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Abstract

We propose a very general framework for hybrid control problems which encompasses several

types of hybrid phenomena considered in the literature. A specific control problem is studied in

this framework, leading to an existence result for optimal controls. The "value function" associated

with this problem is expected to satisfy a set of "generalized quasi-variational inequalities" which

are formally derived.

Key Words: Hybrid control, optimal control, quasi-variational inequalities, autonomous jumps, impulsive

jumps.

1 Introduction

Hybrid control systems are control systems that involve both continuous dynamics and controls, as well
as discrete phenomena. Some examples include computer disk drives [13], transmissions and stepper
motors [9], constrained robotic systems [2], and intelligent vehicle/highway systems [22]. More gener-
ally, such systems arise whenever one mixes logical decision-making with the generation of continuous
control laws. such as in modern flight control systems.

In this paper, our focus is on the case where the continuous dynamics is modeled byr a differential

equation

x(t) = J(t), t>_O (1.1)

Here, x(t) is the continuous component of the state taking values in some subset of a Euclidean space.

~(t) is a controlled vector field which generally depends on x(t), the continuous component u(t) of the

control policy, and the aforementioned discrete phenomena. We shall make this more precise later

on. The discrete phenomena generally considered are of four types: (1) autonomous switching, (2)

autonomous jumps, (3) controlled switching, and (4) controlled jumps.

In this paper, we study a model that subsumes all these phenomena and study an associated control

problem. The paper is organized as follows. The next section details the discrete phenomena arising

in hybrid systems listed above, including some simple examples. Section 3 reviews models of hybrid
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systems from the control and dynamical systems literature. Section 4 abstracts the phenomena found in
hybrid systems to a unified framework, which is related to the other models reviewed. Section 5 defines
an optimal control problem in this framework. All assumptions used in obtaining the remaining results
are expressly stated there. The necessity of such assumptions is discussed throughout the sequel. The
existence of an optimal control for this problem is established in Section 6. Section 7 gives a formal
derivation of the associated generalized quasi-variational inequalities. Finally, Section 8 concludes with
a list of some open issues.

Closely related issues occur in the study of piecewise deterministic processes, an excellent account
of which can be found in [12].

Finally, we collect some notation used throughout. First, we make use of the abbreviations ODEs
(ordinary differential equations), FA (finite automata/on), and DEDS (discrete event dynamical sys-
tems; see [15]). R, It + , Z, N denote the reals, nonnegative reals, integers, and nonnegative integers,
respectively. For x C R, [xJ denotes the greatest integer less than or equal to x, and, in an abuse of
common notation, Fxl denotes the least integer greater than x. N denotes the set {1, 2,..., N}.

Below we deal with continuous time systems, such as ODEs, that are affected by events at discrete
instants, such as jumps in state. We will use [t] to denote the time less than or equal to t at which
the last "jump" or "event" occurred. If the event is unclear, we will subscript the variable, so that [t]p

denotes the time at which the variable p last jumped. Throughout, v ip] and x[t] will be shorthand for
v(LpD) and x([t]), respectively.

Other notation is common. For example, X\U represents the complement of U in X; U represents
the closure of U, U° its interior, OU its boundary; f(t+), f(t-) denote the right-hand and left-hand
limits of the function f at t, respectively; a function is right-continuous if f(t +) = f(t) for all t; C(X, Y)

denotes the space of continuous functions with domain X and range Y; v T denotes the transpose of
vector v.

2 Hybrid Phenomena

In this section, we briefly examine the discrete phenomenon that arise in the study of hybrid systems:
(1) autonomous switching, (2) autonomous jumps, (3) controlled switching, and (4) controlled jumps.

We also discuss how finite automata may be viewed as evolving in continuous time, which sets the
stage for their interacting with ODEs below.

AUTONOMOUS SWITCHING. Here the vector field J(.) changes discontinuously when the
state x(-) hits certain "boundaries" [19, 21]. The simplest example of this is when it changes depending
on a "clock" which may be modeled as a supplementary state variable [9]. An example of autonomous
switching is the following:

Example 2.1 Consider the following model of a system with hysteresis [21]:

X1 = x2 -(X 1)

Jx2 = H(0(xl,X2)) - (X2)

where the multi-valued function H is shown in Figure 1. The functions X, 0 depend on the exact

system under consideration.

Note that this system is not just a differential equation whose right-hand side is piecewise continuous.
There is "memory" in the system, which affects the value of the vector field. Indeed, such a system
naturally has a finite automaton associated with the function H, as pictured in Figure 2.

2



H

Ai
/ . . .c d

a b \|/

Figure 1: Hysteresis function, H.
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Figure 2: Finite automaton associated with hysteresis function, H.

AUTONOMOUS JUMPS. Here x(.) jumps discontinuously on hitting prescribed regions of the
state space [2, 3]. The simplest examples possessing this phenomenon are those involving collisions.

Example 2.2 Consider the case of the vertical and horizontal motion of a ball of mass m in a room

under gravity with constant g (see Figure 3). In this case, the dynamics are given by

x = Vy

= vy

v = 0

by = -mg

Further, upon hitting the boundaries {(x,y) I y = 0 or y = C} we instantly set vy to -pry, where

p E [0, 1] is the coefficient of restitution. Likewise, upon hitting {(x, y) I x = 0 or x = R} vx is set to

-pv .

CONTROLLED SWITCHING. Here J(.) changes abruptly in response to a control command
with an associated cost. This can be interpreted as switching between different vector fields [24].
Controlled switching arises, for instance, when one is allowed to pick among a number of vector fields:

x = fi(x), i E N

An example of this phenomenon is the following:

Example 2.3 The following is a simplified model of a manual transmission [9]:

X1= X2

X2 = [-a(X2 ) + u]/(1 + V)
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Figure 3: Ball in an enclosed room.

where xl is the ground speed, x 2 is the engine RPM, u E [0, 1] is the throttle position, and v C {1, 2, 3, 4}
is the gear shift position. The function a is positive for positive argument.

CONTROLLED JUMPS. Here x(.) changes discontinuously in response to a control command,
with an associated cost [4]. An simple example is the following:

Example 2.4 In a simple inventory management model [4], there are a "discrete" set of restocking

times 01 < 02 < " and associated order amounts cl, e2, .... The equations governing the stock at any

given moment are

y = -I(t) + 6(t - 0l)ai

where pI represents degradation or utilization dynamics and a is the Dirac delta function.

If one makes the stocking times and amounts a direct function of y (or t), then these controlled
jumps become autonomous jumps.

AUTOMATA. A digital or symbolic automaton is a quintuple (Q, I, O, v, 77), consisting of the state
space, input alphabet, output alphabet, transition function, and output function, respectively. We
assume that Q, I, and O are each isomorphic to subsets of N. When these sets are finite, the result is a
finite automaton with output. In any case, the functions involved are v : Q x I -+ Q and 77: Q x I -+ 0.
The "dynamics" of the automaton are given by

qk+l = V(qk,ik)

Ok = 7(qk,ik)

Usually, automata are thought of as evolving in "abstract time," where only the ordering of events
matters. We can add the notion of time by associating with the kth transition the time at which it
occurs:

q(tk) = v(q(tk),i(tk))

o(tk) = 71(q(tk),i(tk))
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Finally, this automaton may be thought of as operating in "continuous time" by the convention that
the state, input, and output symbols are piecewise right continuous functions. Leading to

q(t) = v(q(t-),i(t))
o(t) = s,(q(t),i(t))

Here, the state q(t) changes only when the input symbol i(t) changes. Thus, we have the idea of an
automaton whose update times are not the abstract members of N, but the event times in IR when
the input symbol i changes. Note that in the usual case, a finite automaton can be presented with
the same input symbol for two successive time intervals. These situations must be handled differently
(e.g., by adding new states and symbols) in the continuous-time version.

3 Review of Models of Hybrid Systems

This section summarizes five models of hybrid systems developed from the dynamical systems and
control point of view. Specifically, we review models of Tavernini [21], Back-Guckenheimer-Myers [2],
Nerode-Kohn [19], Antsaklis-Stiver-Lemmon [1], and Brockett [9].

For sure, there are many others and no review is attempted here (see [14]). These have been
chosen as much for the clarity and rigor of their presentation as for the mechanisms they use to
combine discrete and continuous dynamics. Only the models are given here. For further discussion
and example systems, the reader is referred to the original papers.

The reader should note that we have liberally changed original notation to place the models in as
similar a light as possible.

3.1 Tavernini's Model

Tavernini discusses so-called differential automata in [21]. He was motivated to study such systems as
a means of modeling hysteretic phenomena such as backlash and friction (cf. Example 2.1).

A differential automaton, A, is a triple (S, f, v) where S is the state-space of A, S = I n x Q,
Q _ N is the discrete state space of A, and IRn is the continuous state space of A; f is a finite family
f(., q) R IRn - Rn, q E Q, of vector fields, the continuous dynamics of A; and v: S -+ Q is the discrete

transition function of .4.
Let vq _ v(., q), q E Q. Define I(q) = vq(IRn)\{q}. that is, the set of discrete states "reachable in

one step" from q. We require that for each q G Q and each p E I(q) there exist closed sets

Mq,p q-- (p)

The sets OMq,p are called the switching boundaries of the automaton A. Define Mq = UpEI(q) Mq,p and
define the domain of capture of state q by

C(q) - IRn \Mq {x E I n I v(x, q) = q}

The equations of motion are

x(t) = f(x(t), q(t))

q(t) = v(x(t),q(t-))

with initial condition [x(0), q(O)]T E UqeQ C(q) x {q}. The notation t- indicates that the discrete state
is piecewise continuous from the right. Thus, starting at [xo, i], the continuous state trajectory x(.)
evolves according to x = f(x,i). If x(.) hits some al9i,j at time tl, then the state becomes [x(tl),j],

from which the process continues. See Figure 4.
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Figure 4: Example dynamics of Tavernini's model.

Tavernini places restrictions on the model above: First each f(., q), q E Q, is assumed to be globally
Lipschitz so that the continuous dynamics are well-behaved. Also, for each q E Q and p E I(q), the set
Mq,p is required to be connected and there must exist a function gq,p E C'(IRn , IR) with 0 in its image
a regular value such that

fq,p = {X E Rn I gq,p(x) > 0}

Thus, vql (p) is an n-submanifold of IR with boundary

a9Mq,p = x C E 
n I gq,p(X) = 0}

which is an (n - 1)-submanifold of Rn .

Finally, [21] makes the following three key assumptions on differential automata:

* Define Oq = min{dist(Mq,p, Wq,p/) I p,p' E I(q),p 0 p'}. We require that

ca(A) _ min aq > 0
qEQ

be satisfied. That is, the distance between any two sets with different discrete transitions is
bounded away from zero.

* Define f3q,p = min{dist(OMq,p, Mp,p,) I p' E I(p)}. We require that the inequality

P(A) min min 3 q,p > 0
qCQ pEI(q)

be satisfied. That is, after a discrete transition, the next set from which another discrete transition
takes place is at least a fixed distance away.

* The assumption on ac(A) is such that C(q) is an open set with boundary AC(q) = aMq =

UpEI(q) aMq,p. We require that the inclusions

aMq,p C C(p), p E I(q),q E Q

be satisfied. That is, after a discrete transition one is found in an open set on which the dynamics
are well-defined.
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With these assumptions,' Tavernini proves that the initial value problem has a unique solution
with finitely many switching points. Let [x(.), q(.)] denote the solution corresponding to the initial
value [xo, qo]. Then q defines a sequence of discrete states qO, ql, q2,..., with switching points tl, t2 ,...,
where ti denotes the time of transition from qi-l to qi. If [x'(.) q'(.)] denotes the solution when the
initial value is [x ,q0] where x4 is near x0 , then we should have [x'(.).q'(.)] "near" [x(.), q(.)] in the
sense that q' should define the same "discrete trajectory" q0, q, q2. .· ·. with possibly different switching
points. However, the corresponding switching points of the two solutions should be close, i.e., Iti - ti

should be "small" whenever Ix - xol is "small." Tavernini defines a topology to make this precise.
He also shows that the set of points with such a property is an open, dense subset of C(qo). Finally,
Tavernini concentrates on the analysis of numerical approximations of the trajectories of differential
automata. See [21] for details.

3.2 Back-Guckenheimer-Myers Model

The framework proposed by Back, Guckenheimer, and Myers in [2] is similar in spirit to the Tavernini
model. The model is more general, however, in allowing "jumps" in the continuous state-space and
setting of parameters when a switching boundary is hit. This is done through transition functions

defined on the switching boundaries. Also, the model allows a more general state space.
More specifically, the model consists of a state space

s= U Sq, Q , ,NJ,
qCQ

where each Sq is a connected, open set of Rn . Notice that the sets Sq are not required to be disjoint.
The continuous dynamics are given by vector fields fq : Sq - I'. Also, one has open sets Uq such

that Uq C Sq and aUq is piecewise smooth. For q E Q, the transition functions

Gq: Sq -+ S X Q

govern the jumps that take place when the state in Sq hits OUq. They must satisfy 7rl(Gq(X)) E

Ur2(Gq(Z)), where irk is the kth coordinate projection function. Thus, I7r(Gq(x)) is the "continuous
part" and 7r2(Gq(x)) is the "discrete part" of the transition function.

The dynamics are as follows. The state starts at point x0 in Ui. It evolves according to x: = fi(x). If
x(-) hits some aUi at time tl, then the state instantaneously jumps to state J in Uj, where G(x(tl)) =
(~, j). From there, the process continues. We will refer to this as the BGM model. See Figure 5, which
is taken from [2].

As in [21], it is assumed in [2] that the switching boundaries are fairly regular. In particular, it is
assumed that the switching boundaries 9Uq have a concrete representation in terms of the zeros of

hq - min{hq,,..., ,hq,Nq }

where the hq,i Sq - IR are smooth. The convention then is such that hq > 0 on Uq. Thus, the
switching boundaries are (n - 1)-dimensional Lipschitz continuous manifolds. This does not add much
power (over single functions) since Lipschitz functions are strongly approximated by C' functions: for
every e > 0 a C 1 function can be chosen that coincides with a Lipschitz function except on a set of
measure e [17].

The model above is fairly expressive, allowing the modeling of a large variety of phenomena.
However, its expressiveness does allow the possibility of some seemingly "anomalous" behavior. For
example, since one allows jumping to the boundary of the sets Ui, trajectories may infinitely "cycle"

1Actually, the vector fields f(., q) and switching functions gq,p are assumed to be smooth.
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Figure 5: Example dynamics of the BGM model.

if G(x E Sj) = (y,i) and G(y E Si) = (x,j). In a simulation facility, however, such conditions can
presumably be detected and reported to the user for interpretation.

The paper [2] presents computer tools that have been developed by its authors for the simulation

of hybrid systems. As an example, Raibert's one-legged hopping robot [20] is looked at under their
framework.

3.3 Nerode-Kohn Model

In [19], Nerode and Kohn take an automata-theoretic approach to systems composed of interacting
ODEs and FA. The basic philosophy of the models discussed in [19] is given in great generality, with
a subsequent specialization to various cases, e.g., deterministic versus non-deterministic. To keep the

discussion germane to that so far, we discuss here the so-called "event-driven, autonomous sequential
deterministic model" [19, p. 331]. We will refer to it as the NKSD (for sequential deterministic) model.
Here, autonomous refers to the fact that the ODEs do not explicitly depend on time, although this is
without loss of generality by appending to the state a single equation for t.

The model consists of three basic parts: plant, digital control automaton, and interface. In turn,

the interface is comprised of an analog-to-digital (AD) converter and digital-to-analog (DA) converter.
See Figure 6.

Symbol, Symbol,
i C I Digital E 

Automaton

AD DA Interface

Plant .
Measurement. Control,

y C Y u(.) E PU

Figure 6: Hybrid system as in Nerode-Kohn model.
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The plant is modeled as

x(t) = f ((t),U(t))

y(t) = h(x(t))

where x(t) e X C IRn , u(t) E U C Rm : y E y C RP, f :R'n x RTm'- JR, and h: Rn
- p.2

The plant is considered to be an input/output automaton in the following sense. The states of the
system (in this sequential deterministic case) are merely the usual plant states, members of RI [19, p.
333]. The input alphabet is formally taken to be the set of members of (u(-), 6 k) where 6

k is a positive
scalar and u(.) is a member of the set of piecewise right continuous functions in U[ ° '° °). Let PU, for
piecewise U. denote the latter set. Suppose the plant is in state xk at time tk. The "next state" of
the transition function from this state with input symbol(u(.), Sk) is given by Xk+1 X- (tk + ak), where
x(.) is the solution on [tk, tk + Ok] of

i(t) = f(x(t), u(t - tk)), (tk) = Xk.

Setting tk+1 = tk + 6k, the process is continued.
The digital control automaton is a symbolic automaton as discussed in Section 2. In general, then,

Q, I, and O are each isomorphic to subsets of N. However, the interesting case is where these sets
are finite, which is discussed below. As noted before, this automaton may be thought of as operating
in "continuous time" by the convention that the state, input, and output symbols are piecewise right
continuous functions, leading to 2.1.

It remains to couple these two "automata." This is done through the interface by introducing
maps AD: Y x Q -+ I and DA: 0 -+ PU. The AD symbols are determined by (FA-state-dependent)
partitions of the output space Y. These partitions are not allowed to be arbitrary, but are the "essential
parts" of small topologies placed on Y for each q E Q. We explain this later. To each o E O is associated
an open set of PU. The DA signal corresponding to output symbol o is chosen from this open set of
plant inputs. The scalar 6k is a formal construct, denoting the time until the next "event." It is not
actually computed or chosen by the digital automaton, nor is it actively used by the plant in computing
its update equations.

The dynamics of the above model are then similar to those of the Tavernini model. Two important
distinctions arise: input and output for both the ODEs and FA have been included, and the maps AD

and DA have been added. Specifically, we have

±(t) = f[x(t),DA(o(t),t-[t])]

y(t) = h[x(t)]

q(t) = v[q(t-),AD(y(t), q(t-))]

o(t) = r[q(t), AD(y(t), q(t-))]

Briefly, the combined dynamics is as follows. Assume the continuous state is evolving according to the
first equation and that the FA is in state q. Then AD(., q) assigns to output y(t) a symbol from the
input alphabet of the FA. When this symbol changes, the FA makes the associated state transition,
causing a corresponding change in its output symbol o. Associated with this symbol is a control input,
DA(o), which is applied as input to the differential equation until the input symbol of the FA again
changes.

Now, we explain what is meant by the "small topologies" mentioned above, concentrating on the
AD map. Nerode and Kohn introduce topologies that make each mapping ADq AD(., q), q E Q,
continuous as follows:

2We have lumped the control and disturbance signals of [19] into a single signal u.
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1. First, take any finite open cover of the output space: Y = U=l Ai, where the 4Ai are open in the
given topology of Y.

2. Next, find the so-called small topology, Ti-, generated by the subbasis Ai. This topology is finite

and its open sets can be enumerated, say, as BS, .. ,/t3K.

3. Next. find all the non-empty join irreducibles in the collection of the SB (that is, all non-empty

sets Lj such that if Bj = 3
k U B1, then either 3j = 3

k or Bj = B1 ). There are a finite number of

such join irreducibles, denoted C1, .... CM.

4. Without loss of generality, let the set of symbols be I = {1,..., M} and define the ADq(y) = i

if Ci is the smallest open set containing y.

5. Create a topology, 7i, on I as follows. For each i E I, declare DZ) = {j I Cj C Ci} to be open. Let

7i be the topology generated by the D)i.

The sets ADql(i), i E I are the essential parts mentioned above. For a verification that ADq is

continuous, as well as other results on AD and DA maps, see [6].

The starting point of the Nerode-Kohn approach is an assumption that one can only realistically

distinguish points up to knowing the open sets in which they are contained. That is what led them

to use the small topologies above to encode the plant output symbols. However, the bottom line is

that by combining information of inclusion in different open sets, the ADq functions, q E Q, form

partitions of the measurement space. Although the small topologies are meant to provide "reasonable

partitions," it is interesting to note that one can still "identify" single points in the model: Consider as

a representative example zero in [-1, 1]. Then the open sets [-1, 1], [-1, 0), and (0, 1] give information

to exactly deduce x = 0. Such anomalies lead to a breakdown of the description of the dynamics above

in the sense that it is easy to construct examples where the formal input letter to the plant is (u, 0).

The Nerode-Kohn paper develops the underpinning of a theoretical framework for the hybrid

continuous/rule-based controllers used by Kohn in applications. Continuity in the small topologies

associated with the AD and DA maps above plays a vital role in the theory of those controllers. See

[19] and the references therein for details.

3.4 Antsaklis-Stiver-Lemmon Model

In [1], Antsaklis, Stiver, and Lemmon take a DEDS approach to hybrid systems. Conceptually, the

model is related to that of Nerode-Kohn, but we quickly review it here. We will refer to it as the ASL

model.

Like the NKSD model, the ASL model consists of three basic parts: the plant, the controller, and

the interface. Again, see Figure 6. The plant is modeled as a time-invariant, continuous-time system:

:(t) = f(x(t),u(t))

y(t) = h(x(t))

where x(t) E RIR, u(t) E I
m , y(t) E RP. Here f: TRn x R

m -X RIn and h: ITR -+ Rp . The controller is

a discrete event system, modeled as a symbolic automaton. We think of it as operating in continuous

time as in Section 2:

q(t) = v(q(t-),i(t))

o(t) = q(q(t))

where q(t) E Q, i(t) E I, and o(t) E 0, the state space, plant symbols, and controller symbols,

respectively. The sets Q, I, and O are unspecified in [1], but we take from context that they are each
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isomorphic to subsets of N. The maps are v: Q x I -+ Q and r/: Q -X O. The subscript k denotes the

kth symbol in a sequence. The output map does not depend on the current symbol, which is without

loss of generality after adding more states.

The plant and controller communicate through an interface consisting of two memoryless maps,

AD and DA. The first map, called the actuating function, DA: O -+ R,m converts a controller symbol

to a piecewise constant plant input:
u(t) = DA(o(t))

The second map, called the plant symbol generating function, AD : In -+ I, is a function which maps

the plant state space to the set of plant symbols as follows

i(t) = AD(x(t))

The function AD is based upon a partition of the state space, where each element of the partition is

associated with one plant symbol. The combined dynamics is similar to that of the NKSD model.

The model is simple but fairly general. The fact that arbitrary partitions are allowed limits what

one can prove about the trajectories of this model. Several example systems are given in [1]. Results,

mainly from the DEDS point of view, may be found in [1] and the references therein.

3.5 Brockett's Models

Several models of hybrid systems are described in [9]. We only discuss those which combine ODEs

and discrete phenomena since that is our focus here. Two models combining difference equations and

discrete phenomena are also discussed in [9].
The first model, which Brockett calls a type B hybrid system, is as follows:

x(t) = f(x(t),u(t),vLpJ)

j(t) = r(x(t),u(t),v)PJ)

where x(t) E X C IWn, u(t) E U C RIm , p(t) IR, vLpJ E V, f : Rn x RT x V -+ Rn, and r

Ri x RT m x V --+ IR. Here, X and U are open subsets of RI and IRm , respectively, and V is isomorphic

to a subset of N. Also, the rate equation r is required to be nonnegative for all arguments, but need

have no upper bound imposed upon it. We will denote such a system as BB, short for Brockett's type

B model.

Brockett has mixed continuous and "symbolic" controls by the inclusion of the special "counter"

variable p. The control u(t) is the continuous control exercised at time t; the control v LpJ is the pth

symbolic or discrete control, which is exercised at the times when p passes through integer values. In

general, one may also introduce (as in [9]) continuous and symbolic output maps:

y(t) = c(x(t),vLpJ)

oLpJ = rl(y[t],vLpj)

In this case, one may limit f by allowing it to depend only on y instead of the full state x. Note, we

have used [t] to denote the value of t at which p most recently became an integer.
Brockett also introduces a type D hybrid system as follows:

i(t) = f(x(t),u(t),zlpJ)

j(t) = r(x(t),u(t),zLpJ)

zrpl = v(x[t],zlPJ,vLpJ)

where z C Z, and Z is isomorphic to a subset of N. Here, v : R n x Z x V -4 Z, with all other definitions

as above except that Z replaces V in those for f and r. Again, u and v are the continuous and discrete
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Figure 7: Dynamics of BD model.

controls, respectively. We will denote such a system by BD. We may picture the dynamics as in Figure
7.

The first equation denotes the continuous dynamics and the last equation the "symbolic processing"
done by the system. The times when p passes through integer values can be thought of as the discrete
event times of the hybrid dynamical system. Thus, we consider BD as a precise, first-order model of
interactions of ODEs and DEDS. Once again one may introduce output equations:

y(t) = c(x(t),zLpJ)

oLpJ = i(y0[t,z[pJ)

Finally, Brockett generalizes BD to the case of "hybrid system with vector triggering" (herein,
BDV), in which one replaces the single rate and symbolic equations with a finite number of such
equations:

i(t) = f(x(t),u(t),z[pJ)

Ii(t) = r(x(t),u(t),zpi[iJ)

zi[pil = w(x[t]pi,zLpJ,vi[PiJ)

where i C k. Again, outputs may be introduced.
In order for, say, the BB system above to be well-posed, we would like there to exist a unique

solution on finite interval [0, T]. That is, given [x(O),p(O)] C X x R, there should exist unique x(.)
and p(.), continuous and differentiable almost everywhere, satisfying the equations. Brockett meets
these specifications on any interval in which p does not take on an integral value by requiring f to be

12



Lipschitz in x, continuous with respect to u, and u to have a finite number of discontinuities. [It is also

necessary to assume U bounded]. The result extends if on any finite interval of time p passes through

only a finite number of integers, leading to a finite number of discontinuities of the derivatives of x and

p in finite time. In general, this requires similar continuity assumptions on r. Consider, for example,

the case where V = N, vlpJ = (J + 1)2, and r = vLpJ. This leads to pj = (pJ + 1)2, which has finite

escape time. Analogous behavior for x results if u is not bounded. In the usual case, however, U, V,

and Z are taken compact, avoiding such behavior. Similar discussion holds for models BD and BDV.

In [9], Brockett gives many examples of systems modeled with the above equations, including

buffers, stepper motors, and transmissions (cf. Example 2.3).

3.6 Discussion

At the risk of oversimplification, Tavernini, NKSD, and ASL use autonomous switching; BGM uses au-

tonomous switching and autonomous jumps; and BD uses a combination of autonomous and controlled

switching.
It is not hard to see that the BGM model contains Tavernini's model. Simply choose Si = In,

Ui = RIn\Mli, i E N, and G(x) = (x,j) if x C Ali, j. One may also show that the NKSD model contains

the Tavernini model (see [7]).
From the control perspective, the Tavernini model is an autonomous system and the BGM is

essentially so (although one can set parameters on jumps). The NKSD and ASL models focus on

the "control automaton," coding the action of the controller in the mappings from continuous states

to input symbols through automaton to output symbols and back to controls. Brockett's BD/BDV

models allow the possibility of both continuous and discrete controls to be exercised as input to the

continuous and symbolic dynamics of the systems, respectively. That is the plant not only responds to

the state (or output) of the finite machine, but to continuous commands generated separately as well.

One may argue that this is largely a matter of level of modeling. For instance, one can assume (as in

NKSD and ASL) that the "low-level" loops have been closed, eliminating the continuous control from

the design of the "high-level" ones. Nevertheless, the discussion herein is more in spirit with Brockett's

approach.
From the original papers, it is clear that the models above were primarily developed for a variety of

purposes: Tavernini and BGM for modeling and simulation, NKSD and ASL for controlling continuous

systems with computer programs or "higher level controllers," and Brockett's for modeling the action

of (hierarchical) motion control systems. Moreover, there is a direct trade-off between the generality

of a model and what one can prove about such a model. Therefore, "containment" of one model in

another does not reflect any bias of the more general model's being "superior." Indeed, in the next

section we develop a very general, abstract model which captures many hybrid phenomena. Later,

however, we place restrictions on this model in order to solve a related control problem.

4 Abstract Model

We first present our over-riding framework in generality. We will refine it later when we set up our
control problem. Our state space for x(.) will be S = Uil Si where each Si is a subset of some

Euclidean space RIdi, di e N.3 Notice that we allow the Si to overlap and the inclusion of multiple

copies of the same space. We also specify a priori regions A, Ci, Di C Si, i E N. These are the

autonomous jump sets, controlled jump sets, and jump destination sets, respectively. Let A, C, D

3
The state dimension may change to take into account component failures or change in dynamical description based

on discrete events-controlled or autonomous-which change it. e.g., the collision of two inelastic particles.
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denote the unions Ui Ai, Ui Ci, Ui Di, i C N, respectively. Let U, V be the sets of continuous and

discrete controls, respectively. The following maps are assumed to be known:

1. vector fields fi Si x Si x U - Rdi, i E N.

2. transition map G : 4 x V -X D.

3. transition delay Al : A x V - RI+ .

4. impulse delay A 2 : Ui(Ci x D i) -+ R + .

The dynamics of the control system can now be described as follows. There is a sequence of pre-

jump times {Ti} and another sequence of post-jump times {ri} satisfying 0 = Fo < T1 < F < -T2 <

r 2 < ... < oo, such that on each interval [Fj-, T-j) with non-empty interior, x(.) evolves according to

(1.1) in some Si, i E N. At the next pre-jump time (say, Tj) it jumps to some Dk E Sk according to

one of the following two possibilities:

1. x (-j) E Ai, in which case it must jump to x(rj) = G(xz(-j), vj) E D at time rj = -j +A 1 (x7, vj),

vj E V being a control input. We call this phenomenon an autonomous jump.

2. x(Tj) E Ci and the controller chooses to4 move the trajectory discontinuously to x(Fr) E D at

time rj = - j + A2(x(Tj),x(rF)). We call this an impulsive jump.

See Figure 8.

AJ D. C. d,
J RR=S

Si -- ~ /'* '~ aR Si

Rd'=Sj

A, | C, l R =S1

Figure 8: Example dynamics of our model.

For t E [0, oo), let [t] = maxj{rj I rj < t}. The vector field J(t) of (1.1) is given by

0(t) = fi(x(t),x[t], u(t)) (4.1)

where i is such that x(t), x[t] E Si and u(-) is a U-valued control process.

4It does not have to
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To avoid confusion, the shorthand

G(x, v: i) = (x'; j)

will sometimes be used to explicitly denote the transition from x E Ai C Si (with discrete control v)

to x' E Dj C Sj.

NWe will now show how this framework encompasses the discrete phenomenon of Section 2 and how

it compares to the models of Section 3.
If a set of parameters or controls is countable and discrete, such as a set of strings, we may take it to

be isomorphic with a subset of N. On the other hand, consider a set of parameters or controls, U, where

U is a compact, connected, locally connected metric space U. By the Hahn-Mazurkiewicz theorem

[16], U is the continuous image of [0, 1] under some map and thus we may set U = [0, 1] without any

loss of generality. Thus, we may assume below without any loss of generality that parameters and

controls take values in a subset P C IR.

AUTONOMOUS SWITCHING. We show that autonomous switching can be viewed as a special

case of autonomous jumps, which are taken care of next. Consider the differential equation with

parameters
= f(x,p)

x E Rn, p E P C Rm closed, f: in x P - Rn continuous. Let, v : IR x P -+ P be the function

governing autonomous switching. For example, in the Tavernini model, v is the "discrete dynamics."

Then, since Rn has the universal extension property [18], we can extend f to a continuous function
F: In x Rm" -4 R. Now, consider the ODE on Rn+m:

x = F(x, )

= O0

x E Rn , E IRm , F: Rn x Im -- IRn continuous. Let, the transition function be G: IRn x P - IRn x P

with G(x,p) = (x, v(x,p)).

AUTONOMOUS JUMPS. This is clearly taken care of with the sets Ai.

CONTROLLED SWITCHING. A system with controlled switching is described by

x(t) = f ((t), u(t)), x(O) = xo E Rd

where u(.) is a piecewise constant function taking values in U C RIm and f : Rd x U -+ R d is a map

with sufficient regularity. There is a strictly positive cost associated with the switchings of u(.). In our

framework, let x'(.) = [x(.), u(.)]T be the new state process with dynamics

xV(t) = f'(x'(t)), f (.) = [f(.), O]T

taking values in S = U'= 0 Si where each Si is a copy of Rd x U. Set Ci = Di = Si, Ai = 0 for i E N.

Switchings of u(.) now correspond to impulsive jumps with the associated costs.

CONTROLLED JUMPS. This is clearly taken care of with the sets Ci.

AUTOMATA. A variety of automata are automatically subsumed by inclusion of the Tavernini,

BGM, NKSD, ASL, and Brockett models, which is demonstrated next.
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TAVERNINI AND BGM MODELS. Let primed symbols denote those in our model with the
same notation as those for BGM. It is obvious that our model includes the BGM model by choosing
S> = S:, Ai = aSi U OUi, Di = Ui, C, = 0, and

G'(x;j)= (7i(G(x)); 7r2 (G(x)))

for x E Uj. G' need not be defined on aSj\dUj, but for completeness we may define G'(x;j) = (x;j)

for x E OSj\&Uj. Since BGM contains Tavernini's model, our model does as well.

NKSD AND ASL MODELS. Our model includes the ASL model. First, choose S, = IRn x I13 , i E
I. Then, note that the sets AD-l(i), i E I, form a partition of Y. Define the sets Afj = h-'(AD-l(j))

and define
Ai- U lJj

The define

fi= [f, 0, 0O]

with dimensions representing x, q, i, and o. The model is complete by specifying

G(x;i) = (x, v(q, j), j, r(q); j)

if x E Mj C Ai.

Inclusion of NKSD is similar. However, since the resulting partitions depend on q one must use
multiple copies of Si and fi as above, one for each ADq, q E Q. We must also append the state t to
the state vector S (and use [t]), with the obvious differential equations/transitions. Finally, Tr depends

on both q and j in this case.

BROCKETT'S MODELS. Our model includes Brockett's BD model by choosing S = I n x IR4

and defining

f = [f, 0, 0, 0]

with dimensions representing x, q = p - L[p, i = [pJ, v, and z. Also, set A = R n x {1} x IR3,

D = n X {0} X N3, and G((x, 1, i, v, z), v') = (x, 0, i + 1, v', v(x, z, v)). BB is seen to be included in the

same manner, but removing the state dimension for z. It is clear that this can be extended to include
BDV.

SETTING PARAMETERS AND TIMERS. A system which, upon hitting boundaries, sets

parameters from an arbitrary compact set P C IRP can be modeled in our framework by redefining

Si' = Si x Rp , V' = V- X P and defining fi': Si x Si x U - Rdi x IRP as

fi (, P, ,qu) = [f, u), o]T

and G': A x P x 1 x P - D x P as

G'(x,p, v,p') = [G(x, v), pI]T

each for all possible arguments. Likewise, one can redefine the switching cost and delay appropriately.
A system which sets timers upon hitting boundaries can be modeled by a vector of the rate equations

in Brockett's BDV model of hybrid systems, which in turn can be modeled in our framework as
previously discussed.
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5 The Control Problem

In this section, we define a control problem and elucidate all assumptions used in deriving the results
of the sequel.

5.1 Problem

Let a > 0 be a discount factor. We add to our previous model the following known maps:

1. running cost k: Si x Si x U -+ R+.

2. transition cost cl : A x V -+ IR+.

3. impulse cost c2 : Ui(Ci x D) -+ R + , satisfying for all i,j E N the conditions

C2(x,y) > CO > 0, VxEci, yED (5.1)

c2 (X, y) < c2 (X, z) + e-aA2(x'Z)c 2 (z, y), Vx f Ci, z E D n C, yE D (5.2)

Thus, autonomous jumps are done at a cost of cl(x(rj), vj) paid at time Tj; impulsive jumps at a

cost of c2(x(Tj),x(rj)) paid at time rj.
In addition to the costs associated with the jumps as above, the controller also incurs a running

cost of k(x(t), x[t], u(t)) per unit time during the intervals [Fj_,1,T), j E N. The total discounted cost
is defined as

e-atk(x(t), x[t], u(t)) dt+e e-aicl(x(ai), vi) + e-c 2(x(i), x(')) (5.3)

where 11 = R+±\(Ui[Ti, ri)), (cri (respectively ({i)) are the successive pre-jump times for autonomous
(respectively impulsive) jumps and Cj is the post-jump time for the jth impulsive jump. The decision or

control variables over which (5.3) is to be minimized are the continuous control u(.), the discrete control
(vi} exercised at the pre-jump times of autonomous jumps, the pre-jump times ({i) of impulsive jumps,
and the associated destinations {x(C)}. As for the periods [Tj,Fj), we shall follow the convention
that the system remains frozen during these intervals. Note that (5.1) rules out from consideration
infinitely many impulsive jumps in a finite interval and (5.2) rules out the merging of post-jump time
of an impulsive jump with the pre-jump time of the next impulsive jump.

Our framework clearly includes conventional impulse control [4].

5.2 Assumptions

Throughout the sequel, we make use of the following further assumptions on our abstract model, which
are collected here for clarity and convenience.

For each i E N, the following hold: Si is the closure of a connected open subset of Euclidean space
IRdi, di E N, with Lipschitz boundary 0Si. Ai, Ci, Di C Si are closed. In addition, dAi is Lipschitz and

contains aSi.
The maps G, Al, A2 , c1, C2, and k are bounded uniformly continuous. The vector fields fi,

i E N, are bounded (uniformly in i), uniformly Lipschitz continuous in the first argument, uniformly
equicontinuous with respect to the rest. U, V are compact metric spaces. Below, u(.) is a U-valued
control process, assumed to be measurable.

All the above are fairly mild assumptions. The following are more technical assumptions. They
may be traded for others as discussed in Section 8. However, in the sequel we construct examples
pointing out the necessity of such assumptions or ones like them.
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Assumption 1 d(Ai, Ci) > 0 and infirm d(Ai, Di) > 0, d being the appropriate Euclidean distance.

Assumption 2 Each Di is bounded and for each i, there exists an integer N(i) < oc such that for

x c Ci, y E Dj, j > N(i), c2(x,y) > supz J(z).

Assumption 3 For each i, OAi is an oriented C1-manifold without boundary and at each point x on

&Ai, fi(x, z, u) is "transversal" to aAi for all choices of z, u. By this we require that (1) the flow lines

be transversal in the usual sense5 and (2) the vector field does not vanish on 9A i.

Assumption 4 Same as Assumption 3 but with Ci replacing Ai.

6 Existence of Optimal Controls

Let J(x) denote the infimum of (5.3) over all choices of u(.), {vi}, {(i}, {x((')} when x(0) = x. We

have

Theorem 6.1 A finite optimal cost exists for any initial condition.

Proof Let F, K, Q be bounds of the fi, k, and cl, respectively. Then, choosing to make no controlled

jumps and using arbitrary u, v we have that

J(x) < t K] e-at dt+Z Ee-aiQ < K/a + Q e-ai
° i i

Let F = infi Nd(Ai,Di). Then ai+1 - ai > /3F, so the second term is bounded by Q Cl(e-aI/F)i,

which converges. °

The following corollary is immediate from the argument above:

Corollary 6.2 There are only finitely many autonomous jumps in finite time.

To see why an assumption like Assumption 1 is necessary for the above results, one need only

consider the following one-dimensional example:

Example 6.3 Let Si = [0, 2], Ai = {0, 2}, and fi(.,,.) - -1 for each i E N. Also for each i, define

Ci = 0, Di = 1/i2 and G(Ai,) - 1/(i + 1)2. Finally, let Ai(., ) 0 and cl(,) 1- . Starting in S1 at

x(O) = 1, we see that

X EN2 (N+ 1)2

Since the sum of inverse squares converges, we will accumulate an infinite number of jumps and infinite

cost by time t = 7r2/6.

Next, we show that J(x) will be attained for all x if we extend the class of admissible u(.) to

"relaxed" controls. The "relaxed" control framework [23] is as follows: We suppose that U = P(U'),

defined as the space of probability measures on a compact space U' with the topology of weak conver-

gence [5]. Also

fi(x,z,u) = Jfi/(xzu)u(dy), i E N

k(x,z, u) = k'(x, z, u)u(dY)

for suitable {fi', k' satisfying the appropriate continuity/Lipschitz continuity requirements. The
relaxed control framework and its implications in control theory are well known and the reader is

referred to [23] for details.

5
Transversality implies that 9Ai is (di - 1)-dimensional.
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Theorem 6.4 An optimal trajectory exists for any initial condition.

Proof Fix x(O) = xO E Sio, io E N. Consider a sequence

(xn(.), u (.), {vi } �} {}, }, {17}), n E N,

associated with our control system, with the obvious interpretation, such that xn(0) = xo for all n and
the corresponding costs decrease to J(xo). Let yn(.) denote the solution of

Qn (t) = fi (yn(t),xo, un(t)), y'(0) = xo,n E N (6.1)

Then xn(.), yn(.) agree on [0,T-n). Since {fi) are bounded, {yfn(-)} are equicontinuous bounded in
C(IR+; Rdio), hence relatively sequentially compact by the Arzela-Ascoli theorem. The finite nonnega-
tive measures 7n (dt, dy) = dt un(t, dy) on [0, T] x U' are relatively sequentially compact in the topology
of weak convergence by Prohorov's theorem [5]. {T-n} are trivially relatively compact in [0, oo]. Thus
dropping to a subsequence if necessary, we may suppose that y'(-) -X y,(.), ln (dt, dy) - q1°°(dt, dy),

-T T in the respective spaces. Clearly r1°° disintegrates as 7°°(dt, dy) = dt u°°(t, dy). Rewrite
(6.1) as

yn(t) = X0 +

( io (Yn (S), Xo, (s)) - fio(V°°(s),xo,un (s)) ds) + J fio (°°(s ), , Un (s)) ds

for t > 0. By the uniform Lipschitz continuity of fio, the term in parentheses tends to zero as n -* oo.
Since rn' - r°°, the last term, in view of the relaxed control framework, converges to

Jo fi (Y°° (s)', x', u°° (s) ds

for t E [0, T]. Since T was arbitrary a standard argument allows us to extend this claim to t E [0, oo).
(We use [5, Theorem 2.1(v), p. 12] and the fact that rl°°({t} x U') = 0.) Hence yOO(.), uO(.) satisfy (6.1)
with n = oo. Since d(Cio,Aio) > 0, either rin = (r? for sufficiently large n, or Tin = (in for sufficiently
large n. Suppose the first possibility holds. Then y°°r(T) = limxn(T) C A20. Let v - v in
V along a subsequence. Then cl (x( (Tn),v) - c1 (y°°(T- ), V°), A (Xn(-)Fvn) X-- l (y°° (7-r)),v v),

r - l -- T_ + Al(yo( o),v' o). Set x°°() = yO() on [0,T1 ] and x°(F ) = G(x°(1-),v ).

Then

e-atk(xn(t)ou(t))dt e-atk(x°°(t),xo, ut(t))dt (6.2)

If the second possibility holds instead, one similarly has yl (,rj.) E Ci0. Then Assumption 2 ensures

that {xn(Fr)} is a bounded sequence in D and hence converges along a subsequence to some y' E
D. Then, on dropping to a further subsequence if necessary, c2 (xn(Tl), xn(Fr ) -4 c2(y°(7ln), y'),

A 2(xn(7-1 ),x,((r'n)) -4 A 2 (y°°(-rn),y'). Set x°°(.) = yOO(.) on [0,T-1], rf = T1 + A2(Y°°(71- ),y')) =

limFr and x°°(rF) = y'. Again (6.2) holds. Note that in both cases, x°°(.) defined on [0,L -] is an

admissible segment of a controlled trajectory for our system. The only way it would fail to be so is if
it hit Aio in [0, T-). If so, x (-) would have to hit Ai 0 in [0, Tn) for sufficiently large n by virtue of

Assumption 3, a contradiction.
Now repeat this argument for {xn(1F + )} in place of {x'( )}. The only difference is a varying but

convergent initial condition instead of a fixed one, which causes only minor alterations in the proof.
Iterating, one obtains an admissible trajectory x°°(-) with cost J(xo). [

It is easy to see why Theorem 6.4 may fail in absence of Assumption 2:
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Example 6.5 Suppose, for example, k(x,z,u) _= ci and cl(x,v) :_ i when x C Si, c2(x,y) - Yij

when x E Si, y C Sj, with ci, /3i, y/i,j strictly decreasing with i,j. It is easy to conceive of a situation

where the optimal choice would be to "jump to infinity" as fast as you can.

The theorem may also fail in the absence of Assumption 3 as the following two-dimensional system
shows:

Example 6.6

l(t) = 1, xi(0) =0

x2(t) = u, x 2 (0) = 0

with u C [0, 1] and cost

J °° e- t minflxl (t) + x 2(t)l, 1020} dt

with the provision that the trajectory jumps to [10 l°, 1010°] on hitting a certain curve A. For A, consider

two possibilities:

1. the line segment {x = 1,-1 <_ x 2 < }0, a Cl-manifold with boundary;

2. the circle {(x 1 ,x 2) I (Xi - 1)2 + (X2 + 1)2 = 1}, a Cl-manifold without boundary, but the vector

field (1, u) with u = 0 is not transversal to it at (1, 0).

It is easy to see that the optimal cost is not attained in either case.

Also, it is not enough that the flow lines for each control be transversal in the usual sense as the

following one-dimensional example shows:

Example 6.7 Let S1 = S2 = IR+.

fl(x, y, u) = -x + u, f 2 (x, y, u) = O0, u E [-1, 0]

with running cost min{K, Ixl} and G(0,.; 1) - (K; 2). Choosing, for example, K > 1 one sees that the

optimal cost cannot be attained for any 1 > x(0) > 0.

Coming back to the relaxed control framework, say that u(-) is a precise control if u(.) = 6q(.)(dy)

for a measurable q : [0, oo) -+ U' where 6, denotes the Dirac measure at z e U'. Let M denote the

set of measures on [0, T] x U' of the form dt u(t, dy) where u(.) is a relaxed control, and M0 its subset

corresponding to precise controls. It is known that M0 is dense in M with respect to the topology of
weak convergence [23]. In conjunction with the additional assumption Assumption 4 below, this allows

us to deduce the existence of e-optimal control policies using precise u(-), for every e > 0.

Theorem 6.8 Under Assumptions 2-4, for every e > 0 an e-optimal control policy exists wherein u(.)

is precise.

Proof Recall the setup of Theorem 6.4. Consider the time interval [0, Tnr]. Let un(-), n C N, be precise

controls such that dt Un(t, dy) -+ r"°°(dt, dy) = dt u"°(t, dy) in the topology of weak convergence. Let
(-), )n CE , denote the corresponding solutions to (6.1). Now r' equals either a' or (1 . Suppose

the former holds. As in the proof of Theorem 6.4, we have n -+ y'(.) in C([O, oc), Sio). Using
Assumption 3 as in the proof of Theorem 6.4, one verifies that

5- - inf{t > 0 | nY(t) G Aio} - al
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Thus for any a > 0, we can take n large enough such that

i I t c*f LI < d
sup{ien (t) - Vo(t) II 0 < t < -o V I} < 5

Set y + al(Y (), (n) -arl < S

Set xn(-) = yn(.) on [0,57] and x-~(

- + Al(7(~),vl)) = G(Yn(r), v ) (corresponding to control

action v ). The latter may be taken to lie in the open S-neighborhood of x °° (1F) by further increasing
n if necessary. In case 1- = C1, one uses Assumption 4 instead to conclude that -n(t) E Ci0 for

some t' in the S-neighborhood of T-r for n sufficiently large. Set 1- = tn, () = y'(-) on [0,(). By

further increasing n if necessary, we may also ensure that

xnI(t) I t E [0, ¢,?)} n A.= 0

sup{ Jlyn (t) - x°(t)l I o0 < t < n A } < S

1 + A2( (2 ),Xo (rl)) rl < S

Set
±F = I)(F -X

X(¢1 + A2(() (r))) = (r)

It is clear how to repeat the above procedure on each interval between successive jump times to

construct an admissible trajectory n(.-) with cost within e of J(xo) for a given e > 0. O

Remarks. If {fi(x,z,y) I y E U'} are convex for each x,z, a standard selection theorem [23]

allows us to replace u°°(.) by a precise control which will then be optimal. Even otherwise, using

Caratheodory's theorem (which states that each point in a compact subset of IRn is expressible as a

convex combination of at most n + 1 of its extreme points) and the aforementioned selection theorem,

one may suppose that for t > 0, the support of u°°(t) consists of at most di + 1 points when x(t) E Si.

7 The Value Function

In the foregoing, we had set [0] = 0 and thus x[0] = x(0) = x0o. More generally, for x(O) = xo E Sio,

we may consider x[0] = y for some y E Sio, making negligible difference in the foregoing analysis. Let

l(x, y) denote the optimal cost corresponding to this initial data. Then in dynamic programming

parlance, (x, y) '-+ V(x, y) defines the "value function" for our control problem.

In view of Assumption A3, we can speak of the right side of DAi as the side on which fi(', , )

is directed towards aAi, i E N. A similar definition is possible for the right side of dCi (in light of

Assumption A4).

Definition 7.1 (From the right) Say that (xn,yn) -+ (xoo,yo) from the right in Ui(Si x Si) if

y,n -+ yo and either x, -+ xz, Ui(aAi U aCi) or xn - zxo E Ui(aAi U aCi) from the right side.

V is said to be continuous from the right if (xn, yn) -+ (xo, y,) from the right implies V(xn, y,) -

V(xoo, Yoo).

Theorem 7.2 V is continuous from the right.

Proof Let (xn,yn) -+ (xO,yo) from the right in Ui(Si x Si) and let yn(.), n E N U {oo}, denote

optimal trajectories for initial data (xn, Yn) respectively. By dropping to a subsequence of n E N if

necessary, obtain as in Theorem 6.4 a limiting admissible trajectory x'(.) for initial data (xO, y,) with

cost (say) a such that V(xn, yn) -+ a > V(x.,,yo). Suppose ca > V(xo, ,y) + 3e for some e > 0.

Starting from x'c(.), argue as in Theorem 6.8 to construct a trajectory 5n(.) with initial data (xn, yn)
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for n sufficiently large, so that the corresponding cost does not exceed V(x,, y,) + e. At the same
time. -(xn, yn) > oz - e > I'(x~,,,yOO) + 2e for n sufficiently large, which contradicts the fact that

V(xn, yn) is the optimal cost for initial data (x7z, y,). The claim follows. C

Again, Example 6.7 shows the necessity of the vector field's not vanishing on &Ai.

\Ve shall now formally derive the generalized quasi-variational inequalities V(., ) is expected to
satisfy. Let C = Ui(Ci x Si) and E C C the set on which

V(x, y) = min {c2(x, z) + e-aA2(x'z)V(z, z)} (7.1)

where i E N is such that x. y E Si. For (x, y) E E, if x(t) = x and x[t] = y, an optimal decision (not
necessarily the only one) would be to jump to a z where the minimum on the right hand side of (7.1)
is obtained. On the other hand, for (x, y) E C\E,

V(x, y) < min {c2 (x,z) + e-aA2(x'Z)V(z,z)}

with i as above and it is not optimal to execute an impulsive jump. For x E Ai, however, an autonomous
jump is mandatory and thus

V(x. y) = rin {c (x, v) + e-aAl(x'v) V(G(x, v), G(x, v) ) }

Suppose E is a closed subset of Ui(Si x Si). Let H = E U (Ui(Ai x Si)), with M = (Ui(Si x Si)) \H.

Let (x, y) E M °, with x, y E Sio (say). Let O be a bounded open neighborhood of (x, y) in M ° with a
smooth boundary O0 and v = inf{t > 0 (x(t), y) ' O}, where x(.) satisfies

x(t) = fio(x(t), y, u(t)), x(0) = x, t C [0, v] (7.2)

Note that y is a fixed parameter here. By standard dynamic programming arguments, V(x, y), x E O,
y as above, is also the value function for the "classical" control problem of controlling (7.2) on [0, v]

with cost

J e-atk(x(t), y, u(t)) dt + e-ah(x(v), y)

where h(., ) V(., ) on 00. It follows that V(x,y), (x,y) E O is the viscosity solution of the
Hamilton-Jacobi equation for this problem [11], i.e., it must satisfy (in the sense of viscosity solutions)
the p.d.e.

min {(V7V(x,y), fio(x,y, u)) - aV(x,y) + k(x,y, u)} = 0 (7.3)

in 0 and hence on M ° . (Here Vx denotes the gradient in the x variable.) Elsewhere, standard dynamic
programming heuristics suggest that (7.3) holds with '=' replaced by '<'.

Based on the foregoing discussion, we propose the following system of generalized quasi-variational

inequalities for V(., .): For (x, y) E Si x Si,

V(x,y) < min{c2 (x,z) +e-aA2(X'z)V(z,z)} onC (7.4)

V(x,y) < min{cl(x,v) + e-aA(x'v)V(G(x,v),G(x,v))} on U(Ai x Si) (7.5)

min{(V7V(x, y), fi(x, y, u)) -aV(x, y) + k(x, y, u)} < 0 (7.6)

and
(V(x, y) - minED {c 2 (x, z) + e-a2(xz)V(z, z)}) (77)

(minu {(VxV(x, y), fi (x, y, u)) - aV(x,y) + k(x, y,u)}) = 0 on C
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((7.7) states that at least one of (7.4), (7.6) must be an equality on C.) (7.4)-(7.7) generalize the
traditional quasi-variational inequalities encountered in impulse control [4]. We do not address the
issue of well-posedness of (7.4)-(7.7). The following "verification theorem," however, can be proved by
routine arguments.

Theorem 7.3 Suppose (7.4)-(7.7) has a "classical" solution V which is continuously differentiable

-'from the right" in the first argument and continuous in the second. Suppose x(.) is an admissible

trajectory of our control system with initial data (xo,yo) and u(.), (vi), {cri}, {(i}, {(-i, {Fi} the

associated controls and jump times, such that the following hold:

1. For a.e. t E a, i such that x(t) E Si,

(VxV(x(t), x[t]), fi(x(t), x[t], u(t))) + k(x(t), x[t], u(t)) =
min {(VxV(x(t), xt]),fi(x(t),x[t], u)) + k(x(t). x[t], i)}

2. For all i,

V(x(oi), x[oi]) = cl (x(oi), vi) + exp{-aAi (x(ai), vi)}V(G(x(oi). vi), G(x(ai), vi))

3. For all i,

V(x((i), x[(i]) = c2(x((i), x()) + exp{--aA2(x, x(())} (x(C(), x(X))

Then x(.) is an optimal trajectory.

Going back to Example 6.7 with this theory, we see that

Example 7.4 Consider Example 6.7 except with the controls restricted in [-1, -e], 0 < e < 1. Then

the flows are transversal and do not vanish on Al = {0} for any u. In this case, one can solve for the

optimal control. For example, if K > 1/e, one can show that u(.) - -e is optimal.

8 Conclusions

We examined the phenomena that arise in hybrid systems and reviewed several models of hybrid

systems from the literature. We then proposed a very general framework for hybrid control problems
which encompasses these hybrid phenomena. A specific control problem was then studied in this
framework, leading to an existence result for optimal controls. The "value function" associated with
this problem is expected to satisfy a set of "generalized quasi-variational inequalities" which were
formally derived.

The foregoing presents some initial steps towards developing a unified "state space" paradigm for
hybrid control. Several open issues suggest themselves. We conclude with a brief list of some of the
more striking ones.

1. A daunting problem is to characterize the value function as the unique viscosity solution of the
generalized quasi-variational inequalities (7.4)-(7.7).

2. Many of our assumptions can possibly be relaxed at.the expense of additional technicalities
or traded off for alternative sets of assumptions that have the same effect. For example, the
condition d(Ci, Ai) > 0 could be dropped by having c2 penalize highly the impulsive jumps that
take place too close to Ai. (In this case, Assumption 4 has to be appropriately reformulated.)
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3. Example 6.6 show that Assumption 3 cannot be dropped. In the autonomous case, however, the
set of initial conditions that hit a C °O manifold are of measure zero [21]. Thus, one might hope
that an optimal control would exist for almost all initial conditions in the absence of Assumption
3. The system of Example 6.7 showed this to be false. Likewise, in the systems of Example 6.6
we have, respectively, no optimal control for the sets

{(Xl,X 2 ) I X2 < 0.X 1 < 1,x 2 + 1 > X1 }

and

{(xI,x2) I x 2 < 0,x < a, x 2 + a > x1} U ([O, 1] x [-a/2,0] - B([1, -1]T, 1))

where a = 2 - v2 and B(x, r) denotes the ball of radius r about the point x.

It remains open how to relax the conditions Assumptions 3 and 4. This might be accomplished
through additional continuity assumptions on G, !l, and cl.

4. An important issue here is to develop good computational schemes to compute near-optimal
controls, which is currently a topic of further research. See [10] for some related work.

This is a daunting problem in general as the results of [7] show that the hybrid systems models
discussed in Section 3 can simulate arbitrary Turing machines (TMs), with state dimension as
small as three. It is not hard to conceive of (low-dimensional) control problems where the cost
is less than 1 if the corresponding TM does not halt, but is greater than 3 if it does. Allowing
the possibility of an impulsive jump at the initial condition that would result in a cost of 2, one
sees that finding the optimal control is equivalent to solving the halting problem.

5. Another possible extension is in the direction of replacing Sio by smooth manifolds with boundary
embedded in a Euclidean space. See [8] for some related work.

6. In light of Definition 7.1, all the proofs seem to hold if Assumption 1 is relaxed to only consider
distances "from the right," that is if infi d+(Ai, Di) > 0, with

d+(Ai,Di) inf E (x,u(.)) E Ai
t>O,u(.),xEDi

where Et(x, u(.)) denotes the solutions under fi with initial condition x and control u(.) in U[ °ot).

Here, time can be used as a "distance" in light of the uniform bound on the fi; we consider
t > 0 by adding that caveat that if we jump directly onto Ai, we do not make another jump until
we hit it again. Presumably one must also make some transversality or continuity assumptions
for well-posedness. This would allow the results to extend to many more phenomena, including
those examples in [8].
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