special 

interpolation practice has to be employed. In this work, the MWIM is followed [23]. The 

basis for the interpolation procedure are the discretized momentum equations at the 

control volume centers, as given by equation (16) where the pressure source term has 

been taken out of the Qφ term and shown explicitly.  To evaluate velocities at the control 

volume face f, terms in equation (16) are selectively interpolated and evaluated at the f 

location to yield: 

( )ffff P][ ∇−=− DvHv  (21) 
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where the over bar denotes a linear interpolation between the two control volumes 

straddling the surface f. This equation, very similar to equation (16), may be viewed as 

a pseudo-momentum equation at the control volume face. Since the mass fluxes are 

needed at the control volume faces, rather than the velocity components, it is the value 

of Uf that should be calculated there. Thus, 

( ) ffffffff P][U .SD.SvH.Sv ∇−==  (22) 

f][vH and fD are evaluated using the following relations: 

( )
( ) FfPff

FfPff

][f1][f][

][f1][f][

vHvHvH

vDvDvD

−+=

−+=
 (23)  

where ff denotes the interpolation factor between the main grid points P and F. 

Moreover, the term ( ) ffP .S∇ is discretized using the method described in Zwart et al. 

[38] according to which it is decomposed into: 

( ) ( ) ( ) ( ) ( ) ( )( )[ ] fffffffffff SˆˆPˆPSˆPP dn.d.n..S γ−∇+γ∇=∇=∇  (24) 

where ( )fP∇ is the average of the adjacent cell pressure gradient, and (Fig. 2) are 

the contravariant (surface vector) and covariant (curvilinear coordinate) unit vectors 

respectively , and γ is a scaling factor. This factor is chosen such that it is equal to 1 on 

orthogonal meshes in order for the method to collapse to classical stencils [38,

fn̂ fd̂

39]. With 

that constraint, the expression for γ on structured meshes is: 

ff

ff

ff
f

dS
ˆˆ

1
.dSd.n

==γ  (25) 

defining the space vector  as: fκ

( )( ) jidnκ y
f

x
fffff Sˆˆ κ+κ=γ−=  (26) 

the expression for becomes, ( ) ffP .S∇

( ) ( ) ( ) ( ) ( ji.
.dS

d..S y
f

x
fff

ff

ff
ffff PSdSˆPP κ+κ∇+∇=∇ ) (27) 
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In this form, the term ( ) ( )ff
ˆP d.∇ represents the pressure gradient in the direction of the 

coordinate line joining P and F (see Figure 2). Therefore, the above equation can be 

rewritten as: 

( ) ( ) ( ji.
.dS

.S y
f

x
fff

ff

ff

f

PF
ff PSdS

d
PPP κ+κ∇+

−
=∇ ) (28) 

and upon simplifying, it reduces to: 

( ) ( ) ( ) ( ji.
.dS
.SS.S y

f
x
ff

ff

ff
PFff PPPP κ+κ∇+−=∇ ) (29) 

Substituting the various terms in equation (22) by their equivalent expressions, the 

following is obtained: 

[ ] [ ] ( )

( ) ( )ji.

.dS

.SS.

y
f

x
ff

f

f

PF
ff

ff

f

fy
f

x
ffff

P
]v[D0

0]u[D

PP
]v[D0

0]u[D
SS[v]H[u]HU

κ+κ∇⎥
⎦

⎤
⎢
⎣

⎡

−−⎥
⎦

⎤
⎢
⎣

⎡
−=

 (30) 

or 

( ) [ ] ( )

( )
( )

[ ]y
f

x
fy

f

x

f

f

f

PF
ff

y
f

x
fy

f

x
f

f

fy
ff

x
fff

P

P
]v[D0

0]u[D

PP1SS
S

S
]v[D0

0]u[D
S[v]HS[u]HU

κκ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∇

∇
⎥
⎦

⎤
⎢
⎣

⎡

−−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−+=

.

.dS
.

 (31) 

Upon expanding, the final form of the interface flux-velocity is written as: 

( ) ( ) ( ) ( )

( ) ( )( )y
f

y

ff
x
f

x

ff

PFy
f

y
f

x
f

x
f

2y
ff

2x
ffy

ff
x
fff

P]v[DP]u[D

PP
dSdS

S]v[DS]u[DS[v]HS[u]HU

κ∇+κ∇

−−
+
+

−+=
 (32) 

Similar to f][vH and fD , the ( )fP∇ is calculated from: 

( ) ( ) ( )( )FfPff Pf1PfP ∇−+∇=∇  (33) 

and the pressure gradient at the main grid point P (or F) is obtained from: 
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( )

( )

( )
( ) ( ) ji

j

i

SSSSS.

y
P

x
P

y
ss

y
nn

y
ww

y
ee

x
ss

x
nn

x
ww

x
ee

ssnnwwee
SV

P

PP

SPSPSPSP
V
1

SPSPSPSP
V
1

PPPP
V
1dP

V
1PdV

V
1P

∇+∇=

+++

++++=

+++==∇=∇ ∫∫

 (34) 

The cell face velocities are thus made dependent on the pressure difference across the 

face, which helps avoiding the checkerboard problem previously encountered in 

collocated variable algorithms (Patankar [1]). 

THE GENERALIZED PRESSURE AND PRESSURE CORRECTION EQUATIONS  

As mentioned before, the convergence in the segregated approach is driven by the 

corrector stage where a pressure (or a pressure-correction) equation is solved.  

Therefore, the first step in developing a segregated solution algorithm is to derive such 

an equation. The key step in the derivation is to note that in the predictor stage a 

guessed or estimated pressure field from the previous iteration, denoted by , is 

substituted into the momentum equations. The resulting velocity field denoted by  

and , which now satisfies the momentum equations, in general, will not satisfy the 

continuity equation.  Thus, a correction is needed in order to yield velocity and pressure 

fields that would satisfy both equations. Denoting the corrections with a superscript ‘, 

the corrected fields are written as: 

)n(P

*u

*v

(
⎪
⎩

⎪
⎨

⎧

ρ′+ρ=ρ

′+=′+=′+=

′+=

)n(

)n(

vvv,uuu
PPP

*** vvv ) (35) 

where P', v'(u', v'), and ρ' are the pressure, velocity, and density corrections, 

respectively. Thus, before the pressure field is known, the velocities obtained from the 
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solution of the momentum equations are actually  and  rather than u and v.  Hence 

the equations solved in the predictor stage are: 

*u *v

( )( )P
n

PP
*
P P][ ∇−=− DvHv *  (36) 

while the final solution satisfies 

( )PPP P][ ∇−=− DvHvP  (37) 

Subtracting the two sets of equations (37) and (36) from each other yields the following 

equation involving the correction terms: 

( )PPPP P][ ′∇−=′−′ DvHv  (38) 

The velocity and density fields should be corrected to satisfy mass conservation.  

Therefore, the new density and velocity fields, ρ and v, will satisfy the continuity 

equation if: 

( ) [ ] 0.V
t P

o
PP =ρ∆+

δ
ρ−ρ Sv  (39) 

Linearizing the (ρv) term, one gets 

( )( ) vvvvvv ′ρ′+ρ′+′ρ+ρ=′+ρ′+ρ ******  (40) 

Alternatively, the (ρv) term can be written as 

( )( ) vvvvvv ′ρ′+ρ−ρ+ρ=′+ρ′+ρ ******  (41) 

Substitution of equation (41) into equation (39) gives 

( ) ([ 0.V ) ]
t P

****
o
PP =′ρ′+ρ−ρ+ρ∆+

δ
ρ−ρ Svvvv  (42) 

or 

( )[ ] ( )[ ] ( )[ PP
**o

PP
**

P .. ]
t

V.
t

V SvSvSvv ′ρ′∆−ρ∆+ρ
δ

=ρ+ρ∆+ρ
δ

 (43) 

Using equation (37), the above equation may be rewritten as: 

 [ ] ( )( )[ ] [ ] ( )[ PP
**o

PP
*

P
*

P .U ]
t

V.P][U
t

V SvSDvH ′ρ′∆−ρ∆+ρ
δ

=∇−ρ∆+ρ∆+ρ
δ

 (44) 

After rearranging one gets: 
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[ ] ( )[ ]

( )[ ] [ ] ( )[ ]PP
**o

PP
*

P
*

P
*

P

.
t

V.][

.PU
t

V

SvUSvH

SD

′ρ′∆−ρ∆+ρ
δ

+ρ∆−

=∇ρ∆−ρ∆+ρ
δ  (45) 

Substituting for density using the equation of state, the pressure equation becomes: 

[ ] ( )[ ] [ ] ( )[ ]
( )[ ] ( )[ ]PP

*

P
*

P
**o

PP
*

P
*

P

..][

.][U
t

V.PPUCP
t

VC

SvSvH

SvHSD *

′ρ′∆−′ρ∆−

ρ∆−ρ∆+ρ
δ

=∇ρ∆−∆+
δ ρ

ρ

 (46) 

Alternatively, the above equation may be written for pressure correction instead of 

pressure by simply substituting for (ρv) in equation (39) using equation (40). By so 

doing, the continuity equation can be written as: 

( ) ([ 0.V ) ]
t P

****
o
PP =′ρ′+ρ′+′ρ+ρ∆+

δ
ρ−ρ Svvvv  (47) 

Rearranging, the following equation is obtained: 

( ) ( )[ ] ( )[ ] ( )[ PP
**o

PP
**

P
*
P .. ]

t
V.''

t
V SvSvSv'v ′ρ′∆−ρ∆−ρ

δ
=ρ+ρ∆+ρ+ρ

δ
 (48) 

Using equation (38), the above equation becomes: 

( )( )[ ] ( ) ( )[ ] ( )[ PP
**

o
P

*
P

P
**

P ..V ]
t

.P['U'
t

V SvSvSD-]vH ′ρ′∆−ρ∆−
δ

ρ−ρ
−=′∇′ρ+ρ∆+ρ

δ
 (49) 

Finally, substituting density correction by pressure correction, as obtained from the 

equation of state, the final form of the pressure-correction equation is: 

[ ] ( )[ ] ( ) [ ] [
( )[ ]P

P
*

P
**

o
P

*
P

P
*

P
*

ρP
ρ

.

.[UV
t

.P'PUCP
t

VC

Sv

S]vHSD

′ρ′∆−

′ρ∆−ρ∆−
δ

ρ−ρ
−=′∇ρ∆−∆+′

δ
]  (50) 

From the above, the one to one correspondence between the pressure and pressure 

correction equations is obvious and as such, the two equations are interchangeable. 

Thus, algorithms in which the pressure field is obtained using a pressure equation (e.g. 

SIMPLER, PISO, SIMPLEM,..), may equally be calculated from a pressure correction 

equation. Moreover, the second order correction term v′ρ′  is usually neglected. This 

does not affect neither the convergence rate (i.e. it is considerably smaller than other 
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terms) nor the final solution, since at the state of convergence the correction fields 

vanish. For this reason, it is neglected in all subsequent derivations. Furthermore, if the 

 term in the above equation is retained, there will result a pressure correction 

equation relating the pressure correction value at a point to all values in the domain. 

Even though such an equation ensures that the corrected fields will satisfy the 

continuity and momentum equations, is undesirable because it becomes intractable. To 

facilitate implementation and reduce cost, simplifying assumptions related to this term 

have been introduced. Depending on these assumptions, different algorithms are 

obtained. 

][vH ′

THE SIMPLE ALGORITHM AND ITS VARIANTS 

Having derived the necessary equation for the calculation of the pressure field (i.e. the 

pressure and/or pressure correction equation), the SIMPLE [1,2], SIMPLER [1], 

SIMPLEC [30], SIMPLEST [31], SIMPLEX [32], SIMPLEM [33], PISO [34], PRIME [35], 

SIMPLESSEC [37], and SIMPLESSE [37,43] iterative algorithms that were developed 

to solve the coupled system of continuity and momentum equations can now be 

presented. In the derivations to follow, the superscripts o and n denote values from the 

previous time step and values from the previous iteration, respectively. Moreover, the 

superscripts *, **, ***, and **** represent the first, second, third, and fourth updated 

values at the current iteration, respectively. 

The purpose in the various algorithms is to arrive at a velocity field that satisfies both 

the momentum and continuity equations. Moreover, as shown above, the pressure or 

pressure correction equation in all algorithms is derived by combining the following 

momentum and continuity equations,  
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( )PPPP P][ ∇−= DvHv  (51) 

( ) [ ] 0.V
t P

o
PP =ρ∆+

δ
ρ−ρ Sv  (52) 

in addition to the equation of state given by: 

PCρ=ρ  (53) 

One then may wonder about the differences among the various algorithms. The key 

answer is in the different approximations to the ][vH ′  terms and the various sequence 

of operations that take place.  

THE SIMPLE ALGORITHM 

The SIMPLE algorithm of Patankar and Spalding [1,2] has probably been the most 

widely used method in the last three decades.  The method’s success in handling 

difficult problems in heat transfer and fluid flow has led to its evolution into a whole 

family of related methods. The SIMPLE algorithm consists of two stages: a predictor 

and a corrector stage that are described below. 

The SIMPLE Algorithm: Symbolic Form 

Predictor: 

  ( )( )P
n

PP
*
P P][ ∇−= DvHv *  (54) 

Corrector: 

  ( ) ( ) ( )( )ρ′+ρ=ρ′+=′+=ρ′′′ n*n**** ,PPP,,P,v vvv   (55) 

∴ ( ) ( )( )[ ]P
n

PPP
*

PP
**

P PP][P][ ′+∇−′+=∇−= DvvHDvHv ***  (56) 

∴  (57) 
( )

⎩
⎨
⎧

′=ρ′
′∇−′=′

ρPC
P][v PPPP DvH

Condition: 

  
( ) [ ] 0.V

t P
***

o
P

*
P =ρ∆+

δ
ρ−ρ Sv  (58) 
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∴ 
( )( ) ( )( ) ( )([ 0.P][V ) ]

t P
*n

o
PP

n
P =′∇−′+ρ′+ρ∆+

δ
ρ−ρ′+ρ SDvHv  (59) 

∴ 
[ ] ( )[ ] ( ) [ ]

[ ] ( )[ ]PP
)n(

P
*)n(

o
P

)n(
P

P
)n(

P
*

ρP
ρ

..[

UV
t

.PPUCP
t

VC

SvS]vH

SD

′ρ′∆−′ρ∆−

ρ∆−
δ

ρ−ρ
−=′∇ρ∆−′∆+′

δ  (60) 

    Approximation: 

 Neglect: H ,[ ′ v ] ( )[ ]P.Sv′ρ′∆  

⇒   (61) ( )PPP P′∇−=′ Dv

    Approximate Equation: 

⇒ [ ] ( )[ ] ( ) [ P
*)n(

o
P

)n(
P

P
)n(

P
*

ρP
ρ UV ]

t
.PPUCP

t
VC

ρ∆−
δ

ρ−ρ
−=′∇ρ∆−′∆+′

δ
SD  (62) 

Discussion: 

Since at the state of convergence the pressure and velocity correction fields are zero, 

the approximation introduced does not have any effect on the final solution. Rather, it 

affects the convergence behavior. Moreover, had this term been retained, the pressure 

correction at any point would have been related to the pressure correction at all grid 

points in the domain. The resulting exact pressure correction equation would have had 

a full coefficient matrix, and its solution would have required an undesirable more 

expensive direct solution method. However, because the ][vH ′  terms are dropped, the 

predicted pressure correction field is overestimated and the corrected velocity field no 

longer satisfies the momentum equations. Therefore, in order to avoid divergence, the 

pressure field is under-relaxed according to: 

  (63) PPP P
* ′α+=

which slows down the convergence rate of the iteration process (αp being the under-

relaxation factor for pressure).  
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A Global SIMPLE Iteration 

• Solve implicitly for u and v, using the old pressure and density fields. 
• Calculate the D field. 
• Solve the pressure correction equation. 
• Correct u, v, P and ρ. 
• Solve implicitly the energy equation and update the density field. 
• Return to the first step and iterate until convergence. 

THE SIMPLEC ALGORITHM 

Experience has shown that the rate of convergence of the SIMPLE algorithm is greatly 

dependent on the proper choice of the under-relaxation factors for the velocity 

components and the pressure. The optimum values for these variables are usually 

problem dependent. The SIMPLEC algorithm of Van Doormaal and Raithby [30] was 

developed with the intention of alleviating the aforementioned problem through a better 

approximation to the  so as to eliminate the need for under-relaxing the pressure 

field. The steps involved in the SIMPLEC algorithm are outlined below. 

][vH ′

THE SIMPLEC ALGORITHM: SYMBOLIC FORM 

Predictor: 

  ( )( )P
n

PP
*
P P][ ∇−= DvHv *  (64) 

Corrector: 

  ( ) ( ) ( )( )ρ′+ρ=ρ′+=′+=ρ′′′ n*n**** ,PPP,,P, vvvv   (65) 

∴ ( ) ( )( )[ ]P
n

PPP
*

PP
**

P PP][P][ ′+∇−′+=∇−= DvvHDvHv ***  (66) 

∴ ( )PPPP P][ ′∇−′=′ DvHv  (67) 

Subtracting from both sides, one gets PP]1[~ vH ′

  ( )PPPPPPPP P][~][][~ ′∇−′−′=′−′ Dv1HvHv1Hv  (68) 

∴ ( ) ( )PPPPPP P]v[][~1 ′∇−′′=′− D-vHv1H  (69) 
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∴ ( ) ( )( )

⎪
⎩

⎪
⎨

⎧

′=ρ′

′∇
−

−
−

′′
=′

ρPC

P
][~1][~1

]v[
P

P

P

P

PP
P 1H

D
1H
-vH

v
 (70) 

    Condition: 

  
( ) [ ] 0.V

t P
*

o
P

*
P =ρ∆+

δ
ρ−ρ Sv **  (71) 

∴ 
( ) ( ) ( ) 0.P

]1[~1]1[~1
][

vV
t

P

P*)n(
o
PP

)n(
P =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∇

−
−

−

′′
+ρ′+ρ∆+

δ
ρ−ρ′+ρ

S
H
D

H
v-vH

 (72) 

∴ 

[ ] ( ) ( ) [ ]

( )[ ]P

p

P)n(

P
*)n(

o
P

)n(
P

P

)n(
P

*
P

..
]1[~1

][

UV
t

.P
]1[~1

PUCP
t

VC

SvS
H
v-vH

S
H
D

′ρ′∆−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

′′
ρ∆−

ρ∆−
δ

ρ−ρ
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∇

−
−ρ∆+′∆+′

δ ρ
ρ

 (73) 

     Approximation: 

 Neglect: ][ Pv-vH ′′ ,  ( )[ ]P.Sv′ρ′∆

⇒  ( )PPP P~ ′∇−=′ Dv  (74) 

    Approximate Equation: 

⇒ [ ] ( )[ ] ( ) [ P
*)n(

o
P

)n(
P

P
)n(

P
*

ρP
ρ UV ]

t
.P~PUCP

t
VC

ρ∆−
δ

ρ−ρ
−=′∇ρ∆−′∆+′

δ
SD  (75) 

Discussion: 

Due to a better approximation in SIMPLEC (i.e. neglecting ][ Pv-vH ′′  rather than ][vH ′ ), 

the relaxation of pressure becomes unnecessary and as compared to SIMPLE, the 

resulting velocity corrections will satisfy better the momentum equations. Consequently, 

a higher rate of convergence is obtained. The sequence of steps being the same, the 

only difference between SIMPLE and SIMPLEC is in the definition of the coefficients in 

the pressure correction equation. 
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A Global SIMPLEC Iteration 

• Solve implicitly for u and v, using the old pressure and density fields. 
• Calculate the  field. D~

• Solve the pressure correction equation. 
• Correct u, v, P and ρ. 
• Solve implicitly the energy equation and update the density field. 
• Return to the first step and iterate until convergence. 
 

THE PRIME ALGORITHM 

In the PRIME algorithm [35], the momentum equations are solved explicitly. This 

explicit treatment of the momentum equations is justified by the small contribution to the 

convergence of the entire flow field by the iterative sweeps within each momentum 

equation. On the other hand, finding the correct solution for the pressure field 

represents the most important factor in the overall convergence. Based on this 

argument, the PRIME algorithm can be summarized as: 

THE PRIME ALGORITHM: SYMBOLIC FORM 

Predictor: 

 ( ) ( )( )P
n

PP
n*

P P][ ∇−= DvHv  

Corrector: 

 ( ) ( ) ( )( )ρ′+ρ=ρ′+=′+=ρ′′′ n*n**** ,PPP,,P, vvvv   (76) 

∴ ( ) ( )( )[ ]P
n

PP
*

P
*

PP
****

P PP][P][ ′+∇−′+=∇−= DvvHDvHv  (77) 

  ( ) ( )( )P
n

PP
n*

P P][ ∇−= DvHv  (78) 

∴ 
( )

⎪⎩

⎪
⎨
⎧

′=ρ′

′∇−′+−=′

ρPC
P][][ PPpp

)n(*
P DvHvvHv

 (79) 

    Condition: 

 ( ) [ ] 0.V
t P

*
o
P

*
P =ρ∆+

δ
ρ−ρ Sv **  (80) 
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∴ 
( )( ) ( )( ) ( )([ ] 0.P][][V )

t P
)n(**n

o
PP

n
P =′∇−′+−+ρ′+ρ∆+

δ
ρ−ρ′+ρ SDvHvvHv  (81) 

∴ 
[ ] ( ) ( )[ ]

( )( ) ( )[ ]
( )( )( )[ ] ( )[ ]Pp

)n(*n

P
*n

o
P

n
P

P
n

P
*

P

.][][

UV
t

.PPUCP
t

VC

Sv.SvHvvH

SD

′ρ′∆−′+−ρ∆−

ρ∆−
δ

ρ−ρ
−=′∇ρ∆−′∆+′

δ ρ
ρ

 (82) 

    Approximation: 

 Neglect: , , P
)n(* ][ vvH − P][vH ′ ( )[ ]P.Sv′ρ′∆  

    Approximate Equation: 

⇒ [ ] ( ) ( )[ ]
( )( ) ( )[ P

*n
o
P

n
P

P
n

P
*

P UV ]
t

.PPUCP
t

VC
ρ∆−

δ
ρ−ρ

−=′∇ρ∆−′∆+′
δ ρ

ρ SD  (83) 

Discussion: 

The terms neglected in PRIME ( P][vH ′ + ( )
P

n* ][ vvH − ) can become smaller than the 

term neglected in SIMPLE ( ) if P][vH ′ P][vH ′  and ( )
P

n* ][ vvH −  are of opposite signs. It 

is worth noting that =  is a correction to satisfy continuity, while 

 is a correction to satisfy momentum. Usually the corrector added to satisfy 

momentum is opposite to that added to satisfy continuity and hence, the neglected term 

( + ) is smaller. Another way to look at these terms is to consider  

as . Then, 

P][vH ′ P
*** ][ vvH −

( )
P

n* ][ vvH −

P][vH ′ ( )
P

n ][ vvH * − **v

( )1n+v P][vH ′  will be equal to ( )
P

1n ][ *v-vH +  and will have a sign opposite to 

that of . Moreover, since the momentum equations are explicitly solved, no 

under-relaxation is required. This has the advantage of increasing the stability of the 

algorithm. 

( )
P

n* ][ vvH −

A Global PRIME Iteration 

• Solve explicitly for u and v, using the old pressure and density fields. 
• Calculate the D field. 
• Solve the pressure correction equation. 
• Correct u, v, P and ρ. 
• Solve implicitly the energy equation and update the density field. 
• Return to step one and iterate until convergence 
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THE SIMPLEST ALGORITHM 

It is well known that disturbances in a pure diffusion situation are propagated 

instantaneously in all directions, but their amplitude decays rapidly. This is equivalent to 

propagation of errors throughout the entire solution domain, in a single iteration by 

implicit solution methods. On the other hand, disturbances in a pure convection 

situation are propagated, in the flow direction, at a finite speed without any change in 

their magnitude.  This is similar to propagation of error, from a particular point to the 

neighboring grid points, in a single iteration of explicit iterative methods. 

Based on this physical argument, Spalding [31] developed the SIMPLEST method in 

which the implicit treatment of the diffusion terms in the general algebraic equation is 

combined with an explicit treatment of the convection terms.  For that purpose, the 

coefficients in the momentum equations are first separated into their diffusion and 

convection parts as: 

P
C

P
D

P ][][][ vHvHvH +=  (84) 

Thus,  

( )PPP
C

P
D

P P][][ ∇−+= DvHvHv  (85) 

 
The remaining steps are as follows: 

THE SIMPLEST ALGORITHM: SYMBOLIC FORM 

Predictor: 

 ( ) ( )( )P
n

PP
nC

P
D*

P P][][ ∇−+= DvHvHv *  (86) 

Corrector: 

  ( ) ( ) ( )( )ρ′+ρ=ρ′+=′+=ρ′′′ n*n**** ,PPP,,P, vvvv   (87) 
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∴ 

( )
( )( )[ ]

( )( ) ( )PPP
n

PP
C

P
C

P
D

P
D

P
n

PP
C

P
D

P
*

PP
C

P
D**

P

PP][][][][

PP][][

P][][

′∇−∇−′++′+=

′+∇−′++′+=

∇−+=

DDvHvHvHvH

DvvHvvH

DvHvHv

**

**

****

 (88) 

∴ 
( ) ( )

⎪⎩

⎪
⎨
⎧

′=ρ′
′∇−−+′=′

ρPC
P][][ PPP

C
PP DvvHvHv n*

 (89) 

    Condition: 

  
( ) [ ] 0.V

t P
*

o
P

*
P =ρ∆+
∆

ρ−ρ Sv **  (90) 

∴ 
( )( ) ( )( ) ( ) ( )( )[ ] 0.P][][V

t P
C*n

o
PP

n
P =′∇−−+′+ρ′+ρ∆+

δ
ρ−ρ′+ρ SDvvHvHv n*  (91) 

∴ 
[ ] ( )[ ] ( ) [ ]

( )( )[ ] ( )[ ]PP
C)n(

P
*)n(

o
P

)n(
P

P
)n(

P
*

ρP
ρ

.S.][][

UV
t

.PPUCP
t

VC

SvvvHvH

SD

n* ′ρ′∆−−+′ρ∆−

ρ∆−
δ

ρ−ρ
−=′∇ρ∆−′∆+′

δ  (92) 

    Approximation: 

 Neglect: , ,P][vH ′ ( )
P

C ][ n* vvH − ( )[ ]P.Sv′ρ′∆  

⇒   (93) ( )PPP P′∇−=′ Dv

    Approximate Equation: 

⇒ [ ] ( )[ ] ( ) [ P
*)n(

o
P

)n(
P

P
)n(

P
*

ρP
ρ UV ]

t
.PPUCP

t
VC

ρ∆−
δ

ρ−ρ
−=′∇ρ∆−′∆+′

δ
SD  (94) 

Discussion: 

Similar to PRIME, the terms neglected in SIMPLEST ( P][vH ′ + ) can 

become smaller than the term neglected in SIMPLE ( ) if 

( )
P

n*C ][ vvH −

P][vH ′ P][vH ′  and 

 are of opposite signs. As mentioned earlier, this should be the case 

since =  is a correction to satisfy continuity, while 

( )
P

n*C ][ vvH −

P][vH ′ P
*** ][ vvH − ( )

P
n*C ][ vvH −  is a 

correction to satisfy momentum, which usually work in opposite directions. 

A good understanding of the SIMPLEST algorithm is obtained by considering the 

following two limiting situations. The first one is when the Reynolds number approaches 

zero, in which case convection becomes negligible i.e.: 
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  (95) PP
D

P
C ][][0][ vHvHvH →⇒→

and the method becomes identical to SIMPLE.  The second limiting situation is when 

the value of Reynolds number is very large so that diffusion is negligible in comparison 

with convection, i.e.: 

  (96) PP
C

P
D ][][0][ vHvHvH →⇒→

In this case, the momentum equations are solved, as in PRIME, via the explicit Jacobi 

method [40] using old information from the previous iteration and eliminating the need 

for any under-relaxation. Thus, the SIMPLEST algorithm can be seen to be a 

compromise between SIMPLE and PRIME.  

A Global SIMPLEST Iteration 

• Solve for u and v, treating  implicitly and [ ]vHD [ ]vHC  explicitly. 
• Calculate the D field. 
• Solve the pressure correction equation. 
• Correct u, v, P and ρ. 
• Solve implicitly the energy equation and update the density field. 
• Return to the first step and iterate until convergence. 

THE SIMPLER ALGORITHM 

Although the pressure-correction field correctly drives the velocity field towards 

satisfying the continuity equation, it provides poor approximations to the correct 

pressure field.  The reason being that, once the velocity field is updated using the 

predicted pressure correction field, it no longer satisfies the momentum equations due 

to the approximations made for the velocity correction formulae. Realizing this, 

Patankar [1] suggested that the pressure correction field be only used to correct the 

velocity field to make it satisfy the continuity equation, and that the pressure be 

calculated from another equation to match the velocities, so that the momentum 

equations are also satisfied. The resulting algorithm is denoted by SIMPLER [1] 

(SIMPLE-Revised) and as originally presented, the additional equation involved P as its 

variable. However, since it was shown that both the pressure and the pressure 
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correction equations are equivalent, it will be presented here based on pressure 

correction. The various steps in the algorithm are as outlined below: 

THE SIMPLER ALGORITHM: SYMBOLIC FORM 

First Predictor: 

 No predictor stage. Only coefficients of the momentum equations are calculated. 

First Corrector: 

  ( ) ( ) ( ) ( )( )ρ′+ρ=ρ′+=′+=ρ′′′ n*n*n* ,PPP,,P, vvvv   (97) 

∴ ( )P
*

PP
**

P P][ ∇−= DvHv  (98) 

  ( ) ( ) ( )( )P
n

PP
nn

P P][ ∇−= DvHv  (99) 

∴  (100) 
( )

⎩
⎨
⎧

′=ρ′
′∇−′=′

ρPC
P][ PPPP DvHv

    Condition: 

 ( ) [ ] 0.V
t P

*
o
P

*
P =ρ∆+

δ
ρ−ρ Sv*  (101) 

∴ 
( )( ) ( )( ) ( ) ( )([ 0.P][V ) ]

t P
nn

o
PP

n
P =′∇−′+ρ′+ρ∆+

δ
ρ−ρ′+ρ SDvHv  (102) 

∴ 
( )[ ] ( ) ( )[ ]

( )( ) ( ) ( )[ ]
( )[ ] ( )[ ]PP
n

P
nn

o
P

n
P

P
n

P
n

P

.].[

UV
t

.PPUCP
t

VC

SvSvH

SD

′ρ′∆−′ρ∆−

ρ∆−
δ

ρ−ρ
−=′∇ρ∆−′∆+′

δ ρ
ρ

 (103) 

    Approximation: 

 Neglect: ,][vH ′ ( )[ ]PS.v′ρ′∆ . 

    Approximate Equation: 

⇒ ( )[ ] ( ) ( )[ ]
( )( ) ( ) ( )[ P

nn
o
P

n
P

P
n

P
n

ρP UV ]
t

.PPUCP
t

VC
ρ∆−

δ
ρ−ρ

−=′∇ρ∆−′∆+′
δ

ρ SD  (104) 

 Apply correction to pressure field only. 

Second Predictor: 

 ( )P
*

PP
*
P P][ ∇−= DvHv *  (105) 



A Unified Formulation of the Segregated Class of Algorithms for Fluid Flow at All Speeds 32 

Second Corrector: 

 ( )( )ρ ′′+ρ=ρ′′+=′′+=ρ ′′′′′′ ********* ,PPP,,P, vvvv   (106) 

∴ ( ) ( )[ ]P
*

PP
*

P
**

PP
**

P PP][P][ ′′+∇−′′+=∇−= DvvHDvHv **  (107) 

∴  (108) 
( )

⎩
⎨
⎧

′′=ρ ′′
′′∇−′′=′′

ρPC
P][ PPPP DvHv

    Condition: 

 ( ) [ ] 0.V
t P

**
o
P

**
P =ρ∆+

δ
ρ−ρ Sv **  (109) 

∴ 
( ) ( ) ( )([ 0.P][V ) ]

t P
**

o
PP

*
P =′′∇−′′+ρ ′′+ρ∆+

δ
ρ−ρ ′′+ρ SDvHv  (110) 

∴ 
[ ] ( )[ ]

( ) [ ] [ ] ( )[ ]PP
*

P
**

o
P

*
P

P
*

P
*

P

.].[UV
t

.PPCUP
t

VC

SvSvH

SD

′′ρ ′′∆−′′ρ∆−ρ∆−
δ

ρ−ρ
−

=′′∇ρ∆−′′∆+′′
δ ρ

ρ

 (111) 

    Approximation: 

 Neglect: , ][vH ′′ ( )[ P.Sv ′′ρ ′′ ]∆                                    

⇒  (112) ( )PPP P ′′∇−=′′ Dv

    Approximate Equation: 

⇒ [ ] ( )[ ] ( ) [ P
**

o
P

*
P

P
*

P
*

P UV ]
t

.PPCUP
t

VC
ρ∆−

δ
ρ−ρ

−=′′∇ρ∆−′′∆+′′
δ ρ

ρ SD  (113) 

 Do not correct pressure. 

Discussion: 

In the first predictor-corrector step, the pressure field is computed using the old velocity 

field. This is somewhat similar to the PRIME method with the difference that the velocity 

field is neither explicitly evaluated during the predictor step nor corrected with the 

obtained pressure field. In the second predictor-corrector step, the second pressure 

correction field, which is used to update only the velocity field, is computed using the 

new velocity field calculated at the current iteration. With the exception of  replacing *ρ
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( )nρ , this is equivalent to SIMPLE. As such, the SIMPLER algorithm can be viewed as a 

combination of an approximate form of PRIME to compute the pressure and SIMPLE to 

compute the velocities, thereby combining the best features of both methods.  

A Global SIMPLER Iteration 

• Calculate the D field. 
• Solve the pressure correction equation and update the pressure and density fields. 
• Solve implicitly for u and v using the new pressure and density fields.  
• Solve the pressure correction equation using the new velocity field to obtain a new 
  pressure correction field .  
• Correct u and v using the new pressure correction field. 
• Solve implicitly the energy equation and update the density field. 
• Return to the first step and iterate until convergence. 
 

THE PISO ALGORITHM 

The PISO algorithm, as proposed by Issa [34], is a time-marching procedure, in which 

during each time step, there is a predictor step and one or more corrector steps. 

However, since the unsteady term and the under-relaxation practice have similar 

effects on the finite difference equations [41], the procedure may equally be used in the 

context of an iterative formulation. The sequences of events in PISO are: 

THE PISO ALGORITHM: SYMBOLIC FORM 

First Predictor: 

 ( )( )P
n

PP
*
P P][ ∇−= DvHv *  (114) 

First Corrector: 

 ( ) ( ) ( )( )ρ′+ρ=ρ′+=′+=ρ′′′ n*n**** ,PPP,,P, vvvv   (115) 

∴ ( ) ( )( )[ ]P
n

PPP
*

PP
**

P PP][P][ ′+∇−′+=∇−= DvvHDvHv ***  (116) 

∴  (117) 
( )

⎩
⎨
⎧

′=ρ′
′∇−′=′

ρPC
P][ PPPP DvHv
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    Condition: 

 ( ) [ ] 0.V
t P

*
o
P

*
P =ρ∆+

δ
ρ−ρ Sv **  (118) 

∴ 
( )( ) ( )( ) ( )([ 0.P][V ) ]

t P
*n

o
PP

n
P =′∇−′+ρ′+ρ∆+

δ
ρ−ρ′+ρ SDvHv  (119) 

∴ 
[ ] ( ) ( )[ ] ( ) ( )[ ]

( )[ ] ( )[ ]PP
n

P
*n

o
P

n
P

P
n

P
*

P

.].[

UV
t

.PPUCP
t

VC

SvSvH

SD

′ρ′∆−′ρ∆−

ρ∆−
δ

ρ−ρ
−=′∇ρ∆−′∆+′

δ ρ
ρ

 (120) 

    Approximation: 

 Neglect , ][vH ′ ( )[ ]P.Sv′ρ′∆                      

⇒   (121) ( )PPP P′∇−=′ Dv

    Approximate Equation: 

⇒ [ ] ( ) ( )[ ] ( ) ( )[ P
*n

o
P

n
P

P
n

P
*

P UV ]
t

.PPUCP
t

VC
ρ∆−

δ
ρ−ρ

−=′∇ρ∆−′∆+′
δ ρ

ρ SD  (122) 

Second Predictor: 

 ( )P
**
PP

*****
P P][ *** DvHv ∇−=  (123) 

Second Corrector: 

 ( )( )ρ ′′+ρ=ρ′′+=′′+=ρ ′′′′′′ ************* ,PPP,,P, vvvv   (124) 

∴ ( )[ ]P
***

PP
******

P PP][ ′′+∇−= DvHv ****  (125) 

  ( )P
***

PP
*****

P P][ ∇−= DvHv **  (126) 

∴ 
( ) ( )

⎪⎩

⎪
⎨
⎧

′′=ρ ′′
′′∇−′′+−=′′∇−−=′′

ρPC
P][P][ P

**
PP

**
P

**
PP

**
P DvvvHDvvHv ***********

 (127) 

    Condition: 

∴ ( ) [ ] 0.V
t P

**
o
P

**
P =ρ∆+

δ
ρ−ρ Sv ****  (128) 

∴ ( ) ( ) ( )( )[ ] 0.P][V
t P

**
P

******
o
PP

*
P =′′∇−′′+−+ρ ′′+ρ∆+

δ
ρ−ρ ′′+ρ SDvvvHv *****  (129) 

∴ 
[ ] ( )[ ] ( ) [ ]

[ ] ( )[ ]PP
***

P
****

o
P

*
P

P
**
P

*
P

***
P

.].[

UV
t

.PPUCP
t

VC

SvSvvvH

SD

***** ′′ρ ′′∆−′′+−ρ∆−

ρ∆−
δ

ρ−ρ
−=′′∇ρ∆−′′∆+′′

δ ρ
ρ

 (130) 
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    Approximation: 

 Neglect: ,P
** ][ vvvH ***** ′′+− ( )[ ]P.Sv ′′ρ ′′∆  

⇒  (131)  ( )P
**
PP P ′′∇−=′′ Dv

    Approximate Equation: 

⇒ [ ] ( )[ ] ( ) [ P
****

o
P

*
P

P
**
P

*
P

***
P UV ]

t
.PPUCP

t
VC

ρ∆−
δ

ρ−ρ
−=′′∇ρ∆−′′∆+′′

δ ρ
ρ SD  (132) 

Discussion: 

The overall velocity correction is given as: 

 

( )
( )

( )
( ) PP

**
P

***
P

***
PP

***
PP

*****

PP
***

PP
***

PP
***

PP
****

P
***

P
****

P

][P][

P][][

P][

P][

vvHDvH

vDvHvH

vDvvH

vDvHvvv

′′+′+∇−=

′′+∇−′+=

′′+∇−′+=

′′+∇−=′′+=

 (133) 

If is assumed to be nearly equal to *v ( )P
***

P
*** P][ ∇−DvH  then, the  term that was 

neglected in the first corrector stage is partially recovered as  in the 

second corrector stage in addition to 

][vH ′

( )[ P
** P′∇−DH ]

Pv ′′ . Therefore, the second pressure correction 

brings the velocity and pressure fields closer to satisfying both the momentum and 

continuity equations without the need to under-relax the pressure correction. Because 

of this fact, PISO does provide considerable savings in computational time when 

compared to SIMPLE. Moreover, by following the sequence of events, it can be easily 

seen that PISO may be considered to be a combination of one SIMPLE step and one 

PRIME step, hence combining the implicitness of the SIMPLE algorithm with the 

stability of the PRIME algorithm. Furthermore, improving the time accuracy of PISO 

through increasing the number of corrector iterations is akin to adding further PRIME 

steps. 

Finally, it is common in the literature to read that PISO is essentially equivalent to 

SIMPLER (e.g. [42]). From the above presentation, it is obvious that the two algorithms 
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are different. In SIMPLER the pressure is updated once after solving a pressure or a 

pressure correction equation in which the coefficients are based on the old velocity 

field. In PISO the pressure field is updated twice using the latest available velocity 

fields. Consequently, the pressure and velocity fields at the end of a SIMPLER iteration 

are different than those obtained at the end of a PISO iteration and users of SIMPLER 

and PISO should be aware of that. 

A Global PISO Iteration 

• Solve implicitly for u and v, using the old pressure and density fields. 
• Calculate the D field.  
• Solve the pressure correction equation. 
• Correct u, v, P and ρ. 
• Solve implicitly the energy equation and update the density field. 
• Solve the momentum equations explicitly and calculate the D field.  
• Solve the pressure correction equation. 
• Correct u, v, P and ρ. 
• Return to step one and iterate until convergence 

THE SIMPLEX ALGORITHM 

In all SIMPLE-based methods, no care is taken to ensure that the rate of convergence 

will not degrade with grid refinement. This concern is addressed in SIMPLEX [32] by 

considering the influence of pressure differences outside but in the vicinity of the 

pressure difference local to the velocity. This is accomplished by using extrapolation to 

express all pressure differences in the domain in terms of the pressure difference local 

to the velocity; the X is appended to SIMPLE to indicate the use of extrapolation. The 

idea is based on the fact that the spatial distribution of pressure difference influence 

changes little with grid refinement. Therefore, if the pressure difference influence is 

restricted to a control volume, it would be appropriate to assume that, by extrapolation, 

the pressure difference at the main grid point adequately represents the pressure 
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differences at the control volume faces. Mathematically, the SIMPLEX algorithm can be 

described as follows:   

THE SIMPLEX ALGORITHM: SYMBOLIC FORM 

Predictor: 

 ( )( )P
n

PP
*
P P][ ∇−= DvHv *  (134) 

Corrector: 

 ( ) ( ) ( )( )ρ′+ρ=ρ′+=′+=ρ′′′ n*n**** ,PPP,,P, vvvv   (135) 

∴ ( ) ( )( )[ ]P
n

PPP
*

PP
**

P PP][P][ ′+∇−′+=∇−= DvvHDvHv ***  (136) 

∴  (137) 
( )

⎩
⎨
⎧

′=ρ′
′∇−′=′

ρPC
P][ PPPP DvHv

    Condition: 

 ( ) [ ] 0.V
t P

*
o
P

*
P =ρ∆+

δ
ρ−ρ Sv **  (138) 

∴ 
( )( ) ( )( )( )[ 0.vV ]

t P
*n

o
PP

n
P =′+ρ′+ρ∆+

δ
ρ−ρ′+ρ Sv  (139) 

∴ 
( )( ) [ ] ( )[ ] ( )[ ] ( )[ PP

*n
P

n
P

*
o
PP

n
P ...v.V ]

t
SvSvSSv ′ρ′∆−ρ−∆=′ρ∆+ρ′∆+

δ
ρ−ρ′+ρ  (140) 

    Approximation: 

 Neglect:  and let  ( )[ P.Sv′ρ′∆ ]
 ( ) ( )P

sx
PPPPP PP][ ′∇−=′∇−′=′ DDvHv  (141) 

⇒ ( ) ( ) ( )PPP
sx

P
sx
P P]P[P ′∇−′∇−=′∇− DDHD  (142) 

Assume that the pressure difference local to the velocity can be approximated to be 

representative of all pressure differences i.e. ( )[ ] ( ) P
sx

PP
sx ][PP DHDH −′∇=′∇− , Thus: 

 ( ) ( ) ( )PPP
sx

PP
sx
P P][PP ′∇+′∇=′∇ DDHD  (143) 

⇒  (144) PP
sxsx

P ][ DDHD +=
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    Approximate Equation: 

⇒ [ ] ( ) ( )[ ]
( )( ) ( )[ P

*n
o
P

n
P

P
sxn

P
*

P UV ]
t

.PPUCP
t

VC
ρ∆−

δ
ρ−ρ

−=′∇ρ∆−′∆+′
δ ρ

ρ SD  (145) 

Discussion: 

The pressure correction equation in SIMPLEX involves the Dsx field, rather than the D 

field, which has to be computed by solving an additional system of equations (Eq. 

(144)) but using the coefficients of the momentum equations. Therefore, since the 

coefficients need not be recalculated, the added computational effort is not major. 

Moreover, as reported in [32], this additional cost is offset by a lower degradation in the 

rate of convergence with grid refinement as compared to other SIMPLE-like algorithms. 

Although SIMPLEX is not necessarily the most efficient algorithm on coarse grids, for 

sufficiently fine grids the study presented in [32] indicates that SIMPLEX is more 

efficient than SIMPLE, SIMPLER, and SIMPLEC. 

A Global SIMPLEX Iteration 

• Solve implicitly for u and v, using the old pressure and density fields. 
• Calculate the D field. 
• Solve implicitly for the Dsx field. 
• Solve the pressure correction equation using this Dsx field. 
• Correct u, v, P and ρ. 
• Solve implicitly the energy equation and update the density field. 
• Return to the first step and iterate until convergence. 
 

THE SIMPLEM ALGORITHM 

The SIMPLEM algorithm of Acharya and Moukalled [33] is composed of a predictor and 

a corrector stage. In the corrector stage, a pressure correction field is obtained based 

on the old velocity field. This new pressure field is then used to predict a new velocity 

field. Mathematically, the various steps are:    
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THE SIMPLEM ALGORITHM: SYMBOLIC FORM 

First Predictor: 

 No predictor stage. Only coefficients of the momentum equations are calculated. 

First Corrector: 

 ( ) ( ) ( ) ( )( )ρ′+ρ=ρ′+=′+=ρ′′′ n*n*n* ,PPP,,P, vvvv   (146) 

∴ ( )P
*

PP
**

P P][ ∇−= DvHv  (147) 

 ( ) ( )( )P
n

PP
nn

P P][ ∇−= DvHv  (148) 

∴  (149) 
( )

⎩
⎨
⎧

′=ρ′
′∇−′=′

ρPC
P][ PPPP DvHv

    Condition: 

 ( ) [ ] 0.V
t P

*
o
P

*
P =ρ∆+
∆

ρ−ρ Sv*  (150) 

∴ 
( )( ) ( )( ) ( ) ( )([ 0.P][V ) ]

t PP
nn

o
PP

n
P =′∇−′+ρ′+ρ∆+

δ
ρ−ρ′+ρ SDvHv  (151) 

∴ 
( )[ ] ( ) ( )[ ]

( )( ) ( )[ ]
( )[ ] ( )[ ]PPP
n

P
nn

o
P

n
P

P
n

P
n

P

..][

UV
t

.PPUCP
t

VC

SvSvH

SD

′ρ′∆−′ρ∆−

ρ∆−
δ

ρ−ρ
−=′∇ρ∆−′∆+′

δ ρ
ρ

 (152) 

    Approximation: 

 Neglect: ,P][vH ′ ( )[ ]P.Sv′ρ′∆  

    Approximate Equation: 

⇒ ( )[ ] ( ) ( )[ ]
( )( ) ( ) ( )[ P

nn
o
P

n
P

P
n

P
n

P UV ]
t

.PPUCP
t

VC
ρ∆−

δ
ρ−ρ

−=′∇ρ∆−′∆+′
δ ρ

ρ SD  (153) 

Second Predictor: 

 ( )P
**

PP
***

P P][ ∇−= DvHv **  (154) 

Second Corrector: 

 No corrector stage. 
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Discussion: 

As in SIMPLER, the pressure field in SIMPLEM is computed using the old velocity field. 

This is nearly equivalent to PRIME, which was shown to do a good job in correcting the 

pressure field. By so doing however, the velocity corrections will be at a disadvantage. 

Therefore, in SIMPLEM the disadvantages and advantages of SIMPLE are 

interchanged.  

A Global SIMPLEM Iteration 

• Calculate the D field based on values from the previous iteration. 
• Solve the pressure correction equation. 
• Correct u, v, P and ρ. 
• Calculate new H and D fields. 
• Solve implicitly for u and v using the new fields. 
• Solve implicitly the energy equation and update the density field. 
• Return to the first step and iterate until convergence. 

ENHANCEMENT OF THE SIMPLE ALGORITHM AND ITS VARIANTS BY AN 

ADDITIONAL CORRECTION TERM 

This method, proposed by Shaw and Sivaloganathan [43], takes into consideration that 

the momentum equations are not driven to full convergence at every iteration and uses 

the residual of the incompletely converged equations in the expression for the velocity 

corrections. Therefore, in deriving the pressure-correction equation, the velocity 

correction field (Eq. (38)) is modified to: 

( ) M
P

PPPP V
P][ RDDvHv −′∇−′=′  (155) 

where denotes the momentum residual. As stated in [37], this method has a better 

theoretical smoothing rate, suitable for the high-frequency error reduction that is 

important in multigrid techniques. In [37,43], the technique was applied to the SIMPLE 

and SIMPLEC algorithms to yield two modified versions denoted by SIMPLESSE and 

MR
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SIMPLESSEC, respectively. However, the approach is equally applicable to all 

previously described algorithms. Moreover, when using this technique with the 

SIMPLEC algorithm, the H and D operators should be replaced by their equivalent 

expressions as derived earlier.  

THE EXPANDED FORM OF THE PRESSURE-CORRECTION EQUATION 

It is obvious by now that the various simplified pressure-correction equations are similar 

and may be written as: 

[ ] ( )[ ] ( ) [ ]P

o
PP

PPρP
ρ U

t
V.P'UPCP

t
VC

ρ∆−
δ

ρ−ρ
−=′∇ρ∆−∆+′

δ
SD  (156) 

where, depending on the algorithm used, U and ρ represent values from the previous 

iteration or from a previous corrector step. When discretizing this equation, careful 

attention should be paid to the second term on the left hand side that is similar to a 

convection term and for which any convective scheme may be used. Adopting the 

UPWIND scheme [1], the discretized form of the convection-like term [ ]
Pρ 'UPC∆ is: 

[ ] ( ) ( ) ( ) ( )
( ) [ ] ( ) [
( )

]
[ ] ( ) [ ]SsPssρNnPnnρ

WwPwwρEePeeρ

sρnρwρeρPρ

P0,UP0,UCP0,UP0,UC

P0,UP0,UCP0,UP0,UC
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 (157) 

Rearranging, one obtains: 

[ ] ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) SssρNnnρWwwρEeeρ

PssρnnρwwρeeρPρ

P0,UCP0,UCP0,UCP0,UC

P0,UC0,UC0,UC0,UC'UPC

′−−′−−′−−′−

−′+++=∆
 (158) 

The term  is discretized following the same procedure that was used in 

discretizing the pressure gradient term needed in calculating the interface velocities. Its 

final form is given by: 

( )[ P.P SD ′∇ρ∆ ]
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where the underlined terms account for the non-orthogonal factors. They are usually 

neglected since their contribution is small in comparison with other terms and vanish 

when the grid is orthogonal. However, they could be accounted for by moving them to 

the right hand side, adding them to the source term, and modifying the solver to 

explicitly update their values after a solver (not global) iteration. Neglecting these terms, 

Eq. (159) becomes: 
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Moreover, the discretized form of [ ]PUρ∆  is given by: 

[ ] ssnnwweeP UUUUU ρ+ρ+ρ+ρ=ρ∆  (161) 

Substituting the various terms in Eq. (156) by their equivalent expressions as derived 

above, the final form of the pressure-correction equation is written as:  
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CLOSING REMARKS  

The SIMPLE algorithm and its variants were reformulated using a unified, compact, and 

easy to understand notation. The new notation allowed the essence shared in their 

derivations to be transparent. Moreover, the philosophies behind these algorithms and 

the differences among them were pointed out. Furthermore, the formulation of all these 

algorithms was extended to predict fluid flow at all speeds. 
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FIGURE CAPTIONS 

Fig. 1   Control Volume.

Fig. 2  Typical control volume faces and geometric nomenclature.
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