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A Unified Geometric Approach to Modeling and
Control of Constrained Mechanical Systems
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Abstract—Dynamic control of constrained mechanical systems,
such as robotic manipulators under end-effector constraints,
parallel manipulators, and multifingered robotic hands under clo-
sure constraints have been classic problems in robotics research.
There have been numerous treatments on modeling, analysis, and
control for each class of problem. In this paper, we provide a
unified geometric framework for modeling, analysis, and control
of constrained mechanical systems. Starting with the constraint,
we define two canonical subspaces, namely the subspace of con-
straint forces and the tangent space of the constraint manifold for
holonomic constraint. Using the kinetic energy metric, we define
the remaining subspaces and show explicitly the relations among
these subspaces. We project the Euler–Lagrange equation of a
constrained mechanical system into two orthogonal components
and give geometric and physical interpretations of the projected
equations. Based on the projected equations, a unified and
asymptotically stable hybrid position/force-control algorithm is
proposed, along with experimental results for several practical
examples. In the case of nonholonomic constraints, we show that
the equations can be projected to the distribution/codistribution
associated with the constraints and the control law reduces to
hybrid velocity/force control.

Index Terms—Asymptotic stability, constraints, distribution, hy-
brid control, projection, velocity and force.

I. INTRODUCTION

C
ONTROL of constrained mechanical systems, such as ma-

nipulators with end-effector constraints, parallel manipu-

lators, and multifingered robotic hands with closure constraints,

have been classic problems in robotics research. Mason [1] in-

troduced the notion of natural and artificial constraints and for-

malized a theoretical framework for compliant motion control.

Based on Mason’s work, Raibert and Craig [2] proposed a hy-

brid position/force control scheme.

Early work on hybrid control relied explicitly on identifi-

cation of the force and velocity spaces using the usual inner

product of [3], [4]. The latter was, however, shown by Lon-

caric [5] and Duffy [4] to be neither coordinate invariant nor

physically meaningful. Force and velocity are objects of dif-

ferent physical and geometric natures. As a matter of fact, the

duality relation between force and velocity has long been recog-

nized in [4], and [6]–[8]. Reciprocal product is used in some lit-

erature [6], [9] to express this duality relation. Based on this re-

Manuscript received May 28, 2001; revised December 26, 2001. This paper
was recommended for publication by Associate Editor S. Chiaverini and Editor
A. De Luca upon evaluation of the reviewers’ comments.

The authors are with the Department of Electrical and Electronic Engi-
neering, Hong Kong University of Science and Technology, Kowloon, Hong
Kong (e-mail: liugf@ust.hk; eezxli@ust.hk).

Digital Object Identifier 10.1109/TRA.2002.802207

lation and the fact that constraint forces annihilating free veloci-

ties, Yoshikawa [10] presented a dynamic hybrid position/force-

control algorithm. McClamroch [11] explicitly utilized the du-

ality relation and the constraints to decouple the dynamics of

constrained mechanical systems and develop a stable hybrid

position/force-control algorithm. Selig [12] also used the du-

ality relation to define two projection maps and gave a precise

geometric interpretation of the constrained dynamics. Robust-

ness issues of hybrid control algorithms, in regard to model un-

certainties in manipulator dynamics and constraints, were dis-

cussed in [11] and [13]. A unified state space formulation for

holonomic and nonholonomic systems was developed by Yun

and Sarkar [14], which provided also a detailed discussion on

how to eliminate the need to solve implicit functions. Closest

to our current work is that of Blajer [15], [16], in which an el-

egant geometric treatment of constrained multibody dynamics

was provided. Blajer proposed a novel projection scheme to de-

couple the constrained dynamics, and constructed covariant and

contravariant bases to factorize the kinetic metric matrix and

its inverse. This is, in fact, equivalent to the projection method

in our current context. Much of the analysis presented here is

based on developing suitable modifications and extensions to

[16] for real applications involving control of constrained me-

chanical systems.

The theory of hybrid control has been exploited to model the

dynamics and control of parallel manipulators [17], [18] and

multifingered robotic hands in grasping and coordinated ma-

nipulation applications. Modeling of the latter system is usu-

ally performed by considering those constraints due to different

types of contacts and friction cones in addition to loop-closure

constraints [19]–[25]. It is also interesting to note that the pro-

cedure of obtaining the reduced dynamics through projection is

not only applied to those systems with holonomic and nonholo-

nomic constraints, but also to systems with symmetries [26],

[27], as symmetries can be either modeled as a set of addi-

tional holonomic constraints or formulated as mechanical con-

nections.

The goal of this paper is twofold. First, based on ideas from

early papers [5], [9]–[13], [16], we present a precise geometric

framework for hybrid control. Second, based on the geometric

framework, we propose a simple hybrid control algorithm and

prove its stability using a simple geometric argument. The geo-

metric hybrid control theory we propose is widely applicable to

not only manipulators with end-effector constraints (holonomic

or nonholonomic), but also parallel manipulators and multifin-

gered robotic hands with closure constraints.

The paper is organized as follows. In Section II, we use the

constraint to define two natural subspaces, the constraint force
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subspace in the cotangent space and the free (or constrained) ve-

locity subspace in the tangent space. The kinetic energy metric

of the system helps to define the remaining subspaces. Two pro-

jection maps are then defined using the metric and the con-

straint. The Euler–Lagrange equation of the constrained system

is decomposed into two parts using the projection maps. Geo-

metric interpretations of the two component equations in terms

of the curvature of the constraint submanifold are provided. In

Section III, based on the geometric structure of the dynamic

equations, a modified computed-torque type algorithm is pro-

posed for hybrid position/force control. Asymptotic stability of

the closed-loop system is proved using the decoupled nature of

the error dynamics. For nonholonomic systems, this control law

reduces to hybrid velocity/force control. In Section IV, several

practical examples are studied in detail along with experimental

results, showing validity and simplicity of the proposed control

algorithm. Section V concludes the paper with several impor-

tant remarks.

II. GEOMETRIC MODEL OF CONSTRAINED

MECHANICAL SYSTEMS

This section develops a unified geometric model for con-

strained mechanical systems, including robotic manipulators

with end-effector constraints, parallel manipulators, and mul-

tifingered robotic hands with closure constraints. Constraints

here are introduced either because of interaction of the system

with its environment, parallel structures of the system, or a

combination of both, such as manipulating an object by a

multifingered robotic hand. Readers are referred to [9] and

[28]–[32] for more detailed treatment of some geometric

concepts used here.

A. Geometry of the Constraint Submanifold

Let be the configuration space of an (unconstrained) me-

chanical system, and its local (or generalized) coordi-

nates. The tangent space to at , denoted , consists of all

velocity vectors of the system, and the cotangent space to at

, denoted , consists of all (generalized) force vectors. A

(generalized) force vector is also referred to as a cov-

ector. It pairs with a vector to produce a real number

. For instance, let , the joint space

of an open-chain manipulator. Then, , , and

is the virtual work done by on . As another example,

let , the configuration space of a rigid body. Then,

can be identified with the Lie algebra via left

translation and with . An element

can be written as , and an element of

as . The pairing between and is given by

.

Definition 1: Constraint: A constraint on a mechanical

system is a relation of the form

... (1)

where are referred to as the constraint

forces.

A constraint is said to be well defined if it is associated with

physically realizable constraint forces. The physical constraints

described in [1] are well defined, but not the artificial constraints

or the virtual constraints as in [12]. The latter should be modeled

rather as position or velocity control objectives. Without loss of

generality, we shall assume that the constraint forces are linearly

independent. A constraint is said to be holonomic or integrable if

there exist ( ) real-valued functions ,

such that . In this case, the constraint can be

rewritten as for some constant , .

Define

Then, the -dimensional submanifold is referred

to as the configuration space of the constrained system, with

being its ambient space. At each , the tangent space of

, , defines the set of allowed velocities of the constrained

system, and the set of constraint forces, defined by

are spanned by , .

Let be the kinetic energy of the mechan-

ical system. It endows with a natural Riemannian metric

. Using this metric, the orthogonal complement of can

be defined [33]

and the cotangent space consists of covectors which anni-

hilate vectors in

To summarize, we have a (holonomically) constrained system

( , ) that is naturally associated with two subspaces and

. If the system is further endowed with a kinetic-energy

metric , then two additional subspaces and can be

defined. The velocity and force spaces therefore split according

to

Note that the metric allows us to identify the tangent space

with the cotangent space,

As is positive definite, has an inverse, denoted by .

It is not difficult to see that the matrix representation of is

simply , and that of is . Also, observe that

and
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Fig. 1. Geometric relations among the four defined subspaces.

Fig. 2. Commutative diagram for the four defined subspaces.

In other words, constraint forces can be identified with veloci-

ties orthogonal to the free velocities provided there is a nonsin-

gular metric. Fig. 1 summarizes the relations between the four

subspaces. Let

and

be, respectively, the tangent map of and its dual. The null

space of is exactly . Thus, identifies with

, and identifies with . From

the commutative diagram in Fig. 2, we can identify

with by

Lemma 1: The map , given by

is a well-defined projection map, with the property that

, , and , .

Proof: Given , we have

and thus, . On the other hand, for

, there exists such that and

This also shows that is a well-defined pro-

jection map. In a similar manner, we define the projection map

in the tangent spaces, , by

and , the projection map to .

These projection maps are depicted in Fig. 1.

Lemma 2: and have the following properties:

When the constraint is nonholonomic, the set of free velocities

define a distribution , and the set of constraint forces

define a codistribution . The corresponding projec-

tion maps are defined by simply replacing with and

with .

Remark 1: The symbols and associated with the identifi-

cation map between the tangent space and the cotangent space

are standard in the literature of mechanics [34].

Remark 2: Although we assume the constraints in (1) are

scleronomic, the developed framework can also be applied to

systems with rheonomic (nonscleronomic) constraints.

B. Euler–Lagrange Equations of Constrained Systems:

A Geometric View

In this subsection, we use the two projection maps to give

a geometric interpretation of the projected dynamics of a con-

strained mechanical system. The results will be subsequently

used in the derivation of stable hybrid control laws.

For a mechanical system with kinetic energy

, potential energy and constraint given in

(1), the general form of equations of motion is [9]

(2)

where is the Lagrangian function, the

Lagrange multipliers, and the joint torque vector (some

components may be zero in the case of parallel manipulators and

robotic hands). The above equations can be manipulated into the

form

(3)

with denoting the centrifugal and Coriolis forces and the

gravitational force.

Differentiating the constraint (1) and eliminating from (3),

we have

(4)

Substituting (4) back to (3) yields

(5)

where

is the projection map from to defined previously. Let

, , and be, respectively, the

projection of , , and to . The first two terms in the
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left-hand side of (5) are seen to have the following interesting

interpretations

with understood as the inertia force in . Thus, the pro-

jected dynamics in are given by

(6)

To project the dynamics to , we apply the projection map

( ) to (3) and realize that the constraint force already lies

in

(7)

If we let

be the projection map from to , and utilize the property

that , we have

(8)

C. Reduced Dynamics and Second Fundamental Form

Using the language of connections in Riemannian manifold

[28], we can give a deeper geometric understanding of (6) and

(8). First, denote by the affine connection compatible with

the Riemannian metric . Then the Euler–Lagrange (3) can be

rewritten as [35]

(9)

Given tangent vector fields , to the submanifold , is

the covariant derivative of in the direction . Usually,

is not necessary tangent to , but it can be decomposed into a

term that is tangent to and a term that is normal to . Let

be the induced connection on by (i.e., is the connection

of that is compatible to the induced metric on ) and

the second fundamental form (or extrinsic curvature form) of ,

where and are, respectively, the set of tangent and

normal vector fields of . Then

Thus, the term in (8) is interpreted as the

second fundamental form for the constraint submanifold

for , and is viewed as the centrifugal

force due to the curvature of in its ambient space (or extrinsic

curvature). Consequently, (6) becomes

(10)

Fig. 3. Spherical pendulum.

and (8) assumes the more compact form

(11)

Equations (10) and (11) are very important in the development

of stable hybrid position/force-control algorithms for holo-

nomic systems. When the constraint is nonholonomic, we will

rely on (6) and (8), where the term

can still be interpreted as the component of the acceleration

in , and is to be regarded as

the centrifugal force due to the fact that the distribution is

nonparallel.

Example 1: Dynamics of a Spherical Pendulum: Consider

the motion of a spherical pendulum with mass , as shown in

Fig. 3. The kinetic energy of the pendulum is given by

where and . The constraint is given by

from which we have and

. The projection map and are calculated as

and

From Lemma 2, . Let us denote by

the Riemannian connection compatible with . We have

. Let ( , ) be the spherical coordinates and
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. The induced connec-

tion and the second fundamental form can be computed by

applying the two projection maps

(12)

(13)

where and . One

remarkable property of the second fundamental form is

that it only depends on the first-order derivative of local coordi-

nates. In fact, we can also deduce the expression of directly

from the induced metric , given by

The Christoffel symbols of are computed as

Let , we have

(14)

where

Note that (12) and (14) give the same results.

III. UNIFIED HYBRID-CONTROL ALGORITHM

FOR CONSTRAINED SYSTEMS

Based on (6) and (8), we propose in this section a unified

hybrid-control algorithm for constrained mechanical systems.

When the constraint is holonomic, the algorithm achieves hy-

brid position/force control, and hybrid velocity/force control

when the constraint is nonholonomic. Using the decoupled na-

ture of these two equations, we give a simple asymptotic sta-

bility proof of the control algorithms.

A. Hybrid Position/Force Control for Holonomic Systems

When the constraint in (1) is holonomic, it defines a -di-

mensional submanifold in . Let be the local coor-

dinates of , and the corresponding embedding of

in . Denote by the Jacobian matrix of , i.e.

and

Substituting the above expressions into (3) yields

(15)

where . Applying the two projection

maps and from the previous section to (15) gives the

decoupled dynamics

(16)

and

(17)

Since Image , , and is a

projection map onto , we conclude that

and . We propose

the following control algorithm for the above equations:

(18)

and

(19)

where is the position trajectory tracking error,

, the velocity and position feedback gains,

with the desired constraint force, and

the integral force gain. is computed

from the actual constraint force, which, in turn, is obtained by

projecting the force sensed by the (wrist) force/torque sensor to

the constraint force space. Note that consists of a feedback

term and a feedforward term, which compensates the dynamics

in the cotangent space of . On the other hand, the feedforward

term of is used to compensate the dynamics, due to

the second fundamental form of . Combining the above ex-

pressions gives the total control law for

(20)

B. Hybrid Velocity/Force Control for Nonholonomic Systems

When the constraint in (1) is nonholonomic, it defines a non-

integrable distribution in . There exists no manifold

with the property that for all , and it is mean-

ingless to talk about hybrid position/force control. The problem

can be remedied, however, by introducing hybrid velocity/force

control. For this, let be such that its columns span
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, i.e., , and express as for some function

. Substituting into (3) yields

Similar to the case of holonomic systems, we propose the fol-

lowing control law for nonholonomic systems:

(21)

C. Stability Analysis

First, consider the holonomic case with the control law given

by (20) and the error dynamics by

(22)

As explained previously, the column vectors of and

are perpendicular, i.e.

Therefore, the coefficients in both sides of (22) are zero

If the feedback gains , , and are chosen to be pos-

itive definite, then both position and force trajectory tracking

errors converge to zero as goes to infinity. This shows that or-

thogonality of the two subspaces, and , leads to full

decoupling of the position and force errors dynamics and, con-

sequently, asymptotic stability of the feedback system. Observe

that the error dynamics given here are different from that of [11]

and [36 (4.108–4.109, Ch. 4.3, pp. 163)]. In a similar manner,

we show that the error dynamics for a nonolonomic system with

control law given in (21) are of the form

Thus, with stable and , both velocity and force errors go

to zero.

Remark 3: Decoupling between the position and force error

dynamics is achieved here with a positive-definite matrix .

can be the inertia matrix of the system or some other nondegen-

erate metrics, giving possibilities for the design of other control

algorithms.

IV. EXAMPLES

In this section, we present several examples to illustrate the

geometric hybrid control theory of the previous sections.

Example 2: A Two-Degree-of-Freedom (DOF) Cartesian

Robot Moving on an Ellipse: Fig. 4 shows a Cartesian robot

constrained to move on an ellipse. The forward kinematics of

the manipulator is trivially

Fig. 4. A two-DOF manipulator following an ellipse.

and the constraint is given by

Thus, . The dynamic equation of the

manipulator is

The two projection maps and are calculated as

where . Assuming that

, the projected equations in terms of the coordinate are

The control law is of the form

(23)

(24)

Fig. 5 shows the simulated position and force responses for the

following parameters: kg, , , and

. The initial positions are m and m,

with m and m.

Example 3: A Six-DOF Manipulator Moving on a Sphere

With Frictionless Point Contact: Fig. 6 shows a six-DOF ma-

nipulator that is constrained to slide on a sphere with frictionless

point contact. The end-effector is required to be normal to the

sphere (artificial constraint). Following the notations in [9] and



580 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 4, AUGUST 2002

Fig. 5. Simulated position and force responses for Example 2.

Fig. 6. A six-DOF manipulator moving on a sphere with frictionless point contact.

[37], let and be the reference frames of the end-effector and

the object, respectively, and and their local frames at the

point of contact. The configuration space of the system is the

Euclidean group , represented by the position and orien-

tation of with respect to . Contact constraint in terms of the

velocity of the local frames

is simply

or

Without loss of generality, we further assume that and

thus, . This constraint is found to be

holonomic [38], and its integral submanifold is the five-dimen-

sional contact space that can be parameterized by Montana’s

contact coordinates , where

is the coordinates of contact for the sphere, the

coordinates of contact for the end-effector, and the angle of

contact. We parameterize the sphere by the longitude and lati-

tude angles and the end-effector the plane coordinates. The geo-

metric parameters of the sphere and the end-effector in terms of

these parameterizations are given by

and

Let diag be the inertia tensor of the

end-effector. The projection maps are found to be

diag and diag

Let be the force exerted on the end-effector by the

manipulator and the gravitational force. The Newton-Euler
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Fig. 7. Control diagram of hybrid control.

equation of motion for the end-effector admits a coordinate-in-

variant description of the form [9], [39], [40]

(25)

where for

is the adjoint map associated with . By inverting Montana’s

equations of contact, can be expressed in terms of as

(26)

where

and

Substituting (26) into (25) yields

(27)

where . Decoupling the above equation

using and gives

and

where

and

The components of the Cartesian driving force are designed

as

(28)

(29)

where to ensure that the end-effector stays normal to

the sphere. . Let be the Jacobian ma-

trix of the manipulator. The corresponding joint torque is given

by

(30)

The control diagram is shown in Fig. 7. In the experiment, we

implemented the control law (28) and (29) in a testbed that con-

sists of a six-DOF MOTORMAN robot, two Motorola 68 040

processors, a SUN workstation, and a six-DOF force/torque

sensor. Force/torque data is sampled every 1 ms (1000 Hz) using

an A/D board. A tactile sensor attached to the end-effector is

used to detect the contact coordinate and its velocity . We
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(a) (b)

Fig. 8. (a) Position response. (b) Tracking error.

(a) (b)

Fig. 9. (a) Three-dimensional view of the trajectory. (b) Force response.

used the following parameters in the experiment: kg,

kg m , kg m , mm,

diag , diag , and

. Figs. 8 and 9(a) show the position response and

Fig. 9(b) the force response. Figs. 10 and 11 show the succes-

sive motion states of the manipulator sliding on a horizontal

circle of the sphere.

Example 4: A Six-DOF Manipulator Rolling on a Sphere: In

the previous example, let the contact constraint be pure rolling

motion. Expressed in terms of the velocities of the local frames,

these constraints are given by

the constraint forces are of the form

where lies in the friction cone defined by a soft finger

contact [9]. Expressing rolling constraint in terms of , we

have

(31)

Rolling velocities in terms of are obtained by inverting Mon-

tana’s equations of contact
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Fig. 10. Successive motion states of sliding-first segment.

Thus, the velocity of the end-effector in terms of is given by

(32)

It can be shown that the tangent vector fields spanned by the

columns of is not involutive and thus, the constraints in (31)

are nonholonomic. Substituting into (25) yields

(33)

where . The hybrid velocity/force controller is designed

as

(34)

Note that the control law in (34) is similar to (28) and (29). How-

ever, only hybrid velocity/force control can be realized, as (32)

Fig. 11. Successive motion states of sliding-second segment.

is a local representation of the two-dimensional (2-D) distribu-

tion defined by the constraints (31). For velocity planning, we

use and .

Fig. 12 shows the tracking result of the contact coordinates

, and Fig. 13(a) the 2-D view of the contact trajectory on

the fingertip. Figs. 13(b) and 14 show the contact force response

of , , and , respectively. The contact force is hard to

control due to the complex property of torsional friction. Fig. 15

shows the continuous motion states of the manipulator rolling

on the sphere.

Example 5: Redundant Parallel Manipulator: Redundant

constraints and actuation have been found to be effective

means for removing singularities and improving performance

of parallel manipulators [41]. Fig. 16 shows a two-DOF

parallel planar manipulator with over constraint and over

actuation. The ambient space of the system is the 6–D torus

, parameterized by ,

where are actuated and are passive.

Assuming equal link lengths for all chains, the four closure

constraints of the manipulator are given by
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(a) (b)

Fig. 12. (a) Contact coordinates response. (b) Tracking error.

(a) (b)

Fig. 13. (a) 2–D view of contact trajectory on the fingertip. (b) Response of contact force � .

where , , , and

. Differentiating the closure constraints yields

the velocity constraints as shown in (35) at the bottom of the

page. If the constraint in (35) is linearly independent, it defines

a 2–D configuration space . can be locally pa-

rameterized by any combinations of two actuated joints, or the

Cartesian coordinates ( ) of the system. Overactuation pro-

vides a freedom in avoiding parameterization singularities. Let

, be the inertia matrix of the th chain

and define diag . The equations

of motion of the system have the form

where , , can be interpreted as the internal

“grasping” force. When the constraints in (35) are linearly

independent, we can, in principle, design a stable hybrid control

(35)
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(a) (b)

Fig. 14. (a) Response of contact force � . (b) Response of contact force � .

Fig. 15. Successive motion states of rolling.

Fig. 16. Planar two-DOF parallel mechanisms with overactuation.

algorithm as in the previous examples to control the position

of the end-effector and internal grasping force. However, since

there are three unactuated joints, i.e., , we

can only achieve position control here. Let be a local

parameterization of , an imbedding of in ,

and the differential of . Define the projection map

using and as in Section II. The

projected dynamics in are given by

(36)

where . Let

and
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Fig. 17. System structure of two-DOF redundantly actuated parallel
mechanism.

Fig. 18. Tracking results in joint space.

where , ,3,5, is the th column of . Let

(37)

The control law for in (36) which achieves asymptotic trajec-

tory tracking of is given by

(38)

To see this, note that the closed-loop dynamics with (38) ap-

plied to (36) is of the form

Since Image , , is a projection

map onto , and , we conclude that

Fig. 19. Tracking results in Cartesian space.

Finally, given , we need to solve for from (37).

A sufficient condition for the existence of solution is that

Image . This implies that a combination of three

actuated joints can parameterize , i.e., absence of actuator

singularities. In this case, minimal two-norm solutions can

be used for . Let and any solution such that

. Then

where , is the optimal solution. We have

realized minimal joint torque position control on the planar

two-DOF parallel manipulator shown in Fig. 17. Figs. 18 and

19 show, respectively, the experimental results of the joint and

end-effector space trajectories.

V. CONCLUSION

In this paper, we developed a unified geometric approach

to the dynamic control of constrained mechanical systems.

Starting from the constraint, we defined two natural subspaces,

the free velocity space and the constraint force space

. Using the kinetic energy of the system, we also showed

how to define the remaining subspaces and their relations under

the and maps. From the definition of these canonical

subspaces, two projection maps naturally arise, which were

subsequently used to obtain the projected dynamics of a

constrained mechanical system, one in the constraint force

space and another in its complement. Using the language of

connections in Riemannian geometry, we provided an elegant

interpretation of the constrained dynamics and explicitly

showed the curvature effect on force control. Based on the

geometric structure of the projected equations we proposed a

stable hybrid position/force control algorithm for mechanical

systems with holonomic constraints. We also showed that for

nonholonomic systems hybrid velocity/force control can be

achieved.

Several representative examples were worked out in detail

to demonstrate the effectiveness of the hybrid control theory.

Experimental results were also included in the case of a six-DOF
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manipulator under end-effector constraints, both holonomic and

nonholonomic. The proposed hybrid control theory was shown

to be general enough to include applications such as closed-

chain systems and multifingered robotic hands as well.
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