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Linear mixed models (LMMs) are among the most commonly used tools
for genetic association studies. However, the standard method for estimat-
ing variance components in LMMs—the restricted maximum likelihood esti-
mation method (REML)—suffers from several important drawbacks: REML
requires individual-level genotypes and phenotypes from all samples in the
study, is computationally slow, and produces downward-biased estimates in
case control studies. To remedy these drawbacks, we present an alternative
framework for variance component estimation, which we refer to as MQS.
MQS is based on the method of moments (MoM) and the minimal norm
quadratic unbiased estimation (MINQUE) criterion, and brings two seem-
ingly unrelated methods—the renowned Haseman–Elston (HE) regression
and the recent LD score regression (LDSC)—into the same unified statis-
tical framework. With this new framework, we provide an alternative but
mathematically equivalent form of HE that allows for the use of summary
statistics. We provide an exact estimation form of LDSC to yield unbiased
and statistically more efficient estimates. A key feature of our method is
its ability to pair marginal z-scores computed using all samples with SNP
correlation information computed using a small random subset of individu-
als (or individuals from a proper reference panel), while capable of produc-
ing estimates that can be almost as accurate as if both quantities are com-
puted using the full data. As a result, our method produces unbiased and
statistically efficient estimates, and makes use of summary statistics, while it
is computationally efficient for large data sets. Using simulations and ap-
plications to 37 phenotypes from 8 real data sets, we illustrate the bene-
fits of our method for estimating and partitioning SNP heritability in pop-
ulation studies as well as for heritability estimation in family studies. Our
method is implemented in the GEMMA software package, freely available at
www.xzlab.org/software.html.

1. Introduction. Linear mixed models (LMMs), sometimes referred to as
variance component models, have been widely applied in many areas of genet-
ics. For example, they have been used for linkage analysis and heritability esti-
mation in family studies [Amos (1994); Almasy and Blangero (1998); Abecasis,
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Cardon and Cookson (2000); Diao and Lin (2005); Visscher, Hill and Wray
(2008)], for association analysis to control for individual relatedness and pop-
ulation stratification [Yu et al. (2006); Kang et al. (2008, 2010); Zhang et al.
(2010); Lippert et al. (2011); Zhou and Stephens (2012, 2014); Pirinen, Don-
nelly and Spencer (2013); Yang et al. (2014); Loh et al. (2015a)], for genomic
selection and risk prediction by jointly modeling genome-wide SNPs [Robinson
(1991); Hofer (1998); Whittaker, Thompson and Denham (2000); Hayes, Visscher
and Goddard (2009); Makowsky et al. (2011); Zhou, Carbonetto and Stephens
(2013); Wray et al. (2013)], and for rare variant association tests by group-
ing individually weak effects to improve power [Wu et al. (2009)]. More re-
cently, with growing interest, LMMs have been applied to estimate the propor-
tion of phenotypic variance explained by available SNPs [Yang et al. (2010);
Speed et al. (2012); Zhou, Carbonetto and Stephens (2013); Wray et al. (2013);
de Los Campos, Sorensen and Gianola (2015)]—a quantity often referred to as
SNP heritability—and to partition the SNP heritability by different chromosome
segments or by different functional genomic annotations [Yang et al. (2011a);
Kostem and Eskin (2013); Gusev et al. (2014); Finucane et al. (2015); Loh et al.
(2015b)]. These applications all require accurate estimation of variance compo-
nents in LMMs. Here, we will describe a new method for variance component
estimation, with main applications for SNP heritability estimation and partition in
population studies as well as side applications for heritability estimation in family
studies.

The standard method for variance component estimation is the restricted max-
imum likelihood estimation (REML) method. REML method is a form of max-
imum likelihood estimation that obtains the variance component estimates by
maximizing the restricted likelihood function, a function that is derived from the
likelihood function by removing the effects of nuisance parameters. REML is sta-
tistically efficient. However, REML suffers from several important statistical and
computational drawbacks. Perhaps the most important drawback of REML is that
it requires individual-level genotypes and phenotypes from all samples in the study.
Because of consent and privacy concerns, as well as logistic limitations (e.g., large-
scale data transfer and storage often require high-end computing infrastructure), it
is becoming increasingly difficult to access complete individual-level data from
large-scale association studies. Indeed, sharing summary statistics (e.g., marginal
z-scores) across multiple studies, performing meta-analysis, and releasing results
in terms of summary statistics has become a standard practice in most consor-
tium studies [Allen et al. (2010); Speliotes et al. (1974); Teslovich et al. (2010);
Manning et al. (2012); Jostins et al. (2012)]. Requiring complete individual-level
data thus restricts the use of REML and limits the benefits of LMMs in many large-
scale studies. In addition to its use of individual-level data, REML is also compu-
tationally slow. Despite many recent computational innovations [Thompson and
Shaw (1990); Kang et al. (2008); Lippert et al. (2011); Zhou and Stephens (2012);
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Pirinen, Donnelly and Spencer (2013); Loh et al. (2015a, 2015b)], it still can be
challenging to apply REML to large data sets. For example, it can take weeks to
analyze tens of thousands of individuals and tens of millions of SNPs with the
commonly used GCTA software [Yang et al. (2011a)]. Finally, REML relies on
the normality assumption of residual errors and is not robust to model misspecifi-
cation. In particular, in ascertained case control studies or studies with an extreme
sample design, REML underestimates SNP heritability [Chen (2014); Golan, Lan-
der and Rosseta (2014)].

To remedy these drawbacks of REML, we present a new, alternative method for
variance component estimation with summary statistics. Our method is based on
a long existing alternative to REML for variance component estimation, the min-
imal norm quadratic unbiased estimation (MINQUE) method, a method of mo-
ments (MoM) [Rao (1970, 1971)]. The MoM estimation method has been used in
animal breeding programs [Zhu and Weir (1996)], but its popularity has faded
away since the development of the statistically more efficient REML method.
However, as we will show here, with modifications, MoM can be used for vari-
ance component estimation with summary statistics and is computationally much
more efficient than REML. To realize the benefits of MoM and adapt MINQUE
to association studies with summary statistics, we rely on a set of simple sec-
ond moment matching equations of MINQUE and develop two additional ap-
proximations. Our first approximation allows us to make use of summary statis-
tics in terms of marginal z-scores and pair them with the individual related-
ness matrices (or SNP correlation matrices) to obtain unbiased estimates at the
price of a reduction of statistical efficiency (with respect to REML). Our sec-
ond approximation allows us to use only a small random subset of individuals
to compute the genetic relatedness matrices for this subset of individuals that
can be further used to estimate the average relatedness among individuals (or,
equivalently, to estimate the average SNP correlation across genome-wide SNPs).
This subsampling strategy greatly improves computational efficiency, but does
not reduce much further the statistical efficiency (with respect to the MoM esti-
mates obtained using full data). Importantly, our framework unifies two seemingly
unrelated methods—the renowned Haseman–Elston (HE) regression [Haseman
and Elston (1972); Drigalenko (1998); Elston et al. (2000); Sham and Purcell
(2001); Sham et al. (2002); Chen, Broman and Liang (2004); Chen (2014)] and
the recent LD score regression (LDSC) [Bulik-Sullivan et al. (2015a, 2015b);
Finucane et al. (2015)]—into the same umbrella. We refer to our method as
MQS (MinQue for Summary statistics), and we illustrate its benefits in SNP
heritability and heritability estimation with simulations and real data applica-
tions.

We organize the paper as follows. We provide a brief description of the method
in Section 2, with methodological details provided in the Supplementary Material
[Zhou (2017)]. In Section 3, we present comparisons between our method and sev-
eral other variance component estimation methods with simulations. In Section 4,
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we describe applications of MQS to 37 phenotypes from 8 real GWAS data, includ-
ing both individual-level data and data with only summary statistics. We conclude
the paper with a summary and discussion in Section 5.

2. Method overview. Our method applies to the following LMMs that can be
used to partition SNP heritability into k different nonoverlapping categories:

(2.1) y =

k
∑

i=1

gi + ε, gi ∼ MVN
(

0, σ 2
i Ki

)

, ε ∼ MVN
(

0, σ 2
k+1M

)

,

where y is an n-vector of phenotypes for n individuals; gi is an n-vector of random
effects representing the combined genetic effects of SNPs in the ith category; Ki =

XiX
T
i /pi is an n by n genetic relatedness matrix computed from the n by pi geno-

type matrix for pi SNPs in the ith category; σ
2 = (σ 2

1 , . . . , σ 2
k ) are the correspond-

ing variance components; ε is an n-vector of residual errors; σ 2
k+1 is the residual

error variance; M = I − 1n1T
n /n is a projection matrix; and MVN denotes a mul-

tivariate normal distribution. Both y and every column of X have been centered to
have mean zero, allowing us to ignore the intercept and use M instead of the usual
identity matrix I to constrain the errors to have mean zero. Note that the number of
categories, k, is known a priori and depends on the particular application. We de-
note the phenotype variance s2

y = yT y/(n−1). We also define the scaled version of

the variance components as h2 = (h2
1, . . . , h

2
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y and
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2
y . h2 represents the proportion of phenotypic variance explained by

all SNPs in each category, the estimation of which requires variance component
estimates σ̂

2.
Our method for variance component estimation, which we refer to as MINQUE

for summary statistics (MQS), is described in detail in the Supplementary Material.
Briefly, MQS is based on a set of second moment matching equations determined
by the MINQUE criterion [equation (3)], and has a simple, closed-form solution
for estimating the k variance components: σ̂

2
= S−1q, with a k-vector q and a k by

k matrix S [equation (11)]. Intuitively, the ith element of q measures the propor-
tion of variance in phenotypes explained (PVE) by SNPs in the ith category when
SNPs are independent, while the ij th element of S accounts for the linkage dise-
quilibrium (LD) between SNPs in the ith and j th categories (and the iith element
of S accounts for LD within the ith category). q is computed with the marginal
z-scores obtained using all individuals. S can be computed using the p by p SNP
correlation matrices. However, because the relatedness among individuals contains
the same amount of information for computing S as the SNP correlations across
genome-wide SNPs, we use the usual n by n genetic relatedness matrices for all
individuals to compute S efficiently. Importantly, computation of S only requires
knowing the average relatedness in the data instead of the detailed pairwise relat-
edness values. Therefore, as we will show below, S can also be estimated using



VARIANCE COMPONENT ESTIMATION WITH SUMMARY STATISTICS 2031

the genetic relatedness matrices for a subset of individuals or for individuals from
a reference panel. In addition to q and S, MQS requires a set of prespecified SNP
weights that are used for both q and S. This set of prespecified SNP weights is
used in MQS to approximate the optimal MINQUE estimating equations. Differ-
ent choices of weights represent different ways of approximation and can lead to
unbiased estimates with different levels of statistical efficiency.

MQS is a unified framework because different SNP weighting options lead
to different estimation methods. We consider two particular weighting options
here. The first option is equal SNP weights [equation (9)]. We refer to the vari-
ation of MQS under this weighting option MQS-HEW. MQS-HEW is mathemat-
ically equivalent to the renowned Haseman–Elston (HE) cross-product regression
[Haseman and Elston (1972); Drigalenko (1998); Elston et al. (2000); Sham and
Purcell (2001); Sham et al. (2002); Chen, Broman and Liang (2004); Chen (2014)].
However, our particular MQS formulation allows us to both make use of sum-
mary statistics and develop an asymptotic form to compute the standard errors.
The second weighting option assigns SNP weights as a function of both a priori

set of variance components and LD scores [equation (10)], where the LD score
of a variant is defined as the summation of the r-squared between itself and all
SNPs genome-wide. We refer to the variation of MQS under this weighting op-
tion MQS-LDW. For k = 1, MQS-LDW is equivalent to a special form of LDSC
[Bulik-Sullivan et al. (2015a, 2015)] that sets the intercept to be exactly one and
that effectively computes LD scores using all SNPs genome-wide. However, our
MQS formulation not only provides an asymptotic form to compute the standard
errors, but also is capable of measuring SNP correlations among all genome-wide
SNPs in a computationally efficient fashion, thus alleviating much of the estima-
tion bias encountered in LDSC (see sections below).

One key feature of MQS is that we can use a random subset of individuals to
obtain an estimate of S without reducing much of the statistical efficiency of the
variance component estimates σ

2 with respect to MQS estimation using the full
data. The subsampling strategy can be used for variance component estimation
with MQS because S measures only the average SNP correlation or, equivalently,
the average individual relatedness in the data, both of which can be estimated by
a random subset of samples. In addition, because S is much easier to be estimated
accurately than q, using estimated S often leads to only a small reduction in es-
timation accuracy. Specifically, with subsampling, the variance of the MQS esti-
mates, σ̂

2
= Ŝ−1q, can be decomposed into two parts: one that is due to V (q)

[as a result of V (y)] and the other that is due to V (Ŝ) because of subsampling.
Because S is a quantity computed by averaging across all SNP pairs while q is
a quantity obtained by averaging only across all SNPs, S is estimated effectively
with a sample size that is p′ times larger than that for q, where p′ is the effective
number of independent SNPs. Therefore, the extra variance due to estimating S

via subsampling—V (Ŝ)—can be much smaller compared with V (q). As a result,
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we can use a much smaller number of individuals m to estimate S without los-
ing much statistical efficiency. Besides this intuitive explanation, we provide more
formal arguments for the subsampling strategy in the Supplementary Material and
Figures S1–S3. Certainly, our computation of standard errors still explicitly ac-
counts for the uncertainty introduced by using a much smaller set of individuals
to estimate S instead of computing it. In addition, because the effectiveness of the
subsampling strategy depends on the effective number of independent SNPs, the
strategy is expected to work better in population studies than in family studies with
related individuals and an extended linkage disequilibrium pattern.

As a by-product of the subsampling strategy, estimating S with a smaller sub-
sample instead of computing S with the full data also allows us to apply MQS to
data from many consortium studies: there, we can pair q computed from the avail-
able marginal z-scores in the consortium study with Ŝ estimated from a random
subsample of the study using either the relatedness matrices for the subsample
or individual-level genotype data for them. When such a random subsample of
the study is not available, we can also use individual-level genotype data from a
publicly available reference panel, such as the 1000 genome project [The 1000
Genomes Project Consortium (2012)], which also contains a much smaller num-
ber of samples compared with the study, to estimate S, as long as individuals in
the reference panel can be viewed as a subsample of the study (e.g., of the same
ethnic origin).

Finally, for testing the null hypothesis H0 : σ 2 = 0, one could use an exact p-
value computation method based on a mixture of chi-square distributions [e.g.,
based on equation (13)]. Indeed, as we have shown in a separate study that fo-
cuses on a different variance component model application, using exact p-value
computation methods is the only viable solution to obtain calibrated p-values for
genome-wide applications with millions of tests [Crawford et al. (2017)]. How-
ever, as our main focus is on SNP heritability estimation or heritability estimation,
both of which often involve only one or a few tests [Yang et al. (2010, 2011b);
Zhou, Carbonetto and Stephens (2013)], we consider here a simple normal test
based on the point estimate and its standard error. We will show in the results
section below that the simple normal test provides acceptable type I error control
at the usual significance levels (e.g., α = 0.05). For convenience, MQS provides
two forms to compute the standard errors. The first form is based on asymptotics,
and, besides q and S, requires either the genetic relatedness matrices from the
full data [equations (15), (18), and (20)] or additional summary statistics besides
the marginal z-scores [equation (25)]. The second form is based on the blockwise
jackknife resampling procedure proposed in LDSC [Bulik-Sullivan et al. (2015a)],
and requires only marginal z-scores besides S. However, the jackknife option as-
sumes blockwise SNP independence and may not yield calibrated standard errors
when the LD pattern is complicated. Examples where the jackknife may not apply
include ascertained case control studies [Hayes et al. (2005); Zaykin, Meng and



VARIANCE COMPONENT ESTIMATION WITH SUMMARY STATISTICS 2033

Ehm (2006)], admixture populations [Price et al. (2008)], and related individuals,
which are defined loosely as individuals who are not far away in time from their
most recent common ancestor [Speed and Balding (2015)].

We summarize the key features of MQS along with several other variance com-
ponent estimation methods in Table 1. Because of the subsampling strategy, MQS
is efficient in terms of computation and memory usage compared with a range of
commonly used methods (Figure 1).

3. Simulations. We perform simulations to compare the performance of sev-
eral different methods on variance component estimation. We use two real geno-
type data sets for simulation: an Australian data with n = 3925 individuals and
p = 4,352,968 imputed SNPs [Yang et al. (2010)], and a Finnish data with
n = 5123 individuals and p = 319,148 genotyped SNPs [Sabatti et al. (2008)].
We choose these two data sets not only because both consist of white individuals
of European ancestry, but also because the two differ in LD pattern: the Finland
data displays longer LD than the Australia data (Figure S4). The Finland data dis-
plays a long LD pattern presumably because individuals from the Finland data are
more closely related to each other than individuals from the Australia data; how-
ever, the Finland study is not a family study. The long LD pattern in the Finland
data makes it easy to validate some of our expectations. For each data set, the
real genotypes are used to compute genetic relatedness matrices, with which we
simulate phenotypes based on LMMs (details in Supplementary Material). Envi-
ronment effects are simulated from independent normal distributions that do not
depend on genetic relatedness; thus no population stratification is present in the
simulations.

We compare six different methods: (1) REML that uses individual-level phe-
notypes and genotypes; (2) HE regression that uses individual-level phenotypes
and genotypes; (3) LDSC that uses z-scores computed from the full data and
LD scores estimated based on the LDSC-recommended 1 MB window size from
individual-level genotypes of the full data; (4) LDSC that uses LD scores es-
timated based on a 10 MB window size instead; (5) MQS-HEW that uses z-
scores computed from the full data and Ŝ estimated from individual-level geno-
types of m = 400 randomly selected individuals; and (6) MQS-LDW that uses
z-scores computed from the full data, LD scores estimated based on 1 MB win-
dow from genotypes of m = 400 randomly selected individuals, and Ŝ estimated
from genotypes of the same subsample. We evaluate and compare different meth-
ods based on their statistical properties including unbiasedness and statistical effi-
ciency.

We first simulate phenotypes under LMMs with k = 1 (Supplementary Ma-
terial). We check three scenarios: h2 = 0, 0.25, or 0.5; note that most quantita-
tive traits have an SNP heritability below 0.5 [Furlotte, Heckerman and Lippert
(2014)]. For each scenario, we perform 1000 replicates. For MQS-HEW and MQS-
LDW, a different set of m = 400 individuals are used in each simulation replicate.
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TABLE 1
Computational complexity and memory usage of different methods for variance component estimation. The computational complexity includes time to

compute the genetic relatedness matrices. REML relies on maximizing the restricted likelihood while MoM is based on moments matching. AI: average

information method; NR: Newton Raphson’s algorithm; MC: Monte Carlo algorithm; HE: Haseman-Elston regression; LDSC: LD score regression. n is

the number of individuals; m is the number of randomly selected subset of individuals (m < n); k is the number of variance components; p is the number

of genetic markers; w is the average number of variants used to estimate the LD scores; c is the number of jackknife samples for estimating the standard

error; t is the number of iterations used in estimation: t = 1 for MQS-HEW, t = 2 for MQS-LDW, and t > 2 for LDSC and REML; (a): asymptotic; (j):
jackknife

Computational complexity (O)
Memory

usage (O)

Summary

statistics

Example

software

Selected

referencesType Methods Point estimate Standard error

REML NR-AI pn2 + t (n3 + k2n2) (a): k2n2 kn2 No GCTA, GEMMA Gilmour, Thompson and Cullis (1995)
Yang et al. (2011c)

Zhou and Stephens (2012)
MC-AI tpn1.5 (a): k2n2 pn No BOLT-REML García-Cortés et al. (1992)

Matilainen et al. (2012)
Loh et al. (2015b)

MoM HE pn2 + k2n2 (j): ck2n2 kn2 No PCGC Haseman and Elston (1972)
Golan, Lander and Rosseta (2014)

HE pn2 + k2n2 (a): k2n2 kn2 No GEMMA this work
LDSC wpn + tkp (j): ckp pn Yes LDSC Bulik-Sullivan et al. (2015a)

Bulik-Sullivan et al. (2015b)
Finucane et al. (2015)

MQS pn + t (pm2 + k2m2) (a): kpn; (j): cp km2 Yes GEMMA this work
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FIG. 1. Comparison of CPU time (left) and memory usage (right) for commonly used variance

component estimation software for data with 10,000, 30,000, or 50,000 individuals and 1 million

SNPs. Computation is performed on a single core of an Intel Xeon CPU E5-2683. Software compared

include GCTA (brown), BOLT-REML (orange), PCGC (grey), LDSC (purple), MQS-HEW (blue), and

MQS-LDW (green). PCGC uses 100 jackknife samples to compute the standard errors; its computing

time is linear with the increase in number of jackknife samples. LDSC uses a neighbor window of

1000 SNPs to compute LD scores. The standard errors in MQS-HEW and MQS-LDW are computed

based on the asymptotic form; using the blockwise jackknife will make MQS-HEW and MQS-LDW

two times faster. MQS-HEW and MQS-LDW use m = 400,1200,2000 for the three sample sizes in

the data. The x-axis shows the number of samples in the data. The y-axis is on a log scale.

We obtain the variance component estimates from different methods. The left two
panels of Figure 2 show boxplots of these estimates. The right two panels of Fig-
ures 2 show the inverse of the estimated relative statistical efficiency of the es-
timates, which is estimated by contrasting the mean squared error (MSE) of the
estimates from one method to the MSE of the REML estimates; a higher relative
MSE indicates lower statistical efficiency compared with REML.

The results fit our expectations:
First, because MQS-HEW with S is identical to HE and because Ŝ is an accu-

rate estimate of S, estimates from MQS-HEW with Ŝ are similar to those from
HE (Figure S5). In fact, the statistical efficiency loss of using MQS-HEW in-
stead of HE (i.e., using m = 400 individuals to estimate S instead of computing
it with the full data) is estimated to be only 0.75%/1.4%/2.5% in the Australia
data and 0.31%/2.2%/4.0% in the Finland data for h2 = 0/0.25/0.5 scenarios,
respectively. In addition, because the variance of the MQS estimates depends on a
product of V (Ŝ) and the heritability parameter h2, MQS-HEW estimates are closer
to HE estimates with smaller h2.

Second, LDSC uses LD scores to quantify SNP correlations (unlike MQS,
which uses S to quantify correlations). However, LDSC uses only neighborhood
SNPs instead of all genome-wide SNPs to estimate LD scores through a sliding
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FIG. 2. Comparison of variance component estimates from REML (brown), HE (grey), LDSC (red

and purple), MQS-HEW (blue), and MQS-LDW (green) for k = 1 simulations based on the Australian

data (top panels) or the Finland data (bottom panels). LDSC estimates are obtained using either the

default 1 MB window (red) or an extended 10 MB window (purple). The left two panels show boxplots.
The true variance components (0, 0.25, and 0.5) are shown as blue horizontal lines. The right two

panels show the mean squared error (MSE) relative to REML. MSE relative to REML measures the

statistical efficiency of REML with respect to other methods; a higher relative MSE thus indicates

low statistical efficiency. The x-axis shows the true variance components. The y-axis in the bottom

right panel is on a log scale.
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window-based approach. As a consequence, the SNP correlations are underesti-
mated and the variance component estimates from LDSC are upward biased: they
are on average 7.5% higher than the truth in the Australia data, and are 20.0%
higher in the Finland data with longer LD. Such upward bias can be mitigated in
the two data by using a larger sliding window size. However, for any given data,
it is unclear how large a window size one should choose a priori to mitigate the
bias in LDSC. Therefore, our MQS-LDW formulation represents a much attractive
alternative to LDSC, as it uses S to quantify genome-wide SNP correlations. In ad-
dition to the bias, we find that LDSC is noticeably much less statistically efficient
than the other methods, even when its bias is largely mitigated by the larger sliding
window size. The statistical inefficiency of LDSC presumably stems from the fact
that LDSC does not set its intercept to be exactly one as should be under the LMM
assumption.

Third, MQS-HEW/HE and MQS-LDW approximate MINQUE in different
ways, but both approximations are only accurate when the variance component
is small and/or when individuals are unrelated. Thus both MQS-HEW/HE and
MQS-LDW are statistically more efficient for a small h2 than for a large h2, and
more efficient in the Australia data than in the Finland data. In addition, in the
case of h2 = 0, both MQS-HEW/HE and MQS-LDW are statistically more effi-
cient than REML because they effectively assume h2 = 0 a priori. In other cases,
REML is statistically the most efficient method since it is based on maximizing
(the restricted) likelihood.

Fourth, presumably because MQS-LDW uses estimates from MQS-HEW as
initial values, and presumably because MQS-LDW uses the extra information of
LD scores to compute the SNP weights, MQS-LDW is statistically more efficient
than MQS-HEW in the Australia data. However, because long LD reduces the
accuracy of LD score estimates, MQS-LDW is as efficient as MQS-HEW in the
Finland data.

Besides comparing point estimates, we also examine the type I error control by
different methods for testing the null hypothesis H0 : σ 2 = 0. While we caution
that exact p-value computation should be performed based on a mixture of chi-
square distributions, we find that a simple normal test based on the point estimate
and its standard error computed from the asymptotic form do provide acceptable,
though slightly inflated, type I error control at the significance levels of 0.01–0.10
(Table S2). The standard error computed from the jackknife procedure is reason-
able in the Australia data but causes inflated type I error in the Finland data where
a longer LD pattern is observed.

Next, we perform simulations using LMMs with k = 6 (details in Supplemen-
tary Material). The results are shown in Figures S6–S8 and are similar to the case
of k = 1 as described above. We also examine the robustness of MQS with re-
spect to model misspecifications. The equivalence between HE and MQS-HEW
guarantees the MQS-HEW estimates to be unbiased for case control studies [Chen
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(2014); Golan, Lander and Rosseta (2014)]. To validate this and check if MQS-
LDW is equally unbiased in case control studies, we perform a set of ascertained
case control simulations. We simulate 2500 cases, 2500 controls and 10,000 inde-
pendent causal SNPs from a liability threshold model with h2 = 0.5 and a disease
prevalence of 0.1%, following exactly the early study [Golan, Lander and Rosseta
(2014)]. We either use the 10,000 causal SNPs directly to form a nonsparse simula-
tion scenario or pair them with 90,000 noncausal SNPs to form a sparse simulation
scenario. We then estimate heritability on the observed scale with different meth-
ods and transform the estimates back to the liability scale [Lee et al. (2011); Zhou,
Carbonetto and Stephens (2013); Golan, Lander and Rosseta (2014)]. Because of
the small number of simulated SNPs, we use genome-wide SNPs to compute the
LD scores. The comparison results are shown in Figure S9. HE, MQS-HEW, and
MQS-LDW all produce unbiased and statistically efficient estimates. In contrast,
REML is downward biased, while LDSC displays huge variance. Finally, we also
explore sparse simulation scenarios where only a small proportion of SNPs are
causal for continuous trait simulations. To do so, we randomly select 100 or 1000
SNPs from the Finland data to be causal and we simulate their effects to explain
a fixed h2 = 0.5 (details in Supplementary Material). The comparison results are
shown in Figure S10. Consistent with the above continuous trait simulations as
well as previous studies that have validated the robustness of LMM methods in
various genetic architectures [Speed et al. (2012); Zhou, Carbonetto and Stephens
(2013)], REML, HE, MQS-HEW, and MQS-LDW are all statistically efficient and
robust with respect to model misspecifications. LDSC again displays large estima-
tion variance.

While we have mainly focused on SNP heritability estimation in population
studies, we also explore the applicability of our methods for heritability estimation
in family studies. To do so, we obtain genotype data from the Framingham heart
study (FHS) with n = 6850 related individuals and p = 394,174 SNPs [Splansky
et al., (2007)]. As above, we compute the relatedness matrix, simulate phenotypes
under LMMs with k = 1, and examine three scenarios with h2 = 0, 0.25, or 0.5
(details in Supplementary Material). Point estimates and relative MSE are shown
in Figure S11. The results are largely consistent with the k = 1 simulations de-
scribed above. Both MQS-HEW and MQS-LDW estimates are approximately un-
biased. The LDSC estimates display upward bias with large variance, and such
bias cannot be mitigated by using the large 10 MB window size. Different from
the population-based simulation studies, however, due to strong individual related-
ness and subsequently strong LD in the family data, the subsampling strategy be-
comes less effective compared with the Australia- and Finland-based simulations
(as we explained earlier in the Method Overview). Indeed, both MQS-HEW and
MQS-LDW estimates here are considerably less efficient than the HE estimates,
especially for large h2. However, both MQS estimates are still substantially more
accurate than LDSC. We also present the type I error results of various methods
from the FHS-based simulations in Table S2. The results there again are consistent
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with early simulations: while the asymptotic form provides calibrated type I error
control, the jackknife procedure leads to inflated type I error due to strong LD in
the data.

4. Real data applications. To obtain further insights into the differences be-
tween various methods, we apply all five methods to estimate SNP heritability for
18 phenotypes in three human GWAS data sets. The first GWAS data is the Aus-
tralian data that contains height measurements for Australian. The second GWAS
data is the Finland data that contains 10 quantitative traits, including body mass
index (BMI), C-reactive protein (CRP), glucose, insulin, high-density lipopro-
tein (HDL), low-density lipoprotein (LDL), triglycerides (TG), total cholesterol
(TC), systolic blood pressure (SysBP), and diastolic blood pressure (DiaBP). The
third GWAS data is the WTCCC data [The Wellcome Trust Case Control Con-
sortium (2007)], which includes about 14,000 cases from 7 common diseases and
about 3000 shared controls, all typed on a common set of 458,868 SNPs. The
7 common diseases are bipolar disorder (BD), coronary artery disease (CAD),
Crohn’s disease (CD), hypertension (HT), rheumatoid arthritis (RA), type 1 di-
abetes (T1D), and type 2 diabetes (T2D). We apply the five methods to these
data in the same way as described in the simulations. For LDSC, we use a 10
MB sliding window, as we have seen in simulations that longer than default win-
dow size is necessary to mitigate the bias of LDSC estimates in population stud-
ies.

The SNP heritability estimates are presented in Table 2. For case control studies,
we present estimates on the observed scale, which can be easily converted to the li-
ability scale if the disease prevalence in the population is known [Lee et al. (2011);
Zhou, Carbonetto and Stephens (2013); Golan, Lander and Rosseta (2014)]. For
example, when the disease prevalence is 0.5% in the population and the case pro-
portion is 50% in the case control study, then the scaling factor is 0.47. Because the
scaling factor is always smaller than one, the observed scale heritability estimates
in case control studies can be bigger than one, allowing the liability scale heritabil-
ity estimates not to be bounded by the small scaling factor. To ensure unbiasedness,
we do not constrain variance components to be positive during estimation [Price
et al. (2011)]. Thus a low heritable trait may have its SNP heritability estimated
to be below zero. The heritability estimates in the Finland data are largely con-
sistent with a previous study [Browning and Browning (2013)]. The estimates in
the WTCCC are also consistent with a previous study [Golan, Lander and Ros-
seta (2014)]. The heritability estimate for height in the Australia data is slightly
smaller than that from previous studies [Yang et al. (2010); Zhou, Carbonetto and
Stephens (2013)], a phenomenon observed with imputed data elsewhere [Gusev
et al. (2013)]. Table 2 also lists the genomic control factors and the intercept es-
timates from LDSC. Both values are close to one for all traits, suggesting limited
population stratification in the three data sets. To further reduce the influence of
population stratification, we remove the top two principal components (PCs) or the
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top ten PCs and present the results with PCs removed in Tables S3 and S4. Results
are similar with or without PCs removed. Because PCs come from the genetic re-
latedness matrix, we do caution that over-correcting population stratification by
removing too many PCs can reduce SNP heritability—a phenomenon recognized
elsewhere [Finucane et al. (2015)].

The real data results are consistent with the simulations. First, MQS-HEW esti-
mates and the standard errors based on the asymptotic form are almost identical to
that of HE, consistent with the accuracy of the subsampling strategy. Second, the
estimates from LDSC are consistently different from estimates of other methods,
and often come with a much larger standard error—again consistent with its sta-
tistical inefficiency in the simulations. Third, consistent with its known downward
bias in case control studies [Chen (2014); Golan, Lander and Rosseta (2014)],
REML estimates are smaller than HE or MQS estimates in the seven diseases.
Fourth, also consistent with simulations, the jackknife procedure in MQS often
produces overly narrow standard errors when compared with the asymptotic form
(Table S5). However, for two disease phenotypes (RA and T1D), the standard er-
rors from jackknife are extremely large, suggesting that the calibration issue with
jackknife may not always favor one direction.

Our method requires individual-level genotypes from a random subsample of
the study to estimate S. When such a subset of individuals is not available, we
can use a reference panel to estimate S, as long as individuals in the reference
panel can be viewed as a subsample of the study. However, a mismatch be-
tween the reference panel and the study sample can cause estimation bias. In
addition, using a separate reference panel prevents us from using the asymp-
totic form to compute the standard errors. Here, we explore the use of geno-
type data from the 1000 genomes project [The 1000 Genomes Project Consor-
tium (2012)] for SNP heritability estimation in the three GWASs. Specifically,
instead of using 400 randomly selected individual from the study sample, we
use 503 individuals of European ancestry from the 1000 genomes project to es-
timate S. The SNP heritability estimates for all traits from the three data sets are
shown in Table S5. For both the Australia and WTCCC data, using the 1000
genomes data as a reference panel produces similar results. However, for the
Finland data, the estimates from using the 1000 genomes data are much larger,
suggesting a potential overestimation. The results suggest that a match between
the reference panel and study sample is critical for accurate estimation. In addi-
tion, because we can only use the jackknife to compute the standard errors, the
standard errors suffer from the same drawback as detailed in the previous para-
graph.

Next, we explore the use of our methods in estimating heritability in family stud-
ies using the FHS data set [Splansky et al., (2007)]. We perform analysis on four
blood lipid traits that include HDL (n = 6850), LDL (n = 6855), TC (n = 3806),
and TG (n = 3806). Table 2 shows the heritability estimates from different meth-
ods for these traits. The results are largely consistent with both simulations and
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TABLE 2
SNP heritability or heritability estimates from different methods for 15 quantitative traits and 7 binary phenotypes from four GWASs. FHS is a family

study, while the rest are population studies. Values in parentheses are standard errors. For MQS-HEW and MQS-LDW, the standard errors are computed

by the asymptotic form. The standard errors computed by the blockwise jackknife are available in a supplementary table. The heritability estimates for

the WTCCC data are presented at the observed scale. A small scaling factor is required to transform the estimates to a liability scale. To ensure

unbiasedness, we do not constrain variance components to be positive during estimation. Thus a low heritable trait may have its SNP heritability

estimated to be below zero. λGC is the genomic control factor, while icpt is the intercept estimate from LDSC. Note that both the LDSC intercept

estimates and the genomic control factors in the FHS data are larger than one, indicating strong relatedness in this data

Methods

MQS (m = 400; asymptotic)

Trait REML HE LDSC, 10 MB HEW LDW icpt λGC

Australia, n = 3925, p = 4,352,968
Height 0.27 (0.072) 0.25 (0.072) 0.21 (0.089) 0.26 (0.072) 0.28 (0.072) 1.008 1.027

Finland, n = 5123, p = 319,148
BMI 0.20 (0.047) 0.18 (0.053) 0.15 (0.11) 0.19 (0.053) 0.19 (0.054) 1.012 1.026
CRP 0.043 (0.049) 0.034 (0.045) 0.15 (0.094) 0.037 (0.045) 0.037 (0.045) 0.996 0.996
DiaBP 0.071 (0.046) 0.073 (0.049) 0.047 (0.074) 0.075 (0.049) 0.076 (0.049) 1.007 1.012
Glucose 0.17 (0.046) 0.21 (0.069) 0.25 (0.057) 0.21 (0.070) 0.21 (0.068) 1.016 1.038
HDL 0.34 (0.043) 0.36 (0.071) 0.51 (0.12) 0.36 (0.072) 0.35 (0.068) 0.987 1.051
Insulin −0.063 (0.037) −0.12 (0.057) −0.10 (0.048) −0.082 (0.044) −0.081 (0.044) 0.992 0.986
LDL 0.38 (0.041) 0.60 (0.13) 0.20 (0.11) 0.61 (0.13) 0.61 (0.13) 1.080 1.110
SysBP 0.19 (0.045) 0.27 (0.087) 0.13 (0.092) 0.27 (0.088) 0.28 (0.090) 1.030 1.057
TC 0.29 (0.043) 0.42 (0.097) 0.15 (0.12) 0.42 (0.098) 0.43 (0.099) 1.055 1.068
TG 0.19 (0.047) 0.17 (0.053) 0.15 (0.12) 0.18 (0.053) 0.17 (0.053) 1.010 1.034
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TABLE 2
(Continued)

Methods

MQS (m = 400; asymptotic)

Trait REML HE LDSC, 10 MB HEW LDW icpt λGC

WTCCC, n = ∼5000, p = 458,868
BD 0.83 (0.057) 1.05 (0.095) 0.44 (0.11) 1.08 (0.098) 1.16 (0.10) 1.079 1.115
CAD 0.57 (0.061) 0.58 (0.071) 0.19 (0.11) 0.60 (0.073) 0.63 (0.074) 1.049 1.073
CD 0.71 (0.060) 1.06 (0.15) 0.42 (0.14) 1.08 (0.16) 1.12 (0.17) 1.080 1.113
HT 0.58 (0.060) 0.62 (0.072) 0.13 (0.098) 0.63 (0.072) 0.66 (0.073) 1.061 1.067
RA 0.69 (0.059) 0.81 (0.083) 0.50 (0.34) 0.84 (0.085) 0.83 (0.083) 1.041 1.040
T1D 0.97 (0.052) 1.53 (0.15) 1.15 (0.88) 1.60 (0.15) 1.41 (0.11) 1.031 1.056
T2D 0.61 (0.060) 0.69 (0.082) 0.21 (0.11) 0.71 (0.084) 0.76 (0.084) 1.061 1.082

FHS, n = 3806–6855, p = 372,131
HDL 0.43 (0.024) 0.41 (0.041) 0.15 (0.095) 0.40 (0.081) 0.40 (0.082) 1.394 1.423
LDL 0.42 (0.024) 0.50 (0.10) 0.16 (0.11) 0.58 (0.16) 0.58 (0.16) 1.488 1.514
TC 0.42 (0.037) 0.43 (0.068) 0.17 (0.15) 0.54 (0.11) 0.55 (0.11) 1.258 1.288
TG 0.34 (0.036) 0.38 (0.052) 0.17 (0.14) 0.47 (0.084) 0.47 (0.084) 1.225 1.239
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the above real data applications. In particular, due to individual relatedness and
subsequently extended LD structure, the MQS-HEW and MQS-LDW estimates
are almost identical to each other, and both are close to the HE estimates. Consis-
tent with the simulations, the standard errors of MQS-HEW and MQS-LDW are
larger than that of HE, suggesting that the subsampling strategy in a family study
can introduce extra estimation variance and are less effective than in a population
study. In addition, the estimates from LDSC are consistently different from esti-
mates of other methods, and again come with large standard errors. Table S5 also
shows the standard errors of MQS estimates from the jackknife as well as esti-
mates and standard errors of MQS from using the 503 individuals of European
ancestry from the 1000 genomes project. Consistent with the results described
in the previous paragraph, the results in Table S5 again illustrate calibration is-
sues with the jackknife and overestimation phenomenon when the LD pattern (or,
equivalently, individual relatedness) in the reference panel is weaker than that in
the study.

Finally, we apply MQS-HEW and MQS-LDW methods to analyze 8 phenotypes
from four consortium studies. These phenotypes include BMI (n = 120,569),
height (HT, n = 129,945) from the GIANT consortium [Allen et al. (2010);
Speliotes et al. (1974)], HDL (n = 88,754), LDL (n = 84,685), TC (n = 89,005)
and TG (n = 85,691) from the Global Lipids Genetics Consortium [Teslovich et al.
(2010)], fasting glucose (FG, n = 58,074) from the MAGIC consortium [Manning
et al. (2012)], and Crohn’s disease (CD, n = 21,447) from the International In-
flammatory Bowel Disease Genetics Consortium [Jostins et al. (2012)]. The data
have been preprocessed by a previous study [Pickrell (2014)]. We further select
a common set of p = 5,014,740 SNPs among these phenotypes for analysis. We
partition SNPs into the same six functional categories (coding, UTR, promoter,
DHS, intronic, and else) as before [Gusev et al. (2014)]. Because only z-scores are
available for these phenotypes, we use the jackknife to compute the standard errors
and use genotypes from 503 individuals of European ancestry in the 1000 genomes
project [The 1000 Genomes Project Consortium (2012)] as a reference panel to es-
timate S. In addition, following previous approaches [Finucane et al. (2015), Loh
et al. (2015b)], to contrast the importance of different categories, we focus on es-
timating the relative value instead of the absolute value of variance components.
Specifically, as in [Finucane et al. (2015)], we construct a fold enrichment param-
eter, defined as the ratio between the per-SNP variance in one category and the
per-SNP variance in all categories, to quantify the relative importance of different
functional categories (details in Supplementary Material).

Figure 3 shows the enrichment parameters for six categories in 8 phenotypes
estimated by either MQS-HEW or MQS-LDW. The results from both MQS-HEW
and MQS-LDW are consistent with what we expect [Finucane et al. (2015)]: for
most phenotypes (with the notable exception of BMI), the per-SNP explained vari-
ance in the coding region is the largest, followed by the UTR, promoter, and the
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FIG. 3. MQS-HEW (top) and MQS-LDW (bottom) reveal the importance of six functional cate-

gories in 8 phenotypes from four GWAS data sets. The y-axis shows the fold enrichment, computed

as a ratio between the average SNP effect size in one category and the average SNP effect size across

the whole genome. Both MQS-HEW and MQS-LDW use marginal z-scores together with genotypes

of 503 individuals with European ancestry from the 1000 genomes project. The asymptotic form is

used to construct the confidence intervals.

DNS regions. The per-SNP variance for both the intronic and intergenic regions
are close to zero. The enrichment estimates between MQS-HEW and MQS-LDW
are similar overall, though the enrichment of the coding region is estimated to be
larger in MQS-LDW than in MQS-HEW for the lipid phenotypes.

5. Discussion. We have presented a statistical method, MQS, for variance
component estimation with summary statistics. MQS produces unbiased estimates
and is computationally efficient for large data. MQS is also flexible: it can model
the effect size dependency on minor allele frequencies [Zhou, Carbonetto and
Stephens (2013)]; it can incorporate overlapping SNP functional annotations; and
it can control for other covariates such as genotype PCs (details in Supplemen-
tary Material). MQS can be used in pair with other methods to model uneven LD
[Speed et al. (2012), Yang et al. (2015)], and can be extended to model multiple
correlated phenotypes [Zhou and Stephens (2014); Bulik-Sullivan et al. (2015b)].
With simulations and applications to 37 phenotypes from 8 GWASs, we have
shown the benefits of our method.
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In the present study, we have focused on two variations of MQS that are dis-
tinguished from each other in using different SNP weighting options. Both varia-
tions, MQS-HEW and MQS-LDW, use q and S for computation and yield unbi-
ased estimates but with different statistical efficiency. Although we cannot tell in
advance which method is statistically more efficient for a particular data set, sim-
ulations suggest that MQS-LDW is statistically more efficient than MQS-HEW
in unrelated individuals. The superior statistical efficiency of MQS-LDW presum-
ably stems from the fact that MQS-LDW uses in the SNP weights the extra LD
score information and relies on a priori set of variance component estimates from
MQS-HEW. However, because LD scores are necessarily estimated via a sliding
window-based approach, the LD scores become inaccurate in related individuals.
As a consequence, in related individuals, the weights used in MQS-LDW become
almost indistinguishable from the equal SNP weights used in MQS-HEW, leading
to comparable performance between the two methods. In addition, MQS-LDW can
be computationally inconvenient: because MQS-LDW requires an iterative proce-
dure, computing its standard errors based on the asymptotic form also requires
recomputing summary statistics from the study sample. Therefore, we recommend
the use of MQS-LDW for unrelated individuals due to its statistical efficiency,
and MQS-HEW for related individuals due to its convenience and its comparable
performance with MQS-LDW there. Importantly, our framework paves ways for
future extensions of the two basic variations. Specifically, our derivation of MQS-
LDW suggests that using other SNP weighting matrices, in particular, nondiagonal
ones, holds the promise of more statistically efficient estimates. Extending MQS
and exploring the use of other weighing matrices is an interesting avenue for future
research.

MQS uses a small random subset of individuals to estimate S. In population
studies, using Ŝ instead of S reduces much of the computational cost while yield-
ing estimates that are almost as statistically efficient as if the full data were used.
For instance, in both simulations and real data applications on SNP heritability
estimation, we have used ∼10% of the data to estimate S. Using ∼10% of the
data incurs minimal loss of statistical efficiency (a few percent in simulations) but
results in an effective ∼100-fold speed gain (because computational complexity
scales with m2). Our subsampling approach of using Ŝ instead of S is motivated
by recent genetic studies that make use of a reference panel for genotype impu-
tation [Browning (2006); Guan and Stephens (2008); Wen and Stephens (2010);
Howie et al. (2012)] and, more recently, for multi-loci analysis [Yang et al. (2012);
Bulik-Sullivan et al. (2015a)]: when the full data is not completely observed, these
studies rely on a reference panel to impute the missing pieces to construct a com-
plete data. Our approach, however, differs from the previous approaches in two
important ways: we actively use a subset of data to estimate certain quantities even
when the full data is completely observed [i.e., in line with the idea of stochas-
tic approximation method as in Robbins and Monro (1951)], and we account for
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the extra uncertainty introduced by using a smaller subset of data. Importantly, in
the present study, we provide an initial set of statistical reasoning to justify our
subsampling approach in MQS. However, even with our guidelines, it often re-
mains difficult to choose the right number of subsamples, m, for practical analysis.
A large m would not save much computational time, while a small m could be
insufficient to produce unbiased estimates or introduce substantial estimation vari-
ance. In practice, the optimal choice of m will likely depend on both the number
of categories k and the effective number of independent SNPs in each category
(which in turn depends on individual relatedness); thus we caution against the use
of an m that is too small when k is large and/or when individuals are highly related.
Indeed, as we have shown with the family-based simulations and applications, us-
ing a small m for related individuals can introduce considerable estimation vari-
ance. Therefore, we recommend in practice examining the estimates and the stan-
dard errors for a range of m values to choose an m that can balance computation
and accuracy. In addition, while we have only explored a simple random subsam-
pling strategy in the present study, we note that other more sophisticated sampling
methods can be easily paired with MQS to further improve estimation efficiency.
Overall, we believe the subsampling strategy allows MQS to achieve an appealing
balance between computational efficiency and statistical efficiency. With increas-
ing data sizes, exploring the benefits of subsampling strategy in other statistical
methods for large-scale GWASs—as well as other big data applications—is likely
to yield fruitful results in the future.
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