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Motivation

Mobile phone providers that
offer a significant discount
for calls between their
subscribers.

Users would benefit the
most by subscribing to the
provider of the friends with
whom they talk most.

: Providers.
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Motivation

Radio stations broadcast on
a limited spectrum of radio
frequencies.

Each station would favor a
frequency that is used the
least by its nearby stations.

: Frequencies.

Michal Feldman and Ophir Friedler



Motivation

Agents selecting an identity.

Each agent aims to have the
same identity as similar
agents and an identity that
is different from dissimilar
agents.

: Identities.
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Clustering games

The model

A graph (V ,E) of relationships.

Mobile phones Frequencies Hipsters
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A graph (V ,E) of relationships.
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Clustering games

The model

A graph (V ,E) of relationships.
Each edge e has a type be ∈ {−,−}, edges may have weights.

Each agent (node) i selects σi : one of at most k strategies.

Denote by σ = (σ1, σ2, . . . , σn) the strategy profile (outcome).
Symmetric: If all agents can select all k strategies.

Each edge e is or according to its type be and the
strategies of the agents.

The utility ui of agent i is the sum of (weights of ) edges.

Mobile phones Frequencies Hipsters

Michal Feldman and Ophir Friedler



A natural optimization problem

Assign strategies to agents (nodes) in order to maximize the social
welfare (SW) – the sum of the agents’ utilities.
(σ = outcome)

SW (σ) = ∑
i∈V

ui(σ) = 2 ⋅∑
e∈E

✶
{e is in σ}

Example

If all edges are —, we get the Max-k-Cut problem.
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Strategic behaviour

In the absence of a central planner, every agent (node) attempts to
selfishly maximize utility.

Definition

A Nash equilibrium (NE) is an outcome in which no agent can
strictly benefit by unilaterally deviating to a different strategy.

However, in many situations agents can coordinate their deviations.
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Definition

A Nash equilibrium (NE) is an outcome in which no agent can
strictly benefit by unilaterally deviating to a different strategy.
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Definition ([Aum59])

A strong equilibrium (SE) is an outcome for which no coalition of
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Strategic behaviour

In the absence of a central planner, every agent (node) attempts to
selfishly maximize utility.

Definition

A Nash equilibrium (NE) is an outcome in which no agent can
strictly benefit by unilaterally deviating to a different strategy.

However, in many situations agents can coordinate their deviations.

Definition ([Aum59])

A q-strong equilibrium (SE) is an outcome for which no coalition
of agents of size at most q can jointly deviate, so that each
member strictly benefits.

∣
NE

1
∣
SE

∣V ∣ q

Michal Feldman and Ophir Friedler



Coalitional deviations

Nash equilibrium, not 2-strong equilibrium.
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Coalitional deviations
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agents increase utility by 1.
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Coalitional deviations

3-strong equilibrium, not 4-strong equilibrium.
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Existence of equilibrium

Theorem

Every clustering game has a Nash equilibrium (since it is a
potential game [MS96]).

Theorem

Every clustering game with two strategies has a strong equilibrium.

Extends previous theorems for special cases (Max-Cut and
2-NAE-SAT [GM09], coordination games on graphs [ARSS14]).

Conjecture

Every symmetric clustering game possesses a strong equilibrium.

Extends previous conjecture for Max-k-Cut [GM09].
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Quantifying inefficiency

Price of Anarchy (PoA) – the ratio between the social welfare of
a worst Nash equilibrium, and that of an unconstrained optimal
outcome.

Quantifies the loss of efficiency due to selfishness.

Definition

PoA =
SW of worst NE

SW of an optimal outcome
≤ 1

Remark

A lower bound is a positive result, and an upper bound is a
negative result.
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Quantifying inefficiency

Strong Price of Anarchy (SPoA) – the ratio between the social wel-
fare of a worst Strong equilibrium, and that of an unconstrained
optimal outcome.

Quantifies the loss of efficiency due to selfishness, and
assuming coordination capabilities.

Definition

SPoA =
SW of worst SE

SW of an optimal outcome
≤ 1

Remark

A lower bound is a positive result, and an upper bound is a
negative result.
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Quantifying inefficiency

q-Strong Price of Anarchy (q-SPoA) – the ratio between the social
welfare of a worst q-Strong equilibrium, and that of an unconstrained
optimal outcome.

Quantifies the loss of efficiency due to selfishness, and
assuming limited coordination capabilities.

Definition

q-SPoA =
SW of worst q-SE

SW of an optimal outcome
≤ 1

Remark

A lower bound is a positive result, and an upper bound is a
negative result.
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Previous work

z(q) = q−1
n−1

Class Case Description Result
Name — / — # of Str. Sym PoA SPoA

Max-Cut — 2
√

1/2 “folklore” 2/3 [GM09]

2-NAE-SAT — / — 2
√

1/2 [GM09] 2/3 [GM09]

Max-k-Cut — k
√ k−1

k
[Hoe07]

⎡⎢⎢⎢⎢⎣
k−1

k− 1
2(k−1)

,
k−1

k− 1
2

⎤⎥⎥⎥⎥⎦
[GM10]

q-SPoA
Coordination games

on graphs — k × [ z(q)
2

,
z(q)
2
+

z(q)2

4−2⋅z(q)
] [ARSS14]

Clustering games are (1/2,0)-coalitionally smooth games
[BSTV14], therefore SPoA ≥ 1

2 .
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Goal

Construct a unified recipe for quantifying the degradation of social
welfare (i.e., q-SPoA) in various settings that fall into the class of
clustering games.
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Our contribution

1 We provide a unified framework for computing the q-SPoA in
clustering games.

2 We use our framework to recover previous results on special
cases.

3 We use our framework to establish new q-SPoA bounds on
previously studied games.

4 We identify new settings that fall into the class of clustering
games and establish q-SPoA bounds for them.
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The framework - High level

Proving a lower bound on the q-SPoA

1 For each coalition K of size at most q obtain an expression for
the lower bound on the welfare of K in equilibrium.

2 Infer a generic expression for a lower bound for coalition of
any size.

3 Use combinatorial reasoning for each special case to substitute
terms in the generic expression to derive a meaningful lower
bound.
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Price of Anarchy results (positive results)

z(q) = q−1
n−1 (so NE ⇒ z(q) = 0 and SE ⇒ z(q) = 1).

Symmetric games

New special case:

Only — edges: q-SPoA ≥
2+(k−2)⋅z(q)

2k−z(q)

PoA ≥ 1
k
, SPoA ≥ k

2k−1

Only — edges: q-SPoA ≥ k−1
k− 1

2(k−1) ⋅z(q)

Both — and — edges: q-SPoA ≥
2+(k−2)⋅z(q)

2k− 1
k−1
⋅z(q)

Asymmetric games (clustering games in general)

q-SPoA ≥
z(q)
2
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Upper bounds (negative results)

Proposition (a tight bound on SPoA)

The symmetric case with a line graph of — edges with 2k nodes
and k strategies for each player has a SPoA of k

2k−1

Proposition (a tight bound on PoA)

There exists a symmetric coordination games on a graph with k
strategies, with PoA = 1/k .
Theorem (Upper bound in Max-Cut, for q << n)

For any ǫ > 0 and q = O(n1−ǫ), the q-SPoA of Max-Cut is 1/2.
Michal Feldman and Ophir Friedler



The renaming process
σ: q-SE σ∗: Optimal outcome

K ∶ K ∶

⌢̈ ∣K ∣ ≤ q
Since σ is a q-SE, one agent doesn’t
benefit from deviating, rename this agent
to 1.
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The renaming process
σ: q-SE σ∗: Optimal outcome

K ∶ K ∶

⌢̈ ∣K ∣ ≤ q
Since σ is a q-SE, one agent doesn’t
benefit from deviating, rename this agent
to 1.

σ: q-SE σ∗: Optimal outcome

K ∖ {1} ∶

1

K ∖ {1} ∶
⌢̈ Since σ is a q-SE, one agent doesn’t

benefit from deviating, rename this agent
to 2.

Result

For ∣K ∣ ≤ q:
∑
i∈K

ui(σ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

total welfare of K

≥ ∑
i∈K

ui(agents i . . . ∣K ∣deviate to σ∗)
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The renaming process

Result of the renaming process

For ∣K ∣ ≤ q:
∑
i∈K

ui(σ) ≥∑
i∈K

ui(agents i . . . ∣K ∣deviate to σ∗)
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The renaming process

Result of the renaming process

For ∣K ∣ ≤ q:
∑
i∈K

ui(σ) ≥∑
i∈K

ui(agents i . . . ∣K ∣deviate to σ∗)
=u1(σ1, σ∗−1)+
u2(σ1, σ2, σ∗−{1,2})+
. . .

u∣K ∣(σ1, . . . , σ∣K ∣, σ∗−K)
The utilities of different agents are taken at different
outcomes.

An entangled outcome is not necessarily a stable point nor an
optimal outcome.

Therefore, decomposition is needed.

Michal Feldman and Ophir Friedler



Decomposition I

1 B: Edges that are both in σ and σ∗.

2 O: Edges that are only in σ∗.

3 E : Edges that are only in σ.

4 I
A: Edges that are in the interior of A:

A

5 δA,B : Edges that are in the cut of A and B :

A B
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Decomposition II

6 1(σ
∗

K
,σ
−K
): Edges that are by the outcome (σ∗K , σ−K).

7 [K ]σ,σ∗ : Edges from the interior of K , where each edge
between two agents that are renamed to i < j , is when
colored

σi σ∗j
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Lemma

For every q-strong equilibrium σ, optimal outcome σ∗,
and a set of players K of size at most q:

SWK(σ) ≥IK ∩ (B +O) + [K ]σ,σ∗ + δK ,K c

∩ 1(σ
∗

K
,σ−K )
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Lemma

For every q-strong equilibrium σ, optimal outcome σ∗,
and a set of players K of size at most q:

SWK(σ) ≥IK ∩ (B +O) + [K ]σ,σ∗ + δK ,K c

∩ 1(σ
∗

K
,σ−K )

For a larger coalition A, sum over all K ⊆ A, ∣K ∣ = q and
normalize.

For D = {i ∶ σi ≠ σ∗i }, split δK ,K c

to δK ,Dc

∪ δK ,D∖K
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Lemma

For every q-strong equilibrium σ, optimal outcome σ∗,
and a set of players K of size at most q:

SWK(σ) ≥IK ∩ (B +O) + [K ]σ,σ∗ + δK ,K c

∩ 1(σ
∗

K
,σ−K )

For a larger coalition A, sum over all K ⊆ A, ∣K ∣ = q and
normalize.

For D = {i ∶ σi ≠ σ∗i }, split δK ,K c

to δK ,Dc

∪ δK ,D∖K

And then you get something like this:

SWD(σ) ≥ q − 1

∣D ∣ − 1 ⋅ (ID + δD,Dc) ⋅ (B +O)
+(∣D ∣ − 1

q − 1
)−1 ∑

K⊆D
∣K ∣=q

⋅([K ]σ,σ∗ + δK ,D∖K
⋅ 1(σ

∗

K
,σ−K )) ⋅ (B +O + E)
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Symmetry

When all players have the same strategy space:

π: a permutation over the strategy space.

σπ: The outcome where each player i plays π(σi).
Lemma (Permutation invariance)

For every outcome σ and permutation π, the edges are identical
in σ and σπ.

Corollary

The sets of edges B,O,E are invariant when replacing σ∗ with σ∗
π
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Symmetry

Left-hand side

Dπ = {i ∶ σi ≠ π(σ∗i )}
From previous lemma:

SWDπ
(σ) ≥ q − 1

∣Dπ ∣ − 1 ⋅ (I
Dπ
+ δDπ ,Dπ

c) ⋅ (B +O) + (∣Dπ ∣ − 1
q − 1

)−1 ∑
K⊆Dπ

∣K ∣=q

⋅([K ]σ,σ∗ + δK ,Dπ∖K
⋅ 1(σ

∗

K
,σ−K )) ⋅ (B +O + E)

Sum over all permutations.

∑
π

SWDπ
(σ) = (k − 1)(k − 1)!´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k=# of strategies

⋅SW (σ)
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Symmetry

Right-hand side

The following properties are used to quantify the right-hand side:

Permutation invariance.

Both in [K ]σ,σ∗ and δK ,D∖K
∩ 1(σ

∗

K
,σ−K ), edges look like:

σi σ∗j

And for the set D = {i ∶ σi ≠ σ∗i }, j changes color.

The type of edge (— / —) implies how many times it is
when summing over all π.

Combining RHS and LHS

(k − 1)(k − 1)! ⋅ SW (σ) ≥ some factor ⋅ SW (σ∗)
Michal Feldman and Ophir Friedler



Future work

Solve the conjecture for existence of strong equilibrium

Close gaps (SPoA in Max-k-Cut, etc.)

More meaningful upper bounds for q-SPoA.

Extend analysis to handle other solution concepts (mixed,
correlated, coarse correlated equilibria).

Try to use our analysis to shed light on coalitional dynamics.
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End

Thank you!
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Example - Symmetric coordination games on graphs

Theorem

The SPoA of symmetric coordination games on graphs with k
strategies is at least k

2k−1 .

Proof.

1 Recall that D = {i ∶ σi ≠ σ∗i }
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Theorem

The SPoA of symmetric coordination games on graphs with k
strategies is at least k
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Proof.

1 Recall that D = {i ∶ σi ≠ σ∗i }
2 Therefore: (σ∗D , σ−D) = σ∗ = B +O *notation abused
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Example - Symmetric coordination games on graphs

Theorem

The SPoA of symmetric coordination games on graphs with k
strategies is at least k

2k−1 .

Proof.

1 Recall that D = {i ∶ σi ≠ σ∗i }
2 Therefore: (σ∗D , σ−D) = σ∗ = B +O *notation abused

3 Plug to lemma:

SWD(σ) ≥ (ID + δD,Dc) ⋅ (B +O) + [D]σ,σ∗
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Example - Symmetric coordination games on graphs

Theorem

The SPoA of symmetric coordination games on graphs with k
strategies is at least k

2k−1 .

Proof.

1 Recall that D = {i ∶ σi ≠ σ∗i }
2 Therefore: (σ∗D , σ−D) = σ∗ = B +O *notation abused

3 Plug to lemma:

SWD(σ) ≥ (ID + δD,Dc) ⋅ (B +O) + [D]σ,σ∗

4 All edges are —, therefore, changing strategy to one node of
an edge which is in σ or σ∗

π
, surely makes it /.

⇒ [Dπ]σ,σ∗π = 0.
Michal Feldman and Ophir Friedler



Example - Symmetric coordination games on graphs

Proof (Cont.)

5 Sum over all π

∑
π

SWDπ
(σ) ≥∑

π

(IDπ
+ δDπ ,D

c
π) ⋅ (B +O)
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Example - Symmetric coordination games on graphs

Proof (Cont.)

5 Sum over all π

∑
π

SWDπ
(σ) ≥∑

π

(IDπ
+ δDπ ,D

c
π) ⋅ (B +O)

6 Left-hand side = (k − 1)(k − 1)!SW (σ)
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Example - Symmetric coordination games on graphs

Proof (Cont.)

5 Sum over all π

∑
π

SWDπ
(σ) ≥∑

π

(IDπ
+ δDπ ,D

c
π) ⋅ (B +O)

6 Left-hand side = (k − 1)(k − 1)!SW (σ)
7 Right-hand side, using permutation invariance:

(∑
π

I
Dπ)B + (∑

π

δDπ ,D
c
π)B + (∑

π

I
Dπ)O + (∑

π

δDπ ,D
c
π)O
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Example - Symmetric coordination games on graphs

Proof (Cont.)

All edges are —. Therefore:

(∑
π

I
Dπ) ⋅ B = (k − 1)(k − 1)! ⋅ B

For every e ∈ B:

e ∈ IDπ
⇔ π(σ∗i ) ≠ σi

k − 1 options to fix π(σ∗i )(k − 1)! options to set the other (k − 1) values of π.
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Example - Symmetric coordination games on graphs

Proof (Cont.)

All edges are —. Therefore:

(∑
π

δDπ ,D
c
π) ⋅ B = 0

If e ∈ B, then e can never be in the cut.
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Example - Symmetric coordination games on graphs

Proof (Cont.)

All edges are —. Therefore:

(∑
π

I
Dπ) ⋅O = (k − 2)(k − 1)! ⋅O

For every e ∈ O

e ∈ IDπ
⇔ {π(σ∗i )} ∩ {σi , σj} = φ

(k − 2) options to fix π(σ∗i )(k − 1)! options to set the other (k − 1) values of π.
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Example - Symmetric coordination games on graphs

Proof (Cont.)

All edges are —. Therefore:

(∑
π

δDπ ,D
c
π) ⋅O = 2(k − 1)! ⋅O

For every e ∈ O:

e ∈ δDπ ,D
c
π in exactly two disjoint events:

π(σ∗i ) = σi or π(σ∗j ) = σj
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Example - Symmetric coordination games on graphs

Proof (Cont.)

8 In total:

(k − 1)(k − 1)!SW (σ) ≥ (k − 1)(k − 1)! ⋅ B + k! ⋅O
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Example - Symmetric coordination games on graphs

Proof (Cont.)

8 In total:

(k − 1)(k − 1)!SW (σ) ≥ (k − 1)(k − 1)! ⋅ B + k! ⋅O
Which equals:

(k − 1)SW (σ) ≥ (k − 1) ⋅ B + k ⋅O = k ⋅ (B +O) −B
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Example - Symmetric coordination games on graphs

Proof (Cont.)

Which equals:

(k − 1)SW (σ) ≥ (k − 1) ⋅ B + k ⋅O = k ⋅ (B +O) −B

9 Since SW (σ∗) = 2 (B +O):
2(k − 1)SW (σ) ≥ k ⋅ SW (σ∗) − SW (σ)
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