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Abstract

A partitioned-domain multiscale method is a computational framework in which
certain key regions are modeled atomistically while most of the domain is treated with
an approximate continuum model (such as finite elements). The goal of such methods
is to be able to reproduce the results of a fully-atomistic simulation at a reduced
computational cost. In recent years, a large number of partitioned-domain methods
have been proposed. Theoretically, these methods appear very different to each other
making comparison difficult. Surprisingly, it turns out that at the implementation level
these methods are in fact very similar. In this paper, we present a unified framework
in which fourteen leading multiscale methods can be represented as special cases.

We use this common framework as a platform to test the accuracy and efficiency
of the fourteen methods on a test problem; the structure and motion of a Lomer
dislocation dipole in face-centered cubic aluminum. This problem was carefully selected
to be sufficiently simple to be quick to simulate and straightforward to analyze, but
not so simple to unwittingly hide differences between methods. The analysis enables
us to identify generic features in multiscale methods that correlate with either high or
low accuracy and either fast or slow performance.

All tests were performed using a single unified computer code in which all fourteen
methods are implemented. This code is being made available to the public along with
this paper.

∗To appear in Modeling and Simulation in Materials Science and Engineering, 2009. This article will also
appear in a modified form as a chapter in the upcoming book: E. B. Tadmor and R. E. Miller, Modeling

Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University Press.
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1 Introduction

In recent years, there has been great interest in developing a class of concurrent multiscale
modeling methods that are able to obtain the same results as classical molecular statics
(MS) or molecular dynamics (MD) simulations at a fraction of the computational cost. This
is achieved by atomistically1modeling only small, strategically chosen sub-domains of the
problem, with most of the body modeled using a numerical approximation to continuum
mechanics such as the finite element method. For certain classes of problems, of which
fracture and nanoindentation are quintessential examples, deformation is naturally localized
in a manner that lends itself to this sort of atomistic/continuum partitioning of the model.
We refer to multiscale formulations of this type as partitioned-domain methods.

There is a vast literature surrounding these methods, as summarized in several recent
reviews [9, 26, 34, 13, 31]. However, it is extremely difficult to digest the similarities, differ-
ences, and relative strengths and weaknesses of the various methods. This is due, in part,
to the disparate backgrounds, target applications, and conceptual frameworks each research
group brings to bear on the problem. In some instances, models that appear starkly different
are in fact very similar or even identical in certain specific cases. It is also hard to quantify
the relative accuracy and efficiency of these methods. Each method is implemented in a dif-
ferent computer program, perhaps optimized for specific atomistic systems or specific types
of problem. While most groups are diligent in presenting “proof-of-principle” simulations or
simple benchmarks of their models against direct atomistic simulation, it is not possible to
establish how other similar methods would fare against the same tests.

This paper presents a comprehensive study of fourteen methods from the literature,
all implemented within a single computer code [30] to facilitate the comparison between
them. The details of these methods are reviewed in the following sections, culminating
with the summary presented in table 1. The study sheds light on three important aspects
of multiscale methods. First, it elucidates the key features of the models that uniquely
define each method (or conversely the features that reveal when two apparently different
methods are quite similar). Second, it allows us to define a benchmark test problem and run
all the methods against it, determining the relative accuracy and efficiency of the different
approaches. Finally, the study identifies trends in the model features that suggest ways
to improve existing models; we are able to correlate certain features in the models with
their effects on accuracy and efficiency. Some of our more significant observations, most
notably the poor performance of cluster-based multiscale methods relative to those that use a
continuum constitutive law, have recently been explained theoretically by Luskin and Ortner
[29]. They have shown how the cluster-based methods introduce new types of errors that
are especially pronounced in non-uniform meshes like the one we will use in our comparison.

The intended audience of the paper is mainly developers of these and related methods;
we hope that it will help guide future improvements. It will also be somewhat useful to
potential users of these methods, but less so. By users, we imagine researchers that are
already experienced with molecular dynamics and other atomistic methods, and who are
trying to determine whether implementing a multiscale method will be worth the trouble;

1We will use the term “atomistic” to refer generically to classical molecular statics and molecular dynamics
techniques.
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to understand if multiscale methods have a chance of solving their particular problem of
interest. Such a user should be less interested in our comparison of the performance of the
methods, focussing instead on the discussion of the details of the various methods presented
and on the actual code used to perform these tests (which is available at [51]). This will give
a sense of the effort required. Finally, in assessing the overall capabilities of these methods,
the user should keep in mind that all of the methods discussed herein can be implemented
in 3D, and some of them address the question of finite temperature and dynamics. For
these details, the user should consult the original references and recent reviews such as [31].
The user should also remember that our goal here was not to create an especially efficient
implementation, but rather to create one that fairly compares the methods. Much can be
done to improve the speed of our implemenation for all of the methods.

The list of methods implemented is not exhaustive. Indeed, there are so many variants
of these methods, with new ones still appearing, that a truly exhaustive study is beyond
our finite capabilities. However, we believe that the study is strongly representative of the
entire body of literature to date, in the sense that we believe that each of the major methods
can be shown to be very similar to one of the methods on our list. This will become more
evident in the following sections where we define and discuss the key features that define a
multiscale model. An important exception to this is the coarse-grain molecular dynamics
(CGMD) method of [43]. This method is notably different from the methods presented here
in the way that it constructs the continuum model from the atomistics. Unfortunately, we
have not been able to include CGMD in our study.

Although many of the methods discussed here were developed with dynamics in mind,
we focus only on the static limit. As such, we are putting aside questions of wave reflections,
thermostats and others that remain open challenges to the development of dynamic multi-
scale models [31]. Our goal is to focus on the accuracy and efficiency of just the coupling
method itself. Any errors or inefficiencies present in the static implementation of a coupling
method will remain in the dynamic setting. Dynamics may introduce new challenges, and
indeed some of these methods may be better suited than others to address these dynamic
issues, but on this matter our study will be unable to opine.

2 Defining a Multiscale Model

A generic multiscale model is presented in fig. 1. In fig. 1(a), we schematically illustrate an
idealized partitioning, where the body is unambiguously divided into two regions. Region
BA is treated atomistically, while region BC is modeled as a continuum. Most methods
use a finite element method to treat the continuum, we will therefore regard the continuum
region as a discretized approximation represented by a finite element (FE) mesh.2 An inter-
face between the two regions is identified, ∂BI , across which compatibility and equilibrium
are enforced. However, the finite range of interactions of the atoms typically requires a
more elaborate interfacial region with finite width, BI , as illustrated in fig. 1(b). Boundary
conditions, in the form of prescribed tractions on ∂BC

t , forces on ∂BA
t or displacements on

2There are also multiscale methods that use a “meshless method” instead of finite elements to approximate
the continuum region. See for example the recent review by Park and Liu [34]. We do not discuss such
methods here.
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Figure 1: (a) A general partitioned domain problem. BC is modeled as continuum while all
atoms in BA are explicitly treated as discrete degrees of freedom. (b) Some methods require
a finite interfacial region, BI , where the atomistic and continuum features must coexist.

∂Bu = ∂BA
u ∪ ∂BC

u are applied to induce deformation.
The key to any multiscale method lies in the way that it handles the interface region

shown in fig. 1(b). Most methods adopt one of the strategies depicted in fig. 2. On the
left is perhaps the most generic interface, which in various limiting cases leads to all the
models discussed here. The interface region BI , shown by the dashed lines, has been further
subdivided into two parts. We refer to these as the “handshake region”, BH (filled circles),
and the “padding region”, BP (open squares). The size and nature of these regions depend
on the specifics of multiscale model, as discussed below.

The handshake region is neither fully-atomistic nor fully-continuum. It is a region where
there is some degree of mixing between the two descriptions of the material as we explain
later. The padding region is continuum in nature, however it is used to generate atoms that
provide the boundary conditions to the atoms in BA and BH . This is a necessity born out
of the nonlocal nature of atomic bonds, and therefore the thickness of the padding depends
on the range of the atomistic interactions, rcut. The motion of atoms in BP is determined
from the continuum displacement fields at the position of the padding atoms, in different
ways for different methods.

Several models use less general versions of the interface in fig. 2(a). The most common
variation is to eliminate the handshake region (or more precisely, reduce it to a surface of
zero thickness). This is illustrated in fig. 2(b).

For many models, the imposition of displacement compatibility across the interface does
not require a clear correspondence between atoms and nodes at the interface; as illustrated in
fig. 2(a) the nodes (vertices of the triangular elements) need not coincide with atom positions.
On the other hand, most models that do not include a handshake region require a direct
atom-node correspondence along the edge of the finite element region (the heavy jagged line
in fig. 2(b)). This provides a way to impose displacement boundary conditions on the finite
elements, as the nodes along this edge move in lock step with the corresponding atoms. The
cost of this is a restriction on the finite element mesh, which must be refined down to the
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Figure 2: A generic interface in a coupled atomistic/continuum problem. The finite cut-off
radius of the atoms mean that an atom like 1 cannot “see” into the continuum, while atom
2 can. Thus the need for a “padding” region as discussed in the text. The model on the left
includes includes a handshake region, BH , while the model on the right does not. Padding
atoms are shown as open squares, handshake atoms as black circles and regular atoms as
white circles. See the text for the discussion of frames (a) and (b).

atomic scale on the continuum side of the interface (we refer to this as a “fully-refined”
mesh), but normally the mesh coarsens as it extends deeper into the continuum region.

There are then four primary ways in which various multiscale methods differ. We list
these differences here, roughly in order of decreasing importance (to the extent that they
define the fundamental differences between various models):

1 The governing formulation. For static methods, there are two fundamentally different
approaches to finding equilibrium. The first (which we call the “energy-based” ap-
proach) is to develop a well-defined energy functional for the problem and rigorously
minimize this energy. The second (“force-based” approach) is to develop a physically
motivated set of forces on all degrees of freedom, and reach equilibrium by driving
these forces to zero. While the two seem as though they might be equivalent, they are
not. Derivatives of the total energy in the energy-based approach lead to forces on each
degree of freedom which are necessarily zeroed when the energy is minimized, however
these are not the same as the forces used in the force-based methods. The force-based
methods have no well-defined total energy. Instead, they start from a definition of the
coupling in terms of a physically-motivated prescription of the forces on unequilibrated
atoms or nodes.

As we shall discuss later, the disadvantage of the energy-based approach is that it
is extremely difficult to eliminate the non-physical side effects of the coupled energy
functional, dubbed “ghost forces” in the literature3. On the other hand, force-based

3The existence of ghost forces was first discussed in the original derivation of the QC method [50]. Several
authors have since then devoted considerable time to discussing the source and nature of these ghost forces
[9, 49, 14, 5, 12]. The name “ghost forces” was coined by David Rodney and appears for the first time in
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methods can be slow to equilibrate, can converge to unstable equilibrium states (such
as saddle points or maxima), are non-conservative, and can be numerically unstable.
Later in this paper we will quantitatively compare the energy-based and force-based
approaches.

2 The Coupling Boundary Conditions. The coupling between the continuum and atom-
istic regions, requires compatibility conditions in each direction. This means providing
some prescription for finding the displacements of atoms in the padding region, BP ,
from the nodal displacement information in BC , as well as a way to determine the
displacement boundary conditions for the FE nodes along the edge of the mesh clos-
est to the atomistic region. As we describe the various methods, we will see that
compatibility can be imposed in a “strong” or “weak” sense, as we elaborate here.

“Strong compatibility” imposed by the continuum on the atoms implies that the
padding atoms are constrained to move as though they are “glued” to the finite ele-
ments in which they reside. That is to say that the displacement, ũα, of a padding
atom α is set to

ũα =

nnodes∑

I=1

N I(Xα)UI , (1)

where U
I is the displacement vector of node I, Xα is the reference coordinate position

of node α, N I(X) is the finite element shape function of node I and there are nnodes

nodes.4

Strong compatibility is imposed by the atomistic region on the continuum by defining
a subset of the nodes (typically a row like the jagged, heavy line in fig. 2(b)) that
are coincident with some of the atoms in BA. These atoms are formally part of BA.
Their contribution to the total energy or their force (depending on whether the method
is energy-based or forced-based) is computed as appropriate for the atomistic region.
However, their positions define the displacements of a set of nodes whose reference
coordinates coincide with the reference coordinates of the black atoms. The motion
of the black atoms therefore imposes a displacement boundary condition on the finite
elements of BC .

In our view, the main disadvantage with strong compatibility is the added complexity
in mesh generation near the interface. The mesh must usually be fully-refined and
consistent with the underlying atomic configuration (which is normally a crystalline
lattice and therefore requires additional lattice-based algorithms [3]). To avoid these
additional requirements, some methods employ what we call “weak compatibility”,
where displacement boundary conditions are enforced only in some average sense, or

[46].
4In some methods, a special case is adopted where the FE mesh is fully-refined to the atomic scale in

the entire padding region. That is to say that a node is defined to lie on top of every atom in BP . This
portion of the BC region is not atomistic, since the region is still treated using the continuum finite element
formulation. It is merely a continuum region with very small elements. A fully-refined padding region of
this type serves to simplify the implementation, since as far at the atoms in BA are concerned, the nodes
in the continuum are effectively atoms as well. As such, the interpolation of displacements to the padding
atoms is no longer required, but this does not otherwise significantly alter the model.
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with some type of penalty method approach. These methods make mesh generation
much easier, but we will show later that they are generally less accurate. Examples of
weak compatibility will be presented in the context of specific methods later.

3 The Handshake Region. The idea of the handshake region is to provide a gradual tran-
sition from the atomistic to continuum model. The handshake region is treated very
differently in different coupled models. In some, the atomistic-to-continuum transition
is abrupt as in fig. 2(b), and there is no handshake region (e.g., the QC and CLS
methods of section 4.1 and section 4.2, the FEAt and CADD methods of section 6.1).
In others, a handshake region exists as in fig. 2(a), but the ways in which it blends
the continuum and atomistics descriptions can differ substantially. We discuss these
details below.

4 Treatment of the Continuum. As we have mentioned, BC is usually modeled with
finite elements, but the details of the finite element formulation and the constitutive
law adopted to describe the material response differ amongst the methods. In some
cases, a simple small strain finite element formulation is used with a linear elastic model
with elastic constants fitted to the properties of the atomistic model used in BA. In
others, a finite strain (nonlinear) formulation is used together with the Cauchy-Born
rule [17] (or some more sophisticated appeal to the atomistic model) to describe the
constitutive response in the nonlinear range.

We now turn to a description of the different methods considered in this study. In doing
so, we divide the methods into either energy-based or force-based and explore the essential
differences that this division creates.

3 The Energy-Based Formulation

3.1 Total Energy Functional

In an energy-based formulation, it is assumed that the total potential energy Πtot of a body
B can be written as the sum of the potential energies of the three sub-bodies BC , BA and
BH from which it is composed. (Recall that the padding region, BP is really considered a
part of the continuum.) Thus

Πtot = ΠA + Π̂C + Π̂H , (2)

where the hat on ΠC and ΠH indicates that the potential energy of the continuum is ap-
proximated by a finite element formulation. For this approach to work, a prescription must
be provided for computing the energy of each of these regions. This is straightforward in
the continuum, where an energy density is postulated to exist at every point. In the atom-
istic region, the analogy of an energy density is a well-defined energy per atom, which most
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empirical atomistic models permit.5 Thus the contributions from BA and BC are

ΠA =
∑

α∈BA

Eα −
∑

α∈BA

fα
ext · ũ

α, (3)

ΠC =

∫

BC

W (F ) dV −

∫

∂BC
t

t̄ · u dA, (4)

where ũα is the displacement of atom α, u(X) is the continuum displacement field, the
energy of atom α is represented by Eα, and applied forces and tractions are denoted by
f ext and t̄, respectively. The strain energy density, W , is a function of the deformation
gradient, F = I + ∇u. Once discretized by finite elements, the continuum contribution is
approximated by Gauss quadrature (numerical integration) as [61]

Π̂C =

nelem∑

e=1

nq∑

q=1

wqV
eW (F (Xe

q)) − F̄
T
U, (5)

where nelem is the number of elements, V e is the volume of element e, nq is the number of
quadrature points, Xe

q is the position of quadrature point q of element e in the reference
configuration, wq are the associated Gauss quadrature weights, and F̄ and U represent the
vector of applied forces and nodal displacements, respectively, in the FE region.

The energy of the handshake region is a partition-of-unity blending of the atomistic
and continuum energy descriptions. For example, a well-known energy-based method which
includes a handshake region is the bridging domain (BD) method described in [60]. Within
the BD handshake region, both the continuum and atomistic energies are used, but their
contributions are weighted according to a function Θ that varies linearly from 1 at the edge
of BH closest to BC to 0 at the edge closest to BA. Assuming no externally applied forces
on this region to simplify the notation, the energy of the handshake region is

ΠH =
∑

α∈BH

(1 − Θ(Xα))Eα +

∫

BH

Θ(X)W (F (X)) dV. (6)

If we take the specific case of constant-strain triangular elements, and make the relatively
minor restriction that the handshake region starts and ends along a contiguous line of element
edges (in other words, every element is either entirely “in” or entirely “out” of region BH),
it is simple to evaluate the integrals above. Since W is constant within each constant-strain
element in this case, the energy becomes

Π̂H =
∑

α∈BH

(1 − Θ(Xα))Eα +
∑

e∈BH

Θ(Xe
cent)W (F (Xe

cent))V
e, (7)

where Xe
cent is the coordinate of the Gauss point in element e (the centroid of the triangle

in this specific case).
We emphasize that the padding atoms in region BP , described previously, are distinct

from the atoms contained in region BH ; BH and BP do not overlap. The padding region

5It is worth noting, however, that a quantum mechanical density functional theory (DFT) description
cannot be uniquely decomposed into an energy-per-atom description.
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corresponds to a set of atoms whose energy is not explicitly included in the energy functional
but whose positions are required to provide the full neighbor environment to other atoms.
In fact, a padding region is still needed in the BD model (in addition to the atoms in the
handshake region). The padding region lies inside BC along the edge of BH .

For energy-based methods with no handshake, the energy reduces to

Πtot = ΠA + Π̂C . (8)

Given the positions of the atoms in the atomistic region, the displacements of the nodes
in the FE region and a prescription for generating the padding atoms, we can compute
the energy of eqn. (2) or (8), and its derivatives as needed. The total potential energy
is then minimized subject to the imposed displacement boundary conditions to obtain the
equilibrium configuration of the system.

3.2 Ghost Forces

The approximations inherent to an energy-based coupling of this type lead to errors known
as “ghost forces”, a phrase first coined in [46]. All energy-based methods discussed in this
study suffer from these forces to various degrees6. The ghost forces are defined as follows.
We build a model in which the atoms are on their equilibrium crystal lattice sites and the
finite elements are unstressed and undeformed. Physically, this should be an equilibrium
configuration where all forces are zero, and therefore any forces on atoms or nodes that arise
in this configuration are unphysical and will lead to spurious distortions of the body upon
relaxation. These unphysical forces are the ghost forces.

For a little insight into the origin of the ghost forces, let’s consider an energy-based
method without a handshake as in eqn. (8). This is an approximation to some full atomistic
description of the body, whose energy we will denote as Πatom. Assume that we can write
this energy as a contribution from each region, BA and BC , respectively

Πatom = Πatom,A + Πatom,C. (9)

Usually, ΠA is defined such that
ΠA = Πatom,A, (10)

but Π̂C is only an approximation to Πatom,C. Now consider an atom, α, inside BA, but near
the interface, such that it interacts with atoms in BC . In the fully-atomistic description, a
force on this atom is

fα = −
∂Πatom,A

∂ũα −
∂Πatom,C

∂ũα = −
∂ΠA

∂ũα −
∂Πatom,C

∂ũα , (11)

where the second equality comes from eqn. (10). In equilibrium, this force must be zero, so
that

∂ΠA

∂ũα = −
∂Πatom,C

∂ũα . (12)

6This statement may seem controversial, but we believe it to be accurate, as we have not yet seen a
method that avoids the problem. It should be noted that there are special cases of all the methods for which
ghost forces disappear. Usually, this happens for a particular choice of interatomic potential. For example,
the original implementation of the CLS method used the Stillinger-Weber potential for Si, for which there
are no ghost forces. However, an implementation of CLS that uses an EAM potential will have ghost forces.
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For the model system of eqn. (8) to be in equilibrium, we likewise require that

∂ΠA

∂ũα = −
∂Π̂C

∂ũα , (13)

however eqn. (12) means that this can only be satisfied if

∂Π̂C

∂ũα =
∂Πatom,C

∂ũα . (14)

If this equality does not hold, there will be residual ghost forces even though the atoms are
in their equilibrium positions. However, since Π̂C is only an approximation to Πatom,C, it
is not possible to satisfy this expression in general. There has been work done to satisfy
this expression for certain crystal types and interfacial structures [49, 14], but ghost forces
persist in general.

Much more elaborate discussion of the nature and origin of these spurious effects have
been presented at length in references such as [46, 9, 14, 11, 12]. Later in section 7.4, we will
see their effect in each method for a specific example problem.

4 A Review of Energy-Based Coupling Methods

We now turn to a brief review of several coupled methods from the literature, focusing on
their static limit. Our starting point will be the Quasicontinuum (QC) method because this
is the method with which we are most familiar. Where a model is similar to QC or some
other model already described, we will simply state this similarity without re-hashing the
details. This is not meant to imply, necessarily, that one method was a direct off-shoot from
another. It shows only that different methods, developed independently, often share common
traits.

4.1 The QC method

The QC method is an energy-based method with no handshake regions, so the energy func-
tional of eqn. (8) is used. However, there is a conceptual advantage in developing this equa-
tion from a point of view that makes no distinction between atoms and nodes, for reasons
that will become clear later when we introduce cluster-based methods. In the QC literature,
any node or atom that is retained in the model as part of the set of degrees of freedom
is identified as a “representative atom” or simply “repatom”. The terminology “nonlocal
repatom” and “local repatom” is used to distinguish between repatoms in the atomistic re-
gion where the atomic bonding is nonlocal and repatoms in the continuum region where a
local constitutive relations is applied.

The idea is that we seek to compute a good approximation to the total energy of the
fully-atomistic system, which is a function of the positions of all the atoms in the body,
xα (α = 1, . . . , NA). As usual we can assume, without loss of generality, that we know
some reference configuration of the atoms, Xα and then work in terms of displacements,
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BA

BC

Figure 3: Repatoms selected from all the atoms near a crack tip are shown in (a), which are
then meshed by linear triangular elements in (b). The density of repatoms varies according
to the severity of the variation in the deformation gradient; high density near the singularity
at the crack tip and low elsewhere. The dashed line indicates the atomistic/continuum
interface.

ũα = xα − Xα. The energy of the atomistic system is then

Π = E(ũ1, . . . , ũNA) −

NA∑

α=1

fα
ext · ũ

α, (15)

where E is the interaction energy of the atoms, and we have included the possibility of
external forces applied to the atoms.

Once again, we reduce generality somewhat by assuming a class of atomistic models that
permits the identification of a site energy, Eα, for each atom, and thus

E(ũ1, . . . , ũNA) =

NA∑

α=1

Eα(ũ1, . . . , ũNA). (16)

For a more concise notation, let ũ represent the entire set of NA displacements, ũ =
{ũ1, . . . , ũNA}, so that

E(ũ) =

NA∑

α=1

Eα(ũ). (17)

We start by reducing the number of degrees of freedom in the problem. To achieve
this, we constrain the motion of most of the atoms to follow the motion of a representative
handful of the atoms. How we choose these repatoms is not our concern here7, but we can

7The original papers describing the QC method [46] and the CACM method [10] provide methodologies
for automatically choosing the density of repatoms in various regions. More recently, goal-oriented error
estimation techniques have also been developed for this purpose [38].
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imagine something similar to the illustration in fig. 3, where the density of repatoms varies
according to the expected severity of the deformation. In some critical regions (as around
a crack tip in this example) all atoms are selected as repatoms, while very few are selected
in regions that are more or less linear elastic. For now, we assume that the displacements
of some nR repatoms, nR ≪ NA, are chosen as the degrees of freedom. A finite element
mesh with constant-strain triangles (in 2D) or constant-strain tetrahedra (in 3D) is defined
by the repatoms as shown in fig. 3(b), and the repatoms behave as the finite element nodes.
The displacements of all other atoms can then be determined from the displacement of these
node/repatoms through interpolation. In this way, the potential energy of the atoms becomes
a function of only the node/repatom displacement vector, U:

E(U) =

NA∑

α=1

Eα(ũ(U)), (18)

where the dependence of the atom displacements on the repatom displacements is through
the finite element shape functions. By the compact support of these functions, we know,
for example, that the displacement of atom A in fig. 3(b) is a linear interpolation of the
displacements of the three repatoms forming the nodes of the highlighted element.

Clearly, the constraints introduced by the interpolation of the displacements will mean
some level of approximation to the model, but we can presumably control the error it intro-
duces by recognizing regions were the element size needs to be refined. In the fully-refined
limit where every atom is chosen as a repatom we recover ordinary lattice statics, since in
this limit there are no atoms “between” the repatoms whose motion will be constrained.

This has reduced the number of degrees of freedom in the model, but has not significantly
lowered the computational burden associated with computing the energy of the system or
the forces on the repatoms. This is because we still need to compute the energy of every
atom in the sum over Eα in eqn. (18).8 At this stage the division of the body into the
atomistic and continuum sub-bodies becomes necessary, and we rewrite the energy as

E(u) =
∑

α∈BA

Eα(ũ(U)) +
∑

α∈BC

Eα(ũ(U)). (19)

In the original papers [53, 45, 46], the QC developers describe a systematic way to make
this division, but here we will merely illustrate the idea by treating all of the fully-refined
region (see fig. 3) as BA and the coarse regions as BC9. We then propose to compute the
first sum in the above equation exactly as we would in a fully-atomistic model; the only
difference from the exact result comes from the fact that the padding atoms in neighboring
regions are undergoing a constrained deformation. The second sum, on the other hand, we
replace by finite elements and the Cauchy-Born constitutive rule. Thus for an atom in BC

we assume that it is in a region of approximately uniform deformation, characterized by F ,
so that

Eα ≈ Ω0W [F (Xα)], (20)

8It is worth pointing out that up to this point there are still no ghost forces in the model. These are
introduced next as the continuum approximation is imposed.

9This does not mean that the QC method precludes the possibility of a fully-refined continum region.
Making the entire fully-refined region atomistic is one possible prescription of the model.
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BA BC

Figure 4: Computing the effective volume of the darkly shaded element requires subtraction
of the part of its volume overlapping the Voronoi cells of atoms inside BA (one is lightly
shaded).

where Ω0 is the Wigner-Seitz volume of a single atom in the reference configuration. The
second sum over atoms in eqn. (19) can now be replaced by a sum over elements as

E(u) =
∑

α∈BA

Eα(ũ(U)) +
∑

e∈BC

neΩ0W (F e), (21)

where ne is the number of atoms contained in element e and F e is the deformation gradient
there.

A practical point concerns the determination of ne, as it would seem difficult to unam-
biguously assign atoms to specific elements if they lie at element corners or edges. In fact,
neΩ0 can simply be taken as the total volume of the element, eliminating the need for explic-
itly counting atoms. This leaves one subtlety at the atomistic/continuum interface, as shown
for example in fig. 4, where the darkly shaded element is adjacent to an atom that is inside
BA and therefore already accounted for in the atomistic contributions. For this element, the
volume used should be the total volume less the volume overlapping the Voronoi cell of the
atom in BA. In this way, neΩ0 values for elements touching BA are reduced to avoid the
double-counting of energy. In practice, approximations to the Voronoi cell can be used to
expedite calculations without too much consequence for accuracy [46].

Note the formal equivalence between eqn. (21) and eqn. (8), when constant-strain trian-
gles with a single Gauss point are used. The only difference is the modified weight associated
with finite elements near the atomistic/continuum interface to avoid double counting. We
have assumed constant-strain elements to emphasize the relation to the CB rule, but it
would be straightforward to replace the sum over elements with a sum over Gauss points if
higher-order elements were used.

In the energy-based cluster-based QC (CQC(m)-E) method that will be discussed in
section 4.6, a different approach to approximating the second sum in eqn. (19) will be
introduced.
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4.2 The Coupling of Length Scales (CLS) method

The Coupling of Length Scales (CLS) method was developed in a series a papers [1, 8, 2, 42]
focused initially on the problem of fracture in silicon. It was later applied to the vibrational
response of nanoscale resonators [41].

In addition to the atomistic/continuum coupling that is our focus here, CLS also includes
a coupling between molecular dynamics and the tight-binding approximation to quantum
mechanics (QM). As such, there are three concurrent regimes in the CLS approach: con-
tinuum coupled to classical atomistic coupled to quantum mechanics.10 For this particular
discussion our focus will be only on the atomistic/continuum coupling.

CLS is an energy-based method like QC. Compared with the energy functional in eqn. (21)
for the QC method, the energy of the CLS method takes the form11

E(u) = EA +

nelem∑

e=1

W (F e)we, (22)

where EA is the energy contained in region BA, and the second sum is over all the elements in
the continuum region. For most elements, the weight we is simply the volume of the element.
The exceptions are elements directly adjacent to the atomistic/continuum interface, where
the weights are reduced to avoid double counting.

Because CLS was originally developed for silicon12, it was crafted in terms of the Stillinger-
Weber empirical model, whereas the QC method focused on applying embedded-atom method
(EAM) potentials more suitable for metals. The similarities between the models are largely
disguised by this different starting point, and the two methods nearly converge for the same
underlying atomistic model.

There are small differences between QC and CLS in the treatment right at the interface.
In short, there is some ambiguity regarding the parceling of energy near the interface. The
QC and CLS methods use slightly different methods of weighting the atomistic and contin-
uum contributions in efforts to avoid double counting of energy. The effect is reflected in
differences between the values of we for CLS and the analogous neΩ0 in eqn. (21) for QC.
These differences are relatively minor in that they lead to only slight changes in the error
and the rate of convergence of the models. It is not clear that either the QC or the CLS
weighting scheme is superior; it seems that the relative error will be problem-dependent.

4.3 The Bridging Domain (BD) Method

One way to try to mitigate the ghost force effect is to make the transition from nonlocal
atomistics to local continuum mechanics less abrupt. Although somewhat ad hoc, this can

10More recently, MD/QM coupling (or more precisely MS/QM coupling, since the focus has been on the
static case) of this type has been developed by a number of researchers [18, 27].

11The original CLS method used a small strain approximation to describe the continuum region rather
than the CB rule used in QC. However, conceptually the methods are similar. To facilitate the comparison,
we generalize the original CLS approach here by adopting a nonlinear CB model in the continuum region.
We discuss the effect of the linear elastic approximation in section 7.6.

12Note that for a multilattice crystal, such as silicon, the strain energy density in eqn. (22) should also
depend on the “shifts” of the sub-lattices. See for example [55]. We do not include this since in this paper
we focus on simple lattice crystals.
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be achieved by the simple blending of energy in the handshake region between the two
descriptions as described earlier in section 3. The approach is related to the so-called Arlequin
method [6], which is a general approach to coupling different models based on a blended
energy functional. The Bridging Domain (BD) method is perhaps the first application of
the blending region within an energy-based scheme [60], and is certainly representative of
such models. Briefly, the BD model makes use of eqn. (2) to define the energy, including
a handshake region with a specifically-defined blend of the atomistic and continuum energy
functionals via eqn. (6).

In the limit where the thickness of the handshake region goes to zero and the size of
the finite elements at the interface approaches the atomic spacing, we recover, more or less,
the QC or CLS formulation. This is not precisely so, since the weights of the atomistic and
continuum energy contributions in QC, CLS and BD would still be slightly different right
at the interface. However, these differences will not substantially change the strength of the
ghost forces that will occur in the interfacial region.

An important practical difference between the methods discussed previously and the BD
method is the way in which compatibility is imposed between the atomistic and continuum
regions. In the BD method, displacement constraints are introduced into the handshake
region to force the displacement ũα for every atom α in BH to follow the displacements
dictated by the interpolated displacement field at the atoms reference position, u(Xα).
This is done using Lagrange multipliers by introducing the vector

hα ≡ u(Xα) − ũα =

nnodes∑

I=1

N I(Xα)UI − ũα, (23)

which we want to constrain to be equal to zero. This can be achieved by redefining the
handshake region energy in eqn. (7) to be

Π̂H =
∑

α∈BH

(1 − Θ(Xα))Eα(ũ) +
∑

e∈BH

Θ(Xe
cent)W (F (Xe

cent))V
e

+
∑

α∈BH

[
β1λ

α · hα +
β2

2
hα · hα

]
, (24)

where λα = {λα
1 , λα

2 , λα
3} are Lagrange multipliers for the degrees of freedom of atom α, and

β1 and β2 are penalty functions that can be chosen to optimize computational efficiency.
Note that the original BD paper was presented as a dynamic method. As such, forces on
atoms and nodes come from the differentiation of this energy functional and include effects
due to the constraint term. Since this term constitutes no more than a mathematical “trick”
without clear physical significance (for example, what is the right choice of the penalties β1

and β2?), it is not clear how to interpret the resulting dynamics near the interface. In the
static case, on the other hand, this is a convenient tool for finding a constrained minimum
energy configuration, and the magnitude of the ghost forces can be examined. The use of
a finite handshake region has the effect of smearing out the ghost forces, making the ghost
force on a given atom or node smaller, but introduces ghost forces on more atoms and nodes.
This will be more clearly evident in the discussion of section 7 to follow.
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Figure 5: The BSM interface region. There is no handshake region and the finite elements
exist throughout the body in order to store the coarse-scale displacement field.

4.3.1 Relaxing the condition of “Strong Compatibility”

In the QC and CLS methods, the “last row” of atoms is identified and made coincident with
the “first row” of finite element nodes. The positions of these atoms provide the displacement
boundary condition for the finite element region, which in turn imposes its displacement field
on the “padding” atoms. This is what we have called the “strong compatibility” approach.

The Lagrange multipliers used in the BD method, on the other hand, are not a strong
compatibility approach. Although they do, in the static limit, lead to the atoms in the
handshake region identically conforming to the continuum displacement fields, they relax
the compatibility constraint in two important ways. The first is that there is no longer a
need to identify a one-to-one correspondence between atoms and nodes along an interface.
The second is that in dynamic systems, departures from strong compatibility are possible
and will lead to additional forces on the atoms and nodes in the handshake region.

The most useful feature of coupling approaches that relax strong compatibility is that this
eliminates the need for one-to-one correspondence between atoms and nodes at the interface.
This makes mesh generation easier, since elements can be made in any convenient way
without regard for compatibility with the underlying atomic lattice.13 On the other hand,
we will show later that the trade-off is a reduced accuracy in the solution. An additional
downside of weak compatibility is that extending the atomistic region at the expense of the
continuum region, or vice versa, through automatic mesh adaption, becomes more difficult.

4.4 The Bridging Scale Method (BSM)

The groundwork for the bridging scale method (BSM) was laid first in reference [59] and
later in reference [39]. The original formulation focused on dynamic simulations, while the
later paper presented a static version of the approach. It is the latter that we focus on here.

13When strong compatibility is enforced, additional numerical algorithms for moving nodes onto lattice
sites are required. See for example [3].
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The BSM is an energy-based method with no handshake region (like QC and CLS), but
the BSM is conceptually very different from other methods. This is because in the BSM
there are (in principle) no separate continuum and atomistic regions. Instead, the BSM
introduces the notion of coarse-scale and fine-scale displacement fields that exist everywhere
in the body. As such, the picture is one where atoms exist throughout the body with a
displacement

ũ = ũ′ + ũ′′, (25)

where ũ′ is the coarse-scale displacement and ũ′′ is the fine-scale. The former is stored on a
finite element mesh everywhere in the body (overlapping all of BC and BA). The fine-scale
displacements are assumed to exist in BC as the manifestation of heat, but they are only
explicitly tracked and stored inside BA. The interface region for the BSM is illustrated in
fig. 5.

The coarse-scale displacement field is stored on the finite element grid, and is defined as
a least-squares fit to the underlying atomic displacements. In the atomistic region, this fit is
explicitly determined from the atoms, while in the continuum region the inverse thinking is
applied: it is imagined that the untracked atoms are vibrating around equilibrium positions
that are known from the finite element displacements. In the zero-temperature static limit,
the fine-scale displacements are assumed to be zero everywhere in BC , so the static BSM is
similar to the QC or CLS approach with two additional features: the partitioning of atomic
displacements using eqn. (25) and a different compatibility condition. This is a mix of weak
and strong compatibility, which we can describe next by referring to fig. 5.

Compatibility is first imposed on the atomistic region by constraining the square atoms
in the padding region to follow the coarse-scale displacements of the finite elements using
eqn. (1) (strong compatibility). Since it is assumed that there is no fine-scale displacement
in BC at zero temperature, this completely determines their positions. On the other hand,
compatibility of the continuum region is imposed at all nodes lying inside BA. Their dis-
placements are constrained to follow the least-squares fit of the atomic displacements in
neighboring elements (i.e., ũ′). This fully constrains elements deep inside BA, whose energy
is not included in the model, and constrains some of the nodes of elements straddling BI .
As we will see, this amounts to the same weak compatibility as described in more detail for
the CACM model in the next section, with a particular choice of the weighting function gI

in eqn. (26).
In this way, the BSM mixes elements of weak and strong compatibility: strong compat-

ibility for the motion of the padding atoms and weak compatibility for the enforcement of
the finite element boundary condition.

The full energy of the atoms shown as open circles in fig. 5 is included in the BSM, while
the energy of any finite element overlapping the filled circles is reduced by an amount that
reflects the volume of the overlap. So, for instance, the energy of an element completely
inside BA is not included at all, the energy an element overlapping BI is partially included,
and the that of an element deep inside BC is included as usual. Formally, then, the energy
is identical to the QC energy of eqn. (21), but with different weighting factors ne and a
relaxation of the constraint that interfacial elements must be fully-refined.

The introduction of the coarse-scale displacement with eqn. (25) within the atomistic
region introduces some complications. Mainly, this approach introduces a larger set of de-
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pendent variables for which the equations must be solved; instead of satisfying equations for
ũ, we must now solve equations for two fields ũ′ and ũ′′. As outlined in [39], this means that
the static BSM requires an iterative approach to the solution, alternatively holding fixed the
fine-scale variables while solving for the coarse-scale and vice versa. As we will discuss more
quantitatively in section 7, iterative approaches like this tend to be quite slow.

In this study, we have implemented a variation of the BSM that eliminates the need for
the iterative solver. This is possible in the static case because the fine-scale displacements
are identically zero in BC , while the coarse-scale in BA is only required as a way to define
the boundary condition on BC . It is likely that the full BSM approach, with the iterative
solver, will be slower, which we infer from our analysis of the CACM method discussed next.

4.5 CACM: Iterative minimization of two energy functionals

The problem of ghost forces stems from trying to combine two energy functionals from differ-
ent models (an atomistic and a continuum model) into a single, coupled energy expression.
A way to avoid ghost forces while retaining an energy formulation was proposed by [10] in
the so-called Composite Grid Continuum Method (CACM). In CACM, no attempt is made
to combine the atomistic and continuum energy functionals. Instead, they work with the
two energy functionals separately.

The CACM method can be described using our generic interface pictured in fig. 2(a) with-
out a handshake region14. First, the continuum problem is defined by setting the boundary
condition on nodes that lie inside the atomistic region. This is done in an average sense,
using a form of weak compatibility. In general

Ū
I =

NA∑

α=1

gI(Xα)ũα, (26)

where the ·̄ indicates a prescribed displacement and gI is some general weighting function
for node I. The CACM developers [10] chose to define gI as a cubic function over a sphere
of radius rcut surrounding node I:

gI(Xα) = 1 − 3

(
r

rcut

)2

+ 2

(
r

rcut

)3

,

where r = ‖XI − Xα‖. Choosing

gI(Xα) = δ(XI − Xα), (27)

introduces the special case of constraining the node I to move exactly in step with an atom
α at the same position. Other choices will see the displacement of node I take on some
weighted-average of the displacements of atoms in its immediate vicinity.

14For convenience the CACM developers [10] chose to fill the entire body with a finite element mesh
that overlaps the atomistic region similar to fig. 5. Because of the local nature of the finite element energy
functional, elements deep inside BA that do not overlap the padding region do not affect the solution and
so the formulation is equivalent to fig. 2(a). The overlapping elements are convenient, however, to simplify
the mesh building process, since there is neither a need to mesh a non-convex region containing a “hole”
in which the atoms reside, nor the need for a complicated fine-scale mesh around the atomistic/continuum
interface.
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Given this scheme to find the FE nodal displacements within BA from the atomic dis-
placements, the nodes within BA are held fixed and the energy of the continuum region is
minimized without any consideration of the atomistic energy. Once a minimum is found, the
atoms lying in the padding region are positioned according to the current displacement field
in the finite elements (in this instance, CACM uses strong compatibility through eqn. (1),
so that CACM combines characteristics of strong and weak compatibility). These padding
atoms are then fixed, and the energy of the atomistic system is minimized, again without
regard for the continuum energy. This leads to a new set of atomic positions, which are
used to find new displacements for the nodes inside BA, and the process repeats until the
change in atomistic energy during an iteration is below a specified tolerance. This type of
an approach is often referred to as an alternating Schwartz method in the mathematical
literature.

The main advantage of this approach is its modularity. In principle, it can be implemented
with a simple interface between two fully independent codes: a lattice statics code and a finite
element code. The coupling can be treated as a post-processing step on the solution from each
iteration, and since most of the time will be spent in minimizing the two energy functionals,
the implementation of the coupling need not even be especially efficient. However, the main
disadvantage of this method is that it will be extremely slow to converge for problems that
are nonlinear. In section 7, we will clearly illustrate this slow convergence.

The developers of CACM also included the ability to adapt the size and shape of the
atomistic region on-the-fly.

4.6 Cluster-based Quasicontinuum (CQC(m)-E)

If we return to the discussion of the QC method from section 4.1, we can follow a different
path starting from eqn. (18). Recall that in the QC method, the step following eqn. (18) was
to divide the body into two regions that would ultimately be treated differently; one where
the energy per atom is computed using the fully-atomistic approach (the “nonlocal region”)
and one where the energy was found using the Cauchy-Born rule (the “local region”). We
will next describe a different approach that was originally posited as a force-based method
in reference [24] (see section 6.4, later), and later re-cast as an energy-based method [15].

The idea is illustrated in fig. 6. As outlined before, we select a handful of the atoms to
also act as nodes, and these are connected by a FE mesh. The atoms between the nodes
are constrained to move according to the interpolated finite element displacement field. The
CQC(m)-E method15 now posits that the energy of all of the atoms can be estimated by
only computing the energy of a handful of atoms around each node. These are the atom
“clusters” highlighted in the figure. The number of atoms in the cluster, m, is a parameter of
the model, with larger clusters improving accuracy while increasing the computational effort.
This is the reason for the notation (m) in our acronym for the cluster methods. Where it
is necessary, we will indicate the cluster size for a given model. For example, CQC(13)-E
indicates an energy-based cluster method with each cluster containing 13 atoms.

The energy of eqn. (18) can then approximated as follows. The energy of a single

15CQC(m)-E refers to the energy-based cluster quasicontinuum method. In section 6.4, we discuss the
original force-based CQC(m)-F method.
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Figure 6: Clusters of repatoms around each node used to compute the energy in CQC(m)-E.

node/repatom I is found by computing the average energy of all the atoms in its cluster, the
set of which are denoted CI :

ĒI(U) ≈
1

mI

∑

α∈CI

Eα(ũ[U]), (28)

where mI is the number of atoms in cluster I. Based on the discussion so far, the superscript
on m seems unnecessary since we have suggested that all clusters are the same size. In fact, in
highly refined regions (and especially the atomistic region) there will be overlap of the clusters
for any m > 1. This is resolved by assigning atoms only to their nearest repatom, so that
no atom is part of more than one cluster (ambiguous cases that are equidistant from several
repatoms are resolved randomly). As such, some repatoms near the atomistic/continuum
interface will have mI < m, and all of the atomistic region will have mI = 1 regardless of
the nominal choice of m for the model.

The energy of atom α in the cluster, Eα, depends on the positions of all atoms, but these
are constrained to move as dictated by the nodal displacements U as in eqn. (1). The total
energy of all the atoms in the body is now approximated by a weighted sum of these repatom
energies:

Etot(U) =
∑

I∈R

nIĒI(U) =
∑

I∈R

nI

mI

∑

α∈CI

Eα(ũ[U]), (29)

where R denotes the set of atoms that are selected to be repatom/nodes and nI is a weight
assigned to each repatom. The weights nI can be chosen in a variety of ways, and can
be thought of as the number of atoms whose energy is represented by repatom I. For
example, one might draw the Voronoi diagram of the repatoms and then count or otherwise
approximate the number of atoms falling within the cell of repatom I. Other schemes for
computing nI are possible, as well as different weighted-averaging techniques to compute
ĒI from the cluster atom energies (eqn. (28)). These differences do not strongly effect the
behaviour, speed or accuracy of the method, although a sensible restriction on the selection
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of the nI values is that ∑

I∈R

nI = NA, (30)

where NA is the total number of atoms in the entire body.
In regions where the distance between repatoms becomes small, the method naturally

goes over to the fully-atomistic limit if we insist that clusters cannot overlap. Instead, they
shrink to mI = 1 in the fully-refined limit, where the repatom weights become nI = 1 as
well. In that case, it is clear that eqn. (29) reduces to the lattice statics energy expression.

Although it is no longer as apparent, there is still a division between “atomistic” and
“continuum” regions in this model. In essence, repatoms with nI = 1 constitute BA, whereas
BC is spanned by elements touching repatoms with nI > 1. In BC , the continuum assumption
is not in the form of a new constitutive law, since the energy ĒI for repatoms in this region
is still obtained from a (cluster-averaged) fully-atomistic energy calculation subject to the
constrained deformation ũ(U). But there is still a continuum assumption made here, in that
the method assumes a smooth variation of the energy from one atom to the next.

For clusters of size mI = 1 in coarsely meshed regions, the accuracy of CQC(1)-E is quite
poor, and it is necessary to use larger clusters or a ghost-force correction technique as shown
in [15]. We will discuss this at more length in subsequent sections.

4.7 Ghost Force Correction Methods

Several methods have been proposed to either eliminate or at least mitigate ghost forces.
The first method proposed to eliminate them in a fundamental sense from an energy-based
formulation was the creation of so-called “quasi-nonlocal atoms” by [49]. These atoms occupy
a transition region between BA and BC , and are designed to interact differently with the
two regions. The approach is limited to certain crystal structures and certain orientations of
the atomistic-continuum interface within the crystal. Later, a more general reconstruction
scheme was proposed in [14], but it is still not clear how to generalize this approach beyond
a planar interface within a crystal. Furthermore, the goal within many coupled methods to
include automatic re-meshing and adaption of the model to respond to error measures or
changes in the deformation field make these approaches expensive.

Recently, Klein and Zimmerman [23] have proposed a generalization of the coupling used
in the static BSM, including a careful accounting of the causes of ghost forces and ways to
minimize them (but not completely eliminate them). Currently, that method is limited to
pair potential atomistic models.

4.7.1 Deadload Ghost Force Correction

In the original implementation of the QC method where ghost forces are discussed [46],
an approximate ghost force correction is proposed. It turns out that this approach is very
general; it will work within the framework of any method for which the ghost forces can
be analytically derived or computationally estimated. As we shall see in our quantitative
example, this correction seems to go a long way in improved accuracy with almost negligible
extra computational effort.
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The proposed ghost force correction is to explicitly compute the ghost forces in some
suitable configuration, and then add the negative of these forces as deadloads on the affected
atoms or nodes. Thus, defining gI as the ghost force experienced by atom or node I (which
could be zero if the atom/node is far from the continuum-atomistic interface), then the
energy functional is modified from eqn. (21) to

Πtot =
∑

α∈BA

Eα(u[U]) +
∑

e∈BC

neΩ0W (F e[U]) −

nR∑

I=1

gI · U
I . (31)

For an undeformed model this exactly eliminates the ghost forces by construction. It becomes
less clear how to proceed when the model is non-uniformly strained, for two reasons. First,
it may not be possible to clearly identify which internal forces are “ghost” and which are
“real”. Second, the ghost forces will not remain constant as the deformation changes, and so
the dead load assumption is only an approximation (with an indeterminate error associated
with it).

To deal with the first difficulty, the QC developers defined the ghost forces in an intuitive
way that ensured that the method will have no ghost forces in the undeformed configuration
while still providing a clear prescription for ghost force computation under general defor-
mation. This “ghost force” is defined as follows: For an atom whose energy is explicitly
included in the total energy (atoms included in the first sum of eqn. (21)), the ghost force
is defined as any force the atom would not feel if its environment was truly atomistic every-
where. At the same time, ghost forces on the nodes defining the continuum are those forces
that the nodes would not feel if their environment were truly just the continuum. When
implementing the forces, it then becomes clear which contributions are the ghost forces. This
prescription is closely related to the “force-based” CADD/FEAt method to be discussed in
section 5. Essentially, the differences between the forces used in the force-based methods
and the actual derivative of the energy functional in the QC/CLS method are defined as the
ghost forces. Using this same guiding principle, it is possible to incorporate a ghost force
correction within any of the other existing methods. Indeed, we shall discuss next how this
was adopted within the cluster-based QC in [15] and how we propose a similar correction to
the AtC force-based method in section 6.3.1.

The second difficulty can be treated by occasionally re-computing the ghost forces, effec-
tively changing the energy functional that is being minimized from time to time. In the limit
of continuously updating the ghost forces (say for every evaluation of the forces in an energy
minimization or dynamic simulation), one is no longer minimizing any energy functional at
all, since the energy functional is continuously changing. Instead, one has moved to the
realm of the “force-based” methods that we will discuss in section 5. Note that CGMD has
the desirable feature that the ghost forces are constant, therefore in this method the second
difficulty is not an issue.

4.7.2 Deadload ghost force correction in CQC(m)-E

It has been recently demonstrated in reference [15] that the ghost force correction via constant
deadloads proposed for the original QC method can also be efficiently applied to the CQC(m)-
E. They recognized that large cluster sizes are required for good accuracy in CQC(m)-E, but
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that it is these large clusters which significantly slow down the method. However, one can get
good accuracy from small clusters (even from “clusters” of only one atom at each repatom
site) if a ghost force correction is used.

Rather than try to write down analytic expressions for the ghost forces, which is ex-
ceedingly complex in the CQC(m)-E case, an approximation was proposed in reference [15],
as follows. For a given cluster radius, rclust, around each repatom site, and a given model
configuration (characterized by the repatom displacements U), the forces on each repatom,
fCQC−E, can be computed. The correct forces, denoted f ∗, are unknown, but would be the
forces computed in the limit of “infinite” cluster radius, meaning that every atom is included
in the energy calculation. To compute an approximate f∗, one can recompute the forces for
a given model configuration but with a cluster-radius slightly larger than rclust (such that it
includes the next neighbor-shell of atoms for the crystal, for example) . The ghost forces are
then defined as the difference between the two sets of forces:

g = fCQC−E − f̃
∗
, (32)

where f̃
∗

is the approximation to the correct forces. The forces g can then be added as
deadloads, exactly as in eqn. (31).

This is an appealing approach in that the ghost force calculation makes use of the same
machinery as a regular force calculation; it only requires a slightly expanded list of cluster
members and appropriate weight functions. In section 7 we will quantify the extent to which
this correction improves the speed and accuracy of the CQC(m)-E model.

5 The Force-Based Formulation

The existence of ghost forces is, it seems, a necessary consequence of having a well-defined
energy functional. An alternate approach is to abandon the energy-based approach and
instead start from forces directly. As we show in this section, methods of this type can indeed
eliminate the ghost forces. However, the lack of a well-defined energy can be problematic for
a number of reasons:

• If the forces are not constructed carefully, it makes the search for equilibrium more
difficult. In the worst case, one will not find a solution at all if the forces are highly
non-conservative16. Assuming a stable model is built, one may still find “equilibrium”
solutions that are not physical because they correspond to saddle points or maxima
(rather than minima) on some unknown energy surface.

• The lack of an energy functional also means that force-based methods cannot be used to
compute the difference in energy between different equilibrium states or the activation
energies along transition paths that are often the goal of static methods.

• Another difficulty that is not often mentioned, but can be cause for practical concern,
is that debugging force-based schemes can be more difficult since the workhorse of

16The forces in an energy-based method are always conservative by construction, but in a force-based
method one often deliberately constructs a non-conservative set of forces to avoid the ghost force problem.
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energy-based method debugging, the numerical derivative test, may not be applicable
in the absence of an energy functional.

• In dynamic systems, the possibility of an unstable, non-conserving system is grounds for
considerable caution. For example, a force-based dynamical method cannot simulate
a system in the microcanonical ensemble since the energy of the system will not be
conserved.

In essence, a force-based method is based on the following philosophy: To eliminate ghost
forces, design the method so that the forces are identically zero when the perfect crystal is
in its correct equilibrium state. Since it does not seem possible to do this in general using an
energy functional except for certain special forms of the interatomic potential, we construct
forces directly without recourse to a total energy.

Superficially, it would seem that this is no different than choosing to couch things in terms
of Hamiltonian or Newtonian mechanics. In the former, forces are obtained by differentiating
an energy, whereas in the latter forces are used directly. However, the Newtonian and
Hamiltonian formulations are only equivalent for a conservative system, and therein lies the
rub. A force-based multiscale formulation is not conservative exactly because a total energy
functional cannot be defined. The forces are constructed ad hoc and as such there is a
danger that the resulting system will be potentially ill-behaved or unstable. The developers
of force-based methods hope that by building force schemes that are physically-motivated,
they are taking liberties that are not too terribly egregious.

Let us consider, again, the coupled problem shown in fig. 2(b), with the left-hand region
modeled atomistically and the right-hand region treated using finite elements. We can ap-
proach the problem of how to construct a force-based coupled model by imagining that two
independent potential energy functionals exist: one that treats the entire body atomistically,
Πatom, and one that models the entire body as a continuum using finite elements, ΠFE.

For Πatom, we imagine that the atoms underlying the continuum region are in positions de-
termined by their reference crystal structure and the displacement field of the finite elements.
We could then, in principle, compute the potential energy of this atomic configuration. Dif-
ferentiation of this potential energy with respect to the position of any one of the real atoms
gives us the force on this atom. In practice, the finite range of interaction used to define an
interatomic potential means that we only need to worry about a padding of atoms in the
continuum near the atomistic/continuum interface, as discussed previously.

At the same time, forces on the finite element nodes are computed by starting from the
finite element energy functional, ΠFE. To this end, we can now imagine that the entire body
is modeled by finite elements, with the actual continuum region using the same elements
as defined for the coupled model. Assuming a strictly local finite element formulation, the
details of the finite element mesh inside the atomistic region are not important, since the force
on a node is computed entirely from elements in direct contact with it. In other words, we
only need to know the positions of the handful of atoms defining the displacement boundary
condition for the elements near the atom/continuum interface.

Thus for atoms, the forces are defined as

fα =
∂Πatom

∂ũα , (33)
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while for the nodes

F
I =

∂ΠFE

∂UI
. (34)

Note that this is not the same as minimizing the combined energy functional Πatom + ΠFE.
The forces computed in eqns. (33) and (34) cannot be derived from a unified energy func-
tional. But the advantage is that the ghost forces will be zero by design.

In the following sections, we look at the details of several existing force-based methods.
We will see that even some force-based methods, with what seem to be very reasonable
prescriptions for the forces, can have their own spurious effects that are similar to the ghost
force artefacts that plague energy-based implementations.

6 Review of Force-Based Coupling Methods

6.1 FEAt and CADD

The earliest force-based method (and, indeed, the earliest of all the methods presented here)
was the Finite Element-Atomistic (FEAt) method of [25]. In this approach, there is no
handshake region and strong compatibility is enforced, making it comparable to the QC and
CLS methods but with a force-based rather than energy-based governing formulation. FEAt
took an additional step of introducing a nonlocal elasticity formulation in the finite elements,
in an effort to mitigate the abrupt transition from a local continuum to nonlocal atoms.

More recently, the same force-based coupling was used in the development of the Coupled
Atomistic and Discrete Dislocations (CADD) method [47, 48]. The focus of this development
was the connection to discrete dislocation methods in the continuum region. This focus
on dislocations necessitates the use of linear elasticity (as opposed to the Cauchy-Born
(CB) rule) in the continuum region, but in the limit where there are no dislocations in the
continuum, CADD can use the CB rule or any other nonlinear constitutive law in the finite
elements. In this limit (no dislocations and the CB rule) CADD shares the features of the QC
method, but with a force-based rather than energy-based coupling scheme. In fact, CADD
can be described as a force-based QC formulation, which is how it is sometimes referred to
in the literature.

The CADD/FEAt coupling is therefore simple to describe in relation to the QC method
as presented in section 4.1. There is no handshake region and strong compatibility sets
the positions of the padding atoms and the nodes along the heavy, jagged line in fig. 2(b).
The forces on every atom in BA are computed as if the continuum did not exist, from the
derivative with respect to atom positions of an energy functional:

ΠA∪P =
∑

α∈{BA∪BP }

Eα −
∑

α∈{BA∪BP }

fα
ext · ũ

α. (35)

This is, in effect, the same as Πatom introduced in the last section. Note that this energy
functional is fundamentally different from eqn. (4) since it contains the padding atoms as
well17. Similarly, the forces on the nodes are obtained from the derivative with respect to

17Note that force-based approaches also require a padding region which is twice as thick as that for
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nodal positions of an energy functional:

Π̂C =

nelem∑

e=1

nq∑

q=1

wqV
eW (F (Xe

q)) − F̄
T
U, (36)

however without regard for the energy of the atoms. These forces are then used to move
the atoms and nodes (either dynamically or towards equilibrium in a static solution using
a suitably modified conjugate gradient method or quasi-Newton scheme) and the forces are
re-computed for the new atom and node positions.

The strong compatibility employed in CADD/FEAt means that there is effectively a
displacement boundary condition on the atoms in the form of a hard constraint on the
motion of the padding atoms. Conversely, it means that there is a displacement boundary
condition on the finite elements, as the last row of atoms impose their displacements on
the first row of nodes. Note that this is not an iterative, alternating Schwartz type of an
approach, even though the presentation may suggest it. The equations for the forces (i.e.,
the selective derivatives of eqns. (35) and (36)) are solved simultaneously with the strong
compatibility conditions as a constraint. Of all the methods presented here, only BSM and
CACM of sections 4.4 and 4.5 respectively require repeated iterations between the atomistic
and continuum domains.

6.2 The Hybrid Simulation Method (HSM)

Like QC and CLS, both FEAt and CADD require strong compatibility to be enforced in
the interface region. Another force-based method that we will call the Hybrid Simulation
Method (HSM) was proposed by [28]. It partially removes the strong compatibility condition
of CADD/FEAt by generalizing the coupling to include a handshake region of finite width.
There is still a padding region where strong compatibility between the atoms and the contin-
uum displacement field is used, but atoms in the handshake region are free to move as they
like. In fact, the purpose of the handshake region in this model is to provide a prescription
for a weak compatibility scheme for the boundary condition on the FE region. As in the
CACM method described earlier, this method relaxes strong compatibility by an averaging
method using eqn. (26). In the original paper [28], the developers used a function gI defined
on a sphere of radius rav surrounded node I and linearly decaying to zero at r = rav. The
size of the sphere could be varied to study the effects of this averaging, and of course other
weighting functions could be used.

As with the BD method discussed earlier, the main advantage to this approach is that it
makes mesh generation easier. Later in section 7 we will see that this approach tends to be
less accurate than strong compatibility for a comparable mesh design.

We discussed earlier how the BD method could be shown to reduce to the QC or CLS
method in certain limiting cases. Similarly, the HSM method reduces to the CADD/FEAt
coupling method if we choose eqn. (27) for gI , refine the elements to atomic spacing at

a comparable energy-based method. This is because the forces are derived from an energy functional that
involves more atoms, as evidenced in eqn. (35). These extra atoms must be properly coordinated by additional
padding, which means that force-based methods will be slightly slower than energy-based methods, all other
things being equal.
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the interface, and shrink the width of the handshake region to zero. In addition, the HSM
method used nonlinear elasticity instead of the simpler linear version or the more expensive
Cauchy-Born rule. It is straightforward, however, to exchange the constitutive model in any
of these methods.

6.3 The Atomistic-to-Continuum (AtC) Method

The Atomistic-to-Continuum (AtC) method was presented and analyzed in a series of papers,
namely references [19, 35, 5, 4]. This method is, in essence, a force-based version of the BD
method discussed earlier. Recall that the BD method used eqn. (2), with the energy of
the handshake region coming from the blending of a continuum and atomistic energy via
eqn. (6). The AtC method achieves its coupling by blending at the level of forces, as follows.

The derivation starts by assuming that the atomistic and continuum regions are com-
pletely uncoupled, even though they physically overlap in the handshake region. The forces
on the nodes and the atoms are

F
I = −

nelem∑

e=1

∫

Be

P (F̂ (U))
∂N I

∂X
dV (37)

fα =
∑

β 6=α

fαβ . (38)

Here F
I is the force residual on node I, P is the first Piola-Kirchhoff stress tensor obtained

from the FE constitutive law, and N I is the shape function of node I. The numerical
approximant to the deformation gradient F̂ is obtained from the finite element displacement
field. In the second equation, fα is the force on atom α and fαβ represents the force exerted
by atom β on atom α. We have omitted the possibility of any externally applied forces, just
to simplify the discussion somewhat.

The forces between atoms are gradually weakened across the handshake region from the
atomistic to the continuum side, using a weight function, η, that linearly decreases from 1
to 0. The weight for atom α is

ηα = η(Xα). (39)

Then, the force between two atoms α and β is weakened by a factor

ηα,β =
ηα + ηβ

2
, (40)

so that the atomic forces become

fα =
∑

β 6=α

ηα,βfαβ . (41)

The symmetric definition of ηα,β ensures that Newton’s third law is satisfied, i.e., the weak-
ened force exerted on atom α by atom β is equal to the weakened force exerted by β on
α.

27



A complementary weight function18, Θ = 1 − η, is used to gradually weaken the finite
element nodal forces across the handshake region from the continuum to the atomistic side:

F
I = −

nelem∑

e=1

∫

Be

Θ(X)P (F̂ (U))
∂N I

∂X
dV, (42)

which can be integrated numerically by Gauss quadrature to yield

F
I =

nelem∑

e=1

nq∑

q=1

Θ(Xe
q)wqV

e

[
−P

∂N I

∂X

]
. (43)

Up to this point, there has been no coupling; all that has been done is to systemati-
cally weaken the forces through the handshake region using two complementary functions
η and Θ. Two additional steps are required to effect the coupling. First, atoms inside the
handshake region are constrained to follow the displacements of the finite elements (strong
compatibility) via eqn. (1). Second, the forces computed on the handshake region atoms are
projected to the finite element nodes. Consequently, the forces on the nodes become:

F
I =

nelem∑

e=1

nq∑

q=1

Θ(ξe
q)wqV

e

[
−P

∂N I

∂X

]
+

∑

α∈SI

∑

β 6=α

ηα,βfαβN I(Xα). (44)

By the compact support of the FE shape functions, a node only receives force contributions
from atoms inside the elements contacting the node. We emphasize this by defining the set
of atoms α ∈ SI as all atoms within the compact support of node I.

In the atomistic region, the atoms are free to move according to the dictates of the
modified forces in eqn. (41). Since η = 1 everywhere inside BA, the introduction of η will
only have a relatively small effect, confined to atoms with neighbors in the handshake region
where η is less than 1.

6.3.1 Spurious Forces in Force-Based Methods

Although the prescription of forces for the various force-based methods all appear reasonable,
they are not all equally good. Later, in section 7, will will quantitatively compare them. For
now, it is worth illustrating how the AtC method in particular leads to spurious forces that
need to be corrected to achieve reasonable accuracy.

Consider the 1D chain illustrated in fig. 7 and modeled using the AtC prescription of
forces just described. The atoms are shown at their equilibrium spacing, and the strain in
the elements is zero everywhere, so there should be no forces on this initial configuration. For
definiteness, imagine that the atoms interact via a 2nd-neighbor Lennard-Jones potential.
Now consider an atom like the one labeled “3” in this figure. It interacts with atoms 1, 2, 4
and 5, so that the total force on atom 3 is zero in the equilibrium configuration:

f 3 = f 13 + f 23 + f 43 + f 53 = 0. (45)

18Note that Θ is the same as the weight function introduced in the BD method earlier.
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Figure 7: A 1D implementation of the AtC method. As in fig. 2, handshake region atoms ap-
pear as filled circles and padding atoms are open squares. Elements and nodes are indicated
by heavy lines, while the graph above the model indicates the variation of the weighting
functions.

Note that the sum of these interatomic forces is zero, but the four contributions are not zero
on their own. In fact, the symmetry of the chain implies that

f 13 = −f 53, (46)

f 23 = −f 43. (47)

When we now weight the AtC atomic forces according to eqn. (41), we have

f 3 = η1,3f 13 + η2,3f 23 + η4,3f 43 + η5,3f 53. (48)

All of these weights will be equal to 1 with the exception of η5,3, which is somewhat less than
one due to the value of the blend function η at the position of atom 5. Using this result and
eqns. (46)-(47), we are left with a non-zero force on atom 3

f 3 = (η5,3 − 1)f 53 6= 0. (49)

Similar non-zero forces exist on atoms 4 through 8 in the handshake region, which are
projected onto the nodes at either end. As such, there are non-zero forces throughout the
interfacial region in this force-based method.

As we shall see in section 7, these forces seriously damage the accuracy of the AtC
method. Fortunately, they can be approximately corrected using exactly the same deadload
correction approach for ghost forces described in section 4.7.1. Any force present in the
undeformed model is spurious, and so once these are computed they can be subtracted from
the forces obtained in deformed configurations.

It is worth noting that the need for this correction is only obvious if a sufficiently complex
interatomic model is studied. A harmonic model, even with second-neighbor interactions,
is a special case where all forces fαβ are identically zero for an undeformed perfect lattice.
Since this is the model that was used in the development of the AtC method, the existence
of these spurious forces was initially overlooked.

6.4 Cluster-based Quasicontinuum (CQC(m)-F)

In section 4.6, we discussed the energy-based variant of the Cluster-based Quasicontinuum
method (CQC(m)-E). This approach can also be couched as a force-based method, and in
fact the original formulation of reference [24] was a force-based model.
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In the force-based CQC(m)-F method, clusters are chosen around each node, exactly as
in the energy-based version. However, instead of approximating the energy of the missing
atoms via the energy of the cluster atoms, the forces on the nodes are determined from
the forces on atoms in the cluster. For a given configuration of the nodes, the interpolated
displacement fields between the nodes determine the deformed positions of the cluster atoms
and any adjacent atoms required to build neighbor lists. Then, the force fα on any cluster
atom, α, in that constrained configuration can be determined. The force on node I follows
as

F
I =

nnodes∑

J=1

nJ
∑

α∈CJ

fαN I(Xα). (50)

In words, this means the following. Each node J represents nJ atoms. The value of nJ can
be determined in a number of ways [24], but one physically sensible approach is to assign
all atoms within the Voronoi cell of node J to nJ as discussed earlier. Then a cluster of
atoms is selected around each node J , denoted by the set of all α ∈ CJ . The force on each
cluster atom α is computed and is multiplied by the weight factor nJ . Finally, this weighted
force nJfα is distributed amongst the nodes defining the element in which α lies, using the
partition-of-unity shape functions N I(Xα). Writing this as a sum over all the nodes as in
eqn. (50) is convenient notation, but we must remember that the compact support of the
shape functions greatly limits the computational effort this entails.

The developers of CQC(m)-F observed that taking “clusters” of a single atom at each
node leads to extremely poor results; the method is unstable. Making the clusters larger
restores stability, but still leaves a certain level of error in the analysis. This can be controlled
by making larger and larger clusters, but at the expense of increased computational cost. In
the next section, we re-visit this more quantitatively.

7 Quantitative comparison between the methods
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Method Acronym Key Continuum Handshake Coupling Governing
References Model Boundary Condition Formulation

Quasicontinuum QC [53, 45] Cauchy-Born None Strong Compatibility Energy-Based
section 4.1

Coupling of CLS [44] Linear Elasticity None Strong Compatibility Energy-Based
Length Scales section 4.2

Bridging BD [60] Cauchy-Born Linear mixing of Weak Compatibility Energy-Based
Domain section 4.3 energy (penalty)

Bridging Scale BSM [59, 39] Cauchy-Born None Weak/Stong Mix Energy-Based
Method section 4.4 (least-squares fit)

Composite Grid Atomistic CACM [10] Linear Elasticity None Weak Compatibility Iterative Energy-Based
Continuum Method section 4.5 (average atomic positions) (two energy functionals)

Cluster-Energy CQC(m)-E [15] Averaging of None Strong Compatibility Energy-Based
Quasicontinuum section 4.6 atomic clusters

Ghost-force corrected QC-GFC [46] Cauchy-Born None Strong Compatibility Energy-Based
Quasicontinuum section 4.7.1 with dead load GFC

Ghost-force corrected CQC(m)-GFC [15] Averaging of None Strong Compatibility Energy-Based
Cluster-Energy QC section 4.7.2 atomic clusters with dead load GFC

Finite-Element/Atomistics FEAt [25] non-linear, nonlocal None Strong Compatibility Force-Based
Method section 6.1 elasticity

Coupled Atomistics and CADD [47, 48] Linear Elasticity None Strong Compatibility Force-Based
Discrete Dislocations section 6.1

Hybrid Simulation Method HSM [28] Non-Linear Elasticity atomic averaging Weak Compatibility Force-Based
section 6.2 for nodal B.C. (average atomic positions)

Concurrent AtC Coupling AtC [19, 4, 5, 35] Linear Elasticity Linear mixing Strong Compatibility Force-Based
section 6.3 of stress and atomic force

Ghost-force Corrected AtC-GFC unpublished Linear Elasticity Linear mixing Strong Compatibility Force-Based
Concurrent AtC Coupling section 6.3.1 of stress and atomic force

Cluster-Force CQC(m)-F [24] Averaging of None Strong Compatibility Force-Based
Quasicontinuum section 6.4 atomic clusters

Table 1: Summary of the methods discussed in this presentation.
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In table 1, we summarize the methods discussed in this study and their key features. The
acronyms are meant to help keep the various methods straight. For example, we distinguish
between the energy-based cluster method (CQC(m)-E) of section 4.6, the same method
with a ghost-force correction (CQC(m)-GFC) of section 4.7.2 and the force-based version
(CQC(m)-F) of section 6.4. Any method with a ghost force correction includes “GFC” in
its acronym. Some of the acronyms are taken directly from the original papers, others are
coined here.

In this section we discuss the results of implementing all of these methods in a single
computer code [30] and directly comparing their performance on a universal test problem.
The result of the study will be a quantitative comparison of the relative accuracy and speed
of the different approaches.

One important question is the determination of what constitutes a suitable test problem.
Making the problem too simple might hide problems or mask differences between methods.
For example, we have already seen how using linear springs as the atomistic model hides
spurious forces in the AtC method. As another example, it is possible to completely eliminate
ghost forces in the CQC(m)-E method in 1D, but not in higher dimensions. On the other
hand, making the problem too complex will make it difficult to analyze the results and
perhaps cloud the picture of what constitutes the error. It is also important to choose a
problem that is robust and has a well-defined unique solution, otherwise the comparison
between methods becomes meaningless. We have chosen a problem that we believe satisfies
these requirements. It is a robust problem that provides a suitably simple but not trivial
test of the methods. The test is described below in section 7.2.

7.1 The computer implementation

The methods are implemented within the code framework of version 1.2 of the QC method
code provided at the QC method website [51]. This framework allows us to study static
3D deformation problems in a 2D model. More specifically, the model is defined in the
X1X2 plane, but the displacement field has three components. Furthermore, the underlying
crystal structure is 3D (in our example it is face-centered cubic (fcc)), but periodic in the
X3-direction with the minimum possible simulation box length along X3. This restricts, for
example, dislocations to be infinite straight defects with their line direction along X3, but
at the same time allows their Burgers vectors to have both edge and screw components.

Our code, together with the input files and a brief explanation of its use, is available for
download at the quasicontinuum website [51]. This may be useful for developers that wish to
further explore comparisons between the methods or for someone trying to understand the
details of the implementations, but it is not intended as a code capable of doing production
runs. This is because our focus was on a code that was equitable to all the methods at the
expense of overall efficiency. The code is set up so that all the methods in the comparison
use exactly the same routines for force and energy calls, as well as the same neighbor finders,
solution algorithms and convergence criteria. Any improvements to the efficiencies of these
aspects of the methods could, in principle, be applied to all the methods and therefore leave
their relative efficiencies unchanged. At the same time, someone looking to assess the overall
efficiency of multiscale methods compared to fully atomistic calculations should take these
results as a worst-case scenario; any of these methods can be made considerably more efficient
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than our test implementation would suggest.
To compare accuracy, it is of course necessary that we use the same atomistic potentials

for all the methods, and it would be nice to use the same continuum constitutive law as well.
The finite element basis of the methods makes it easy to swap the constitutive law, and
with the exception of the cluster-based methods (which have their own unique prescription
for treating the “continuum” region) one can argue that no method is ideologically tied to
a certain choice. As such, we will use the identical Cauchy-Born continuum constitutive
law within all but the cluster-based methods. This will likely improve the accuracy of some
methods, at the expense of their efficiency; if linear elasticity will suffice then the CB method
is a waste of computational resources. We will return to address this specific point later, but
for now a common constitutive choice ensures a fairer comparison between the methods.

One discrepancy between methods that cannot be eliminated completely is the differ-
ence between the force-based and energy-based formulations, which necessarily use different
solvers. Here, we use the conjugate-gradient (CG) solver packaged with the QC code [51]
to minimize the energy for all of the energy-based methods. We use the same CG solver
for the force-based methods, modified to work without having an energy functional to min-
imize. Specifically, during a standard CG minimization, a series of 1D line searches are
performed to minimize the energy along particular search directions. For the force-based
CG solver (CG-FB), we replace the line search energy minimization with a line search to
find the location along the search direction at which the dot-product of the search direction
with the force vector is zero. The difference between the CG and CG-FB solvers means
that a direct comparison of the efficiency of force-based and energy-based methods cannot
be carried out. Instead, we have applied both solvers to the fully-atomistic problem that
serves as the gold standard for this test. When discussing the efficiency of an energy-based
or force-based method, we will compare it to the fully-atomistic simulation performed using
the same solver.

Some of the methods offer flexibility in the choice of certain parameters during imple-
mentation which can, in principle, effect the accuracy or efficiency. To explore the effect
of varying these myriad parameters is beyond the scope of this study. Rather, we have at-
tempted to choose reasonable or, where known, optimal values. These details are elaborated
here.

• BD Method. We found that the most efficient method to implement compatibility was
to set β1 = 0 and β2 = 10 eV/Å2 in eqn. (24).

• CQC(m)-E. Without the ghost force correction, all cluster calculations are carried
out with a cluster comprised of the atom at the node and its nearest neighbors. This
means (for the fcc example) 13-atom clusters of radius rclust ≈ 2.9Å, denoted CQC(13)-
E. Repatom weights were computed using the volume of the Voronoi cell around each
repatom, as discussed in the text following eqn. (29).

• QC-GFC. The deadloads used for the ghost-force correction in the QC (and any other
method with such a correction) are computed once at the beginning of each load step,
using the configuration of the atoms in the last relaxed step.

• CQC(m)-GFC. When the ghost force correction is applied to the cluster-based meth-
ods, the clusters are reduced to single atom clusters, i.e.CQC(1)-GFC. This greatly
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Figure 8: Test problem used to compare the various multiscale techniques. A Lomer dipole,
40Å wide, is centered in the model. The darker region around the edges of the model are
held fixed to various levels of applied shear strain to force the dislocations to move.

enhances the speed of the method while only having a slight impact on the overall error.
For the ghost force correction of eqn. (32), f̃

∗
is computed with a 13-atom cluster.

• HSM. Weak compatibility is enforced on the nodes adjacent to the atomistic region by
applying eqn. (26) where

gI(Xα) =

{
1/N I , when |Xα − XI | < 2rcut

0, otherwise.
(51)

In other words, the displacement of the node is just the average of the displacement of
all atoms within 2rcut of the node.

• CQC(m)-F. The clusters for the force-based cluster methods are chosen to be 13-atom
clusters (CQC(13)-F), as in the CQC(13)-E without the ghost force correction.

• CACM. The details of the convergence criteria for CACM are elaborated in sec-
tion 7.5.1.

7.2 The test problem

The test problem is a block of single crystal aluminum19 containing a dipole of Lomer dislo-
cations [21], as schematically illustrated in fig. 8. The crystal is roughly 400Å× 400Å in the
X1X2 plane and periodic in X3 (with a periodic length of 2.85Å). Since the lattice constant
for this model of aluminum is 4.032Å , this region contains 27, 760 atoms.

This problem is studied both “fully-atomistically” using lattice statics (we call this the
“exact” solution), as well as with the various multiscale methods. For the multiscale models,
we use meshes that are approximately the same across the methods. The meshes used are
illustrated in fig. 9 and will be denoted by an extension “10”, “20” or “30” as appropriate.

19Modeled using the EAM potentials of [16]; a sufficiently “multi-bodied” model to ensure a rigorous test
of the methods.
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Figure 9: Meshes used in the test problem, whereby the width of the atomistic region
(indicated by the dashed lines) is systematically increased.

The numbers indicate the extent of the fully-refined atomistic region along the middle of
the model. For example, “10” means that the atomistic region extends from X2 = −10Å to
X2 = +10Å. In all cases, the Lomer dipole lies on the X2 = 0 plane, with the two cores
initially at X1 = ±20Å.

For models that do not require the mesh to be refined to the atomic scale along the
atomistic/continuum interface (for example, the BD, BSM or HSM models), the atomic
region covers the same extent as the other models (from y = −10Å to y = +10Å, for
instance) and the continuum region uses a nearly uniform mesh of roughly the same size as
the other methods away from the atomistic region, as shown in fig. 10. These coarse-grained
elements typically contain about 34 atoms. The handshake region, if it exists, is outside
of the fully-atomistic region as illustrated in the close-up of the central regions in fig. 10.
The thickness of the handshake region is kept constant at approximately 10Å for all models
(−10, −20, and −30).

We consider a dipole configuration rather than a single defect to make the application of
the remote boundary conditions simpler, as the displacements around a dipole die-off rapidly
to zero as we move away from the two cores. We study the Lomer dislocation, rather than
the usual {111}〈110〉 dislocation in fcc because the Lomer is relatively sessile; with a Burgers
vector b = [110] lying in the (001) plane, the Lomer dislocation has a large Peierls resistance
to motion. This is an advantage because the dipole configuration remains stable without
any externally applied stress, despite the elastic attraction between the two cores.

By applying a shear of the appropriate sign, we can introduce Peach-Koehler forces on
the two cores that tends to drive them apart. At some critical level of shear, we expect the
two cores to move from their initial configuration towards the outer edges of the crystal.
Thus, there are two ways that we will quantify the error associated with each multiscale
method. We first look at the relaxed configuration of this dipole under no applied shear,
and quantify the discrepancy from the exact solution produced by a fully-atomistic model.
Second, we study the shear levels at which the defects move and the range of motion, again
in comparison with the exact atomistic result. It is interesting that there seem to be very
few problems that are, like the shearing of the Lomer dipole, well-suited to the goals of this
study. We considered, for example, what we thought to be a “simpler” problem of shearing
a twin boundary contained a single step of one atomic plane (described in [54] and in the QC
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Figure 10: Close-up of the center of the “Model-10” meshes used. The fully-atomistic region
extends from y = −10Å to y = +10Å in all cases. (a) For QC, CLS, FEAt, CADD and CQC,
there is no handshake region and the padding atoms (not shown) lie within the continuum
elements. (b) For the BD, BSM, CACM and AtC methods the handshake region extends
an additional 10Å beyond the atomistic region as shown within bold lines. (c) For the HSM
method, the same handshake region as in BD is used, and the averaging sphere to determine
nodal positions is shown, actual size.

Tutorial Guide version 1.3 [52]). But it seems that such a step has multiple local minimum
structures (much like the problem of modeling grain boundaries in general [40, 20]). Slight
changes to the loading of the step (via changes to the multiscale model used) caused different
structures to appear in different models. This made the quantifying of error difficult, since
it is likely that even the exact result has multiple solutions.

The introduction of the dipole and the boundary loading are imposed in exactly the same
manner in both the fully-atomistic model and all the multiscale models. As illustrated in
fig. 8, we divide the model into the “free” region (light grey) and the “fixed” region (dark
grey) along the boundary where the loading conditions are applied. The fixed region is of
finite thickness (greater than 2rcut for the potential) so that surface effects are avoided. The
initial dipole configuration is created by applying the isotropic elastic displacement fields [21]
to all the atoms in the free region and letting the structure relax. The dislocation field is not
applied to the fixed region. This means that there is a slight initial strain on the dislocations,
but it is only small since the dipole displacements rapidly decrease to zero in the far-field.
In any case, since the same slight strain is applied to both the exact and model solutions,
the comparison will remain valid. Shear strain is applied by prescribing the positions of the
fixed region to be consistent with a uniform shear strain:

u1 = γX2, (52)

where u1 is the X1-component of the displacement and X2 is the reference coordinate. For
the first step, γ = 0 and the relaxation is only due to rearrangements of the dislocation core
structure which is not exactly described by the elastic solution. Subsequent values of γ are
then introduced by superimposing a uniform shear strain increment on the relaxed configu-
ration of the previous load step. For example, after load step n, the atomic displacements
are relaxed to ũ(n). As the boundary positions are incremented from γn to γn+1 = γn +∆γ,
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Figure 11: Applied shear load and distance between the dislocation cores as a function of
applied shear strain for the exact atomistic result.

atoms and nodes within the free region are displaced in the X1-direction according to

ũ0
1(n + 1) = ũ1(n) + ∆γX2, (53)

ũ0
2(n + 1) = ũ2(n), (54)

ũ0
3(n + 1) = ũ3(n). (55)

From this initial guess, ũ0(n + 1), the free region is then allowed to relax to the solution,
ũ(n + 1) for step n + 1.

7.3 The exact solution

Fig. 11 and fig. 12 illustrate the result of the fully-atomistic simulation; this will be the
benchmark against which we compare the multiscale models. In fig. 11, the applied shear
force and the distance between the two cores are plotted against the amount of shear strain,
γ, that has been applied to the boundary. The shear force is defined as the sum of all
X1-components of force acting on the constrained nodes positioned above the X2 = 0 line
after relaxation. The core spacing is easily determined by identifying atoms with broken
near-neighbor centrosymmetry [22] and defining the center of mass of these atoms as the
center of the core. Points on the graph indicate the results from the actual load steps taken,
which are joined by a line simply to guide the eye.

We see an essentially linear load-strain relation until γ = 0.05, at which point the dislo-
cations move apart a relatively small amount; they increase their spacing from about 40Å
to about 50Å. This results in a small but noticeable change in slope of the loading curve.
Later at γ = 0.057, the dislocations move a long distance and the load drop is more signifi-
cant. The dislocations never completely leave the crystal; the constrained atoms around the
boundary act as a rigid wall against further dislocation motion.
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Figure 12: The exact solution for shearing of a Lomer dipole. (a)-(c) show the whole model,
(d) and (e) show a close up of the dipole and (f) shows a close-up of the left-hand core after
it has moved to the edge of the model. Contours show the X2 component of displacement
(range of contours: ±0.72Å), merely to help visualize the dislocation.
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Fig. 12 shows contour plots of the X2-component of displacement at three points along the
simulation. The top three images, (a)-(c), show the entire model while the lower images, (d)-
(f), show a close-up of the dislocation cores with the actual atomic positions superimposed on
the contours. In (d)-(f), the pentagonal core structure of the Lomer dislocations is clearly
visible, and other than some elastic distortion as the core approaches the rigid boundary
there is no significant change to this core structure as the dislocations move. Rather, the
core simply moves from one Peierls valley to the next. Less clear from this image, but
verifiable, is that the dislocations remain confined to a single (001) plane along X2 = 0; they
move only left or right on the plane where they were originally introduced.

7.4 Comparing the accuracy of multiscale methods

7.4.1 The Displacement Error

We first quantify the error in the results by comparing the displacement fields from the
multiscale models to the exact atomic displacements. In the multiscale approaches, there
is always a fully-atomistic region, where ideally we desire perfect agreement between the
multiscale and exact results, and a coarse-grained or continuum region where the positions
of most of the atoms are not explicitly tracked. However, given the reference position of an
atom, we can obtain the displacement field values at that position and compare these to the
true atomic displacements. We define an atom-by-atom error measure of the displacement
error as follows. Denoting the exact displacement vector of atom α to be ũα

exact and the
displacement obtained from a multiscale model as ũα, we define the error as the L2-norm of
the difference between these two vectors

eα = ‖ũα − ũα
exact‖. (56)

The global displacement error for a given model is similarly defined as the L2-norm of the
difference between the global displacement vectors (ũ and ũexact are of length 3NA for NA

atoms), normalized by the number of atoms (in this case, recall NA = 27, 760):

e =

√∑NA

α=1(e
α)2

NA
=

√
‖ũ − ũexact‖2

NA
. (57)

As defined here, both eα and e have units of Å. To turn the global error into a percent-error,
e%, in a sensible way, we can divide by the average of the atomic displacement norm in the
exact solution:

e% =
e

ũavg
× 100, (58)

where

ũavg =
1

NA

NA∑

α=1

‖ũα
exact‖ = 0.05755Å. (59)

These percent-errors are presented in table 2, to show the scale of the errors for this particular
test problem.

Table 3 presents the displacement error results again for each model, but normalized by
the lowest value obtained, emin = 2.262 × 10−3Å (e% = 3.93%), from the CADD/FEAt-30
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Method Model-10 Model-20 Model-30

CADD/FEAt 11.42 % 5.13 % 3.93 %
QC-GFC 12.42 % 5.72 % 4.05 %
AtC-GFC 14.59 % 8.28 % 5.04 %

BD 14.63 % 9.09 % 6.44 %
QC/CLS 14.66 % 9.54 % 8.50 %

BSM 17.59 % 12.07 % 10.17 %
HSM 22.03 % 15.44 % 12.25 %

CQC(13)-E 22.59 % 16.62 % 16.55 %
CQC(1)-GFC 40.06 % 20.10 % 20.19 %

CQC(1)-E 86.75 % 43.61 % 38.48 %
CACM 42.59 % 40.13 % 39.92 %

CQC(13)-F 70.84 % 60.75 % 46.42 %
AtC 55.11 % 70.17 % 83.65 %

Table 2: Summary of the percent displacement errors, e%, for each method at the different
levels of model refinement. All error values are using the definition of eqn. (58). Methods
are explained in table 1.

Method Model-10 Model-20 Model-30

CADD/FEAt 2.91 1.30 1.00
QC-GFC 3.16 1.46 1.03
AtC-GFC 3.71 2.11 1.28

BD 3.72 2.31 1.64
QC/CLS 3.73 2.43 2.16

BSM 4.47 3.07 2.59
HSM 5.61 3.93 3.12

CQC(13)-E 5.75 4.23 4.21
CQC(1)-GFC 10.19 5.11 5.14

CQC(1)-E 22.07 11.09 9.79
CACM 10.84 10.21 10.16

CQC(13)-F 18.02 15.45 11.81
AtC 14.02 17.85 21.28

Table 3: Summary of normalized global displacement error for each method at the dif-
ferent levels of model refinement. All error values are normalized as e/emin where emin =
2.262 × 10−3Å was the best error value (obtained with model CADD/FEAt-30). Methods
are explained in table 1.
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model. The models are presented in order of decreasing accuracy based on the “Model-30”
column. We see that all models except the AtC method appear to converge with increased
model refinement, although the CACM model does so at an extremely slow rate. The ghost-
force corrected AtC-GFC model restores convergence to the AtC approach. The best results
come from CADD/FEAt and QC-GFC. Next are BD, QC/CLS, AtC-GFC and HSM that
show fair accuracy, while the accuracy of the remaining models is relatively poor.
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Figure 13: Plots of the atomic displacement error, eα, in units of Å, for the force-based multiscale models. Each image is of the
entire model, which can be seen in fig. 9.
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Figure 14: Plots of the atomic displacement error, eα (Å), for the energy-based multiscale models. The contour legend from
fig. 13 applies to this figure as well. Each image is of the entire model, which can be seen in fig. 9.
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Figure 15: Comparing methods of improving the accuracy of the cluster-based CQC(m)-E
model. From (a) to (b) is the effect of increasing 1-atom to 13-atom clusters. From (a) to
(c) is the effect of applying the ghost-force correction to a model with 1-atom clusters.

Plots showing the magnitudes of the atomic displacement error, eα, are presented in
fig. 13 and fig. 14 to better understand the distribution of the error. All plots are for the
crystal under no load, i.e., γ = 0. We find that as the strain increases, there is very little
change in the relative accuracy of the various models until the dislocations start to move. If,
for a given model, the dislocations move at the wrong load step or move the wrong distance,
this discrepancy dominates the error result. As such, the most useful comparison of the
error plots is made at γ = 0. In both figures, each column shows the results for a specific
method, while moving down the column shows the effect of refining the model used for a
given method by expanding the atomistic region (cf fig. 9). Fig. 13 shows the results for the
force-based methods, going from the most accurate to the least accurate as we move from
left to right. The scale bar on the right applies not only to this figure, but to figs. 14 and 15
as well. Fig. 14 presents the results for the energy-based methods, again going from most
accurate on the left to least accurate on the right.

Note that once we made the decision to use the same CB constitutive law for all models in
this comparison, some of the methods became indistinguishable, hence the combined results
for “QC/CLS” and “CADD/FEAt” are presented. A number of important observations are
worth highlighting from these figures, as follows.

First, we clearly see the effects of ghost forces along the atomistic/continuum interface in
the BD, QC/CLS, BSM, CQC(13)-E and AtC models. The band of error at ±10Å, ±20Å and
±30Å in each of the models respectively is the effect of spurious ghost force relaxations. The
correction of the ghost forces with deadloads, as in QC-GFC, CQC(1)-GFC and AtC-GFC,
can be seen to almost entirely remove this component of the error.

The results for the CQC(m)-E methodology requires further clarification. It appears from
fig. 14 and table 3 that the ghost-force correction to CQC(m)-E (denoted CQC-GFC) does
not improve the accuracy. In fact, this is because we have chosen to apply the ghost force cor-
rection to the model with 1-atom clusters around each node, whereas the uncorrected result
is for a model with 13-atom clusters. We can see that the two approaches give similar error,
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but we will see later that the the 1-atom cluster is considerably faster. For comparing the er-
ror, however, we should also consider the CQC(1)-E model without the ghost-force correction.
In fig. 15 we compare the error distributions of models CQC(13)-E-10 and CQC(1)-GFC-10
with that of CQC(1)-E-10. In effect, this illustrates two ways of improving the CQC(m)-E
accuracy: either by going to larger clusters (moving from CQC(1)-E-10 to CQC(13)-E-10)
or by applying the ghost-force correction (moving from CQC(1)-E-10 to CQC(1)-GFC-10).
The two strategies achieve comparable improvements to the accuracy. Increasing the cluster
size is slightly more effective in this regard, but we shall see later that it is also considerably
more expensive. Finally, we see that while both techniques mitigate the errors, they are still
less accurate than many of the other approaches presented.

7.4.2 The energy Error

The displacement error presented in the previous section is useful for two principal reasons:
it serves as a convenient relative measure of the error of the various methods and it provides
a good way to visualize the distribution of the error throughout the system. However, it is
not easy to assess the significance of this error; it is not easy to say what accuracy is “good
enough” in these terms. For this purpose, we consider the error in the energy of the atomistic
region in this section. We also look at the error in the dislocation motion predictions in the
next section.

The energy of the entire system is only defined for the energy-based methods, but it is
possible to compute the energy of just the atomistic region for all the methods provided that
the underlying atomistic model can be unambiguously divided into an energy per atom (as
is the case for EAM). We define two types of energy error, for reasons that will become clear
shortly. We also examine the change in this error as the applied shear strain, γ, increases.
In order to do this concisely we treat the energy of the atomistic region as a function of the
applied strain and the Burgers vector, b, of the dislocations:

Ẽ(γ, b) =
∑

α∈BA

Eα(ũ[γ, b]). (60)

Then we define the error in the total atomistic energy as

ǫ(γ) =

∣∣∣∣∣
Ẽ(γ, b) − Ẽexact(γ, b)

Ẽexact(γ, b)

∣∣∣∣∣ , (61)

which is dependent on the level of applied strain, γ.
Another useful measure can be the error in the energy difference between two states. This

is relevant, for example in computing transition paths or, in the context of our example,
energy barriers to dislocation motion. The point of this measure is to assess whether a
systematic error in a model (for example, due to ghost forces) has any profound effect on
the energy differences which are often the most important quantity for a problem. For our
example, the energy difference is effectively the core energy associated with the dislocation
dipole, and we write the error in the core energy as

ǫ∆(γ) =

∣∣∣∣∣
[Ẽ(γ, b) − Ẽ(γ, 0)] − [Ẽexact(γ, b) − Ẽexact(γ, 0)]

Ẽexact(γ, b) − Ẽexact(γ, 0)

∣∣∣∣∣ . (62)
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Note that this is the error in the energy difference between a defected crystal and a defect-free
crystal (b = 0) at a certain level of applied strain.

In table 4, we present the error in the total atomistic energy for the various methods
at zero applied strain. Errors greater than 5% are shown in bold, and the methods are
sorted in ascending order of the last column. Since this is for the problem at zero applied
strain, the results correspond directly the the displacement error results previously discussed.
The rather high error results, especially for the energy-based methods, can be attributed to
the fact that the actual energy being computed here is rather small; it is essentially only
the core energy of a closely spaced dipole. Any errors are likely to appear large relative
to the small quantity being computed. By this error measure, the energy-based methods
generally perform more poorly than the force-based methods unless they employ a ghost force
correction. The presence of ghost forces in the energy-based methods leads to a systematic
error in the energy that does not decrease with increased size of the atomistic region, because
the spurious relaxations along the interface persist. This is most obvious in the QC method,
and less so in methods like BD or BSM where some of the ghost force error is spread into
the handshake region. The error in some of the cluster methods and the AtC method is less
severe by this measure than by the displacement error result. This appears to be due to the
fact that these methods allow a spurious rigid motion of the atomistic region that doesn’t
influence the energy error as strongly as the displacement error.

The systematic error due to the ghost forces is largely removed from the problem when
we consider the core energy error, ǫ∆ in table 5, where all of the methods exhibit very low
error. This suggests that the errors associated with the atomsitic/continuum coupling for
all the methods is relatively localized, and does not strongly influence the atoms deep in the
atomistic region. However, this is for a special case where the is no applied loading and no
long-ranged stress or displacement field associated with the interesting atomistic features (in
this case, the dislocation dipole). The effect of loading and how well the atomistic/continuum
interface transmits this loading is examined next.

In table 6, we return to the error in the total energy, ǫ(0.03), but now at an applied
strain of γ = 0.03. This is about 2/3 of the strain at which many of the models exhibited
dislocation motion (as discussed in the next section), and so it represents a substantial level
of loading. Now the total energy in the atomistic region is considerably more due to stored
strain energy, and therefore the relatively constant ghost-force energy error represents a
smaller percentage of the energy being computed. At the same time, we are now able to
assess the ability of the various methods to accurately transmit loading across the interface
because the shear load is no longer zero. We see that by this measure, all of the methods
show excellent accuracy (with the exception of the QC/CLS method without a ghost force
correction). The CQC(m)-E methods exhibit curious behaviour in that there is a rather large
fluctuation in the error as the model is refined. This might imply some type of instability in
the cluster-based formulation. However, when “Model-30” is considered for these methods,
the error levels are quite good.

For completeness, we also show the error in the core energy at γ = 0.03 in table 7. We
see that with the exception of the CACM method, the conclusions do not change from those
drawn from table 5. In essence, these methods do a good job of computing the core energy
of the defects.
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Method Model-10 Model-20 Model-30

CADD/FEAt 3.5% 0.8% 0.3%
CQC(13)-F 1.1% 1.0% 0.4%
QC-GFC 3.8% 1.0% 0.4%
AtC-GFC 7.3% 2.2% 0.8%
CACM 9.1% 3.1% 0.9%
HSM 3.8% 1.3% 0.9%
BD 10.6% 5.5% 4.0%

BSM 9.1% 6.0% 4.8%
AtC 13.1% 8.1% 6.9%

CQC(13)-E 5.9% 26.9% 7.6%
CQC(1)-E 5.1% 68.8% 8.6%

CQC(1)-GFC 11.4% 44.2% 10.1%
QC/CLS 23.9% 25.3% 29.6%

Table 4: Summary of the error in the total atomistic energy at zero strain, ǫ(0), for each
method at the different levels of model refinement. Methods are explained in table 1, errors
greater than 5% are shown in boldface.

Method Model-10 Model-20 Model-30

CQC(1)-GFC 1.3% 0.9% 0.0%
CQC(1)-E 0.6% 0.6% 0.2%
CQC(13)-E 1.7% 0.9% 0.2%

BSM 3.7% 1.2% 0.3%
CADD/FEAt 3.5% 0.8% 0.3%

QC/CLS 4.3% 0.9% 0.3%
CQC(13)-F 1.1% 1.0% 0.4%
QC-GFC 3.8% 1.0% 0.4%

BD 6.7% 2.0% 0.7%
AtC 7.7% 2.3% 0.8%

AtC-GFC 7.3% 2.2% 0.8%
CACM 9.1% 3.1% 0.9%
HSM 3.8% 1.3% 0.9%

Table 5: Summary of the error in the core energy at zero strain, ǫ∆(0), for each method at
the different levels of model refinement. Methods are explained in table 1, errors greater
than 5% are shown in boldface.
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Method Model-10 Model-20 Model-30

CADD/FEAt 2.1% 0.4% 0.1%
QC-GFC 2.3% 0.5% 0.2%
AtC-GFC 4.4% 1.0% 0.3%

HSM 1.9% 0.8% 0.4%
CQC(13)-F 0.3% 0.8% 0.6%

BSM 6.1% 2.4% 1.2%
BD 6.5% 2.5% 1.5%

CQC(13)-E 1.5% 11.0% 1.8%
CQC(1)-E 1.8% 28.6% 2.1%

CACM 8.2% 3.7% 2.7%
AtC 8.6% 4.3% 3.0%

CQC(13)-GFC 14.0% 18.2% 3.5%
QC/CLS 13.4% 10.7% 10.1%

Table 6: Summary of the error in the total atomistic energy at an applied shear strain of
γ = 0.03, ǫ(0.03), for each method at the different levels of model refinement. Methods are
explained in table 1, errors greater than 5% are shown in boldface.

Method Model-10 Model-20 Model-30

QC 4.3% 0.9% 0.2%
BSM 3.6% 1.0% 0.3%
CQC0 2.0% 0.1% 0.3%

CQC-GFC 16.6% 1.2% 0.4%
CADD 3.7% 1.0% 0.5%

QC-GFC 4.1% 1.2% 0.5%
AtC 8.0% 2.3% 0.5%

CQC-E 2.2% 1.5% 0.7%
BD 7.1% 2.2% 0.8%

AtC-GFC 7.8% 2.5% 1.0%
HSM 3.3% 1.9% 1.2%

CQC-F 0.5% 2.1% 2.1%
CACM 14.5% 9.2% 8.9%

Table 7: Summary of the error in the core energy at an applied strain of γ = 0.03, ǫ∆(0.03),
for each method at the different levels of model refinement. Methods are explained in table 1,
errors greater than 5% are shown in boldface.
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Method Total time Global Timestep Solve time Force calls Time per
overhead overhead force call

ts = Ts/Nforce,
T , (sec) TOH , (sec) tOH , (sec) Ts, (sec) Nforce (sec)

Exact 27182.71 0 0 27182.71 19193 1.42
QC/CLS 2885.68 102.9 1.76 2738.78 17066 0.16

BD 10478.58 17.27 0.29 10454.06 56251 0.19
BSM 2291.4 10.4 0.09 2278.84 14476 0.16

CACM 16062.42 17.27 0.29 16038.19 110903 0.14
CQC(13)-E 9038.42 150.09 3.47 8801.58 14098 0.62
QC-GFC 2624.63 103.23 1.73 2478.15 15285 0.16

CQC(1)-GFC 4886.57 356.6 3.47 4446.69 20032 0.22

Table 8: Raw time results for timing study of the energy-based methods. All calculations
were performed using a single, 64-bit, 1.6 GHz Itanium processor on an 8-CPU Sun Altix
350 cluster running Linux. The main memory available to the system was 8 GB.

7.4.3 Errors in dislocation motion

Another test of accuracy is how well the multiscale methods reproduce the overall deforma-
tion behaviour of interest. For this simple test problem, the curves of shear load vs. applied
shear and core separation as a function of applied shear are the most interesting physical
results one may like to extract. The exact curves for these results were already presented in
fig. 11, and we are now in a position to compare them to the multiscale results in fig. 16 and
fig. 17. To render the figures comprehensible, we show only the “Model-20” results in (a)
of both figures, and show the effect of model refinement for only two of the methods in (b).
Not surprisingly, models for which we have already demonstrated a low accuracy are also
inaccurate in predicting these curves. Most of this inaccuracy comes from the timing of the
motion of the dislocations (i.e. the load steps at which these movements occur), and how
far they move each time. This is most obviously reflected in the plots of core spacing, but it
can also be seen in the location and depth of the load drops in the load vs. strain curves.

It is difficult to observe any general truths from these two figures, since there is no obvious
trend in the results. It is worth noting that we are focusing on the last few load steps, since
all of the models are reasonably correct up to the points shown. Perhaps the most important
message that can be taken from these figures is that features like these are at the same time
very difficult to reproduce exactly and relatively easy to reproduce approximately. Many of
the models do a reasonable job of predicting load-strain curves and dislocation motion that
are in qualitative agreement with the exact result. But atomistic systems are so complex,
and their energy landscapes so complicated, that exact agreement from a multiscale model
is unlikely to ever be achieved.

7.5 Comparing the speed of multiscale methods

The medium-sized model (“Model-20”) is used here for a comparison of the efficiencies of
the various methods, the results of which are summarized in table 8 and table 9. The tables
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Figure 16: Comparison of the load vs. applied shear curves for the various multiscale
models. (a) All methods, using the intermediate “Model-20” mesh. (b) The effect of model
refinement for QC-GFC and CADD/FEAt. Note that at this scale it is very difficult to resolve
the difference between CADD/FEAt-20 and QC-GFC-20, and also that the CQC(13)-F-20
result is outside the range of the graph.
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Figure 17: Comparison of the core spacing vs. applied shear curves for the various multiscale
models.
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Method Total time Global Timestep Solve time Force calls Time per
overhead overhead force call

ts = Ts/Nforce,
T , (sec) TOH , (sec) tOH , (sec) Ts, (sec) Nforce (sec)

Exact 45520.11 0 0 45520.11 33225 1.42
CADD/FEAt 4629.61 128.06 1.96 4452.55 21153 0.21

HSM 8910.46 23.35 0.26 8880.87 37314 0.24
AtC 10423.34 23.44 0.12 10397.02 38375 0.27

AtC-GFC 11182 23.44 0.15 11154.96 40737 0.27
CQC(13)-F 23994 444.62 6.75 23387.38 21336 1.10

Table 9: Raw time results for timing study of the force-based methods. All calculations were
performed using a single, 64-bit, 1.6 GHz Itanium processor on an 8-CPU Sun Altix 350
cluster running Linux. The main memory available to the system was 8 GB.

present the total time to simulate the shearing of the Lomer dipole, T , with table 8 showing
the energy-based methods and table 9 showing the force-based methods. As discussed at the
start of section 7, the exact results were obtained using both the energy-based and force-
based solver. Incidentally, both of these solvers lead to essentially the same result, with
the “displacement error” in the force-based solver result being on the order of 10−6 Å/atom
(three orders of magnitude better than any error result reported for the multiscale methods).
All calculations were performed using a single, 64-bit, 1.6 GHz Itanium processor on an 8-
CPU Sun Altix 350 cluster running Linux. The main memory available to the system was 8
GB.

The simulation time is broken down into various parts as

T = TOH + Ts + NsteptOH , (63)

where Ts is the time spent actually minimizing energy (or equilibrating forces) within each
load step, Nstep = 24 is the number of load steps in this example, and TOH and tOH are
the time consumed in “overhead” associated with each method. The overhead is divided
into “global” overhead, TOH , that has to be carried out once at the start of the simulation
and “timestep” overhead, tOH , that must be repeated each timestep. The former, for ex-
ample, may include building the model mesh and related data structures, while the latter
may include such things as updating the ghost forces for the current configuration of the
displacements. The “solve” time, Ts is the sum, over all 24 load steps, of the time spent
inside the minimizer routine. We finally provide the time per force-call in the last column,
which we define to be

ts = Ts/Nforce. (64)

Note, however, that the Ts value includes both the actual calculation of forces and the
updating of neighbor lists. Since neighbor lists are only updated occasionally using the
Verlet list method [58], ts averages these neighbor updates over all force calls. Our code is
not written in an optimal way, especially in regards to the overhead specific to each method.
While it is clear that some methods will have more overhead than others (for example, the
searching and storing of clusters in CQC methods is generally a rather costly process), this
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Method FDOF Fforce Fsim

BSM 6.73 9.00 11.93
QC-GFC 7.13 8.73 10.96

CADD/FEAt† 7.13 6.73 10.22(5.87)
QC/CLS 7.13 8.82 9.92
CQC(1)-E 7.09 6.14 8.05

CQC(1)-GFC 7.09 6.38 6.18
HSM† 5.02 5.95 5.13 (3.05)
AtC† 5.04 5.23 4.38 (2.61)

AtC-GFC† 5.04 5.17 4.08 (2.43)
CQC(13)-E 7.09 2.27 3.09

BD 4.02 7.62 2.60
CQC(13)-F† 7.09 1.29 1.95 (1.13)

CACM 4.02 9.79 1.69

Table 10: Factors by which each method improves the number of degrees of freedom, time
per force calculation and total simulation time. Numbers in parenthesis are the factors
for force-based methods when compared with the faster exact solution (obtained with the
energy-based CG method). †indicates a force-based method.

still comprises a relatively small part of the simulation that can, if one were diligent, be
optimized. In fairness to the methods, we will compare only the true solve time, Ts.

To make the comparison easier, we use table 10 to present efficiency factors defined as

FDOF =
NA

nnodes
, Fforce =

tExact
s

tModel
s

, Fsim =
TExact

TModel
. (65)

These are the factors by which each quantity, the number of degrees of freedom (DOF), the
time per force call, and the simulation time, respectively, are improved by the multiscale
models. They are defined such that bigger is better. The goal in multiscale modeling is to
achieve large reductions in the number of DOF and computational time with minimal loss
of accuracy. In table 10 we order the methods by decreasing values of the most important
of these factors, namely Fsim. We identify, by a horizontal line, a high-efficiency and low-
efficiency group. For the force-based methods, a second value of Fsim is indicated. This is the
value that would have been obtained if we normalized the simulation time by the faster of the
two exact results (computed using the energy-based CG method). While the first number is
a fairer test of the efficacy of a given force-based method, the second is a reminder that the
force-based solver we have used is a factor of about 1.7 times slower than the energy-based
solver.

The factor by which the number of DOF are reduced in the various methods is not the
same due to different constraints in the definition of the models. For example, the BD and
HSM methods have handshake regions in which extra atoms are included relative to the
other methods. For this particular model (“Model-20”), the values range from about 4 to
about 7. The number is not really a test of the method’s efficiency, but rather a normalizing
influence on the timing results; if two methods have about the same value of Fsim, the one
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with a smaller FDOF has actually performed better by computing more degrees of freedom
in the same amount of time.

Notwithstanding our earlier caveat about the overall (but equitable) inefficiency of the
implementation, it is worth emphasizing the general significance of these numbers. Take the
BSM case as an example. We have designed a test problem in which we have, somewhat
arbitrarily, reduced the number of degrees of freedom by a factor of 6.73 compared to the
fully atomistic problem. The resulting speed-up was a factor of 11.93. These numbers are an
indication of the benefit of a multiscale method, but only for this specific test problem. We
could easily have inflated the speed-up 100-fold by making the continuum region very large
and coarsening the mesh. To determine the benefit of a multiscale method over direct atom-
istics, we need to be able to establish the minimum model size required to answer a specific
problem, or alternatively to quantify the errors and limitations associated with a smaller
model. These things depend on the degree to which behaviour beyond the applicability of
a continuum model is spatially localized, and on the importance of long-ranged stresses and
interactions. Such questions are not within the scope of this current paper, where we are
only trying to assess the relative efficiency of the various approaches.

In the simulation times, we start to see some patterns emerging. The fastest methods are
energy-based, although the CADD/FEAt method is a fast force-based alternative relative
to other force-based methods. Of the four fast methods, three employ strong compatibility
and no handshake region; only the BSM employs a handshake region and some elements of
weak compatibility.

While the CQC(1)-E method is quite fast, recall that we have already concluded that the
accuracy of this approach (which uses 1-atom clusters) is unacceptably low. The CQC(m)-
E methods with reasonable accuracy are considerably slower. Expanding to clusters of 13
atoms nearly triples the simulation time compared to CQC(1)-E, and makes CQC(13)-E
about 4 times slower than the fastest method (BSM). The ghost force corrected CQC(1)-
GFC fares somewhat better. In this case, there is a large global overhead which is about
double that for CQC(13)-E since we must effectively build and store data for two cluster
sizes. But the solve time for CQC(1)-GFC is approaching the values for the faster methods,
being only about two times slower. In this case, the slowness can in part be attributed to
requiring more force calls to converge, suggesting that the ghost force corrections in this case
make the energy landscape somewhat more difficult to navigate for the solver.

The force-based CADD/FEAt method, which we recall was the most accurate of the
methods, is also one of the fastest if we compare it to the solution time for the full atomistic
problem using the force-based solver, CG-FB (Recall that this solver is about 1.7 times
slower than the energy-based CG solver). For this particular example, it seems that the
simple modified CG-FB solver is reasonably good for the force-based approach, but does
require about 1.2 times as many force calls to find convergence as the comparable energy-
based approach (QC/CLS). It may be possible to improve the absolute convergence rate
of the CG-FB by using a solver that is better tuned to the force-based methodology. At
the same time, the force-based methods require longer time per force call because one must
effectively visit more atoms to find the forces. In this particular example this works out
to about 15% more atoms. This means that a single force call will be about 15% slower,
while a neighbor list update (which in our code is O (N2)) will be about 32% slower. Taken
together, these explain the longer time per force call required by the CADD/FEAt method.
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Figure 18: Slow convergence of the iterative energy-based CACM solver. Displacement error
values are normalized by the error for the CADD/FEAt-30 model.

This seems to be generally true with force- versus energy-based models. For example, BD
and AtC are closely related but for this difference in their formulations, and we see a similar
pattern in their values of Fforce.

The long simulation times for BD and HSM are related to the apparently slow convergence
of methods that do not impose strong compatibility. This is evident from the large number
of force calls required (which is more or less proportional to the number of iterations required
for convergence). This suggests that the use of weak compatibility leads to a much more
complicated energy landscape, making it difficult to find minima with the CG and CG-
FB approaches. It is possible that an appropriate pre-conditioner for the CG method may
improve this performance.

The poor performance gain of CACM is due to the slow convergence of the iterative
solver method, which we elaborate on next.

7.5.1 Iterative solvers: The slow convergence of the CACM model

The CACM model is unique in our study in that it attempts to iteratively minimize two
energy functionals, alternately imposing boundary conditions from one side of the atom-
istic/continuum coupling while minimizing the energy of the other. In the results presented
here, we found that this strategy led to relatively poor accuracy and slow convergence.20

The CACM results shown here were obtained by setting the following convergence crite-
rion. After a minimization of the atomistic energy (while holding the continuum degrees of
freedom fixed), if the change in total energy was less that 0.1% since the previous atomistic
minimization, the results were deemed to have converged. For a load step in which the
dislocations did not move, this typically required between 2-4 iterations to convergence. For
load steps in which the dislocation moved, on the other hand, as many as 84 iterations were
required.

At the same time, it is clear from the error levels reported for CACM in table 3 that

20We recall that that the BSM, as presented in [39], requires an iterative solver due to the decoupling of the
atomistic displacements into a coarse and fine scale. Here, we have simplified this approach and abandoned
this decoupling. The effect has been a method that is quite fast relative to the others, but it seems likely
that the iterative variant of this approach would suffer the same inefficiencies as CACM.
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Figure 19: Displacement error contours at selected iterations during the slow convergence of
the iterative energy-based CACM solver.

this convergence criterion may not be strict enough; CACM accuracy is relatively poor. To
check whether the CACM result is truly “converged”, we re-ran CACM-30 on the initial
relaxation of the dipole cores (no applied shear) without a global convergence criterion, and
monitored the error as the iterations proceeded. Fig. 18 shows these results against the
benchmark displacement error of the CADD/FEAt-30 model. The convergence is clearly
quite slow, and exhibits surprising behaviour, dipping to a minimum before rising with
further iterations before finally converging to a normalized value of about 10. In fig. 19,
we show the distribution of this error as a function of the number of iterations. In (a),
we show the result presented initially, which was deemed “converged” by our criterion of a
0.1% change in the energy. In (b), we see the error distribution at the minimum in fig. 18,
while (c) shows the final converged state. The progression explains the strange convergence
behaviour; the iterations have the effect of removing ghost force effects along the interface
while simultaneously exacerbating error in the vicinity of the dislocation core. It seems that
this error around the core is related to the averaging scheme in CACM for determining the
displacements of nodes inside the atomistic region, which introduces a systematic error in
the continuum solution.

While iterative solvers can be very straightforward to implement and can circumvent
the direct treatment of the ghost force problem, it is clear that their convergence behaviour
suffers considerably.

7.6 The Effect of the Continuum Constitutive Law

As a test of the effect of the finite element constitutive law, we have recomputed one of the re-
sults, CADD/FEAt-20, with the Cauchy-Born rule replaced by anisotropic linear elasticity.21

The atomistic region remains the same in both cases. The displacement error distributions
presented in fig. 20 look similar, however the overall error of the linear elastic model is
e/emin = 1.68 (compared to 1.00 for the Cauchy-Born model). Although the percent-error
remains small in absolute terms, the loss in accuracy is still significant given the localized na-

21We fit the elastic moduli to Ercolessi-Adams fcc aluminum [16], C11 = 0.7371 eV/Å3, C12 =
0.3888 eV/Å3, C44 = 0.2291 eV/Å3.
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Figure 20: Comparing the CADD/FEAt-20 results using (a) Cauchy-Born and (b) linear
elasticity as the continuum constitutive methods. Note that the contour levels are not the
same as in previous displacement error plots.

ture of nonlinear deformation in this problem. We expect the use of linear elasticity to have
even more serious consequences in problems such as nano-indentation and friction studies,
where high compressive stresses can exist in the continuum region and render the material
behaviour highly nonlinear. This is discussed, for example, in [47] and [28].

In terms of efficiency, we show the comparison in table 11. Interestingly, we find that
while the efficiency of a single force call is improved using linear elasticity, the total simulation
efficiency is not. This is due to a larger number of force calls required to find equilibrium
(30534 for linear elasticity compared to 21153 for the Cauchy-Born version).

Further analysis of this example gives us an idea of the efficiency of multiscale methods
in general. On our system, the average time to evaluate the force contributions from a single
Cauchy-Born finite element was 16.1µsec, while the same calculation with linear elasticity
took 3.88µsec. Both of these are, of course, independent of element size, and so the savings
over direct atomistics will increase as elements are made larger and serve to replace more
atoms (for comparison, the atomistic force evaluations took about 24.9µsec per atom). The
Cauchy-Born CADD/FEAt-20 simulation spent about 71% of its force evaluation time on
the atoms, and the remaining 29% on the continuum region. In the linear elastic version, this
balance shifted to 91% on the atoms and only 9% on the continuum. Of course, the fraction
of time spent on the atoms represents the same absolute time in both cases; it is only the
efficiency of the continuum region that changes when we change the continuum constitutive
law.

8 Summary and Conclusions

Looking back at the efficiency analysis, we observe that generally (but not exclusively)
energy-based methods are faster than force-based, strong compatibility is faster than weak,
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Method FDOF Fforce Fsim

Cauchy-Born 7.13 6.73 10.22(5.87)
Elastic 7.13 8.66 9.12

Table 11: Comparing the speed of the CADD/FEAt model with a Cauchy-Born and linear
elastic constitutive law.
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Figure 21: Summary of accuracy and efficiency for all of the methods.

and the absence of a handshake region is faster than the presence of one. The principle
exception to this last point is our static, non-iterative, implementation of the BSM, which
is fast despite (or perhaps because of) its unique handshake region.

In the displacement error results, it seems that we can make the general observation
that force-based methods are more accurate than energy-based, although a simple ghost-
force correction can in most cases eliminate this advantage. Further, strong compatibility
seems to be more accurate than weak and the presence of a handshake region reduces the
accuracy. Interestingly, the ghost force correction introduced to improve accuracy in QC-
GFC actually made the QC method faster. This is presumably because the small additional
effort to compute the ghost force corrections is offset by a substantial reduction in the number
of force calls required to converge the solution on what is presumably a smoother energy
landscape.

Considering the energy error measures, there is cause for considerable optimism for cou-
pled methods in general, as the absolute energy error for most of the methods was generally
less than 5% for this problem. Although it seems that even this slight error can lead to
profound effects on the resulting dislocation motion that is predicted, it seems that none of
the methods are especially inaccurate in their estimate of the energy.

The accuracy and efficiency results are combined in two simple graphs in fig. 21, where
each method is represented by a point in “error-speed” space. In fig. 21(a), the accuracy is
represented by the displacement error for the “model-30” results (table 3), while fig. 21(b)
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shows the accuracy in terms of the total energy error, ǫ(0.03) for “model-30” (table 6). All
of the force-based methods are indicated by two points joined by a thin line because the
speed-up depends on how we normalize the results (due to the use of two different solvers).
The ideal model would be in the lower right corner, with high efficiency and high accuracy
(low error). These graphs allow us to identify, somewhat subjectively, the best performing
models in the dark grey region, intermediate performance in light grey and poor performance
in white.

The force-based methods are slower, to a large extent, because of the rather unsophis-
ticated CG-FB solver we have used. Normalizing for the differences between the CG and
CG-FB solver, the force-based CADD/FEAt method is essentially as efficient as the compa-
rable energy-based method (QC-GFC) in improving the speed of the calculation. However,
to see this efficiency in absolute terms, it is necessary to develop a force-based solver that
is as fast, or faster, than a comparable energy-based one (in our current study CG-FB is
about 1.7 times slower than CG). Finding the optimal solver for the force-based methods is
certainly an area worthy of further study.

Intuitively, it might seem reasonable to expect that using a handshake region would im-
prove accuracy, by providing a more gradual transition from the atomistic to the continuum
description. In fact, this seems not to be the case, as handshake methods tended to be both
slower and less accurate. This is also true of methods using weak compatibility. Handshake
regions and weak compatibility are appealing features because they make mesh generation
easier; there is no need of mesh refinement down to the atomic scale or the tricky mesh gen-
eration routines that this may require. But this study suggests that this comes at a rather
high price in terms of ultimate performance.

Cluster-based methods are generally slower and less accurate than methods which appeal
to a traditional continuum constitutive law such as linear elasticity or the Cauchy-Born rule.
This finding is consistent with, and analytically explained by, a recent mathematical study
[29] comparing cluster-based and element-based models. Our results also indicate that errors
in the continuum region significantly contribute to the overall error of these methods.

The CACM model was implemented here as a representative of the class of coupled
methods that use an iterative solver. In these approaches, one part (either the atomistic or
continuum region) of the problem is held fixed to provide the boundary conditions during
energy minimization of the other part, and then the roles are switched back and forth until
the change in energy during an iteration is small. Our results show that such methods can
be extremely slow, to the point of potentially eliminating any benefit of the coupled method
over the full atomistic solution if reasonable accuracy is expected.

Multiscale methods like the ones discussed in this review show much promise to improve
the efficiency of atomistic calculations, but they have not yet fully realized this potential.
This is in part because the focus to date has mainly been on development of the methodology
as opposed to the large-scale application to materials problems. One of the disadvantages
of multiscale methods is that, relative to straightforward atomsistics, they tend to be more
difficult to implement. In order for multiscale methods to compete with, or eventually
replace, atomistics it is necessary that they methods be implemented in 3D, parallel codes
optimized to the same degree as atomistic packages like, for example, LAMMPS [37, 36]. It
may even be desirable to introduce multiscale modeling as a feature within existing atomistic
packages. One of the barriers to this is the wide variety of existing multiscale approaches from
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which to choose; it is not clear where to invest the time required to create a highly optimized
code. This work has taken a step towards removing this barrier by demonstrating that, to
a large extent, there is a great deal of similarity between the methods and that they can be
described within a common framework. We have also taken a first step towards identifying
certain “best practice” strategies for getting the most efficient and accurate implementation
possible.

Once an optimized multiscale implementation is developed, its potential for significantly
improving the efficiency of atomistic calculations is enormous. Here, we have demonstrated
12-fold improvements in efficiency for an extremely modest test problem, using a very poorly
written code and comparing to an atomistic model (EAM) that is amongst the least expensive
available. For materials problems where deformation tends to localize and long-range effects
are important, an optimized code could easily yield 100 to 1000-fold gains in efficiency. This
efficiency would be further increased in we considered more expensive interatomic models
like the Brenner-Tersoff potentials [56, 7], MGPT potentials [32, 33], or ReaxFF model [57].
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