
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1999 91

A Unified Framework for Coupling
Measurement in Object-Oriented Systems

Lionel C. Briand, John W. Daly, and Jürgen K. Wüst

Abstract —The increasing importance being placed on software measurement has led to an increased amount of research developing
new software measures. Given the importance of object-oriented development techniques, one specific area where this has occurred is
coupling measurement in object-oriented systems. However, despite a very interesting and rich body of work, there is little
understanding of the motivation and empirical hypotheses behind many of these new measures. It is often difficult to determine how
such measures relate to one another and for which application they can be used. As a consequence, it is very difficult for practitioners
and researchers to obtain a clear picture of the state-of-the-art in order to select or define measures for object-oriented systems.

This situation is addressed and clarified through several different activities. First, a standardized terminology and formalism for
expressing measures is provided which ensures that all measures using it are expressed in a fully consistent and operational
manner. Second, to provide a structured synthesis, a review of the existing frameworks and measures for coupling measurement in
object-oriented systems takes place. Third, a unified framework, based on the issues discovered in the review, is provided and all
existing measures are then classified according to this framework.

This paper contributes to an increased understanding of the state-of-the-art: A mechanism is provided for comparing measures
and their potential use, integrating existing measures which examine the same concepts in different ways, and facilitating more
rigorous decision making regarding the definition of new measures and the selection of existing measures for a specific goal of
measurement. In addition, our review of the state-of-the-art highlights that many measures are not defined in a fully operational
form, and relatively few of them are based on explicit empirical models, as recommended by measurement theory.

Index Terms —Coupling, object-oriented, measurement.

——————————���F���——————————

1 INTRODUCTION

HE market forces of today’s software development in-
dustry have begun to place much more emphasis on

software quality. This has led to an increasingly large body
of work being performed in the area of software measure-
ment, particularly for evaluating and predicting the quality
of software. In turn, this has led to a large number of new
measures being proposed for quality design principles such
as coupling. High quality software design, among many
other principles, should obey the principle of low coupling.
Stevens et al., who first introduced coupling in the context
of structured development techniques, define coupling as
“the measure of the strength of association established by a
connection from one module to another” [35]. Therefore,
the stronger the coupling between modules, i.e., the more
inter-related they are, the more difficult these modules are
to understand, change, and correct and thus the more com-
plex the resulting software system. Some empirical evi-
dence exists to support this theory for structured develop-
ment techniques; see, e.g., [33], [36].

The principle of low coupling has now been migrated
to object-oriented design by Coad and Yourdon [18], [19]

and recent research has again led to a large number of
new coupling measures for object-oriented systems being
defined. However, because coupling is a more complex
software attribute in object-oriented systems (e.g., there
are many different mechanisms that can constitute cou-
pling) and there has been no attempt to provide a struc-
tured synthesis, our understanding of the state-of-the-art
is poor. For example, because there is no standard termi-
nology and formalism for expressing measures, many
measures are not fully operationally defined, i.e., there is
some ambiguity in their definitions. As a result, it is diffi-
cult to understand how different coupling measures relate
to one another. Moreover, it is also unclear what the po-
tential uses of many existing measures are and how these
different measures might be used in a complementary
manner. The fact that there also exists little empirical vali-
dation of existing object-oriented coupling measures
means the usefulness of most measures is not supported.

To address and clarify our understanding of the state-of-
the-art of coupling measurement in object-oriented systems
requires a comprehensive framework based on a standard
terminology and formalism. This framework can then be
used:

1)� to facilitate comparison of existing measures,
2)� to facilitate the evaluation and empirical validation of

existing measures, and
3)� to support the definition of new measures and the

selection of existing ones based on a particular goal of
measurement.

0098-5589/99/$10.00 © 1999 IEEE

²²²²²²²²²²²²²²²²

•� L.C. Briand and J.K. Wüst are with the Fraunhofer Institute for Experimental
Software Engineering (IESE), Sauerwiesen 6, D-67661 Kaiserslautern,
Germany. E-mail: {briand, wuest}@iese.fhg.de.

•� J.W. Daly is with Hewlett Packard Ltd., QA Department, R&D,
Queensferry Microwave Division, South Queensferry, EH30 9TG Scotland.
E-mail: dalyj@sqf.hp.com.

Manuscript received 5 Mar. 1997; revised 9 Apr. 1998.
Recommended for acceptance by D. Perry.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 104095.

T

92 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

Analogous research for cohesion measurement is described
in [8]. The cohesion framework presented in that paper is
complementary to the coupling framework presented here.

The majority of the work on coupling measurement in
object-oriented systems focuses on usage dependencies be-
tween classes, which can be derived from a static analysis of
design documents or source code. The dynamic aspects of
coupling between objects at run-time have barely been in-
vestigated and are not yet considered in practice. Even
though we address this issue in the survey, we make no at-
tempt to integrate it in our framework and restrict ourselves
to the analysis of static usage dependencies in a system.

The paper is organized as follows. Section 2 summarizes
the current state of coupling measurement in object-
oriented system and provides detailed motivation for the
need for the research performed in this paper. Section 3
introduces the notation and formalism required to conduct
this research. Section 4 provides a comprehensive review
and structured synthesis of existing object-oriented cou-
pling frameworks and measures. The results of this review
are then used to define a new unified framework for cou-
pling measurement in object-oriented systems in Section 5.

2 MOTIVATION

Object-oriented measurement has become an increasingly
popular research area. This is substantiated by the fact that
recently proposed in the literature are:

1)� several different frameworks for coupling and cohe-
sion, and

2)�a large number of different measures for object-
oriented attributes such as coupling, cohesion, and
inheritance.

While this is to be welcomed, there are several negative as-
pects to the mainly ad hoc manner in which object-oriented
measures are being developed. As neither a standard termi-
nology or formalism exists, many measures are expressed in
an ambiguous manner which limits their use. This also
makes it difficult to understand how different measures re-
late to one another. For example, there are many different
decisions that have to be made when defining a coupling
measure—these decisions have to be made with respect to
the goal of the measure and by defining an empirical model
based on clearly stated hypotheses. Unfortunately, for many
measures proposed in the literature these decisions and hy-
potheses are not documented. It is, therefore, often unclear
what the potential uses of existing measures are and how
different coupling measures could be used in a complemen-
tary manner to obtain a more detailed picture of the coupling
in an object-oriented system. In short, our understanding of
existing coupling measures is not what it should be.

Several authors have tried to address this problem by
introducing frameworks to characterize different ap-
proaches to coupling and the relative strengths of these,
although, on their own, none of the frameworks could be
considered comprehensive. There are three existing and
quite different frameworks for object-oriented coupling
(reviewed in detail in Section 4.1). First, Eder et al. identify
three different types of relationships [20]. These relation-

ships, interaction relationships between methods, compo-
nent relationships between classes, and inheritance between
classes, are then used to derive different dimensions of
coupling which are classified according to different
strengths. Second, Hitz and Montazeri approach coupling
by deriving two different types of coupling: object level
coupling and class level coupling which are determined by
the state of an object and the state of an object’s implemen-
tation, respectively [22]. Again different strengths of cou-
pling are proposed. And third, Briand et al. constitute cou-
pling as interactions between classes [4]. The strength of the
coupling is determined by the type of the interaction, the
relationship between the classes, and the interaction’s locus
of impact. As none of the frameworks have been used to
characterize existing measures to the different dimensions
of coupling identified, the negative aspects highlighted
above are still very prevalent ones. In our review of the lit-
erature, for example, we found more than 30 different
measures

1
 of object-oriented coupling. Consequently, it is

not difficult to imagine how confusing the overall picture
actually is.

To make a serious attempt to improve our understanding
of object-oriented coupling measurement we have to inte-
grate all existing frameworks into a unique theoretical
framework, based on a homogenous and comprehensive
formalism. A review has to be performed of existing meas-
ures and these measures have to be categorized according to
the unified framework. This framework will then be a
mechanism with which to compare measures and their po-
tential use, integrate existing measures which examine the
same concepts in a different manner, and allow more rigor-
ous (and ease of) decision making regarding the definition of
new measures and the selection of existing measures with
respect to their utility. It should facilitate the evaluation and
empirical validation of coupling measures by ensuring that
specific hypotheses are provided which link coupling meas-
ures to external quality attributes. It should also facilitate
identification of dimensions of coupling which thus far have
been neglected, i.e., for which there are no measures defined.
Finally, the framework must be able to integrate new cou-
pling measures as they are defined in the future. In that sense
both the formalism and the framework must be extensible.

3 TERMINOLOGY AND FORMALISM

In the past, research within the area of software measure-
ment has suffered from a lack of:

1)� standardized terminology, and
2)�a formalism for defining measures in an unambigu-

ous and fully operational manner (that is, a manner in
which no additional interpretation is required on be-
half of the user of the measure).

As a consequence, development of consistent, understand-
able, and meaningful software quality predictors has been
severely hampered. For example, Churcher and Shepperd
[16] and Hitz and Montazeri [24] have identified ambigui-

1. Note that this figure includes variations of the same measure, e.g.,
there are three versions of the RFC (response for a class) measure originally
proposed by Chidamber and Kemerer [14].

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 93

ties in members of the well referenced suite of measures by
Chidamber and Kemerer [15]. To remedy this situation it is
necessary to reach a consensus on the terminology, define a
formalism for expressing software measures, and, most
importantly, to use this terminology and formalism. Of
course, the level of detail and scope of the terminology and
formalism required are subject to the goal to be achieved.

To rigorously and thoroughly perform a review and a
structured synthesis of software coupling measures we seek
to define a terminology and formalism that is implementa-
tion independent and can be extended as necessary. This
will allow all existing work to be expressed in a consistent,
understandable, and meaningful manner and allow the
measures reviewed to be expressed as operationally de-
fined (additional interpretation of ambiguous measures is
given when required). A disadvantage of this approach is
that the reader must first be presented with the formalism
before the review can begin in a meaningful fashion. Given
the motivation for such an approach, however, it is argued
that this is the only method to facilitate a rigorous and
thorough review.

To prevent the reader having to read a complete termi-
nology list we have provided a glossary in Appendix A,
which includes definitions applicable to coupling in object-
oriented systems and to measurement in general. This can
be referenced as required. Where appropriate the terminol-
ogy defined by Churcher and Shepperd [17] has been used.

To express the coupling measures consistently and unam-
biguously the following formalism based on set and graph
theory is presented. Note that for the sake of brevity we as-
sume that the reader is familiar with common object-oriented
principles and needs no explanation of them. Otherwise,
simple explanations and examples are provided in [9].

3.1 System

DEFINITION 1 (System, Classes, Inheritance Relationships).
An object-oriented system consists of a set of classes, C.
There can exist inheritance relationships between classes
such that for each class c ¶ C let

•� Parents(c) , C be the set of parent classes of class c.
•� Children(c) ,, C be the set of children classes of class c.
•� Ancestors(c) , C be the set of ancestor classes of class c.
•� Descendents(c) , C be the set of descendent classes of

class c.

3.2 Methods
A class has a set of methods.

DEFINITION 2 (Methods of a Class). For each class c ¶ C let
M(c) be the set of methods of class c.

A method can be either virtual or nonvirtual and either in-
herited, overridden, or newly defined, all of which have
implications for measuring coupling. It is therefore neces-
sary to express the difference between these categories.

DEFINITION 3 (Declared and Implemented Methods). For
each class c C∈ , let

•� M c M cD() ()⊆ be the set of methods declared in c, i.e.,
methods that c inherits but does not override or virtual
methods of c.

•� M c M cI () ()⊆ be the set of methods implemented in c,
i.e., methods that c inherits but overrides or nonvirtual
noninherited methods of c.

•� where M c M c M cD I() () ()= ∪ and M c M cD I() ()∩ = φ .

DEFINITION 4 (Inherited, Overriding, and New Methods).
For each class c C∈ let

•� M c M cINH () ()⊆ be the set of inherited methods of c.
•� M c M cOVR() ()⊆ be the set of overriding methods of c.
•� M c M cNEW () ()⊆ be the set of noninherited, nonover-

riding methods of c.

For notational convenience, we also define the set of all
methods in the system, M(C).

DEFINITION 5 (M(C). The Set of all Methods). M(C) is the set
of all methods in the system and is represented as
M C M c

c C
() ()= ∪

∈
.

Methods have a set of parameters which, as they also influ-
ence coupling measurement, must be defined.

DEFINITION 6 (Parameters). For each method m M C∈ () let
Par(m) be the set of parameters of method m.

3.3 Method Invocations
To measure coupling of a class, c, it is necessary to define
the set of methods that m M c∈ () invokes and the frequency
of these invocations. Method invocations can be either static
or dynamic; it is necessary to distinguish between these.
For static invocations, the invoked method is determined
by the type of the variable that references the object for
which the method invocation occurred. For dynamic invo-
cations, the invoked methods are determined by consider-
ing all possible types that the object for which the method
invocation occurred may have at run-time. Consequently,
for each method m M c∈ () the following sets are defined.

DEFINITION 7 (SIM(m). The Set of Statically Invoked Meth-
ods of m). Let c C m M cI∈ ∈, (), and ′ ∈m M C(). Then

′ ∈ ⇔ ∃ ∈m SIM m d C() such that ′ ∈m M d() and the
body of m has a method invocation where ′m is invoked for
an object of static type class d.

DEFINITION 8 (NSI m, m()′ . The Number of Static Invoca-

tions of ′m by m). Let c C m M cI∈ ∈, (), and

′ ∈m SIM m(). NSI(m, ′m) is the number of method invo-
cations in m where ′m is invoked for an object of static type
class d and ′ ∈m M d() .

DEFINITION 9 (PIM(m). The Set of Polymorphically Invoked
Methods of m). Let c C m M cI∈ ∈, (), and ′ ∈m M C().
Then ′ ∈ ⇔ ∃ ∈m PIM m d C() such that ′ ∈m M d() and
the body of m has a method invocation where ′m may, be-
cause of polymorphism and dynamic binding, be invoked
for an object of dynamic type d.

DEFINITION 10 (NPI(m, ′m). The Number of Polymorphic
Invocations of ′m by m). Let c C m M cI∈ ∈, (), and

′ ∈m PIM m(). NPI(m, ′m) is the number of method invo-
cations in m where ′m can be invoked for an object of dy-
namic type class d and ′ ∈m M d() .

As a result of polymorphism, one method invocation can
contribute to the NPI count of several methods. Note that

94 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

for a nonvirtual method ′ ∈m M C(), if ′ ∈m SIM m() for
some m M C∈ () then it also is ′ ∈m PIM m(). For a virtual
method mv M C′ ∈ (), we can have mv SIM m′ ∈ (), but we
could not have mv PIM m′ ∈ () (because mv′ is virtual, its
class is abstract, therefore no object of that class can be in-
stantiated).

3.4 Attributes
Classes have attributes which are either inherited or newly
defined. Attributes are modeled using a similar formalism
to that of methods.

DEFINITION 11 (Declared and Implemented Attributes). For
each class c C∈ let A(c) be the set of attributes of class c.
A c A c A cD I() () ()= ∪ where

•� AD(c) is the set of attributes declared in class c (i.e., in-
herited attributes).

•� AI(c) is the set of attributes implemented in class c (i.e.,
noninherited attributes).

•� Again, for notational convenience, we define the set
of all attributes in the system, A(C).

DEFINITION 12 (A(C). The Set of all Attributes). A(C) is the set
of all attributes in the system and is represented as
A C A c

c C
() ()= ∪

∈
.

3.5 Attribute References
Methods may reference attributes. It is sufficient to consider
the static type of the object for which an attribute is refer-
enced because attribute references are not determined dy-
namically. For the discussion of measures later, it must be
possible to express for a method, m, the set of attributes
referenced by the method:

DEFINITION 13 (AR(m)). For each m M C∈ () let AR(m) be the
set of attributes referenced by method m.

3.6 Types
Attributes and parameters have types which all can contrib-
ute to coupling. The programming language provides a basic
set of built-in types; the user can define new class types as
well as traditional types (e.g., records, enumerations).

DEFINITION 14 (Basic Types and User-Defined Types).

•� BT is the set of built-in types provided by the program-
ming language (e.g., integer, real, character, string).

•� UDT is the set of user-defined types (e.g., records, enu-
merations, but not classes).

•� The type of an attribute or parameter either is a class,
a built-in type or a user-defined type. Thus, the set T
of available types in the system is defined as follows:

DEFINITION 15 (T The Set of Available Types). The set T of
available types in the system is T = BT < UDT < C.

The next definition determines how the type of attributes
and parameters will be denoted.

DEFINITION 16 (Types of Attributes and Parameters). For
each attribute a A C∈ () the type of attribute a is denoted
by T a() ∈ T . For each method m M C∈ () and each pa-
rameter v Par m∈ () the type of parameter v is denoted by
T v() ∈ T .

No distinction is made between pointers, references, or ar-
rays and the type they are derived from.

3.7 Predicates
To ensure consistency the predicate uses must be defined.

DEFINITION 17 (Uses). Let c C d C∈ ∈, .

uses c d m M c m M d m PIM m

m M c a A d a AR m
I I

I I

(,) ((): (): ())

((): (): ())

⇔ ∃ ∈ ∃ ′ ∈ ′ ∈
∨ ∃ ∈ ∃ ∈ ∈

A class c uses a class d if a method implemented in class c
references a method or an attribute implemented in class d.

3.8 C++ Specific Extensions
In C++, a class c can declare a class d its friend, which
means that d is granted access to nonpublic elements of c.
We must be able to specify for a class c, which are the
friends of class c and which classes declare class c their
friend, as this is likely to have an influence on the strength
of coupling between the classes.

DEFINITION 18 (Friend). For each class c C∈ , we define the set
Friends c C() ⊂ of friend classes of c. For each classc C∈ ,
the set of inverse friends of c (i.e., the set of classes that de-
clare c their friend) is defined as:

Friends c d d C c Friends d− = ∈ ∧ ∈1() { ()} .

In C++, a class can also declare an individual method its
friend. However, none of the coupling measures scrutinize
friendship at this level of detail. Therefore, we do not model
friendship relationships between classes and methods.

In hybrid languages such as C++, which also provide
features found in the procedural paradigm, it is possible to
take a pointer of a method, and pass this pointer to another
method. This also is a type of coupling considered by some
measures, and the formalism must be able to express this.

DEFINITION 19 (Passing of Pointers to Methods). For methods
m, ′m ¶ M(C), we define PP(m, ′m) to be the number of
invocations of m, where a pointer to ′m is passed to m (via
parameter). Such method invocations can be located in the
body of any method in the system, not only in methods of
the classes where m and ′m are defined.

The notation and formalism defined, a mechanism is now
available to express existing coupling frameworks and
measures in a consistent and precise manner.

From a practical perspective, the formalism can also be
used simplify the construction of tools that automatically
extract measures. Typically, measurement tools calculate the
measures by performing queries on an abstract syntax tree
or semantic graph representation of the system, as depicted
in the upper part of Fig. 1.

Since measures can be expressed using the primitives of
our formalism, we can also design a tool as depicted in the
lower part of Fig. 1: The formalism is calculated by per-
forming queries on a syntax tree (or, more conveniently, a
semantic graph). The measures are then implemented re-
lying only on the primitives of the formalism. This archi-
tecture has two advantages. First, new measures can be
added with less effort, as most of them can be built easily
from the existing primitives and no new queries have to be
written. Second, the measurement tool can be more easily

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 95

adapted to accommodate other languages. If a different
parser/semantic analyzer for a different language is used,
only the (fewer) queries of the formalism have to be re-
written for the new language; the part of the tool that cal-
culates the measures from the formalism primitives need
not be changed.

4 SURVEY OF COUPLING MEASUREMENT
FRAMEWORKS AND MEASURES

In this section, we perform a comprehensive survey and
critical review of existing frameworks and measures for
coupling in object-oriented systems. In Section 4.1, we pres-
ent existing frameworks for coupling and compare them. In
Section 4.2, we present existing coupling measures, com-
pare and discuss them, and analyze their mathematical
properties.

4.1 Coupling Frameworks
Frameworks for coupling in object-oriented systems have
been proposed by Eder et al. [20], Hitz and Montazeri [22],
and Briand et al. [4]. In each framework different types of
class, method, and object coupling are identified. We will
present each of these frameworks in Section 4.1.1, and then
compare and discuss them in Section 4.1.2.

4.1.1 Definition of the Frameworks
Framework by Eder et al. [20]. Eder et al. use the definition
of coupling provided by Stevens et al. [35]. The authors
identify the following types of relationships:

•� Interaction relationships between methods. This type of
relationship is caused by message passing.

•� Component relationships. Each object has a unique
identifier (the object identity). An object o may refer-
ence another object p using the identifier of object p.
This introduces a component relationship between the
classes of o and p.

•� Inheritance relationships between classes.

From these relationships three dimensions of coupling are
derived.

1)� Interaction coupling: Two methods are interaction cou-
pled if

a)� one method invokes the other, or
b)� they communicate via sharing of data.

Interaction coupling between method m implemented
in class c and method ′m implemented in class ′c
contributes to interaction coupling between the
classes c and ′c .

2)� Component coupling: Two classes c and ′c are compo-
nent coupled, if ′c is the type of either

a)� an attribute of c, or
b)� an input or output parameter of a method of c, or
c)� a local variable of a method of c, or
d)� an input or output parameter of a method in-

voked within a method of c.

3)� Inheritance coupling: two classes c, and ′c are inheri-
tance coupled, if one class is an ancestor of the other.

For each dimension of coupling, the authors identify differ-
ent strengths of coupling (listed below from strongest to
weakest).

Interaction coupling. The definition of interaction cou-
pling is most similar to the original definition of coupling.
Therefore, Eder et al. use the types of coupling proposed by
Myers [31] and adapt these to object-oriented systems.

•� Content. Method accesses implementation of another.
Implementation here means the nonpublic part of
the class interface. In C++, for instance, a method m
may be declared “friend” of a class c. Method m can
then invoke private methods of class c. Access to
implementation constitutes a breach of the informa-
tion hiding principle and is considered the worst
type of coupling.

•� Common. Methods communicate via unstructured,
global, shared data space. The authors cannot give an
example for an unstructured global shared data space,
because there are no object-oriented languages which
support them. Apparently, this type of coupling is only
listed in order to be consistent with Myers’ categories.

•� External. Methods communicate via structured,
global, shared data space (e.g., a public attribute of a
class). Eder et al. find that this is a violation of the “lo-
cality principle of good software design,” without
specifying any further what they mean by that.

•� Control. Methods communicate via parameter passing
only, the called method controls the internal logic of
the calling method. For instance, the called method
may determine the future execution of the calling
method. A change of the implementation of the called
method will most likely affect the calling method
(change dependencies).

•� Stamp. Methods communicate via parameter passing
only, the called method does not need all of the data it
receives. This constitutes an avoidable dependency
between methods. E.g., if the data structure of a pa-
rameter of a method is changed, possible effects of
this change on the method have to be considered. If

Fig. 1. Basic architecture of a measurement tool with and without our formalism.

96 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

the parameter is unused, a change of the parameter’s
data structure will not have any effects. The effort
spent to discover that the change has no effects can be
saved by avoiding stamp coupling.

•� Data. Methods communicate via parameter passing
only, the called method needs all the data it receives.
This is the best type of coupling (besides no coupling
at all), because it minimizes the change dependencies.

•� No direct coupling. No direct interaction coupling be-
tween two methods occurs.

Eder et al. first consider only direct interaction coupling
between two methods. Their definition is then expanded
to indirect interaction coupling via transitive method in-
vocations.

Component coupling. There are four degrees of component
coupling between classes (listed below from strongest to
weakest).

•� Hidden. Component coupling does not manifest itself
in code. For instance, if a class c contains a cascaded
method invocation such as a.m1().m2(), the type of the
object returned by m2 need not be explicit in the inter-
face or body of class c. It can be found in the interface
of the class of the object returned by method m1. That
is, in order to detect occurrences of hidden coupling
where class c is involved, we also have to look at the
interfaces of other classes.

•� Scattered. Component coupling manifests itself in the
body of the class only (cases c) and d) in the above
definition). Consequently, the body of the class has to
be searched in order to detect occurrences of this type
of coupling.

•� Specified. Component coupling manifests itself in the
interface (cases a) and b)). It is sufficient to search the
interface of the class for occurrences of this type of
coupling.

•� Nil. No component coupling.

Inheritance coupling. There are four degrees of inheritance
coupling (listed below from strongest to weakest).

•� Modification. Inheriting class changes at least one in-
herited method in a manner that violates some prede-
fined “good practice” rules. Eder et al. provide exam-
ples of such rules as “the signature of an inherited
method m may only be changed by replacing the type
of a parameter of m, say class d, with a descendent of
class d,” “an inherited method must not be deleted
from the class interface,” and “if a method is overrid-
den, the overriding method must keep the same se-
mantics as the overridden method.” The predefined
rules applied will, to a certain extent, depend on the
used design methodology and programming lan-
guage. When these rules involve the semantics of
methods, they are subjective and not easily measured
automatically from a static analysis of the design or
source code documents. Modification coupling is the
strongest type of inheritance coupling because infor-
mation inherited from the parent class is modified or
deleted in a manner which cannot be justified in the
context of inheritance. Two types of modification
coupling exist.

1)�Signature modification: Not only the implementation
of at least one inherited method is changed, but the
signature of the method is also changed.

2)� Implementation modification: The implementation of
at least one inherited method is changed. This de-
gree of coupling is weaker than the previous type
because the signature of the method is not changed.

•� Refinement. Inheriting class changes at least one in-
herited method but the change is made adhering to
the predefined “good practice” rules. Refinement
coupling is weaker than modification coupling be-
cause the inherited information is changed only ac-
cording to the predefined rules. However, problems
can still occur as a result of refinement coupling, e.g.,
changes to the signature of an inherited method will
restrict the use of polymorphism even if the intended
semantics of the method are not changed. Again, like
modification coupling, there exist two different types
of refinement coupling.

1)�Signature refinement: Not only the implementation
of at least one inherited method is changed, but the
signature of the method is also changed.

2)� Implementation refinement: The implementation of at
least one inherited method is changed. This degree
of coupling is weaker than the previous type be-
cause the signature of the method is not changed.

•� Extension. Inheriting class changes neither the signa-
ture nor the body of any inherited method; only new
methods and attributes are added.

•� Nil. No inheritance relationship between two classes.

Framework by Hitz and Montazeri [23]. Hitz and Mon-
tazeri approach coupling by defining the state of an object
(the value of its attributes at a given moment at run-time),
and the state of an object’s implementation (class interface
and body at a given time in the development cycle). From
these definitions, they derive two “levels” of coupling:

•� Class level coupling (CLC). CLC represents the coupling
resulting from state dependencies between two
classes in a system during the development lifecycle.

•� Object level coupling (OLC). OLC represents the cou-
pling resulting from state dependencies between two
objects during the run-time of a system.

According to Hitz and Montazeri, CLC is important when
considering maintenance and change dependencies because
changes in one class may lead to changes in other classes
which use it. The authors also state that OLC is relevant for
run-time oriented activities such as testing and debugging.
For each of these levels of coupling, the authors identify a
series of factors determining the strength of coupling.

1)�Class level coupling. CLC can occur if a method of a
class invokes a method or references an attribute of
another class. In the following, let cc be the accessing
class (client class), sc be the accessed class (server
class). The factors determining the strength of CLC
between cc and sc are:

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 97

•� Stability of sc :

•� sc is stable. Interface or body of sc is unlikely to
be changed (for instance due to changing re-
quirements). Typically, basic types provided by
the programming language, or classes imported
from standard libraries are stable.

•� sc is unstable. To depend on an unstable server
class is considered worse than to depend on a
stable class because a change to sc means poten-
tial change to cc. Typically, problem domain
classes are unstable. Two cases must be consid-
ered.

1)�only the body of sc is likely to be changed.
2)� the interface of sc may also be modified. This

case is considered the more harmful modifi-
cation.

•� Type of access

•� “Access to interface”: cc invokes a method of sc.
•� “Access to implementation”: cc references an at-

tribute of sc.

Access to implementation is considered stronger coupling as
it constitutes a violation of the information hiding principle.

•� Scope of access. Determines where sc is visible
within the definition of cc. Within this scope, a
change to sc may have an impact on cc. The larger
the scope, the stronger the classes are coupled. The
authors identify five cases which can be separated
into two categories: 1) a reference to sc may occur
in any method of cc and 2) a reference to sc can oc-
cur only through a particular method of cc (this be-
comes clear below).

Category 1) is comprised of three cases:

•� sc is the type of an attribute of cc.
•� sc is an ancestor of cc.
•� sc is the type of a global variable.

Category 2) is comprised of two cases:

•� sc is the type of a local variable of a method of cc.
•� sc is the type of a parameter of a method of cc.

2)� Object level coupling. For the discussion of OLC (ob-
ject level coupling), let osc be an object of type sc, occ

an object of type cc. Three factors influence the
strength of coupling between objects osc and occ :

•� Type of access. occ accesses interface of osc or occ ac-
cesses implementation of osc (same distinction and
implications for strengths of coupling as for CLC).

•� Scope of access. The smaller the scope of access the
weaker the coupling between the objects. For occ to
be able to access osc and contribute to OLC object
osc must be either (listed in increasing size of scope)
1)�a parameter of a method of occ

2)�a “nonnative” part of occ , that is, osc is not an
object inherited from a superclass of occ nor is it
encapsulated (aggregation) within occ nor is it a
local variable to one of occ methods

3)�a global object.

•� Complexity of interface. In the case that occ sends a
message to osc , the number of parameters of the
invoked method should be considered. The more
parameters passed, the stronger the coupling be-
tween objects.

Framework by Briand et al. [4]. An earlier approach
([11], [12]) to measure coupling in object-based systems
such as those implemented in Ada is adapted to C++ by
expanding it to include inheritance and friendship relations
between classes. In contrast to the two previous frame-
works, this framework focuses solely on coupling relation-
ships available during the high level design phase. The
motivation behind this decision is that eliminating design
flaws and errors early before they can propagate to subse-
quent phases can save substantial amounts of money. As a
result of the decision to focus on early design information,
this framework concentrates on coupling caused by inter-
actions that occur between classes. Three different facets are
identified that determine the kind of interaction:

1)�Type of interaction. Determines the mechanism by
which two classes are coupled. Different types of in-
teraction are specified to determine if a particular
type more accurately indicates fault likelihood.

•� Class-attribute interaction. There is a class-attribute
interaction between classes c and d, if class c is the
type of an attribute of class d (i.e., if aggregation
occurs).

•� Class-method interaction. Let md be a method of class
d. There is a class-method interaction between
classes c and d if

•� class c is the type of a parameter of method md

•� class c is the return type of method md .

•� Method-method interaction. Let mc be a method of
class c, md be a method of class d. There is a
method-method interaction between classes c and
d, if

•� md directly invokes mc

•� md receives via parameter a pointer to mc

thereby invoking mc indirectly.

2)� Relationship. In C++, two classes c and d can have
one of three basic relationships:

•� Inheritance. Class c is an ancestor of class d or vice
versa. This category is specified because the use of
inheritance apparently contradicts the notion of
minimizing coupling and should be considered
separately. Coad and Yourdon proposed a design
principle which recommends high coupling be-
tween a class and its parents, and low coupling
between classes not related via inheritance [18],
[19].

•� Friendship. Class c declares class d its friend which
grants class d access to nonpublic elements of c.
This category is specified because it breaks encap-
sulation and thus violates the information-hiding
principle.

•� Other. No inheritance or friendship relationship
between classes c and d .

98 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

3)� Locus. The “locus of impact” of an interaction. If
class c is involved in an interaction with another class,
a distinction is made between

•� export. Class c is the used class (server) in the inter-
action, and

•� import. Class c is the using class (client) in the in-
teraction.

The motivation for this distinction is to investigate whether
direction is important for predicting the fault-proneness of
a class.

In the definition of this framework, Briand et al. deliber-
ately assign no strengths to the different kinds of interac-
tions they propose. The authors state such strengths should
be derived from empirical validation which can then be
used to define measures on an interval or ratio scale. Briand
et al. pose several hypotheses regarding these facets of cou-
pling and investigate these empirically with respect to pre-
diction of fault prone classes.

4.1.2 Discussion and Comparison of Frameworks
A precise comparison of the frameworks shows there are
differences in the manner in which coupling is addressed.
One reason for this is the different objectives of the frame-
works. For example, Briand et al. examined only early de-
sign information to investigate potential early quality indi-
cators while the other authors investigated information
mainly available at low level design and implementation;
hence differences are found in the mechanisms that consti-
tute coupling. A second reason is that some of the issues
dealt with by one set of authors are considered to be sub-
jective and too difficult to measure automatically. For ex-
ample, the stability of an individual class (addressed by
Hitz and Montazeri) is not something which can be easily
determined unless, say, all problem domain classes are clas-
sified as unstable. In the following, we discuss in detail the
significant differences between the frameworks and what
can be learned from these differences.

The mechanisms that constitute coupling. In Table 1, the
mechanisms that constitute coupling according to each of
the frameworks are presented. Each row represents one

mechanism, an “X” indicates that the mechanism is covered
by the framework in the respective column. The mecha-
nisms are numbered for reference purposes.

There is some overlapping of the frameworks: Mecha-
nisms 3, 5, and 6, are common to all three frameworks.
Mechanisms 7 and 9 are common to two frameworks. All
other mechanisms are unique to one of the frameworks.

Within the framework of Hitz and Montazeri, mecha-
nisms 5, 6, 7, and 9 are possible ‘scopes of access’. The scope
of access determines the strength of the access itself, which
can be accomplished by mechanisms 2 or 3 (the possible
‘types of access’).

Mechanism 9 (inheritance) is of a different nature than
the other mechanisms. If two classes are connected via one
of the mechanisms 1 to 8, then we have an actual usage re-
lationship between the classes: one class uses the other. If
two classes are connected via mechanism 9, i.e., one class is
the ancestor of the other, then there can (and probably
should), but need not be an actual usage relationship be-
tween the classes, and the interdependencies this entails do
not necessarily exist.

The coupling mechanisms differ in the development
phase in which they become applicable. For instance, at-
tribute references and method invocations (mechanisms 2
and 3) are completely known only after implementation. In
contrast, aggregation is visible in the class interface and is
typically available before implementation starts. Coupling
mechanisms that are applicable early in the development
process are particularly interesting. If, for instance, they
help in identifying fault-prone classes, this information
could be used to select classes which are to undergo formal
verification or inspection, to allocate the best people to the
most fault-prone parts of the design, or to select the optimal
design from a series of design alternatives before these are
implemented. However, the later the development phase,
the more detailed the description of the system under de-
velopment, the more detailed the analysis of coupling.

Strength of coupling. The strength of coupling between
two classes is determined by two aspects:

•� the frequency of connections between the classes, and
•� the types of connections between the classes.

TABLE 1
COMPARISON OF MECHANISMS THAT CONSTITUTE COUPLING

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 99

The first aspect, how to count the frequency of connections
between classes, has to be ultimately resolved when defin-
ing the measures. This aspect has not been addressed by
any framework probably because the information required
to make this decision is available only after the source code
is developed. In Section 4.2, where the definitions of vari-
ous proposed coupling measures are compared, it is shown
that there are a number of different ways to count the fre-
quency of connections between classes.

Different types of coupling have different strengths. Eder
et al. and Hitz and Montazeri assign strengths to the types
of coupling they identified by defining a partial order on
the set of coupling types used in their frameworks. That is,
for any two types of connections within each framework,
they define if one is stronger than the other, if both have
equal strength, or if their strengths are not comparable. It is
important to note that the definition of such a partial order
is to some degree subjective and requires empirical valida-
tion. Furthermore, the validity of a given order will clearly
depend on the concrete measurement goal, i.e., different
measurement goals can require different (partial) orders.
For instance, assuming regression testing by means of
structural testing based on control flow analysis is per-
formed, we wish to estimate the effort to test a class based
on the amount of import coupling of the class. We would be
interested in method invocations because that influences
the flow of control. We would not but be interested in refer-
ences to attributes because these have no impact on the
flow of control. If, on the other hand, we want to charac-
terize the understandability of the class based on import
coupling, direct references to attributes are likely to be
equally important as method invocations.

Briand et al. define a set of measures which count for
each interaction type of their framework the number of in-
teractions a class has with other classes. Empirical valida-
tion is then conducted to evaluate their potential of identi-
fying fault-prone classes. That is, strengths are empirically
assigned to the different types of coupling.

Direction of coupling. The framework by Briand et al. ex-
plicitly distinguishes between import and export coupling.
Consider two classes c and d being coupled through one of
the mechanisms mentioned above. This introduces a client-
server-relationship between the classes: the client class uses
(imports services), the server class is being used (exports
services). This distinction is important. A class which mainly
imports services may be difficult to reuse in another context
because it depends on many other classes. On the other
hand, defects in a class which mainly exports services are
particularly critical as they may propagate more easily to
other parts of the system and are more difficult to isolate. We
conclude that the direction of coupling measured directly
influences the possible goals of measurement.

If two methods are coupled through “common” or “ex-
ternal” coupling according to the framework by Eder et al.,
we cannot make a distinction between client and server so
both methods would be clients. Note that with pure object-
oriented languages this would not occur. If the global data
space is a variable whose type is a class, this class could be
considered the server.

Direct and indirect coupling. Eder et al. derive “indirect
interaction relationships between methods” from “direct
interaction relationships” using the transitive closure of
direct interaction relationships. This idea can be applied to
all kinds of coupling. If a class c1 uses a class c2, which in
turn uses a class c3, class c1 is indirectly coupled to c3: a defect
or modification in class c3 may not only affect the directly
coupled class c2, but also the indirectly coupled class c1. As
an extreme case, consider a circular chain of coupled classes
(class ci uses class ci + 1 for i = 1, 2, ..., n – 1, and class cn uses
c1). Each class is directly coupled with two other classes (im-
port and export coupling). However, each class in the chain
indirectly uses and is being used by every other class.

Briand et al. based their framework on the work de-
scribed in [12]. In [12], high-level design measures for cou-
pling and cohesion in object-based systems were defined
and validated with respect to their potential of identifying
fault-prone modules. The coupling measures included
measures for direct and indirect coupling. The measures for
direct coupling were found to be useful predictors, but not
those for indirect coupling. Because their framework has
primarily been defined to derive coupling measures for the
identification of fault-prone classes, Briand et al. did not
include the distinction between direct and indirect coupling
in their framework in [4].

Stability of server class. This point is unique to the
framework by Hitz and Montazeri. Using a stable class is
better than using an unstable class, because modifications
which could ripple through the system are less likely to
occur. “Stability of the server class” could, for instance, be
used to distinguish between classes imported from stan-
dard libraries (which usually are not being modified and
thus are stable), and problem domain classes (which are
unstable). Note that stability of a server class is a subjective
concept which is difficult to measure automatically in a
manner other than that suggested above.

Inheritance. An aspect unique to object-oriented systems
is how inheritance influences coupling. This aspect is ad-
dressed in some detail by Eder et al. and Briand et al. For
the discussion, let us consider the case where a method of
one class invokes a method of another. The question is:
since both the invoking and the invoked method can be
either declared or implemented in their classes, how does
this affect coupling between the classes?

Consider the example in Fig. 2. There are four points
worth noting here:

1)� If a method invokes another method, the invoking
method contributes to import coupling of its class
from other classes. What if the invoking method is in-
herited? In Fig. 2, method mc1 in class c1 invokes md1
in d1. Method mc1 is also inherited to class c2. Should
this contribute to coupling between classes c2 and d1?
And what if an inherited method is redefined, as in
the case of mc2 of c2. Eder et al. state that coupling
between classes requires the invoking method to be
implemented in the client class. Applied to our exam-
ple, it follows that PF� declared in c2 does not con-
tribute to coupling of c2, whereas mc2, which is im-
plemented in c2, does.

100 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

2)� If we agree that an inherited method does not con-
tribute to import coupling of the inheriting class, then
what about an invocation of an inherited method?
For instance, mc3�of c2 invokes mc1 implemented in
F�. The authors of all frameworks discussed here find
that invoking an inherited method is special. It con-
tributes to coupling, and has to be distinguished from
invoking a method of an unrelated class. This type of
coupling is commonly referred to as “inheritance-
based” or “inheritance-related” coupling.

3)� Due to polymorphism, one method invocation can
actually access a variety of methods implemented in
different classes. Consider method mc2 of c1 invoking
md2 of G�. This clearly contributes to coupling be-
tween c1 and d1. However, the dynamic type of the
object pointed to by o1 may be any descendent class
of d1. Does mc2 therefore also contribute to coupling
between c1 and d2 or d3? Eder et al. state that interac-
tion coupling requires the invoked method to be im-
plemented in the server class. Applied to our exam-
ple, method mc2 of class c1 contributes to coupling
between c1 and d1, and between c1 and d2. It does not
couple c1 to class d3, because method md2 is only de-
clared in class d3. The rationale behind this decision is
that within the framework of Eder et al., all possible
relationships, and thus all possible dependencies
between methods should be accounted for.

4)� In 2) we discussed the case that a class invokes a
method it inherited from its parent class. Let us now
consider the case that the client and server classes are
not related through inheritance. The client class can
invoke a method which the server class has inherited.
For instance, method mc3 of class c2 invokes method
mc1 of d2. Class d2 has inherited mc1 from d1. Should
this therefore contribute to coupling between c2 and
d1? And what about the same method mc3 invoking
method md2 of d2? Class d2 inherits but overrides
method md2 of d1. Again, we can apply the principle

of Eder et al. that the invoked method has to be im-
plemented in the server class. It follows, that the in-
vocation of md2 contributes to coupling between c2
and d2 (because md2 is implemented in d2). The invo-
cation of md1 contributes to coupling between c2 and
d1 (because md1 is only declared in d2, but imple-
mented in d1).

Class level coupling vs. object level coupling. A distinc-
tion unique to the framework by Hitz and Montazeri [22] is
that between class level coupling (CLC) and object level
coupling (OLC). The types of coupling dealt with in the
other two frameworks would be considered class level cou-
pling in the framework by Hitz and Montazeri, i.e., usage
dependencies between classes that can be determined from
a static analysis of the design documents or source code
only. OLC, on the other hand, depends on the concrete ob-
ject-structure at run-time, which in turn is determined by
the actual input data to the system. That is, OLC is a func-
tion of both the design or source code and some input data
at run-time.

4.1.3 Summary
To summarize, the following about coupling in object-
oriented systems is noted:

•� there are different types of coupling among classes,
methods, attributes

•� classes and methods can be coupled more or less
strongly, depending on

1)� the type of connections between them
2)� the frequency of connections between them

•� a distinction can be made between import and export
coupling (client-server relationships)

•� both direct and indirect coupling may be relevant
•� the server class can be stable or unstable
•� the effect of inheritance on coupling has to be consid-

ered.

Fig. 2. Example inheritance hierarchy.

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 101

From this list we can see that there exists a variety of deci-
sions to be made during the definition of a coupling meas-
ure. It is important that decisions are based on the intended
application of the measure if the measure is to be useful.
When no decision for a particular aspect can be made, all
alternatives should be investigated. A second observation is
that because the different aspects of coupling are independ-
ent of each other, a large number of coupling measures could
be defined—this defines the problem space for coupling in
object-oriented systems. In the following section, a review of
object-oriented coupling measures in the software engineer-
ing literature is presented. Discussion of how existing meas-
ures address the different aspects of coupling takes place and
insight is provided into how complete the overall problem
space for coupling is covered by these measures.

4.2 Coupling Measures
Coupling measures have been proposed by Chidamber
and Kemerer [14], [15], Li and Henry [26], Martin [29],
Abreu et al. [1], Lee et al. [28], and Briand et al. [4]. In Sec-
tion 4.2.1, we present the original definitions of these meas-
ures, point out ambiguities in their definitions, and rewrite
the definitions using the formalism presented above. The
measures are then compared and discussed in Section 4.2.2.
In Section 4.2.3, we analyze their mathematical properties.

4.2.1 Definition of the Measures
Coupling between objects (CBO) [14], [15]. Measure CBO is
defined in [14] as follows: “CBO for a class is a count of the
number of noninheritance related couples with other
classes.” An object of a class is coupled to another, if meth-
ods of one class use methods or attributes of the other. In
[15], a revised definition is proposed: “CBO for a class is a
count of the number of other classes to which it is coupled.”
A footnote in another place says that “this includes cou-
pling due to inheritance.”

“Noninheritance coupling” and “coupling due to inheri-
tance” refer to the case that a method m of a class c uses a
method or attribute of an ancestor class of c. From this, we
infer that the calling method m of class c has to be imple-
mented at c (because an inherited method is considered a
method of “another class”). The authors do not specify how
polymorphism, method overriding and other issues raised in
Section 4.1.2 affect coupling. We define two versions of CBO:

DEFINITION 20 (Measures CBO and CBO’).

CBO c d C c uses c d uses d c

CBO c d C c Ancestors C uses c d uses d c

() { { } (,) (,)}

() { ({ } ()) (,) (,)}

= ∈ − ∨

′ = ∈ − ∪ ∨

Class c is coupled to class d if it uses d or is being used
by d. The definition of predicate uses(c, d) demands that
both the using method of class d and the used method or
attribute of class d are implemented at their classes. Poly-
morphism is accounted for. Other interpretations are possi-
ble, the predicate uses would have to be defined appropri-
ately. For instance, if we wanted to consider static method
invocations only, we would define:

uses c d m M c m M d m SIM m

m M c a A d a AR m
I I

I I

(,) ((): (): ())

((): (): ())

⇔ ∃ ∈ ∃ ′ ∈ ′ ∈
∨ ∃ ∈ ∃ ∈ ∈

Response for class (RFC) [14], [15]. Original definition
[15]: “RFC = |RS| where RS is the response set for the
class. The response set can be expressed as
RS M Rall i i= ∪{ } { } , where { }Ri is the set of methods called

by method i, and {M} is the set of all methods in the class.
The response set of a class is a set of methods that can po-
tentially be executed in response to a message received by
an object of that class.”

The last sentence in this definition indicates that the sets
Ri do not only include the methods directly invoked by
method i, but also the methods called by these methods and
so on. In a footnote, the authors say that “membership to
the response set is defined only up to the first level of nest-
ing of methods called due to practical considerations in-
volved in collection of the metric.” This restriction has not
been made in [14]. Does the set M of all methods in the
class include inherited methods? The answer is probably
yes, because these inherited methods may be invoked in
response to a message to that object.

We define the following RFC measures:

DEFINITION 21 (Measure RFCα). Let R c M c0() ()= , and let

R c PIM mi
m R ci

+ ∈
= ∪1() ()

()
 be the set of methods polymor-

phistically invoked by methods in R ci() . Then

RFC c R c
i

iα

α
α() () , for , , , ,= ∪ =

=0
1 2 3 K

RFCα takes into account levels of nested method in-

vocations. This measure has been suggested by Chur-
cher and Shepperd [17]. We can now define the meas-
ures proposed by Chidamber and Kemerer as special
cases of RFCα :

DEFINITION 22 (Measures RFC and RFC’).

RFC c RFC c

RFC c RFC c

′ =
=

∞() (), and

() ().1

Message passing coupling (MPC) [26]. Measure MPC is
defined as the “number of send statements defined in a
class.” We further quote [26]: “The number of send state-
ments sent out from a class may indicate how dependent
the implementation of the local methods is on the methods
in other classes.” This indicates that MPC only counts invo-
cations of methods of other classes, not invocations of the
class’ own methods. Also, only send statements in “local
methods” are counted. Li and Henry write: “The local
methods of a class constitute the interface increment.” Inher-
ited methods are not part of the interface increment; there-
fore send statements in inherited methods are not counted.
If a class overrides an inherited method, it is not strictly an
interface increment. Should this method still be excluded?
Since invocations from inherited methods are not counted,
should we count invocations of inherited methods? We
provide a formal definition of MPC as follows:

DEFINITION 23 (Measure MPC).

MPC c NSI m m
m M c m SIM m M cI I

() (,)
() () ()

= ′
∈ ′∈ −
∑ ∑ .

It is the number of static invocations of methods not im-
plemented in c by methods implemented in c. Only static

102 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

invocations are counted, so that this count reflects the
number of send statements.

Data abstraction coupling (DAC) [26]. Measure DAC
has been defined as “the number of abstract data types
(ADTs) defined in a class.” In this context, an ADT is a class
in the system. An ADT is defined in a class c, if it is the type
of an attribute of class c. We further quote [26]: “The num-
ber of variables (remark: attribute in our terminology)
having an ADT type may indicate the number of data
structures dependent on the definitions of other classes.”
This raises the question if DAC is supposed to count the
number of ADTs defined in a class, or the number of attrib-
utes having an ADT? Consider this example:

class A {/* ... */};

class B {A a1, a2;};

The number of ADTs defined in B is 1, the number of at-
tributes having an ADT is 2. And again, we have to decide
if inherited attributes should be included in the count or
not. We define two versions of DAC:

DEFINITION 24 (Measure DAC).

DAC c a a A c T a C

DAC c T a a A c T a C

I

I

() { () () }

() { () () () } .

= ∈ ∧ ∈

′ = ∈ ∧ ∈

DAC is the number of not inherited attributes that have a
class as their type. The number of the classes used as types
for attributes is counted by DAC’.

Ce and &D (efferent and afferent coupling) [29]. For the
following definition, a category is a set of classes that be-
long together in the sense that they achieve some common
goal. The original definition of the Ce and Ca is:

•� Ca: The number of classes outside this category that
depend upon classes within this category.

•� Ce: The number of classes inside this category that
depend upon classes outside this category.

Martin does not specify exactly what constitutes depend-
encies between classes. We may, for instance, adapt the
idea of Chidamber and Kemerer that class c depends on
class d if a method of class c uses a method or attribute of
class d. However, we will not provide formal definitions
for Ce and Ca.

Coupling factor (COF) [1]. In the following, the system
consists of classes c1, c2, ..., cTC, where TC is the total num-
ber of classes in the system. The function isclient(cc, cs) is
1, if class cc is not a descendent of class cs, and cc ¡ cs and
cc references a method or attribute of class cs. Otherwise,
isclient(cc, cs) is 0. The original definition of COF is:

COF S

isclient c c

TC TC Descendents c

i

TC

j

TC

i j

i

TC

i

()

(,)

()

=

− −
�

�
�

�

�
�

= =

=

∑ ∑

∑
1 1

2

1

2

The numerator of COF is the actual number of client-server
relationships between classes that are not related via in-
heritance. The denominator is the maximum possible num-
ber of such client-server-relationships. COF is normalized
to range between 0 and 1, in order to allow for comparisons
between systems of different size.

The authors do not specify if and how they account for
polymorphism, method overriding and other issues raised
in Section 4.1.2. Using our formalism, we define COF as
follows:

DEFINITION 25 (Measure COF).

COF C

d d C c Ancestors c uses c d

C C Descendents c

c C

c C

()

{ ({ } ()) (,)}

()

=

∈ − ∪ ∧

− −
�

�
�

�

�
�

∈

∈

∑

∑2
2

Information-flow-based coupling (ICP) [28]. The origi-
nal definitions of the ICP measures use a formalism that
would be rather lengthy to reproduce here. Using our for-
malism, these measures are defined as follows:

DEFINITION 26 (Measure ICP).

ICP m Par m NPI m mc

m PIM m M c M cNEW OVR

() (()) (,)
() (() ())

= + ′ ⋅ ′
′∈ − ∪

∑ 1

ICP mc() counts for method m of class c, the number of
polymorphistically invoked methods of other classes,
weighted by the number of parameters of the invoked method.
This count is scaled up to the classes and subsystems:

ICP c ICP m

ICP SS ICP c

m M c

c

c SS

I

() ()

() ()

()

=

=

∈

∈

∑

∑
From these measures, Lee et al. derive two more sets of
measures which measure separately coupling to ancestor
classes (inheritance-based coupling) and coupling to unre-
lated classes (noninheritance-based coupling).

DEFINITION 27 (Measures NIH-ICP AND IH-ICP). The set of
noninheritance-based measures is:

NIH ICP m Par m NPI m mc

m R

− = + ′ ⋅ ′
′∈
∑() (()) (,),1

where

 R PIM m M c
c Ancestors c

= ∩ ∪ ′
′∈

() (()),
()

NIH ICP c NIH ICP m
m M c

c

I

− = −
∈
∑() (),

()

and

NIH ICP SS NIH ICP c
c SS

− = −
∈
∑() ().

The set of inheritance-based measures is:

IH ICP m Par m NPI m mc

m R

− = + ′ ⋅ ′
′∈
∑() (()) (,),1

where

 R PIM m M c
c C c Ancestors c

= ∩ ∪ ′
′∈ − ∪

() (()),
({ } ())

IH ICP c IH ICP m
m M c

c

I

− = −
∈
∑() (),

()

and

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 103

IH ICP SS IH ICP c
c SS

− = −
∈
∑() ().

ICP is simply the sum of IH-ICP and NIH-ICP. For instance,
ICP(c) = IH-ICP(c) + NIH-ICP(c).

Suite of measures by Briand et al. [4]. Briand et al. im-
plemented their framework for coupling in object-oriented
systems (see Section 4.1.1). They defined measures which
count for each class.

•� the number of class-attribute/class-method/method-
method interactions

•� originating from/directed at
•� ancestor/friend/other classes.

There is a class-attribute (CA-)interaction from class c to
class d, if an attribute of class c is of type class d. The num-
ber of class-attribute interactions from class c to class d can
formally be expressed as

CA c d a a A c T a dI(,) { () () } .= ∈ ′ ∧ =

There is a class-method (CM-) interaction from class c to
class d, if a newly defined method of class c has a parameter
of type class d. The number of CM-interactions from class c
to class d can formally be expressed as

CM c d a a Par m T a d
m M cNEW

(,) { () () } .
()

= ∈ ∧ =
∈

∑
There is a method-method (MM-)interaction from class c

to class d, if a method implemented at class c statically in-
vokes a method of class d (newly defined or overriding), or
receives a pointer to such a method. The number of
method-method interactions from class c to class d can for-
mally be expressed as:

MM c d NSI m m PP m m
m M c m M d M dI NEW OVR

(,) ((,) (,)).
() () ()

= ′ + ′
∈ ′∈ ∪
∑ ∑

DEFINITION 28 (Class-Attribute Interaction Measures).

IFCAIC c CA c d

d Friends c

() (,)

()

=
∈ −

∑
1

counts all CA-interactions from class c to inverse friends
of c,

ACAIC c CA c d
d Ancestors c

() (,)
()

=
∈

∑
counts all CA-interactions from class c to ancestors of
class c,

OCAIC c CA c d
d Others c Friends c

() (,)
() ()

=
∈ ∪

∑
counts CA-interactions from class c to classes that are not
ancestors or inverse friends of class c. Others is defined as

Others c C Ancestors c Descendents c Friends c

Friends c c

() (() () ()

() { }).

= − ∪ ∪

∪ ∪−1

FCAEC c CA d c
d Friends c

()
()

=
∈

∑ (,)

counts all CA-interactions from friends of class c to class c,

DCAEC c CA d c
d Descendents c

())
()

=
∈

∑ (,

counts all CA-interactions from descendents of class c to
class c,

OCAEC c CA d c

d Others c Friends c

()

() ()

=
∈ ∪ −

∑
1

(,)

counts all CA-interactions to class c from classes that are
not friends or descendents of class c.

The definitions of the class-method interaction measures
IFCMIC, ACMIC, OCMIC, FCMEC, DCMEC, and OCMEC,
and the method-method interaction measures IFMMIC,
AMMIC, OMMIC, FMMEC, DMMEC, and OMMEC follow
the same template. Instead of CA-interactions, these
measures count CM- and MM-interactions, respectively.
For instance,

IFCMIC c CM c d

d Friends c

() (,)

()

=
∈ −

∑
1

and

OMMEC c MM d c

d Others c Friends c

() (,).

() ()

=
∈ ∪ −

∑
1

The full definitions of these and all other measures intro-
duced in this section are summarized in Table 13 of Appen-
dix C.

4.2.2 Discussion and Comparison of the Measures
In this section, we discuss and compare the coupling meas-
ures introduced in the previous section. In particular, we
will analyze how the existing coupling measures address
the issues highlighted in the comparison of frameworks in
Section 4.1.2.

Types of coupling. Many of the coupling measures are
based on method invocations and attributes references. All
versions of RFC, MPC, and the ICP family by Lee et al. are
based solely on method invocations. The “method-method
interaction” measures OMMIC, IFMMIC, AMMIC and
OMMEC, FMMEC, and DMMEC count method invocations
plus occurrences where a method is passed a pointer to
another method. And measures CBO and COF include ref-
erences to both methods and attributes.

DAC, DAC’ and the “class-attribute interaction” measures
IFCAIC, ACAIC, OCAIC and FCAEC, DCAEC, and OCAEC
are measures which take into account aggregation and could
be classified as “component coupling” according to the
framework by Eder et al. The “class-method interaction”
measures IFCMIC, ACMIC, OCMIC and FCMEC, DCMEC,
and OCMEC in the suite of measures by Briand et al. also
measure “component coupling.” These measures count
occurrences where a parameter of a method has another
class as its type.

Comparison of the types of coupling used by the cou-
pling measures to those introduced in the coupling frame-
works in Table 1 shows that all types of coupling used by
the measures are present in at least one framework. In con-
trast, however, there are types of coupling in Table 1 for
which there are no measures defined, namely, type #7 (a
method of a class c has a local variable of class d), and type
#8 (a method of a class c invokes a method while passing an

104 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

object of type class d). These types of coupling may be less
interesting because they typically are available only after
implementation. In conclusion, there are types of coupling
in object-oriented systems which have not yet been consid-
ered—empirical studies are required to investigate the use-
fulness of these types.

Strength of coupling. In this section, we first examine
how different measures account for different strengths of
coupling. We then examine how the measures deal with the
frequency of coupling connections.

Measures CBO and COF do not distinguish between
method invocations and attribute references; both types of
coupling are treated as one and the same. The “method-
method interaction” measures by Briand et al. do not dis-
tinguish between method invocation and passing a pointer
to a method ′m as a parameter to some other method m
(because m can then invoke ′m). All other measures focus
only on one type of coupling. Incorporating more than one
type of coupling into a single measure may be questionable
and needs to be clearly justified: it requires relative
strengths to be assigned to the different types of coupling
under consideration (e.g., the measures just mentioned treat
different types of connections as one and the same). Such an
assignment is subjective and makes empirical validation
difficult. Questions will arise such as “What type of cou-
pling contributed how much to the measurement values?”
To answer these questions, the types of coupling have to be
measured separately. So, unless there is a clear justification,
it is strongly recommended not to combine different types
of coupling. In addition, the assignment of relative
strengths of coupling will depend on the measurement goal
and other environmental factors (e.g., design methodology,
programming language). Assigning strengths to the various
types of coupling should be part of a prediction model for
some external attribute (e.g., a model that predicts fault-
proneness of a class from different types of coupling), but
not part of the definition of a measure.

“Connection” is a generic term defined as an occurrence
of a given type of coupling (e.g., a method invocation or an
attribute having a class as its type). The measures CBO and
COF take a binary approach to coupling between classes:
two classes are either coupled or not and the number of
such “class couples” is counted. However, this approach
does not make use of all the information available. For in-
stance, measure CBO has been proposed by Chidamber and
Kemerer as an indicator for maintainability, testability and
reusability of a class [15]. However, the maintainability and
testability of the class is also likely to be influenced by the
frequency of connections between coupled classes and not
only by the number of classes to which it is coupled. For
example, a class c which is loosely coupled to (i.e., has few
connections to) five other classes may be easier to maintain
or test than a class d which is strongly coupled (i.e., has
many connections) to only two other classes. All other
measures include individual connections between classes.
RFC counts the number of methods invoked by a class.
MPC and the “method-method interaction” measures by
Briand et al. count the number of method invocations. The
ICP measures also take the number of parameters passed to
each method into account (within the framework by Hitz

and Montazeri this is the factor “Complexity of interface”
for object level coupling). DAC and the measures for class-
attribute and class-method interaction by Briand et al.
count the number of attributes and parameters having a
class type. DAC’ counts the number of classes used as a
type for an attribute.

An important difference is between the “number of
methods invoked” and the “number of method invoca-
tions.” If the same method is invoked more than once and
each invocation is counted separately, a distorted value for
the measure can arise. Consider two extreme cases in an
example given by Hitz and Montazeri [23]:

•� Class c1 invokes a method m 10 times.
•� Class c2 invokes 10 different methods of 10 different

classes, once each.

For measure MPC (and other measures counting method
invocations), MPC(c1) = MPC(c2) = 10. In reality, however,
the coupling of class c2 could be considered worse than that
of c1 because c2 is coupled to 10 different classes whereas c1

is coupled to only one.
Similar distorted values arise for attributes. Contrast

measure DAC which counts the number of attributes having
a class as its type with DAC´ which counts the number of
classes used as types of attributes. If a class c1 has 10 attrib-
utes of type class c2, DAC(c1) = 10 whereas DAC’(c1) = 1.

At this point, it can be concluded that there are several
ways to take into account the frequencies of connections
between classes. They all have their strengths and weak-
nesses, and they all can be justified by an empirical rela-
tional system. That is, there is not “one right way” to count
frequencies of connections. How to count them must be
decided with respect to a given measurement goal.

Import and export coupling. CBO makes no distinction
between import and export coupling: two classes are coupled
if one uses the other or vice versa. COF distinguishes the
cases where a class c1 uses a class c2, and class c2 uses class c1.
In the case where both classes use each other both relation-
ships will be counted separately. The suite by Briand et al.
provides separate measures for import and export coupling
(e.g., OMMEC and OMMIC). All other measures only con-
sider import coupling (i.e., the role of the class as client).

Direct and indirect coupling. Most of the coupling meas-
ures consider direct coupling only. RFC´ is the number of
methods that can possibly be invoked by sending a message
to a class c. This includes methods of c, methods invoked by
the methods of c, the methods these in turn invoke, etc. In
that sense, indirect coupling is accounted for. RFCa counts
such nested method invocations up to a specified level a.

We can easily derive new measures that account for indi-
rect coupling from measures that do not (if it appears sensi-
ble to do so). Direct coupling describes a relation on a set of
elements (e.g., a relation “invokes” on the set of all methods
of the system, or a relation “uses” on the set of all classes of
the system). To account for indirect coupling, we need only
use the transitive closure of that relation.

Stability of server class. This aspect is not addressed by
any of the proposed coupling measures. A possible applica-
tion would be to distinguish between coupling among prob-

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 105

lem domain classes and import coupling from classes taken
from standard libraries (or any other classes that are not
subject to development or change in the ongoing project).

A pragmatic method of identifying the stability of
server classes without defining new measures is to use an
existing import coupling measure and measure, for a
given class, its import coupling from problem domain
classes and library classes separately. Thus, it can be de-
termined to what extent the class relies on problem do-
main classes and library classes.

Inheritance. The distinction between inheritance-based
and noninheritance based coupling can be found frequently
in the literature. Inheritance-based coupling refers to cou-
pling between a class and its ancestors. Noninheritance-
based coupling is coupling between two classes with no
inheritance relationship between them. For instance, the
design principle by Coad and Yourdon suggests to maxi-
mize inheritance-based coupling and minimize noninheri-
tance-based coupling [18], [19]. Excluding inheritance-
based coupling corresponds with the point of view that the
inheriting class “has” the attributes and methods it inherits,
and using an inherited method or attribute is not equiva-
lent to coupling with another class. Including inheritance-
based coupling corresponds with the point of view that the
inheriting class does not “have” the inherited attributes and
methods. This view is supported by the fact that some pro-
gramming languages restrict access to inherited methods
and attributes (e.g., private methods and attributes in a C++
class cannot be used by its children classes). Empirical
studies are required to realize if and how inheritance-based
and noninheritance-based coupling should be distin-
guished. It is also conceivable that the relative importance
of both types of coupling depends on the respective meas-
urement goal: what is empirically justified in one situation
may not apply in other situations.

CBO’ measures “noninheritance-based coupling” [14]
whereas CBO explicitly includes “coupling due to inheri-
tance” [15]. Chidamber and Kemerer do not explain why
they first excluded inheritance-based coupling and why they
introduced it later. Similarly, the definition of COF excludes
inheritance-based coupling without any explanation [1].

Lee et al. acknowledge the need to differentiate between
inheritance-based and noninheritance-based coupling by
proposing corresponding measures: NIH-ICP counts non-
inheritance-based coupling only, IH-ICP counts inheritance-
based coupling only. ICP is the sum of IH-ICP and NIH-
ICP, thus treats both types of coupling equal. The suite of
measures by Briand et al. also provides measures which
count inheritance-based and noninheritance-based coupling
separately. Unlike Lee et al., they do not define a single
measure which counts both types of coupling (cf. the above
discussion on types of coupling). All other measures do not
address inheritance. The definitions of these measures are
therefore ambiguous with that respect.

For most measures, the other inheritance issues intro-
duced in Section 4.1.2 (how to account for polymorphism,
overriding of methods, virtual methods etc.) are not con-
sidered in the original definitions. Reference [20] is the only
publication we are aware of that describes these issues in
detail.

Lee et al. emphasize that their ICP measures, which are
based on method invocations, take polymorphism into ac-
count [28]. Their measures aim at measuring the amount of
information flow between methods. Information flow occurs
between a method m and any method ′m that is possibly
invoked by m which includes methods ′ ∈m PIM m(). The
measures for method-method-interaction by Briand et al. are
counts of static method invocations only [4].

Class level coupling vs. object level coupling. All meas-
ures are defined to measure class-level coupling in the
framework of Hitz and Montazeri [22], i.e., they count static
usage dependencies between classes. No measure of object
level coupling has been proposed. This may reflect the
practical difficulty of measuring coupling between individ-
ual objects. For instance, for object level coupling it is not
sufficient to know how many invocations from one method
to another there are, but how often these will be executed at
run-time. One way to measure coupling between objects
would be to instrument the source code to log all occur-
rences of object instantiations, deletions, method invoca-
tions, and direct references to attributes while the system
executes. However, this kind of measurement can only be
performed very late in the development process, e.g., in
parallel to or after testing.

4.2.3 Mathematical Properties of the Measures
In this section, we investigate the properties of the coupling
measures presented in Section 4.2.1. In particular, we look at
five mathematical properties proposed by Briand et al. [13].
The motivation behind defining such properties is that a
measure must be supported by some underlying theory of
the internal quality attribute it is purported to measure—if
not, how do we know a measure is measuring the intended
attribute (also referred to as construct validity)? The five
coupling properties defined by Briand et al. are one of the
more recent proposals to characterize coupling in a reasona-
bly intuitive manner. These properties are considered to be
necessary, but not sufficient, to justify a coupling measure.

The coupling properties were originally defined using a
generic, mathematical framework to model a software sys-
tem. For the purpose of validating coupling measures for
object-oriented systems, we adapt this framework to model
an object-oriented system as defined by the formalism in
Section 3.

In the following discussion let Coupling be a candidate
measure for coupling of a class or an object-oriented system.
Relationships capture the connections between classes the
respective coupling measure is focused on. As the coupling
measure can measure import or export coupling (or both),
OuterR(c) will denote the relevant set of relationships from or
to class c (or both). We define InterR C OuterR cc C() ()= ∪ ∈ to

be the set of interclass relationships in system C.
The five proposed coupling properties are:

Coupling.1: Nonnegativity. The coupling [of a class c| of
an object-oriented system C] is nonnegative:

[() ()Coupling c Coupling C≥ ≥0 0]

Coupling.2: Null value. The coupling [of a class c| of an
object-oriented system C] is null if [OuterR(c) | InterR(C)] is
empty:

106 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

[() ()

() ()

OuterR c Coupling c

InterR C Coupling C

= ⇒ =

= ⇒ =

φ
φ

0

0]

Coupling.3: Monotonicity. Let C be an object-oriented
system and c ¶ C be a class in C. We modify class c to form
a new class ′c which is identical to c except that
OuterR c OuterR c() ()⊆ ′ , i.e., we added some relationships to
c. Let ′C be the object-oriented system which is identical to
C except that class c is replaced by class ′c . Then

[() () () ()]Coupling c Coupling c Coupling C Coupling C≤ ′ ≤ ′

Coupling.4: Merging of classes. Let C be an object-oriented
system, and c1, c2 ¶ C two classes in C. Let ′c be the class
which is the union of c1 and c2. Let ′C be the object-oriented
system which is identical to C except that classes c1 and c2

are replaced by ′c . Then

[() () ()

() ()]

Coupling c Coupling c Coupling c

Coupling C Coupling C

1 2+ ≥ ′

≥ ′

Coupling.5: Merging of unconnected classes. Let C be an
object-oriented system, and c1, c2 ¶ C two classes in C. Let

′c be the class which is the union of c1 and c2. Let ′C be the
object-oriented system which is identical to C except that
classes c1 and c2 are replaced by ′c . If no relationships exist
between classes c1 and c2 in C, then

[() () ()

() ()]

Coupling c Coupling c Coupling c

Coupling C Coupling C

1 2+ = ′

= ′

Coupling.3 specifies that if a relationship is added to the
system, coupling must not decrease. Coupling.4 specifies that
merging two classes must not increase coupling because re-
lationships disappear (namely those between the classes that
have been merged). Coupling.5 specifies that merging two
unconnected classes must not affect coupling at all.

In the following we discuss which measures violate one
or more of the coupling properties above.

•� RFC a and its special cases RFC and RFC’ do not have
a null value (Coupling.2). If c is a class with five
methods which do not invoke any other methods, we
have RFCa(c) = 5, even though OuterR(c) = 0.

•� Measures DAC and DAC’ also do not have a null
value (Coupling.2). If class c has an attribute of type
class c (or, more realistically, an attribute of type
“pointer to class c”), then DAC(c) > 0 and DAC’(c) >
0, even though OuterR(c) = 0.

•� COF violates Coupling.4 and Coupling.5. Consider the
example systems in Fig. 3. Boxes are classes, arrows
from, e.g., class c to class e, indicate that class c uses
class e. For system C, we have COF(C) = 4/20 = 0.2. In
system ′C , classes c and d have been merged to form a
new class ′c . We have COF(′C) = 3/12 = 0.25, and thus
COF(C) < COF(C’). Therefore, Coupling.4 and Cou-
pling.5 are violated. This is due to the fact that COF has
been normalized to range between [0, 1].

•� CBO and CBO’ do not fulfill Coupling.5. Again, con-
sider the example systems in Fig. 3. For system C, we
have CBO(c) + CBO(d) = 2 + 2 = 4. In system ′C it is
CBO(′c) = 3. Thus Coupling.5 is violated.

•� Likewise, measure DAC´ also violates Coupling.5. To
see this, we reinterpret the meaning of the arrows in
Fig. 3: an arrow from class c to class e now indicates
that class c has one or more attributes of type class e.
Again, we have DAC’(c) = DAC’(d) = 2 for system C,
but DAC’(c´) = 3 for system C’, and Coupling.5 is
violated. Measure DAC, on the other hand, fulfills
Coupling.5. We always have DAC(c) + DAC(d) =
DAC(c’), because this measure counts the number of
attributes having a class as their type.

•� Likewise, RFCa and its special cases RFC and RFC´

violate Coupling.5. If we merge two classes c and d to
form a new class ′c , the response set of ′c , RSc′ is the

union of the response sets RSc and RSd of classes c and

d: RS RS RSc c d′ = ∪ (the response sets include the lev-

els of nested method invocations as prescribed by pa-

rameter). If RS RSc d∩ ≠ φ , then RS RS RSc d c+ > ′ ,

and thus RFC c RFC d RFC cα α α() () ()+ > ′ , i.e., Cou-

pling.5 is violated.

(a)

(b)

Fig. 3. Counterexamples for COF, CBO, CBO′ , and DAC′ . (a) system

C ; (b) system ′C .

There is a pattern visible concerning the violations of
property Coupling.5. Measures CBO, CBO’, the RFC meas-
ures, and DAC´ all have in common that multiple connec-
tions to the same method or class are counted as one. If two
unconnected classes c and d use a third class f in common,
and we merge classes c and d to form a new class c’, then the
previously two connections to class f are only counted as one
connection from new class c’ to class f. As a result, the cou-
pling of the new class c’ is lower than the sum the of the cou-
pling of classes c’ and d. Thus, property Coupling.5 only
holds for measures which count individual connections.

The ICP “information-flow-based” measures fulfill all
five coupling properties, but show a special behavior. They
measure the amount of information flowing in to and out
from the class via parameters through method invocation,

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 107

i.e., the measures sum the number of parameters (plus one)
passed at each method invocation. Consequently, invoking,
say, six methods with no parameters contributes the same
to class coupling as invoking two methods each with two
parameters or invoking one method with five parameters.
This implies a special empirical model, i.e., weighting
method invocations by the number of parameters passed,
which should be investigated empirically.

4.2.4 Summary
Table 2 summarizes the discussion of measures. For each
measure, we indicate the type of coupling it uses, what
factors determine the strength of coupling, if it is an import
or export coupling measure, if indirect coupling is ac-
counted for, and how inheritance is dealt with (inheritance-
based coupling, noninheritance-based coupling, or both).
The columns C2, C4, and C5 show violations of the cou-
pling properties Coupling.2, Coupling.4 and Coupling.5,
where an “X” indicates a violation (properties Coupling.1
and Coupling.3 are fulfilled by all measures and are there-
fore not listed in the table).

5 A UNIFIED FRAMEwORK FOR COUPLING
MEASUREMENT

In this section, a new framework for coupling in object-
oriented systems is proposed. The framework is defined on
the basis of the issues identified by comparing existing
coupling frameworks (Section 4.1.2) and the discussion of
existing measures with respect to these issues (Sec-
tion 4.2.2). The objective of the unified framework is to
support the comparison and selection of existing coupling
measures with respect to a particular measurement goal. In
addition, the framework should provide guidelines to sup-
port the definition of new measures with respect to a par-
ticular measurement goal when there are no existing meas-
ures available. The framework, if used as intended, will:

•� ensure that measure definitions are based on explicit
decisions and well understood properties,

•� ensure that all relevant alternatives have been consid-
ered for each decision made,

•� highlight dimensions of coupling for which there are
few or no measures defined.

TABLE 2
PROPERTIES OF COUPLING MEASURES

108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

The framework consists of six criteria, each criterion deter-
mining one basic aspect of the resulting measure. First, we
describe each criterion: what decisions have to be made,
what are the available options, how is the criterion reflected
by the coupling measures in Section 4.2. We then discuss
how the framework can be used to derive coupling meas-
ures. For each criterion, we have to choose one or more of the
available options which will be strongly influenced by the
stated measurement goal. Finally, we provide a set of guide-
lines how a given measurement goal influences this choice.

The six criteria of the framework are:

1)�The type of connection, i.e., what constitutes coupling.
2)�The locus of impact, i.e., import or export coupling.
3)�Granularity of the measure: the domain of the measure

and how to count coupling connections.
4)�Stability of server.
5)�Direct or indirect coupling.
6)� Inheritance: inheritance-based vs. noninheritance-based

coupling, and how to account for polymorphism, and
how to assign attributes and methods to classes.

These criteria are necessary to consider when specifying a
coupling measure. However, they are not sufficient, as
other aspects such as properties of measures (e.g., those
discussed in Section 4.2.3) and results from empirical vali-
dation studies have to be considered too. The influence of
these aspects is not addressed here.

We now describe each of the criteria in the order given
above.

5.1 Framework Criteria

5.1.1 Type of Connection
Choosing a type of connection implies choosing the mecha-
nism that constitutes coupling between two classes. Table 3
summarizes the possible types of connections, i.e., links be-
tween a client and a server “item” (attribute, method, or
class), and those used by the reviewed measures. The items
are listed in the columns “client item” and “server item.”
Column “Description” explains the type of connection. Col-
umn “Design phase” indicates from which design phase on
the type of connection typically is applicable. The numbers in
column “#” are used later to reference the types of connec-
tions. Column “Measures” lists for each type of connection,
which coupling measures use that type of connection.

5.1.2 Locus of Impact
It has to be decided whether to count import or export cou-
pling:

•� Import coupling analyzes attributes, methods, or
classes in their role as clients (users) of other attrib-
utes, methods, or classes.

•� Export coupling analyzes the attributes, methods, and
classes in their role as servers to other attributes,
methods, or classes.

Table 4 shows which coupling measures are import cou-
pling measures and which are export coupling measures.

5.1.3 Granularity
The granularity of the measure is the level of detail at
which information is gathered. The granularity of the
measure is determined by two factors:

1)� the domain of the measure, i.e., what components are
to be measured

2)�how exactly the connections are counted.

Domain of measure. Table 5 shows possible domains for
the coupling measures and which measures from Sec-
tion 4.2 have that domain. Of course, measures for smaller
domains such as the class level can easily be extended to
larger domains like the sets of classes and the system level.

How to count connections. The next decision is how to
count connections. Available options for this decision can
be restricted by the domain of the measure. For measures
defined at the method or attribute level, two options are
listed in Table 6. Column “#” provides a label used for ref-
erence purposes, and “Description” explains the option.
Columns “Import coupling example” and “Export coupling
example” illustrate the options using the example of refer-
ences to attributes by methods (connection type 5).

The difference between options A) and B) is that multi-
ple connections between two items are counted separately
in option A), and counted as one in option B).

At the class level, there are four options to count connec-
tions, shown in Table 7.

The difference between options D) and E) is that if, for
instance, two methods of a class reference the same attrib-
ute, the references are counted separately (once for each
method) according to D), and counted as one for the class
according to E).

In Table 7, we use phrases such as “the methods of the
class” or “the attributes of the class.” This is imprecise, be-
cause it is not yet specified if a method or attribute has to be
declared or implemented in the class in order to belong to
it. This issue will be discussed in criterion 6 (inheritance).

Measures defined for sets of classes or the system can
be constructed by adding up the number of connections of
the relevant classes, counted according to one of the op-
tions C) to F).

The coarseness of the resulting measures increases
gradually from option A) to option F): option A) produces
measures at the finest grain, option F) produces measures at
the coarsest grain.

Table 8 shows how coupling measures count frequencies
of connections.

5.1.4 Stability of Server
For the discussion of this criterion, two different categories
of class stability are defined:

•� unstable classes: These are classes which are subject to
development or modification in the project at hand.
Unstable classes are problem domain classes which
are being developed exclusively for the system, or
are being adapted from other systems (reuse with
modification).

•� stable classes: Classes that are not subject to change in
the project at hand. Stable classes are classes imported
from libraries, or classes reused verbatim from other
systems.

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 109

TABLE 3
TYPES OF CONNECTION

TABLE 4
IMPORT AND EXPORT COUPLING MEASURES

TABLE 5
MAPPING OF MEASURES TO DOMAINS

TABLE 6
OPTIONS FOR COUNTING CONNECTIONS AT THE ATTRIBUTE AND METHOD LEVEL

110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

TABLE 7
OPTIONS FOR COUNTING CONNECTIONS AT THE CLASS LEVEL

TABLE 8
MAPPING OF MEASURES TO OPTIONS

FOR COUNTING THE FREQUENCY OF CONNECTIONS

Using a class (the server class) which is unstable is dif-
ferent from using a stable server class. If an unstable server
class is modified, this may require the using class to be
modified as well. This modification in turn may trigger
other modifications, and so on. Since a stable server class is
not subject to modification, it cannot trigger an avalanche
of changes that cascade through the system.

Other categorizations than the above are conceivable (e.g.,
verbatim reused classes, classes where few changes are ex-
pected, classes where many changes are expected, etc.).
However, we suggest to use a categorization scheme where
the decision, into which category a given class belongs, can
be made automatically. Otherwise, the resulting coupling
measures may no longer be automatically collectable.

Using the above categorization, we have basically four
options to distinguish stability of the server class. These are
summarized in Table 9.

Class stability has not been addressed in the definition of
any of the reviewed measures. In other words, the meas-
ures make no distinction of the stability of the server class,
i.e., option III.

5.1.5 Direct or Indirect Connections
We have to decide whether to count direct connections only
or also indirect connections. For example, if a method m1
invokes a method m2, which in turn invokes a method m3,
we can say that m1 indirectly invokes m3. Methods m1 and
m3 are indirectly connected.

RFCa and RFC’ are the only measures to take indirect
connections into account. All other measures count direct
connections only.

5.1.6 Inheritance
Three aspects need to be considered with respect to inheri-
tance:

•� Is there a need to distinguish between inheritance-
based coupling and noninheritance based coupling?

•� How do we assign methods and attributes to classes?
•� For method invocations: shall we consider static or

polymorphic invocations?

The aspects should be dealt with in the order they are
listed.

Inheritance-based vs. noninheritance-based coupling.
First, we have to decide whether to count inheritance-based
coupling and/or noninheritance-based coupling. Inheri-
tance-based coupling analyzes connections between classes
that are related via inheritance. Likewise, noninheritance-
based coupling refers to connections between classes that
are not related via inheritance. We have four options for
dealing with inheritance, which are described in Table 10.
In column “measures,” we also list which measures in Sec-
tion 4.2 conform to the respective option.

There are no measures for option III, because a single
measure cannot count both inheritance-based and nonin-

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 111

heritance-based coupling separately (option III). To imple-
ment this option, pairs of measures are needed, where one
measure of each pair conforms to option I, the other to op-
tion II (for instance, IH-ICP and NIH-ICP). (see Table 10.)

Polymorphism. The next question is how to deal with
polymorphism. This is relevant for method invocations
only (connections of type 6). There are two options:

1)�Account for polymorphism, i.e., for a method m, we
count connections between m and all methods

′ ∈m PIM m().
2)�Do not account for polymorphism, i.e., for a method m,

we count connections between m and methods
′ ∈m SIM m() only.

Table 11 shows which measures in Section 4.2 account
for polymorphism and which do not. Only measures that
are concerned with method invocations are considered.

How to assign methods and attributes to classes. The fi-
nal question is to decide to which class an attribute or
method belongs. We have to decide if inherited methods
and attributes belong to the inheriting class or not. We dis-
tinguish between two cases:

•� When we compute the coupling of a class, we have to
determine what are the methods/attributes of the
class, and therefore contribute to the coupling of the
class. The available options are:
•� only methods and attributes implemented in the

class contribute to the coupling of the class
•� all methods and attributes implemented or de-

clared in the class contribute to the coupling of the
class

•� When we count the frequency of connections accord-
ing to option F) (i.e., for a given class, we count the
number of other classes it is connected to, cf. criterion

3), we have to assign the items at the other ends of the
connections to a class. The available options also de-
pend on whether we are counting import or export
coupling and are summarized in Table 12.

For the measures defined in Section 4.2, only methods and
attributes implemented in a class contribute to the coupling
of the class.

5.2 Application of the Framework
We apply the framework to select existing measures or to
derive new measures for a given measurement goal. Appli-
cation is performed by the following two steps:

•� For each criterion of the framework, choose one or
more of the available options basing each decision on
the objective of measurement. The criteria must be
dealt with in the order introduced in Section 5.1 be-
cause, as explained below, a decision made for one
criterion can restrict the available options for subse-
quent criteria.

•� Choose the existing measures accordingly or, if none
exist to match the decisions made, construct new
coupling measures. Remember that properties such
as those presented in Section 4.2.3 can also be used
to guide the definition and theoretical validation of
new measures.

In the context of applying this framework, the measure-
ment goal must at least specify

•� the development phase at which measurement is to
take place,

•� the underlying hypothesis which drives measure-
ment. The hypothesis will be of the form “Internal at-
tribute coupling (as measured by the coupling meas-
ures defined) has a causal effect on external quality

TABLE 9
OPTIONS TO ACCOUNT FOR STABILITY OF SERVER CLASS

TABLE 10
OPTIONS FOR INHERITANCE-BASED COUPLING

112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

attribute Y.” The external attribute Y could be main-
tainability, reliability, etc. As discussed in [10], we be-
lieve that product measures by themselves, no matter
how well defined, are not guaranteed to capture any
relevant phenomenon regarding the quality of the
system under study. It must be shown empirically
that they are related to some external system quality
attribute of interest. In other words, it is crucial to
provide evidence that they are relevant quality indi-
cators in order to be used and relied upon.

It is recommended to first define measures for the external
attribute in the hypothesis and then apply the framework to
derive coupling measures. Having an operational definition
of the external quality attribute may help in the processes of
choosing the appropriate coupling measures.

We now discuss, for each criterion, how the external at-
tribute and the target development phase from a given
measurement goal influences the choice of the available op-
tions and, where applicable, other aspects that may also im-
pact this choice. We then illustrate the process of constructing
an appropriate coupling measure by means of an example.

5.2.1 Type of Connection
Influence of development phase. The selection of one or more

types clearly will be influenced by the development
phase at which the measure is aimed. We are confined to
types of connections that are applicable at the target de-
velopment phase. In Table 3, we indicated for each type
of connection from which development phase on it is
applicable.

Influence of external attribute. It is difficult to provide guide-
lines for how a given external attribute affects the choice
for one or more of the available types of connections.
There are no obvious guidelines we could provide, and
as of yet, only little practical experience has been gath-
ered that we could report. Perhaps the exact definition of
the external attribute gives some clue as to which types
of connections will be relevant. To begin with, we rec-
ommend choosing several types of connections and con-
ducting statistical analyzes to investigate which types of
connections are relevant, i.e., support empirically the
underlying hypothesis of the measurement goal.

Additional remarks. Different types of connections have dif-
ferent strengths. For instance, according to information
hiding principles, referencing an attribute of another
class is worse (i.e., stronger) than invoking a method of
another class. Therefore, we recommend not to incorpo-
rate more than one type of connection into a single
measure. Rather, separate measures for each type of
connection should be used. Exceptions to this rule may
be justified, if the underlying hypothesis of the meas-
urement goal does not require that different types of
connections be differentiated, or if the measure is coarse
(cf. criterion 3, granularity). We will come back to this is-
sue in the description of criterion 3.

5.2.2 Locus of Impact

Influence of development phase. None.

Influence of external attribute. High import coupling of, e.g., a
class indicates that the class depends strongly on other
classes and their methods and attributes. Import cou-
pling may therefore be relevant in conjunction with the
following external attributes:

•� Understandability: To understand a method or class,
we must know about the services the class uses.

•� Error-proneness: For similar reasons as understand-
ability: if we incorrectly use an external service be-
cause we misunderstand it, we are likely to introduce
errors.

•� Maintainability: Low understandability and high er-
ror-proneness result in low maintainability.

•� Reusability: If a class depends on a large amount of
external services, it will be more difficult to reuse it in
other systems (because the external services will have
to be made available too in the other systems).

High export coupling of, e.g., a class means that the class
is used a lot by other classes and their methods and at-
tributes. Export coupling may be relevant in conjunction
with the following external attributes:

•� Criticality: Any defects in a class with high export
coupling are more likely to propagate to other parts of
the system. Such defects are more difficult to isolate.
In that respect, classes with high export coupling are
particularly critical. An export coupling measure

TABLE 11
MAPPING OF MEASURES TO OPTIONS

FOR ACCOUNTING FOR POLYMORPHISM

TABLE 12
OPTIONS TO ASSIGN METHODS AND ATTRIBUTES TO A CLASS

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 113

could therefore be used to select classes that should
undergo special (effective but costly) verification or
validation processes.

•� Testability: A class with high export coupling can be
difficult to test. If defects need to propagate to other
parts of the system to cause failures there, they may
not be detected when testing the class in isolation.

5.2.3 Granularity
Domain of the measure. The finest possible domain of the
measure has already been determined by criteria 1 and 2,
and is evident from Table 3: It is either the client or server
item of the chosen type of connection. For example, if we
decide to measure import coupling and connections of type
5 (references from methods to attributes), the finest possible
domain of the measure is the method (see row 5, column
“client item”): for each method, count how often attributes
are referenced by the method. Likewise, if we decide to
measure export coupling and connections of type 1 (aggre-
gation), the finest possible domain of the measure is the
class: for each class, how often is it used in other classes as
type of an attribute.

Influence of development phase. The development phase influ-
ences the choice of domain indirectly only, in that it de-
termines the finest possible domain of the measure. As
explained above, the finest possible domain is deter-
mined by criteria 1 and 2. The target development phase
is the main decisive factor for criterion 1. Thus, the target
development phase has an indirect influence on the do-
main of the measure.

Influence of external attribute. Similar to the development
phase, the external attribute has an indirect influence on
the choice of domain. The finest possible domain is in
part determined by criterion 2, for which the external
attribute is the main decisive factor.

However, for some measurement goals we may want
to choose a coarser domain for the measure than the finest
possible. For instance, if the measurement goal is to char-
acterize understandability, reusability etc. of a class, a
measure defined at the class level is appropriate. This can
be accomplished by taking into account all connections
starting from or ending in the methods or attributes of the
class. Similarly, measures defined on sets of classes or the
whole system can be constructed by taking into account
the connections starting from or ending in methods or at-
tributes of the relevant classes. The ICP family of meas-
ures in Section 4.2 provides an example of how a measure
defined on the method level (ICP(m)) is scaled up to the
class level (ICP(c)) and set-of-classes level (ICP(SS)).

How to count connections. For this criterion, we have six
options A) to F), where A) yields the finest measures and F)
yields the coarsest measures; see Tables 6 and 7.

Influence of development phase. The less precise and stable the
information about the connections, the coarser the
measure should be. If the information about the actual
connections is detailed enough at the design phase we
aim at, we may count individual connections. If the in-
formation we have is less detailed, or likely to change in
the future, we may want to use a coarser measure. Gen-

erally speaking, the later in the design process the appli-
cation of the measure, the more precise and stable the
available information, the finer the measure.

Based on commonly used design methods, our recommen-
dation is to use options D) to F) for analysis and high-level
design, and options A) to D) for low-level design and im-
plementation.

Influence of external attribute. In some cases, we may only
need coarser grain measures. For example, assume we
want to characterize understandability of a class for
which the source code is available. The hypothesis is that
the more methods invoked from other classes, the lower
the understandability. To test this hypothesis, we count
the methods used by the class according to option E),
even though the source code is available: According to
the hypothesis, the number of methods is decisive for
understandability, not how often the methods are used.

Additional remarks. The coarser the measure, the less it says
about the actual strength of connections between classes.
Therefore, a single coarse measure might just as well
take into account several types of connections at once:
even if different types of connections have different
strengths, mixing the types is acceptable for coarse
measures (options E) and F)), because the strength of
connections is not accounted for by the measure. In Sec-
tion 4.2, CBO and COF are examples for coarse measures
(option F)) which take more than one type of connection
into account.

As was demonstrated in Section 4.2.3, measures
which count multiple connections between the same
items as one do not fulfill the additive property Cou-
pling.5. Options B), D), E), and F) count the frequency of
connections in this manner. Therefore, we must not use
options B), D), E), or F) if we want our measures to fulfill
the additive property.

5.2.4 Stability of Server
Influence of Development Phase. None.

Influence of external attribute. In the following, we list for
each option some examples illustrating when it may be
appropriate.

•� Option I (count connections to unstable classes only)
could be used for measuring reusability. Typically, li-
brary classes are easy to reuse. Import coupling from
library classes may therefore be neglected.

•� Option II (count connections to stable classes only)
could be used for change impact analysis, where a li-
braries are to be replaced by other, possibly more effi-
cient, libraries. Import coupling from the old libraries
will be an indicator for the effort required to update a
system to the new libraries.

•� Option III (no distinction of stable and unstable
classes) could be used when analysing understand-
ability. Hypothesis: understandability is influenced by
the number of services used. It should not matter if
the server classes are stable or not. (Additional as-
sumption needed here: stable and unstable classes are
equally well known).

114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

•� Option IV (count separately connections to both stable
and unstable classes) could be used when analyzing
maintainability. Hypothesis: Maintainability is influ-
enced by dependencies on both stable and unstable
classes, and dependencies on unstable classes weigh
heavier. To verify this hypothesis, coupling with stable
and unstable classes has to be measured separately.

5.2.5 Direct or Indirect Connections
Influence of Development Phase. None.

Influence of external attribute. Indirect connections can be rele-
vant when estimating the effort for run-time activities
such as testing and debugging, or to estimate the impact
of a modification to a class c on the system: the modifica-
tion may necessitate other modifications to classes directly
and indirectly connected to class c (ripple effects).

Indirect connections may also be relevant for reus-
ability: if a class c is to be reused in another system, not
only the classes to which c is coupled have to be pro-
vided in the system, but also classes required by these
coupled classes, etc.

Direct connections are sufficient for the analysis of
understandability: To understand a class, we need to
know the functionality of the services directly used by
the class. We do not need to know how these services are
implemented, and therefore, what other services these
services need (at least, this is true if the services are well
documented).

5.2.6 Inheritance
There are three options for inheritance that must be consid-
ered.

Inheritance-based vs. noninheritance-based coupling

Influence of development phase. None.

Influence of external attribute. It is difficult to provide guide-
lines here. There are no obvious guidelines, and as of yet,
only little practical experience concerning the relative
importance of inheritance-based and noninheritance-
based coupling is available: Briand et al. [4] showed that
inheritance-based coupling is not a significant predictor
for fault-prone classes, whereas noninheritance-based
coupling is.

To begin with, we recommend to measure both in-
heritance-based and noninheritance-based coupling
separately (option III), and conduct statistical analyses to
investigate their relative importance.

Polymorphism

Influence of development phase. None.

Influence of external attribute. To analyze understandability,
we do not need to account for polymorphism: the meth-
ods that are invoked through a method invocation have
the same signature and should provide the same func-
tionality (if we know one method, we know them all).

Accounting for polymorphism could be important for
the analysis of error-proneness and testability. Because
each method in PIM(m) has its own implementation, de-
fects can propagate to or originate from any of these
methods.

How to assign methods and attributes to classes

Influence of development phase. None.

Influence of external attribute. None.

Additional remarks. The choice for one of the available op-
tions is largely influenced by the decision made for the
inheritance-based vs. noninheritance-based coupling
criterion: if we count inheritance-based coupling (op-
tions I, III, or IV), “the attributes and methods of a class”
have to be those implemented in the class. Because with
inheritance-based coupling we measure the degree to
which a class c is coupled to its ancestors, it makes no
sense to assign the methods and attributes c has inher-
ited to class c.

Assigning inherited methods and attributes to a class
only makes sense when we analyze the coupling of a
class c “as a whole” to other classes not related to c via
inheritance. Connections from or to methods and attrib-
utes that class c inherits contribute to the coupling of
class c. We cannot provide an example that shows the
application of this option. However, this does not imply
that there are no useful applications of this option.
Therefore, we leave it as a part of the framework.

5.2.7 Construction of the Coupling Measures
After selection of one or more options for each criterion of
the framework, we can construct a set of coupling measures
accordingly. Let us assume that our measurement goal is to
analyze the source-code of some system to predict mainte-
nance effort where maintenance effort might be defined as
the number of person hours spent fixing faults in a class or
implementing changes to a class as a result of requirements
changes. This data is measured over a certain period of
time, say, one year. For each criterion of the framework, the
following decisions are made.

•� Type of connection (criterion 1): method invocations
(option 6).

Justification: At the source code level, assuming the
system is a pure object-oriented implementation,
method invocations are hypothesized to be the most
relevant type of connection.

•� Locus of impact (criterion 2): Count import coupling.

Justification: If a method invokes many other methods,
it is more likely to be affected by changes to the in-
voked methods.

•� Granularity (criterion 3):

a)� Required domain is “class.”

Justification: Maintenance effort is collected at the
class level.

b)�Count individual connections (option C).

Justification: The more often a method is invoked,
the more effort is likely to be required to modify
the invoking method when modification of the in-
voked method takes place.

•� Stability of server (criterion 4): only count connections
to unstable classes (option I).

Justification: Assume that stable classes are reliable
and will not need modification even as a result of re-
quirements changes.

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 115

•� Indirect or direct connections (criterion 5): Count both
types of connections. Justification: there is no clear
rationale for choosing one particular type of connec-
tion. All the available options should be investigated.
For the sake of illustration, only direct connections
are considered in Fig. 4.

•� Inheritance (criterion 6):

a)� Count both inheritance-based and noninheri-
tance-based coupling and distinguish between
these types of coupling (option IV).

Justification: We do not know whether inheritance-
based or noninheritance-based coupling is more
important. Therefore, we need to measure both
types of coupling separately to investigate their
relative importance.

b)� Account for polymorphism.

Justification: Any method that is used by a class
may give rise to a modification to the class. There-
fore, we must include all methods that can be pos-
sibly invoked through polymorphism and dynamic
binding.

c)� Only methods implemented in a class contribute
to the coupling of the class.

Justification: We must choose this option because
we count inheritance-based coupling (criterion 6a
above).

The corresponding coupling measures are shown in Fig. 4.
For measure “ibc” (inheritance-based coupling), we indi-
cate for each criterion where it is reflected in the definition
of the measure. The only difference with measure “nibc”
(noninheritance-based coupling) is caused by criterion 6a)
and is also indicated in Fig. 4. For the distinction between
stable and unstable classes, let us assume that we have a
partition of the set C of all classes:

C SC UC= ∪ ,

where SC C⊆ is the set of stable classes in C, UC C⊆ is
the set of unstable classes in C, and SC UC∩ = φ .

5.2.8 Summary
We conclude the discussion of the unified framework with
the following remarks.

•� The measures generated with this framework are
counts of connections between classes. This leads to
the to the highest level of measurement, ratio meas-
urement, which means the most powerful types of
statistical analysis techniques can be performed.

•� These measures, however, are not guaranteed to be
useful. To be useful, the measures must be empirically
validated with respect to the external quality attribute
of interest specified in the measurement goal. We be-
lieve that measurement of internal product attributes
are not meaningful in isolation, but only if they cap-
ture relevant external quality attributes; for full de-
tails, see [10].

•� Existing measures have been classified according to
the options available for each criterion of the frame-
work. This classification allows existing measures to
be compared and their potential use identified. The
classification has shown that some particular options
of the framework criteria have no or only few corre-
sponding measures proposed.

•� Most object-oriented design methods define their
own, specific types of connections between classes
(e.g., “stimuli” in Jacobson’s OOSE method [25] and
“links” in Rumbaugh’s OMT method [32]). The pre-
sented framework may be tailored to a particular de-
sign method by adding the types of connections that
are unique to the design method to the list of possible
types of connections (criterion 1).

6 CONCLUSIONS

Based on a standardized terminology and formalism, we
have provided a framework for the comparison, evaluation,
and definition of coupling measures in object-oriented sys-
tems. This framework is intended to be exhaustive and in-
tegrates new ideas with existing measurement frameworks

Fig. 4. Example of how the criteria are reflected in a measures’ definitions.

116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

in the literature. Thus, detailed guidance is provided so that
coupling measures may be defined in a consistent and op-
erational way and existing measures may be selected based
on explicit criteria.

We have also used this framework to review the state-of-
the-art, about which we draw the following conclusions:

•� There is a very rich body of ideas regarding the way
to address coupling measurement in object-oriented
systems.

•� However, many measures are not based on explicit
empirical models and, therefore, their intended appli-
cation is a priori difficult to determine.

In the future, we will explore the measurement of dynamic
aspects for coupling between objects at run-time, especially
in the context of early design documents. Experienced de-
velopers think in terms of objects when they design. There-
fore, the dynamic object structure at run-time may affect the
cognitive complexity of the design.

As a complement to this paper and using systems devel-
oped by students, we performed a comprehensive empiri-
cal validation of the coupling measures discussed in this
paper, as well as various cohesion and inheritance measures
[5], [6], [7]. We plan to replicate this study on systems de-
veloped in industrial environments [37].

APPENDIX A—GLOSSARY OF TERMS

The terminology used for object-oriented concepts is pro-
vided as follows. Where applicable, the terminology de-
fined by Churcher and Shepperd [17] has been used.

•� Component: Any system entity whose properties may
be measured. Most important are typically classes,
methods, and attributes.

•� Class: Compound structure encapsulating data and
functional elements.

•� Object: Instance of a class
•� Attribute: A data item encapsulated in a class. Other

names: instance variable, data member, state variable
•� Method: A procedure or function encapsulated in a

class. Other names: operation, service, member func-
tion

•� Inheritance: “Is-a” relationship between two classes. A
class c may inherit from class d. The methods and at-
tributes of class d are then available to class c.

•� Aggregation: “Part-Whole” relationship between two
classes. A class c has an attribute of type class d. That
attribute of type class d is a part, an aggregate, of class
c. Other names: “containing,” “has-a,” or “consists-of”
relationship, composition.

•� Parent class: If class c inherits from class d, class d is a
parent class. Other name: superclass.

•� Child class: If class c inherits from class d, class c is a
child class. Other name: subclass.

•� Descendent class: The descendent classes of a class c are
the children classes of class c, their children etc. (any
class that directly or indirectly inherits from class c).

•� Ancestor class: The ancestor classes of a class c are the
parent classes of class c, their parent classes etc. (any
class, from which c directly or indirectly inherits).

•� Signature: Unique identifier that identifies a method.
The signature specifies the method’s name, the pa-
rameters it takes, and the return type.

•� Interface: The set of all signatures defined as public
within a class, i.e., the interface characterizes the
complete set of messages that can be sent to an in-
stance of that class.

•� Body: The body of a method is its implementation. The
body of a class is the implementation of its methods.

•� Access method: a method whose sole purpose is to
provides access to one or more attributes of the class.

•� Constructor: A method which creates and initializes an
object of a class.

•� Virtual method: A method which has no implementa-
tion. The implementation of the method is deferred to
children classes. Other names: “pure virtual” in C++
lingo.

•� Abstract class: A class which has at least one virtual
method. No objects can be instantiated from an ab-
stract class.

•� Message: Classes, via their methods, send messages to
request services from other classes, possibly including
specific recipients and parameters.

•� Polymorphism: An identifier may refer to instances of
different classes (typically having a common ancestor)
at run-time, allowing objects to be bound to this iden-
tifier to respond to the same set of messages in differ-
ent ways (however, the semantics of the response
should be similar for all objects).

We also define the terms client and server class, that are
useful when discussing coupling.

•� Client class, server class: In the context of coupling, it is
convenient to distinguish the class that is using an-
other class, and the class that is being used. We refer
to the using class as client class, or client, and to the
used class as server class, or server.

Note that the means by which the server class is
being used may be any of the types of connections
identified in Section 5.1.1. Also, the roles of server and
client must always be seen relative to a concrete con-
nection between classes. For instance, if a class c in-
vokes a method of some class d, class c is the client in
this particular method invocation, and d is the server.
If class d also invokes a method of class c, then class d
is the client for that method invocation, and c is the
server.

Also defined is the applicable measurement terminology.
The definition of the terms “measure,” “internal attribute,”
“external attribute,” “theoretical validation” and “empirical
validation” are taken from [10]:

•� Measure, domain, range: Let D be a set of empirical ob-
jects to be measured (e.g., a set of classes, methods),
and R be a set of formal objects (e.g., real numbers). A
measure is a mapping µ : D R→ , which maps every
element of D onto an element of R. We call D the do-
main of measure µ , R the range of µ . Other name:
metric.

•� Internal attribute: A quality or property of a software
product that can be measured in terms of the product
itself, e.g., size, coupling, etc.

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 117

•� External attribute: A quality or property of a software
product that can not be measured solely in terms of
the product itself. For instance, to measure maintain-
ability of a product, measurement of maintenance ac-
tivities on the product will be required in addition to
measurement of the product itself.

•� Operationally defined: A measure is considered opera-
tionally defined if no further interpretation of its defi-
nition is required to use it, i.e., it is stated in an unam-
biguous manner.

•� Theoretical validation: A demonstration that a measure
is really measuring the internal or external attribute it
purports to measure.

•� Empirical validation: A demonstration that a measure is
useful in the sense that it is related to an interesting
external attribute in an expected way.

•� Measurement goal: Specification of the objectives of
measurement in a given context. In this paper, it is as-
sumed that the objective of measurement is to test a
hypothesis of the form: “Internal attribute X has an
impact on external attribute Y,” i.e., to conduct an
empirical validation. Other information that typically
is included in the measurement goal: the develop-
ment phase at which measurement is to take place,
the environment in which measurement is to take
place (company, development team, methodology
used etc.), properties for measures of internal or ex-
ternal attributes.

APPENDIX B—A GENERIC OBJECT-ORIENTED
DEVELOPMENT PROCESS

In this paper, we classify the coupling measures and the
various types of coupling connections according to the
phase, during the development process, where they become
known or applicable. To be able to do a consistent classifica-
tion, it must be known when certain deliverables required for
measurement are available. To achieve this requirement, a
generic development process with four steps and the deliv-
erables available at the end of each is defined. These deliver-
ables comprise of modeling concepts which are similar to
those used by most object-oriented methodologies and are
exemplified by means of a mapping to Jacobson’s OOSE
method [25]. In general, each step will be performed in sev-
eral iterative cycles, the deliverables being updated as the
problem and solution are more clearly defined.

•� Analysis (An): The following deliverables are available
at the end of the analysis phase:

•� High level classes: High level classes model the enti-
ties in the problem domain. A high-level class
(HLC) will in later phases be implemented by one
or more regular classes, i.e., classes as they are pro-
vided by programming languages. At the analysis
phase we know nothing about the internal struc-
ture of HLCs. We do have a good idea of the serv-
ices the HLC provides.

•� Inheritance relationships: We have knowledge of
some inheritance relationships between HLCs, de-
rived mainly as identification of “type-of” relation-

ships. In general, the number of inheritance rela-
tionships identified during analysis will be rela-
tively small.

•� Other relationships: These are relationships between
HLCs such as “uses,” “consists-of,” etc. These re-
lationships are derived on the basis of the services
a HLC is to provide. For example, if HLC A re-
quests a service which is provided by HLC B, there
is a uses relationship between A and B.

Note that it is also usual for the system to be decom-
posed into subsystems, i.e., groups of closely related
HLCs. This occurs for ease of understandability and
iterative enhancement.

Mapping to OOSE: In the following, terms specific
to the OOSE terminology are set in quotes to distin-
guish them from our standard terminology. The
analysis phase corresponds to the “Robustness analy-
sis” in the OOSE method. The artifacts described
above are those found in the “Analysis model”: HLCs
are “objects” (“interface, entity or control objects”);
inheritance relationships have their direct counterpart
in OOSE; the other relationships are called “associa-
tions” (“communication associations, acquaintance
associations”). The services provided by each HLC
(i.e., “object” in OOSE) are not part of the “Analysis
model,” but are evident from the “use cases” defined
in an earlier process step of OOSE.

Most object-oriented methodologies feature an
early analysis phase and introduce a graphical nota-
tion, where high-level classes are represented by
boxes (or circles), and relationships (inheritance, uses,
etc.) are represented by different kinds of arrows be-
tween circles or boxes). The information contained in
these diagrams is considered to be the measurable
output of the analysis.

•� High-level design (HLD): During high-level design, the
HLCs are refined. This involves the following deci-
sions: which regular classes are needed to implement
a high-level class, what methods must a HLC provide,
what input and output parameters will the methods
need, in which “regular” class should each method be
implemented, what data will each class hold. Also,
we will know which functionality each method has to
fulfill, and have a rough idea about which other
methods a method uses. The methods at this level are
“high-level” methods. Several methods may be re-
quired later to implement one “high-level” method,
that is, new methods will be added later. Also, the in-
put and output parameters are still subject to later re-
finement. As the refinement of the HLCs creates new
classes, new inheritance relationships between classes
will arise. For instance, if we identified a number of
classes which perform network communication, these
classes are likely to have some functionality (meth-
ods) in common (e.g., wait for message, send mes-
sage, receive message). This functionality could be
factored out in a common parent class of the network
communication classes.

118 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

Mapping to OOSE: The high-level design corre-
sponds to the first half of the “Construction” phase of
the OOSE method. The HLCs are mapped onto
“blocks,” and each block consists of one or more classes
(the implementation environment will influence the
choice of classes). Using “interaction diagrams,” “stim-
uli” between blocks are determined, and what infor-
mation is passed with each “stimulus”. The “stimuli”
correspond to the “high-level” methods, the informa-
tion passed corresponds to the parameters.

•� Low-level design (LLD): During low-level design, algo-
rithms for each method are designed. Typically, tech-
niques such as state-transition graphs, flowcharts, or
program description languages (PDL) are used. The
design of algorithms, as well as determining the pre-
cise signature for each method, is likely to identify the
need for new methods and attributes. There is also
detailed information about which methods and at-
tributes are used by any given method.

Further possibilities for class abstraction can still
be discovered at LLD and the use of library classes is
considered. This can result in some new classes being
added to the system and minor rearrangement of the
inheritance hierarchy.

Mapping to OOSE: The low-level design phase cor-
responds to the second half of the “Construction”
phase in OOSE. State-transition graphs are used to
design algorithms for the methods of each class.

•� Implementation (Imp): After implementation the source
code is available.

Mapping to OOSE: OOSE has a process step “Im-
plementation” which produces the source code.

APPENDIX C—OVERVIEW OF COUPLING MEASURES

Table 13 provides an overview of the coupling measures
discussed in this paper. The meaning of the columns is as
follows:

•� Name: The name of the measure.
•� Definition. The definition of the measure we derived

in Section 4.2.1 using the defined formalism.
•� Operationally defined (yes or no): Indicates if the original

definition of the measure is operational or not, i.e.,
was additional interpretation of the measure’s origi-
nal definition necessary to come up with the formal
definition of the measure in Section 4.2.1.

•� Objectivity (subjective or objective): For an objective
measure, the collected measurement data does not
depend on the person collecting the data, i.e., the
measure is automatable. For a subjective measure, the
measurement data depends on the person collecting it
and hence the measure is not automatable.

•� Level of measurement (nominal, ordinal, interval, or ra-
tio): The type of scale the measure is defined on. The
type of scale is determined by the admissible trans-
formations for the used empirical relation system [21].
However, the empirical relation system used for the
attribute is rarely provided. If it is not provided, the
indicated scale type reflects our intuitive judgment.

•� Available at (An/HLD/LLD/Imp): This column and
column “Stable at” address the question when, in the
development process, the measures become applica-
ble. For this purpose, a generic object-oriented devel-
opment process consisting of four development
phases is used: analysis, high-level design, low-level
design, and implementation. Details about these de-
velopment phases can be found in Appendix B.

A measure is available at the end of a development
phase if the information required for the data collec-
tion is available at that phase, but is subject to re-
finement in later development phases. The column
states the earliest development phase at which the
measure is available. Measurement values obtained at
a development phase where the measure is available
are only approximations; their values are likely to
change in subsequent development phases.

•� Stable at (An/HLD/LLD/Imp): A measure is stable
at a given development phase if all information re-
quired for data collection is available and stable, i.e.,
the information is refined only to a limited extent in
subsequent development phases. We state the earliest
development phase at which the measure is stable.

•� Language specific: If the measure is specific to a par-
ticular programming language, the language is pro-
vided. If a measure is language-specific, this does not
imply that the measure is not applicable to other lan-
guages, but adapting the measure will be necessary
before it can be applied to other languages.

•� Validation (th, emp, no): Indicates if and how the measure
has been validated. There is a distinction between:

•� Theoretical validation (th): The authors have vali-
dated their measure theoretically, usually by ana-
lyzing its mathematical properties. The analysis
and results can be found in the first publication
referenced in the “source” column (see next item
on this list).

•� Empirical validation (emp): The measure has been
used in an empirical validation investigating its
causal relationship on an external attribute of a
class, subsystem, or system. Note that the theoreti-
cal validation of the measures in Section 4.2.3, and
the recent empirical validation of all measures in
[5], [6], [7] are not considered in this column. Thus,
the column reflects the state-of-the-art before we
performed this research.

•� Source: Literature references where the measure has
been proposed.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thorough re-
views and helpful comments, and the associate editor Dr.
Dewayne Perry for his guidance and advice. This research
has been conducted within the framework of Jürgen Wüst’s
masters thesis on quality measures for object-oriented sys-
tems. This research was supported, in part, by Daimler
Benz Research Center, Ulm, Germany. John Daly was with
Fraunhofer IESE when this research was performed.

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 119

TABLE 13
COUPLING MEASURES

TABLE 13
COUPLING MEASURES (CONTINUED)

120 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 1, JANUARY/FEBRUARY 1998

TABLE 13
COUPLING MEASURES (CONTINUED)

REFERENCES

[1]� F. Abreu, M. Goulão, and R. Esteves, “Toward the Design Quality
Evaluation of Object-Oriented Software Systems,” Proc. Fifth Int’l
Conf. Software Quality, Austin, Texas, Oct. 1995.

[2]� V. Basili, L. Briand, and W. Melo, “Measuring the Impact of Reuse
on Quality and Productivity in Object-Oriented Systems,” Comm.
ACM, vol. 39, no. 10, 1996.

[3]� V. Basili, L. Briand, and W. Melo, “A Validation of Object-Oriented
Design Metrics as Quality Indicators,” IEEE Trans. Software Eng.,
vol. 22, no. 10, pp. 751-761, 1996.

[4]� L. Briand, P. Devanbu, and W. Melo, “An Investigation into Cou-
pling Measures for C++,” Proc. 19th Int’l Conf. Software Eng., ICSE
‘97, Boston, pp. 412-421, May 1997.

[5]� L. Briand, J. Daly, V. Porter, and J. Wüst, “A Comprehensive Em-
pirical Validation of Product Measures in Object-Oriented Sys-
tems,” Technical Report ISERN-98-07, Fraunhofer Inst. for Ex-
perimental Software Engineering, Germany, 1998. http://

www.iese.fhg.de/ISERN/pub/isern_biblio_tech.html

[6]� L. Briand, J. Daly, V. Porter, and J. Wüst, “Predicting Fault-Prone
Classes with Design Measures in Object-Oriented Systems,” Proc.
Ninth Int’l Symp. Software Reliability Eng., ISSRE’98, Paderborn,
Germany, Nov. 1998.

[7]� L. Briand, J. Daly, V. Porter, and J. Wüst, “A Comprehensive Em-
pirical Validation of Product Measures in Object-Oriented Sys-
tems,” Proc. Fifth Int’l Symp. Software Metrics, Metrics ’98, Be-
thesda, Md., Nov. 1998.

[8]� L. Briand, J. Daly, and J. Wüst, “A Unified Framework for Cohe-
sion Measurement in Object-Oriented Systems,” Empirical Soft-
ware Eng.: An Int’l J., vol. 3, no. 1, pp. 65-117, 1998.

[9]� L. Briand, J. Daly, and J. Wüst, “A Unified Framework for Cou-
pling Measurement in Object-Oriented Systems,” Technical Re-
port ISERN-96-14, 1996.

[10]� L. Briand, K. El Emam, and S. Morasca, “Theoretical and Empirical
Validation of Software Product Measures,” Technical Report ISERN-
95-03, 1995. http://www.iese.fhg.de/isern/pub/isern_biblio_tech._html

[11]� L. Briand, S. Morasca, and V. Basili, “Measuring and Assessing
Maintainability at the End of High-Level Design,” Proc. IEEE
Conf. Software Maintenance, Montreal, Sept. 1993.

[12]� L. Briand, S. Morasca, and V. Basili, “Defining and Validating
High-Level Design Metrics,” Technical Report CS-TR 3301, Univ.
of Maryland, 1994; to be published in IEEE Trans. Software Eng.

[13]� L. Briand, S. Morasca, and V. Basili, “Property-Based Software
Engineering Measurement,” IEEE Trans. Software Eng., vol. 22, no.
1, pp. 68-86, 1996.

[14]� S.R. Chidamber and C.F. Kemerer, “Towards a Metrics Suite for
Object Oriented Design,” A. Paepcke, ed., Proc. Conf. Object-
Oriented Programming: Systems, Languages and Applications, OOP-
SLA’91, Oct. 1991. Also published in SIGPLAN Notices, vol. 26, no.
11, pp. 197-211, 1991.

[15]� S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp.
476-493, 1994.

[16]� N.I. Churcher and M.J. Shepperd, “Comments on ‘A Metrics Suite
for Object-Oriented Design,’” IEEE Trans. Software Eng., vol. 21,
no. 3, pp. 263-265, 1995.

[17]� N.I. Churcher and M.J. Shepperd, “Towards a Conceptual
Framework for Object Oriented Software Metrics,” Software Eng.
Notes, vol. 20, no. 2, pp. 69-76, 1995.

[18]� P. Coad and E. Yourdon, Object-Oriented Analysis, second edition.
Prentice Hall, 1991.

[19]� P. Coad and E. Yourdon, Object-Oriented Design, first edition.
Prentice Hall, 1991.

[20]� J. Eder, G. Kappel, and M. Schrefl, “Coupling and Cohesion in Ob-
ject-Oriented Systems,” Technical Report, Univ. of Klagenfurt, 1994.
Also available at ftp://ftp.ifs.uni-linz.ac.at/pub/publications/1993/0293.ps.gz

[21]� N.E. Fenton and S. Lawrence Pfleeger, Software Metrics: A Rigorous
and Practical Approach. International Thomson Computer Press,
1996.

[22]� M. Hitz and B. Montazeri, “Measuring Coupling and Cohesion in
Object-Oriented Systems,” Proc. Int’l Symp. Applied Corporate Com-
puting, Monterrey, Mexico, Oct. 1995. A version of this paper (fo-
cusing on coupling only) has been published in Object Currents,

BRIAND ET AL.: A UNIFIED FRAMEWORK FOR COUPLING MEASUREMENT IN OBJECT-ORIENTED SYSTEMS 121

vol. 1, no. 4, SIGS Publications, 1996. http://www.sigs.com/publications/

docs/oc
[23]� M. Hitz and B. Montazeri, “Measuring Product Attributes of

Object-Oriented Systems,” W. Schöfer and P. Botella, eds., Proc.
ESEC ‘95 Fifth European Software Eng. Conf., Barcelona, Spain, Sept.
1995, Lecture Notes in Computer Science 989, Springer-Verlag,
1995.

[24]� M. Hitz and B. Montazeri, “Chidamber & Kemerer’s Metrics
Suite: A Measurement Theory Perspective,” IEEE Trans. Software
Eng., vol. 22, no. 4, pp. 276-270, 1996.

[25]� I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, “Object-
Oriented Software Engineering: A Use Case Driven Approach,”
ACM Press/Addison-Wesley, Reading, Mass., 1992.

[26]� W. Li and S. Henry, “Object-Oriented Metrics that Predict Main-
tainability,” J. Systems and Software, vol. 23, no. 2, pp. 111-122,
1993.

[27]� W. Li, S. Henry, D. Kafura, and R. Schulman, “Measuring Object-
Oriented Design,” J. Object-Oriented Programming, vol. 8, no. 4, pp.
48-55, 1995.

[28]� Y.-S. Lee, B.-S. Liang, S.-F. Wu, and F.-J. Wang, “Measuring the
Coupling and Cohesion of an Object-Oriented Program Based on
Information Flow,” Proc. Int’l Conf. Software Quality, Maribor, Slo-
venia, 1995.

[29]� R. Martin, “OO Design Quality Metrics–An Analysis of Depend-
encies,” position paper, Proc. Workshop Pragmatic and Theoretical
Directions in Object-Oriented Software Metrics, OOPSLA’94,
Oct. 1994.

[30]� T.J. McCabe, “A Complexity Measure,” IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308-320, 1976.

[31]� G. Myers, Composite/Structured Design. Van Nostrand Reinhold,
1978.

[32]� J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-Oriented Modeling and Design. Prentice Hall, 1991.

[33]� R.W. Selby and V.R. Basili, “Analyzing Error-Prone Systems
Structure,” IEEE Trans. Software Eng., vol. 17, no. 2, pp. 141-152,
1991.

[34]� R.C. Sharble and S.S. Cohen, “The Object-Oriented Brewery: A
Comparison of Two Object-Oriented Development Methods,”
Software Eng. Notes, vol. 18, no. 2, pp. 60-73, 1993.

[35]� W. Stevens, G. Myers, and L. Constantine, “Structured Design,”
IBM Systems J., vol. 13, no. 2, pp. 115-139, 1974.

[36]� P.A. Troy and S.H. Zweben, “Measuring the Quality of Structured
Designs,” J. Systems and Software, vol. 2, pp. 113-120, 1981.

[37]� L. Briand, S. Ikonomovski, H. Lounis, and J. Wüst, “Investigating
Quality Factors in Object-Oriented Designs: An Industrial Case
Study,” ISERN-28-29, Proc. 21st Int’l Conf. Software Eng., ICSE’99,
1999; to appear.

Lionel C. Briand received the BS degree in
geophysics and the MS degree in computer
science from the University of Paris VI, France.
He received the PhD degree (with high honors)
in computer science from the University of Paris
XI, France. Briand is currently head of the Qual-
ity and Process Engineering Department at the
Fraunhofer Institute for Experimental Software
Engineering (FhG IESE), an industry-oriented
research center located in Rheinland-Pfalz,
Germany. His current research interests and

industrial activities include measurement and modeling of software
development products and processes, software quality assurance,
domain specific architectures, reuse, and object-oriented development
techniques. He has published numerous articles in international con-
ferences and journals and has been a program committee member or
chair at several conferences such as ICSE, ICSM, ISSRE, METRICS,
and SEKE. Before that, Dr. Briand started his career as a software
engineer at CISI Ingénierie, France. He then joined, as a research
scientist, the NASA Software Engineering Laboratory, a research con-
sortium: NASA Goddard Space Flight Center, University of Maryland,
and Computer Science Corporation. Before going to FhG IESE, he
held the position of lead researcher of the software engineering group
at CRIM, the Computer Research Institute of Montreal (Centre de Re-
cherche Informatique de Montréal), Canada.

John W. Daly received the BSc and PhD de-
grees in computer science from the University of
Strathclyde, Glasgow, Scotland, in 1992 and
1996, respectively. From 1996–1998, Daly was a
software engineering researcher and then a re-
search project manager in the Quality and Proc-
ess Engineering Department at the Fraunhofer
Institute for Experimental Software Engineering,
Germany. In April 1998, he joined the Quality
Assurance Department at Hewlett-Packard Ltd.,
South Queensferry, Scotland, as a software pro-

cess engineer. His industrial activities and current research interests
include software measurement, software process and improvement,
software quality, and object-oriented development techniques.

Jürgen K. Wüst received the Diplom-Informatiker
(MS) degree in computer science with a minor in
mathematics from the University of Kaiserslautern,
Germany, in 1997. He is currently a researcher at
the Fraunhofer Institute for Experimental Software
Engineering (IESE) in Kaiserslautern, Germany.
His current research activities and industrial activi-
ties include software measurement, software ar-
chitecture evaluation, and object-oriented devel-
opment techniques.

