
162 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 6, NO. 1, MARCH 2011

A Unified Framework for Multimodal Submodular
Integrated Circuits Trojan Detection

Farinaz Koushanfar, Member, IEEE, and Azalia Mirhoseini, Student Member, IEEE

Abstract—This paper presents a unified formal framework for
integrated circuits (ICs) Trojan detection that can simultaneously
employ multiple noninvasive side-channel measurement types
(modalities). After formally defining the IC Trojan detection for
each side-channel measurement and analyzing the complexity, we
devise a new submodular formulation of the problem objective
function. Based on the objective function properties, an efficient
Trojan detection method with strong approximation and opti-
mality guarantees is introduced. Signal processing methods for
calibrating the impact of interchip and intrachip correlations
are presented. We define a new sensitivity metric that formally
quantifies the impact of modifications to each existing gate that
is affected by Trojan. Using the new metric, we compare the
Trojan detection capability of different measurement types for
static (quiescent) current, dynamic (transient) current, and timing
(delay) side-channel measurements. We propose four methods for
combining the detection results that are gained from different
measurement modalities and show how the sensitivity results can
be used for a systematic combining of the detection results. Experi-
mental evaluations on benchmark designs reveal the low-overhead
and effectiveness of the new Trojan detection framework and
provides a comparison of different detection combining methods.

Index Terms—Change detection algorithms, circuit Trojan de-
tection, gate-level characterization, hardware malware detection,
hardware security and trust, submodular functions, timing/power
tests.

I. INTRODUCTION

T HE prohibitive cost of manufacturing integrated circuits
(ICs) in nano-meter scales has made the use of contract

foundries the dominant semiconductor business practice. Unau-
thorized intellectual property (IP) usage, IC overbuilding, and
insertion of additional malware circuitry (a.k.a., Trojans) are a
few of the major threats facing the horizontal IC industry where
the IP providers, designers, and foundries are separate entities
[1]–[3]. Since the ICs form the core computing and commu-
nication kernels for the governments, defense, and industries
today, ensuring IC trust in the presence of an untrusted foundry
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is of paramount importance. The Trojan embedder modifies the
original design to enable an adversary to control, monitor, spy
contents and communications, or to remotely activate/disable
parts of the IC. Trojans are often hidden and are rarely triggered
(functionally activated) as needed.

A standing challenge for noninvasive side-channel IC testing
and Trojan detection is dealing with the increasing complexity
and scale of the state-of-the-art technology. Internals of the
complex chips are inherently opaque. Scaling to the physical
device limitations and mask imprecisions cause nondeter-
minism in chip characteristics. It is hard to distinguish between
the characteristic deviations because of process variations
and alterations due to Trojan insertion. What complicates the
problem even more is the large space of possible Trojan attacks
by potentially advanced adversaries. Very little is known or
documented about IC Trojan attacks. Because the functional
triggering of the Trojans may be hidden [2], the logic-based
testing methods are unlikely to trigger and distinguish ma-
licious alterations. The conventional parametric IC testing
methods have a limited effectiveness for addressing Trojan
related problems. Destructive tests and IC reverse-engineering
are slow and expensive.

Recently a number of effective methods for IC Trojan de-
tection were proposed. Comprehensive reviews can be found
in [2] and [3]. Several authors used the power supply transient
current signal for Trojan detection [4]–[7]. Using the timing
signal signature by testing multiple path signatures was sug-
gested [8]. Gate level characterization for Trojan detection was
proposed [9]–[13] but no systematic formal analysis or optimal
algorithms were discussed. The available methods are either
based on ad-hoc measurements, heuristics for detection, calibra-
tion and test, or they use costly and slow destructive tests. No
systematic method for IC malware detection, combining mul-
tiple side-channel modalities with optimality guarantees, or a
mathematical formulation of calibration is presently available.

Our results are complementary to the existing literature
in Trojan detection using side-channels. Essentially, using
submodularity, for any given set of test vectors we formally
demonstrate: 1) the best polynomial-time detection algorithm
with constant factor approximation guarantee compared to
the theoretically optimal achievable solution; and 2) an upper
bound for the optimal detection metric, which could be used
for bounding the quality of detection metric by any other (poly-
nomial or nonpolynomial) heuristic detection methods, which
may perform better than our constant factor polynomial-time
approximation. Note that our bounds can be converted to any
combinations of circuit components that are evaluated by other
(i.e., not gate-level) detection methods.

1556-6013/$26.00 © 2010 IEEE
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Fig. 1. Submodular property.

A. Motivational Example

Let us demonstrate the methods using a small example shown
in Fig. 1. The design consists of nine gates , six in-
puts, and two outputs. A Trojan gate that has an impact on
the side-channel is added to the circuit. Consider a subcircuit of
this design composed of gates in the dotted square
that also includes .

We consider the cases where we are given a set of input
vectors to test a side channel in the circuit. In this example,
the side-channel is the circuit’s static current (IDDQ testing).
For each input vector, the total current drawn from the circuit
is the sum of the individual gate leakages (assuming that we
have lumped the wire and parasitic leakages into a gate leakage
model). Now, for one input vector applied to the circuit, the ratio
of current leaked by to the rest of the circuit leakage would
be higher for the subcircuit compared to the whole circuit. This
behavior of the Trojan side-channel (i.e., a more significance on
smaller subcircuits) can be abstracted by a submodular objec-
tive function which aims at minimizing the detection error. By
exploiting theoretical results for submodular function detection,
we propose a near-optimal polynomial Trojan detection algo-
rithm for the given set of test vectors.

B. Contributions

Our contributions are as follows:
1) A new unified noninvasive multimodal Trojan detection

framework is proposed. The framework translates the
abnormal behavior disclosed by different measurement
modalities to the gate level profiles and analyzes the
results. For each modality, we formulate the optimization
problem for simultaneous gate level profiling and Trojan
detection and show the problem is NP-hard.

2) We demonstrate a formulation of the unimodal Trojan de-
tection objective as a submodular function. The objective
function submodularity is exploited for devising an itera-
tive polynomial-time optimization algorithm that achieves
a near-optimal unimodal detection (within a constant frac-
tion of the optimal solution) for NP-hard detection. Our so-
lution also defines an upper bound for quality of detection
(i.e., lower bound for detection error) by any other non-
polynomial detection methods.

3) A new calibration method for mitigating the impact of in-
terchip and intrachip process variations is introduced.

4) We discuss how the cumulative statistics and detection re-
sults can be used for classifying ICs based on the Trojan
symptoms and for speeding-up detection.

5) We introduce a new sensitivity metric formally quantifying
the change in system response for each gate’s change.

6) We devise and compare four methods for combining the re-
sults of multiple unimodal detections based on their prob-
ability of detection and the probability of false alarm

. The effectiveness of the new methods are confirmed
by extensive evaluations in presence of process variations
and measurement noise on benchmark circuits.

II. PRELIMINARIES

In this section, we provide the necessary background to make
the paper self-contained.

A. Process Variations

As CMOS dimensions shrink, uncertainty and variation in de-
vice characteristics compared to their nominal values increases.
CMOS circuits exhibit a high variability in both delay and power
consumption that monotonically increases with scaling. In con-
trolled settings, i.e., the same voltage, temperature and light
levels as the simulation models, the dominant source of differ-
ence between chips is spatial variation [14]. Spatial variation
may be intradie, or interdie, and could be systematic or random.
In this paper, we use the Gaussian variation models [14]. Our
approach works for the stationary process variation models.

B. Trojan Threat Model

From the conventional testing and inspections point of view,
the Trojan IC has exactly the same set of I/O pins, has the
same deterministic I/O response as the original plan, and has the
same physical form factor. The measurements are considered to
be stationary with an i.i.d. Gaussian noise. A Trojan causes a
change in the statistical distribution of gate characteristics. In-
trachip variations are assumed to have a lower amplitude when
compared to Trojan impact. We call the gates with modified
characteristics anomalous gates. In our case, the nominal values
for gate characteristics are extracted from technology simulation
files needed for design-time power estimation and timing clo-
sure. This is a standard method for finding the nominal values
and was used in a number of earlier works [6]. Our nominal
gate-level values could contain the side-channel value for the
gate (e.g., delay) lumped together with the other side-channel
parasitics and wire delays that are between the two circuit nodes
[15].

Our detection framework can detect a Trojan as long as it
affects the side-channel value beyond the noise level. For ex-
ample, if a Trojan is power-gated, none of the power-based
side-channel Trojan detection methods would be able to find it
because its current cannot be measured. Since we assume the
test vectors are given, a Trojan that is never sensitized by the
available test vector set cannot be detected. We emphasize that
this paper’s contribution is not in providing a new set of test
vectors that can sensitize rare Trojans, but in finding the best
achievable detection performance by a given set of test vectors.

C. Sequential versus Combinational Circuits

This paper discusses detection of the Trojans for combina-
tional circuits but we emphasize that sequential circuit Trojan
detection can also be addressed by our approach. It is well-
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known that high coverage tests of the sequential circuits are
not feasible in practice, unless scan chains are used. Since one
cannot usually control the present state lines of a sequential cir-
cuit nor directly observe the next state lines, a sequence for set-
ting the circuit to the desired state is required [16]. In the test
scan-chain mode, all flip flops (FFs) form a shift register so
that the test input for the combinational logic part between two
FFs can be scanned in (shifted in) and the output is scanned
out (shifted out). Scan-chains are an essential part of conven-
tional sequential designs today. From the point view of testing
by supplying the input vectors and measuring the outputs, the
scan-in and scan-out FFs can be considered the input and output
pins. We can apply our test vectors by scanning them in to the
target FFs and scanning out from the proper FFs. The combi-
national circuitry in between the scan-in and scan-out FFs can
be tested by our method for detecting the Trojans. Therefore,
our method can be scaled to larger sequential designs that are
normally equipped with scan chains for conventional testing
purposes.

D. Measurement Test Vectors

We use available test vector set generation tools for Trojan de-
tection purposes. For timing measurements, we exploit a known
delay-fault test and validation technique [17]. Extensive pre-
vious research in delay test vector generation has demonstrated
that it is possible to generate a set of path test vectors that can
sensitize all the gates (as much as the controllability and observ-
ability allows) [16]. It has been shown that the number of sen-
sitized paths (testable path set) is the same order as the number
of gates [15].

The leakage current can be measured via the commonly
known IDDQ test methods often done via the off-chip pins
by the precision measurement unit (PMU) [18]. The dynamic
current tests are referred to as IDDT tests that can be done
by averaging methods that do not require high precision or
high frequency measurement devices [16]. Our Trojan de-
tection method attempts at finding the current deviation at
the gate-level where the Trojan impact modifies a set of gate
currents. The mechanisms for testing all the gates’ states are
similar to the bridging/leakage fault testing [18].

A comprehensive survey of IDDT and IDDQ testing tech-
niques can be found in [18]. In this work, we use available
methods for test vector generation for current-based tests [19].
Test application time and power for the set of given test vec-
tors could be reduced by conventional methods including test
vector ordering and continuous scanning. We emphasize that the
novelty of this work is not in introducing a high coverage test
method, but to find the best achievable solution given a set of
test input vectors.

III. UNIFIED FRAMEWORK

Given an IC, the original layout, and GDS-II (the design
file submitted to foundry), a set of postsilicon, noninva-
sive, and nondestructive measurements for each modality

, where each measurement is taken over
an input vector or for a transition between two input vectors,

Fig. 2. Unified multimodal Trojan detection framework.

the goal is to identify the abnormal components on the chips
postmanufacturing and packaging.

We introduce a unified format of Trojan detection problem
that can be applied to any modality that measures a parametric
function of the gates or other component characteristics on a
chip. Fig. 2 presents the overall IC Trojan detection framework
introduced in this paper. The gate level anomalies are detected
for each measurement modality. After that, the decisions by the
different modalities on each gate are fused together by using
various combining methods. A formal sensitivity metric is in-
troduced and utilized to quantify the impact of potential changes
for each measurement modality. The multiple ICs are also clas-
sified for finding the IC groups that are modified in a similar
way. The remainder of the paper discusses the details of the uni-
modal and multimodal malware (Trojan) detection.

The focus of this paper is on evaluation of the gate profiles by
using three important externally observed measurement modal-
ities of delay , quiescent current (IDDQ), and dynamic cur-
rent (IDDT), but we emphasize that the proposed framework is
generic and can be used for other features such as electromag-
netic emanation measurements. In this paper, we do not consider
the interconnect delay and power consumption. Since the wire
impact is linearly added to the path delay and power consump-
tion, it can be integrated in our framework in a straightforward
way.

IV. UNIMODAL TROJAN DETECTION

The basis of the unimodal Trojan approach is the gate pro-
filing discussed in Section IV-A. In Section IV-B, we formu-
late the detection problem in a unified format regardless of the
modality and further discuss the complex structure of the gen-
eral NP-complete unimodal detection problem. We opt to use
our prior knowledge about the process variations and submodu-
larity to address the problem and to gain a near optimal solution.

The precursor for our hierarchical method is systematic cal-
ibration that is discussed in Section IV-C. We define a sen-
sitivity metric for Trojan detection in Section IV-D. We also
perform cumulative unimodal profiling for Trojan detection in
Section IV-E.
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Fig. 3. Example circuit. Sensitizing a path by changing the input from 1111 to
1110.

A. Gate Profiling

In this subsection, we show how side-channel measurements
can be decomposed to their gate level components postsilicon.
One can exploit the linear relationship between the IC’s gate
level profile and the side-channel measurements (constrained by
logic relations) to estimate the gate level characteristics. Note
that even though we do not consider the wire effect, the impact
can be linearly added to our framework. We introduce a formal
framework for this problem.

Problem: Unimodal Gate Profiling
Given: A combinational circuit , with primary inputs

, and primary outputs , where the
netlist and logic structure is fully available. The circuit con-
sists of interconnections of single-output gates where each gate

implements an arbitrary logic function.
The nominal profile of for the modality for each possible
combination of gate inputs is available from the technology li-
braries and simulations models.

Measurements: For a modality , a set of input vectors
( ’s) that are each an tuple , where

for are available. Component values of
are applied to primary inputs which changes the

states of internal gates. For one or more input vectors, the side
channel measurement is recorded either from the output pins,
from other external pins, or contactless. The side-channel mea-
surement is a linear combination of gate characteristics for the
modality and a measurement error.

Objective: Estimate the postsilicon profile of each individual
gate for the modality .

Generating the input patterns that can distinctively identify
each gate’s characteristics is known to be NP-complete [16].
Although we are limited by the same constraints as testing in
terms of gate coverage, the difference is that we are not detecting
a particular fault model or the worst-case behavior (e.g., critical
paths or stuck at fault) but we are estimating the gate parameters
that may incur a certain error.

The details of the generic problem above are slightly dif-
ferent for each measurement modality. Perhaps the best way to
demonstrate the details of postsilicon characterization for one of
the measurement modalities employed in this paper (i.e., delay)
is by an example shown in Fig. 3. The design consists of six
gates , four inputs , and two out-
puts .

1) Timing Modality: The noninvasive timing measurements
are taken by changing the inputs and measuring the time prop-
agation of input transition to the output nodes. In this paper, we

consider the gate delays and ignore the wires. However, we em-
phasize that since the wire timings are linearly added to the path
delays (assuming that crosstalk is bounded by controlling the
possible couplings), their inclusion in the linear formulations is
straightforward. Assume that the input vector transitions from

to . This input vector sensitizes the
I/O path from to , denoted by . shows the delay of
the sensitized path and can be written as the sum of the low to
high delay transition at , high to low delay at , and low to
high delay at (denoted by , , and
respectively). We assume that the delay of a gate is the
same for both low to high and high to low transitions and is de-
noted by , but it is worth noting here that adding both
transition sides is just a matter of introducing two variables for
each gate and following the same steps.

Similarly, one can test different paths and write a linear
system of delay equations. Noninvasive gate profiling aims
at finding the gate delay values in presence of measurement
error. If measuring the path delay incurs the error

, the optimization problem objective function (OF) and
constraints (C’s) can be written as follows:

(1)

where is a metric for quantifying the measurement errors; the
commonly used form of is the � norm of errors.

The delay of one gate can be further written in terms
of the deviation from the nominal delay of this gate from the
value specified in the technology files. If the nominal gate delay
value for the gate type is and the deviation from
nominal for for the chip under measurement is ,
then and thus, the unknowns are

’s and ’s. The variable is called the delay
(timing) scaling factor of . If there were no path measure-
ment errors, the number of equations required to have a full-
rank system would be the same as the number of variables (gate
delays). In presence of errors, the number of required equations
is slightly higher, but the order is still linear in terms of number
of gates .

Similar methods can be applied to linearly relate the overall
measured quiescent and transient current modalities to gate-
level values. For the sake of brevity, we refer the readers to ear-
lier literature [10], [20].

B. Unified Detection Formulation

In Section IV-A, we mentioned that each of the modalities can
be written in a unified format of a system of linear equations. We
showed the detailed linear equations for timing modality. In the
remainder of the paper, we use the following generic notations
for gate profiling over different modalities:

(2)

where in matrix , elements of each row are the gates’
nominal profile values of the input corresponding to that row.

is the vector of unknown scaling factors, is the vector
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of measurement values, and is the corresponding vector of
measurement errors.

Solving the above linear system, for (
for ) would require less than constraints
[21]. Since in circuit testing scenarios the cost is often domi-
nated by the number of measurements taken from the device,
the overall cost of performing our Trojan detection method is

measurements. Note that for a given set of test vectors,
preprocessing could be used for selecting a limited number of
linearly independent test inputs that can be applied to the chips
to minimize the test time and cost.

Since the measured gate profile (delay, dynamic, or static
power) is an additive function of the circuit components, and
the Trojan is not known to the simulation models, the impact
of an inserted Trojan would change the estimates of the nearby
gate profiles.

Problem: Trojan Detection by Gate Profile Estimation
Given: The same inputs as Section IV-A.
Objective: Estimate the profile of each gate on the IC and

identify the anomalous gates based on abnormal values.
An abnormal gate is the one which has large deviations in

its measured characteristics compared with its nominal value.
Thus, an abnormal gate would have a scaling factor largely de-
viating from its expected value 1. To address the above problem,
we form an optimization problem that attempts at finding the set
of anomalous gates and remove their negative impact to achieve
the maximum likelihood for the estimation error. Removing the
negative impact of an abnormal gate (with scaling factor
largely deviating from 1) means reweighing the gate’s scaling
factor by setting it to 1.

The nature of the estimation problems in the presence of er-
rors is such that removing the impact of anomalous gates by
reweighing improves the overall objective function since it im-
proves the estimation error. We use the notation to refer to the
set of all gates in the original design and we also define a
set which contains the anomalous gates.

Assume that there is a penalty associated with selecting the
gates in as the Trojan set denoted by , where the max-
imum allowable penalty is . The penalty is defined for
keeping the probability of false alarms low, because, the
global objective of Trojan detection is both to maximize the
probability of Trojan detection and to minimize the prob-
ability of false alarm . Using the unified format, the objec-
tive function and the constraints of the problem can be defined
as follows:

(3)

The OF and the first constraint set are the same as before, but
this time only defined over the set of nonanomalous (benign)
gates in after removal of the anomalous gates. The last
constraint is the cost for selecting the set . Notice that the OF
in (3) has two simultaneous goals; one is to find the location
of the gates in , and the other is to minimize the estimation
error . Generally speaking, detecting guaranteed anomalies in

problems like ours where there is an uncertainty about the value
and interval of the variables (dependent on the other variables
values) was demonstrated to be NP-hard [22]. Thus, we can only
hope for heuristics and approximations to address the problem.

1) Objective Submodularity: Modifications to existing gate
to address the optimization in 3, we propose a new form for the
detection objective function. Our new OF is denoted by and
is called the reward function. quantifies the expected ben-
efit from reweighing the set of anomalous gates in :

. Thus, instead of optimizing the detection error,
we study how much the detection error can be improved by re-
moving the anomalous components.

The key property of the function is its submodularity. A
function defined over a set is submodular if it has the fol-
lowing three properties:

1) , meaning that there is no improvement in re-
ward, if we do not reweigh any anomalies.

2) is nondecreasing, for , .
Thus, reweighing a new anomaly always improves the as-
sociated reward.

3) satisfies the diminishing return property that considers
the gate estimation problem over two sets of gates and

where . Assuming that the linear constraints in
are a subset of the linear constraints in (i.e., is a

subcircuit of ), reweighing the subset of gates
would improve the reward function over the subcircuit
by at least as much as reweighing the gates in for the
larger set .

The first and second property of the function can be
concluded from the fact that reweighing a new anomaly would
decrease the estimation error since reweighing in essence
changes the distance of the outlier measurement to the
estimated values. The third property is satisfied because the
absolute (therefore positive) error values of the gates are added
to compute the reward function. Thus, after reweighing a same
subset of gates, the reward function improvement for which
has a larger number of gates cannot be more than that of .
Note that it has been proven that a reward set function is
submodular if and only if it satisfies the Theorem below [23].

Theorem 1: For all reweighed Trojans , for
a candidate anomalous gate , the following holds:

.
Using the above theorem (submodular property of the trans-

formed objective ), the OF in (Problem 3) can be reformulated
as: .

Perhaps not surprisingly, addressing the above optimization
problem was shown to be NP-complete as well [24]. However,
we address the above optimization problem by the greedy pro-
cedure that will be described in Algorithm 1. This is because a
key result states that for submodular functions, the greedy algo-
rithm achieves a constant factor approximation:

Theorem 2 [23]: For any submodular function that satis-
fies the above three properties, the set obtained by the greedy
algorithm achieves at least a constant fraction of the
objective value obtained by the optimal solution, or,

(4)
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Moreover, Feige has proven that under the assumptions above,
no algorithm of polynomial time complexity could provide a
better approximation guarantee than the greedy algorithm, un-
less the NP-complete problem could be solved in polynomial
time by an algorithm [24]. Note that the given bound above has
two applications. One is to guarantee the minimum performance
of compared to the optimal solution. The other one is to
give a bound for the best achievable solution for other heuristic
approaches that might perform better than the greedy algorithm.

2) Detection Algorithm: Using the submodular property of
the reward function , we propose a greedy algorithm for ad-
dressing the Trojan detection problem formulated in (3). The
linear penalty function for selecting the gates in as anoma-
lies is set to be ’s cardinality, i.e., . The details
of the greedy algorithm are shown in Algorithm 1. Recall that
the inputs to the problem are the combinational circuit, nonin-
vasive leakage measurements for input vectors, the nominal
gate leakage values, the minimum required improvement in re-
ward , and the maximum number of allowed anomalous
gates . The outputs of the algorithm are the gate leakages
in form of scaling factors and the set of anomalous gates

.

Algorithm 1 : Trojan Detection

1 Set , ;

2 Use the inputs to estimate the gate leakages;

3 Calibrate the scaling factors for interchip and intrachip
leakage correlations;

4 While ( or )

5 Select the gate with the highest error;

6 Reweigh and add to ;

7 Re-estimate the gate leakages;

8 increase by 1;

9 Find ;

In Step 1, the set of anomalous gates is initiated to be an empty
set and the number of detected Trojans is initially set to 0. The
inputs are used for finding an initial estimate of the gate leak-
ages as discussed in Section IV-A in Step 2. Step 3 calibrates
the gate leakage scaling factors for interchip and intrachip cor-
relations. The details of our calibration method is presented in
Section IV-C. The stopping criteria for the Trojan detection al-
gorithm is evaluated in Step 4: the algorithm stops when the dif-
ference in reward function compared to the previous step
is less than a minimum predefined value , or the number
of detected anomalous gates is more than the maximum
set by the penalty criterion . Steps 5–9 contain one itera-
tion of the algorithm, where at each iteration the gate with
the highest distance to the estimation is selected as anomaly,
reweighed, and added to . After is reweighed, the gate leak-
ages will be re-estimated, and the number of anomalies is in-

Fig. 4. (a) A 2-D circuit profile containing both random and systematic varia-
tions. (b) Filtered out 2-D systematic variations.

creased by 1, and the function is calculated for checking
the stopping criteria.

The submodularity of detecting an added side-channel cur-
rent was discussed in Fig. 1. Because of the submodular prop-
erty, Theorem 2 suggested that a greedy detection algorithm
finds the best achievable polynomial time detection. Therefore,
the method in Algorithm 1 iteratively selects the gate with the
highest deviation from its nominal value in each iteration and
reweight its impact until the deviation in nominal value is below
the measurement noise threshold. The number of iterations of
Algorithm 1 is in the order of the number of inserted Trojans

. In each iteration, a linear optimization is solved. As men-
tioned earlier, the dominant cost of our detection is in the mea-
surement phase since testing actual devices is much more ex-
pensive than postprocessing computations in Algorithm 1. In
Section VI, we experimentally show the convergence rate of
on benchmarks.

C. Calibration

To perform the anomaly detection, it is required that we cal-
ibrate for the systematic variations after profiling the gates. As
mentioned in Section II-A, the systematic variations consist of
interchip and intrachip variations. The interchip variations are
simply affecting the mean of the variations and can be adjusted
for by shifting the mean extracted profile values to have a mean
of unity. The intrachip variations are in the form of a spatial dis-
tribution, e.g., 2-D Gaussian in our model. The key observation
is that the spatial rate of change of the neighboring gate level
profiles due to the systematic intrachip variations (spatial corre-
lations) is slower than the rate of change because of the Trojan
insertion or random variations. The larger Trojans that would
affect many gates in a larger area are trivial to detect and would
not be a challenge to address. This fact can also be observed
by the submodularity property and the rate of diminishing re-
turns. The impact of added/deleted components is very sharp on
the nearby gates as we have experimentally observed. Fig. 4(a)
demonstrates the profile of a circuit with 9K gates containing
both random and systematic variations in the leakage power of
the gates, but the systematic variations form a pattern with high
correlations among the neighboring gates (slow frequency com-
ponents) as shown in the filtered out systematic variations by the
DCT method in Fig. 4(b).

The above observation suggests using a high-pass filter over
the 2-D discrete space of the gate layouts for the identification
of the sharp edges that have high frequency components in their
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frequency transformation. Years of research in signal processing
has introduced a wide-range of such filters that can be possibly
used for calibration purposes. In this paper, we use the 2-D dis-
crete cosine transform (DCT). The DCT translates a 2-D signal
from a spatial representation into a frequency representation.
The DCT has been shown to be very effective and computation-
ally efficient in identifying the low frequency basis functions
when compared to several other available transforms.

Since the DCT assumes uniform grid points and the gate lay-
outs are not always uniform in the space, to enable the transform
we impose a finer regular grid on the layout and assign to the
grid points the average value of their nearest neighbors. DCT,
filtering, and inverse discrete cosine transform (IDCT) are per-
formed on the regular grid and are then interpreted on the actual
layout.

D. Sensitivity Analysis

In this section, we discuss a method for performing sensi-
tivity analysis. Our proposed method examines how sensitive a
measurement is to a change in a gate’s nominal value. A gate
is considered to be more sensitive if the variation of its nominal
value has a larger impact on the norm of the error. We define
the following metric:

where (5)

We call the sensitivity factor of the gate . is the
gate ’s nominal value for the th input. Below we explain
the relation between the defined metric and the norm of error.
In our detection method, a gate is reported as anomalous if re-
moving it minimizes the objective function which is the norm
error

(6)

The following inequality which comes from the Schwartz cri-
teria gives a lower bound for the error:

(7)

A variation in gate ’s nominal value changes its scaling
factor which multiplied by the sensitivity factor , changes
the lower bound for the error. Thus for the same , a higher
sensitivity factor yields a larger lower bound for the error. Hence
the gate with a high sensitivity is more sensitive in our detection
method.

E. Cumulative Unimodal Profiling

Once the gate level profile is extracted for a number of ICs
over multiple modalities, it is possible to study and analyze

Fig. 5. Empirical distribution of a gate’s scaling factors extracted from multiple
ICs.

the cumulative statistics of the profiled chips. Such cumulative
studies have a number of advantages, including: 1) The iden-
tified characteristics can aid classification of similarly tainted
chips: it is unlikely that one type of exploit is only exercised
on a single chip or a small number of chips. 2) The possibility
of employing the statistics of the studied groups’ characteristics
to find signatures for testing the remaining chips, and thereby,
speeding up the detection process. 3) The extracted statistics of
gate level profiles in each modality advance our understanding
of postsilicon characteristics including interchip, intrachip, and
random variations. 4) The diminishing property of the reward
function enables identification of the magnitude of the Trojan
modification imposed on the circuit. 5) The extracted charac-
teristics can determine where further focused (and perhaps ex-
haustive) tests should be made in the marked regions for a better
Trojan characterization.

Let us describe more details of the above cumulative studies
over multiple ICs. Because of space constraints, a full analysis
and evaluation of the cumulative statistics is not included in the
paper beyond this section.

1) Assume that there is a certain Trojan contamination that
affects a group of chips. In this case, the characteris-
tics of the tainted gates would have a specific density
of scaling factors—for a single modality—over different
ICs. This distribution would have more than one peak.
Fig. 5 shows an example. As can be seen in the figure,
the estimated scaling factors for one gate over a group
of chips (composed of Trojan and Trojan free instances)
has two peaks. It is likely that the same type of Trojan
has been applied to the group of ICs whose pertinent
gate falls within the peak that is further from the nom-
inal scaling factor. The distance and the valley between
the two peaks indicates that the second peak is not due
to the manufacturing variability.

2) One can systematically use the above observation to
form a compact signature for IC families with similar
profiles that are clustered around the same value. As-
suming that the signature of all the IC groups (i.e., ICs
with similar anomalous exploits) are already extracted,
all that is needed for classifying a new IC is a compar-
ison of its signature to the known ones. For example,
for the ICs whose gates are placed around the right peak
in Fig. 5, we can find the timing paths that pass those
tainted gates. For each modality, the same test vectors
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that have the best coverage on the chips would be ap-
plied to all the chips from one design. Now, one can di-
rectly use the statistics of the measured values for iden-
tifying the gate level Trojan without even going through
the linear optimization for each new test. For example,
in timing tests, after the cumulative studies are done on
a group of chips, one would only test the paths which
include the problematic gates with two peaks. The dis-
tance of the chips can be rapidly found in terms of the
distance of their problematic path signatures. Note that
using the cumulative statistics of multiple path delays
and dimension reduction of this statistics by PCA was
used earlier for Trojan detection [8]. However, the prior
work did not provide a systematic way of classifying the
chips over multiple modalities, or introduce methods for
tracing back such anomalies to the underlying abnormal
gate characteristics.

3) In Section IV-C, we discussed how the high-pass DCT
filter can be used for filtering the impact of intrachip
correlations. The removed low frequency components,
after all the contaminants are identified, can be used for
finding an empirical model for the 2-D spatial variations
on the chip.

4) Since the affected area’s boundary can be determined,
more focused tests on suspicious gates and possibly
other side channel tests (e.g., EM measurements) can
be also used for identifying more characteristics of the
anomalies.

V. MULTIMODAL TROJAN DETECTION

A. Multimodal Trojan Identification

The next step of our approach is to combine the results for
anomalous gate detection over modalities. While there are a
number of possible methods to accomplish this task, our goal is
to combine the unimodal methods to optimize the and
results. Assume that is the anomaly vote for gate in
modality

for anomalous in modality
otherwise.

We propose four methods for combining the results of dif-
ferent modalities.

1) Unanimous Voting: In this voting approach, the Trojan
gates are those that have been marked anomalous by all
the modalities. For example, for the three modalities
the following constraint should hold for marking a gate
as Trojan: , where
the subscripts , , and denote the timing, quiescent
current, and dynamic current measurement modalities,
respectively. This voting method is likely to decrease

but improve . It would also give the minimum
achievable (lower bound) by any linear combina-
tion of the unimodal detection methods.

2) Conservative Voting: A gate that has been marked
anomalous by any of the modalities is marked as a

Trojan by the conservative voting method. In our case,
the following constraint is necessary and sufficient for
marking a gate as Trojan by conservative voting:

. This voting method
is likely to increase but also increases . It would
also give the maximum achievable (upper bound)
by any linear combination of our anomaly detection
methods.

3) Majority voting: Trojan gates are those that have been
marked anomaly by at least modalities. In our
case, majority voting translates to the following condi-
tion: . This method
provides a useful tradeoff between and .

4) Weighed voting: The voting methods above assume that
all modalities’ votes are combined with equal weights.
As we will show in our experimental results, this is
not exactly the case. For example, timing tests inher-
ently have less controllability and observability than cur-
rent-based tests, since the path delay results are typically
harder to trace at the output pins. In case of power, the
changes in the internal alter the overall drawn current
from the source and the changes are observed at the cur-
rent supply pin. For example, assume that after anomaly
detection phase where a number of tainted gates are
removed from the equations, the sensitivity value for
gate to be , , and for timing, leakage,
and dynamic current, respectively. Now, the votes of
the three unimodal detectors over an anomalous gates
are combined as follows:

.
If this expression is true, the gate is marked as the Trojan.

Changing the detection threshold introduces a tradeoff between
and values.

VI. EXPERIMENTAL EVALUATIONS

A. Evaluation Setup

The MCNC benchmark suit was used for evaluating the
performance of unimodal detection and the unified multimodal
framework. We used the ABC synthesis tool from Berkeley to
map the benchmark to a library consisting of inverter, NAND2,
NOR2, NAND3, NOR3, NAND4, and NOR4 gates. We used the
UCLA Dragon placement tool. We described the process
variation model in Section II-A. In a few of our experiments,
we study the impact of fluctuating variations. In experiments
where the variations are fixed, random variation is 12%, and
intradie variation correlation is 60% of the total variation
[25]. About 20% of the total variation is uncorrelated intradie
variation and the remaining 80% is allotted to the interdie
variation. The noninvasive measurement setup was described in
Section II-C. HSPICE simulations for 65-nm technology was
used for extracting the timing, static, and dynamic currents of
each gate in the library for the possible input states. We used
the MATLAB optimization toolbox for linear equation solving,
and other MATLAB functions for calibration, and likelihood
estimation. We report the average over 100 runs of random
circuit instances for each gate-level profiling.



170 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 6, NO. 1, MARCH 2011

TABLE I
DYNAMIC POWER PROFILE ESTIMATION ERROR

TABLE II
STATIC POWER AND TIMING PROFILE ESTIMATION ERROR

TABLE III
UPPER BOUND (UB) AND LOWER BOUND (LB) OF AVERAGE DETECTION

ERROR (%) FOR RANDOM PROCESS VARIATIONS WITH � � �� ��� �����
OVER THE MODALITIES (AVERAGED OVER C1355, C8, C3450,

C432, C499 BENCHMARKS)

B. Unimodal Trojan Detection

1) Gate Level Profiling: We first report the evaluation results
for gate level profiling. The dynamic current profiling for bench-
mark circuits are shown in Table I. On each benchmark, we ap-
plied as many test vectors at least as twice the number of gates.
We used the available input vector generations and the number
of new test vectors is determined by the available generator. The
first column demonstrates the benchmark name (ct). The second
column is the number of gates in the benchmark (size). The third
and fourth columns show the number of primary inputs (#inputs)
and outputs (#outputs). The norm for characterization estima-
tion error for 3%, 5%, and 10% measurement error are shown
in the last three columns. The static current and timing charac-
terization results on the benchmark circuits are demonstrated in
Table II. The error ranges are similar to the dynamic power re-
sults shown in Table I.

2) Calibration and Detection Bounds: Calibration smooths
the intrachip correlations with a slower rate of spatial fluc-
tuations than the modifications by the Trojans. We observed
that in case of interchip variations, there is a wide-enough
disparity between the available simulation models and the
correlated scaling factors of the Trojan’s neighboring gates.
Thus, calibration is always more than 98% accurate for static,
and more than 99% accurate for timing and dynamic current.
Newer technology nodes may affect the accuracy of our cali-
bration. Table III shows the average detection error for different
random process variations (after calibration of the systematic
variations) averaged over a set of benchmark circuits. The
lower bound is given for any polynomial algorithms and the
upper bound is the best a heuristic polynomial can achieve (4).

3) Sensitivity Analysis: We studied the sensitivity of gates
for different modalities and their correlations. We computed the

TABLE IV
PERCENTILE VALUES OF THE GATE SENSITIVITIES

TABLE V
PEARSON CORRELATION COEFFICIENTS. 	, 
, AND � SHOW LEAKAGE,

DYNAMIC, AND TIMING MODALITIES, RESPECTIVELY

gates’ sensitivity factors for several benchmarks and over the
three modalities. For each benchmark, we formed a histogram of
its gates’ sensitivities. On this histogram, we find the 50th (me-
dian), 75th, and 95th percentiles for the sensitivity factors. The
values are shown in Table IV. For example, a 95 percentile equal
to 0.8 means that 95% of the gates have sensitivity factors less
than 0.8 of the maximum sensitivity factor in that modality. It is
seen that the corresponding percentile values for the leakage and
dynamic power modalities are higher than the timing modality.
We observe that in the first two modalities, a high percentage of
the gates have sensitivity factors comparable to the maximum
sensitivity factor in that modality. It shows that in these two
cases, most of the gates are sensitive. Meaning that a change in
these gates’ values effectively alters the error as it was explained
in Section IV-D, hence anomalies in them can be detected. But in
the timing modality, the sensitivity factors of a high percentage
of gates are considerably small. The low sensitivity of timing to
gate delay changes shows that the anomalies cannot be detected
well in this modality.

Table V shows the Pearson’s linear correlation coefficient for
each pair of the modality sensitivities. The interpretation of each
coefficient is such that the closer it is to one, the more linearly
correlated the two modalities are. It follows from Table V that
the gate sensitivity factors of the leakage and dynamic power
modalities are highly correlated for all the benchmarks, but the
sensitivity factors of the timing modality are rarely correlated
with those of the other two modalities.

The relationship between the sensitivity factors of different
modalities can also be observed in Fig. 6(a) and (b). Sensi-
tivity factors of the leakage modality are plotted in an ascending
order -axis and sensitivity factors of the corresponding gates
of the dynamic power and timing modalities are plotted respec-
tively -axis. A gate which is less sensitive in one modality
can be more sensitive in the other one. The fact that there is
a little correlation between the sensitivity factors of the timing
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Fig. 6. Comparison of sensitivity factors for modalities. (a) Static and dynamic
power. (b) Static power and timing.

Fig. 7. Stepwise diminishing return improvement for a Trojan free, a 1-gate,
and a 3-gate Trojan. (a) Leakage modality. (b) Dynamic power. (c) Timing.

modality and the two other modalities suggests that using the
timing modality along with one of the other modes can improve
the detection results.

4) Unimodal Anomaly Detection: We now evaluate the
effectiveness of unimodal anomaly detection for the three
modalities. Three scenarios are considered: i) a Trojan-free
circuit, ii) one extra NAND2 gate inserted as a Trojan, and iii) a
three-gate comparator circuit is added. We inserted the Trojans
within the empty spaces of the automatic layout generated by
the Dragon tool. We first study the key property of the changes
in diminishing return at each iteration. As discussed, the di-
minishing return would be monotonically decreasing assuming
no random perturbations. Fig. 7(a)–(c) demonstrate the dimin-
ishing return versus iteration number for the static, dynamic,
and timing modalities for the C432 benchmark. The figures
show that as we go through iterations, the stepwise change in
diminishing return becomes smaller. Also, the step-wise change
is higher for larger Trojans and is very low for no Trojans.
After the Trojan circuit reaches a similar diminishing return
difference as the Trojan-free case, no further significant change
is observed. Similar trends are observed in all modalities.

Fig. 8. Boxplots showing the final number of iterations or equivalently ��� for
the Trojan free, 1- and 3-gate Trojan. (a) Leakage modality. (b) Dynamic power.
(c) Timing.

We exploit the diminishing return results to define stopping
criteria for Algorithm 1. For instance, a criteria that would
halt the algorithm once the step-wise decreasing improvement
reaches 2. We show in Fig. 7 that this stopping criteria results
in an average false alarm for one gate (the benchmark has 206
gates) meaning that . In case of the
smaller Trojan, about two gates are not detected, meaning that

. We see that additional gates are reported because
the Trojan gates impact the side channel measurements of the
logically connected gates. One could exploit this observation
to help localize the Trojan, but further localization is outside
the scope of this paper. The stopping criteria is faster reached
by the timing modality compared to the other modalities. This
is because even if multiple gates are impacted by Trojan, only
the ones with a high sensitivity will affect the reward function.
In Section IV-D we observed that the timing modality would
result in less gate sensitivities compared to other modalities
and, therefore, a smaller number of gates would be detected.
Selecting the stopping criteria results in a tradeoff between

and . On larger benchmarks, we observed that the
is higher than the small circuits for no Trojan case. Note that
the and results for the multimodal case inherently
include the unimodal case, so we decided to only report it in
the multimodal subsection.

The boxplots for the number of iterations (before reaching a
stopping criteria) on three benchmark circuits and for the three
modalities are shown in Figs. 8(a) and (b), respectively. The
number of iterations is related to the number of detected anoma-
lous gates. We observe that by increasing the Trojan size, more
anomalous gates would be detected. Note that the number of de-
tected gates does not correspond to the number of gates in the
Trojan circuitry. The anomalous gates are the ones that are im-
pacted by a nearby Trojan. It can also be seen that for the delay
modality, the number of the detected anomalous gates is less
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Fig. 9. Scaling factor distribution (2 peaks).

TABLE VI
DISTANCE BETWEEN MEANS AND VARIANCES FOR

THE TWO-PEAK DISTRIBUTION

TABLE VII
� IN TERMS OF THE DETECTED ANOMALOUS GATES

IN A TROJAN-FREE CIRCUIT

than the other two modalities. Our tests illustrate that the timing
modality is more sensitive to the Trojan’s location in the circuit.
A Trojan that cannot impact multiple paths would result in a low
number of detected anomalous gates.

5) Cumulative Unimodal Profiling: A cumulative profile of
a chip is built for a 1000 randomly generated instances for each
benchmark. For one benchmark, two cases could be correctly
classified: the one-gate Trojan versus the Trojan-free. The shape
of the derived distribution with two peaks is shown in Fig. 9. We
approximate each distribution by a Gaussian where the two dis-
tributions are centered about a different peak. The peaks are sep-
arated by a distance and the variances of the two distributions
is denoted by and . These values are reported in Table VI
for different benchmarks (leakage modality). The distances are
large enough to distinguish between the two Gaussians.

C. Multimodal Trojan Detection

In Table VII, we represent the false alarm (in terms of the
number of gates) over 100 Trojan-free chips. The false alarm is
the highest for the timing modality. After showing the bench-
mark names in the first column, the remainder of the columns
represent the results for: i) unanimous, ii) conservative, iii) ma-
jority, and iv) weighed. The lowest was achieved by the
unanimous voting that can moderate the impact of the modali-
ties with a high false alarm. The probability of detection (per-
centage) for a one-gate Trojan over 100 chips is demonstrated
in Tables VIII and IX. The second to fifth columns represent the
cases where the Trojan is placed at a location of high sensitivity
(for all modalities). The last four columns show for a Trojan

TABLE VIII
� FOR A 1-GATE TROJAN INSERTED AT HIGH AND LOW SENSITIVITY

LOCATIONS FOR THE THREE MODALITIES

TABLE IX
� FOR A 1-GATE TROJAN INSERTED AT LOCATIONS WITH OPPOSITE LEVELS

OF SENSITIVITIES FOR TIMING MODALITY AND THE OTHER TWO MODALITIES

gate inserted at low sensitivity positions (for all modalities).
Columns two to five of Table IX represent where the Trojan
is placed at a location with low timing sensitivity and a high
power sensitivity. The last four columns show where the
Trojan is placed at a location with a high timing sensitivity and
low power sensitivity. Note that the static and dynamic modali-
ties are highly correlated. For highly sensitive gates, is close
to 100% except for the unanimous voting that minimizes
as opposed to .

The sensitivity results can also be used for finding the loca-
tions where the Trojans can be best hidden. Our formal sen-
sitivity metric directly corresponds to . Since our methods
reach a detection bound for the available test vectors and for
each modality, for improving the detection results methods that
increase controllability and observability or newer test modali-
ties should be adopted.

VII. RELATED WORK

Hardware Trojan detection is a new and emerging research
area. Agrawal et al. [4] use destructive tests to extract a finger-
print for a group of unaltered chips based on the global transient
power signal characteristics. The other chips would be noninva-
sively tested against the extracted fingerprints by statistical Hy-
pothesis testing. The overhead of destructive testing, sensitivity
to noise and process variations, and lack of usage of the logical
structure and constraints are the drawbacks of this method.

Banga et al. [7], [26] propose a region-based testing that first
identifies the problematic regions based on power signatures
and then performs more tests on the region. The underlying
mathematical and logical circuit structure or the process vari-
ations are not considered. Rad et al. [5], [6] investigate power
supply transient signal analysis methods for detecting Trojans.
An IC’s supply current is measured from multiple supply ports
to deal with the small Trojan-signal-to-background-current ra-
tios. The calibration technique transforms the measured currents
for each IC to match those produced from a golden, Trojan free
simulation model. The focus is on test signatures and not on
the lower-level components (e.g., the gate-level characteristics).
Rad et al. further improved the resolution of power analysis
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techniques to Trojans by carefully calibrating for process and
test environment (PE) variations.

Jin and Markis [8] extract the path delay fingerprints by using
the well-known principal component analysis that is a statistical
dimension reduction technique. They use Hypothesis testing
against the delay fingerprints to detect the anomalies. This ap-
proach also does not consider the gate level components and
would also require exponential path measurements in the worst
case. Li and Lach propose adding on chip delay test structures
for Trojan detection [27]. Gate-level characterization was used
for postsilicon profiling [28]–[30] and its use for IC Trojan de-
tection was first proposed in [9], [31] and also used in [10]–[13],
[32], [33]. However, optimality guarantees (bounds), calibra-
tion, sensitivity, and multimodal combining were not discussed
in the literature. Our work provides the first rigorous treatment
of the multimodal Trojan detection problem, near-optimal solu-
tions, mathematical calibration and introduction of a sensitivity
metric. Even though a number of authors suggested the poten-
tial benefits of combining different measurement types, to the
best of our knowledge no systematic approach with evaluation
results on combining different test and measurement modalities
was reported.

Note that the linear dependence of the path delays on gate
characteristics is a well-known fact in traditional testing. But
since in testing the path delays are important and the fault
models are radically different from our Trojan models, this
linear relationship is only exploited for finding the basis path
sets [15] that is the smallest path set such that every other path
in the circuit graph is linearly dependent on it. Our noninvasive
profiling decomposes the measurements to gate level com-
ponents as opposed to only generating a statistical signature.
Thus, not only does it have a linear test time with respect to the
number of gates (as opposed to exponential number of timing
paths or power test vectors) but also it provides a better insight
and Trojan detection capabilities.

A multimodal Trojan detection approach (concurrent to our
work) was proposed in [34]. This work combines the IDDT
measurements with measurements as a multimode test.
Aside from the multimode testing, our work is drastically dif-
ferent since we exploit other test modalities, pursue different
objectives, and have a distinct approach.

Our method exploits the concept and results of submodular
function optimization [23]. The concept has been utilized earlier
in a variety of contexts [35], including but not limited to: set
cover [24], sensor networks [36], and graph problems [37]. Our
work is the first to formulate and use the submodularity concept
for IC Trojan detection.

An earlier version of this work appeared in [20]. The new as-
pects of this paper include sensitivity analysis and cumulative
unimodal profiling. Our new sensitivity metric evaluates and
compares the efficiency of our detection method over the modal-
ities. We also show how the cumulative detection data can be
used for categorizing ICs based on the Trojan symptoms and for
accelerating detection. calibration is presented with much more
details. Extensive results are provided for the newly added sec-
tions and experimental analysis are expanded.

VIII. CONCLUSION

Our work presents a new unified formal framework for IC
Trojan detection by noninvasive measurements from multiple
test modalities. For each modality, a unimodal anomaly detec-
tion is built upon the gate level profiling. To address the complex
problem, we devise an iterative detection and profiling method.
Our detection objective function is shown to be submodular. Be-
cause of submodularity, our iterative greedy detection and pro-
filing algorithm achieves a near optimal solution (within a con-
stant fraction of the optimal) in polynomial time. We show a
method to calibrate the systematic variations. Our multimodal
Trojan detection approach combines the unimodal detection re-
sults. We introduce a new sensitivity metric which quantifies the
impact of altering each gate on the overall detection result. Ex-
perimental evaluations on benchmarks for timing, leakage cur-
rent, and transient currents show the effectiveness of the pro-
posed approach. To the best of our knowledge, this is the first
systematic unified IC Trojan detection framework. The emer-
gence of testing techniques and more exact measuring equip-
ment could improve the detection capabilities of the unified mul-
timodal framework.
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