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Abstract: Bistable polymer composite structures are morphing shells that can change shape and
maintain two stable configurations. At present, mainly two types of bistable polymer composite
structures are being studied: cross-ply laminates and antisymmetric cylindrical shells. This paper
proposes a unified semianalytical model based on the extensible deformation assumption and
nonlinear theory of plates and shells to predict bistability. Moreover, the higher-order theoretical
model is extended for better prediction accuracy, while the number of degrees of freedom is not
increased; this ensures a lower computational cost. Finally, based on these theoretical models, the
main factors affecting the stable characteristic of the two bistable polymer composite structures are
determined by comparing the models of various orders. The main challenges in describing the
bistable behavior, such as bifurcation points and the curvatures of stable states, are addressed through
prediction of the corner transversal displacement in stable configurations. The results obtained from
the theoretical model are validated through nonlinear finite element analysis.

Keywords: composite structures; bistability; semianalytical model; cross-ply laminate; antisymmetric
cylindrical shell

1. Introduction

Morphing structures play an important role in the aerospace industry. As a new type of
morphing structure, the bistable polymer composite structures have received extensive atten-
tion due to their low weight and excellent mechanical properties [1,2]. They have two different
configurations, which can both be stable without the need for an ongoing actuation force [3].
Owing to their excellent characteristics and performances, these bistable polymer composite
structures have been extensively studied through theoretical models [4–9], numerical simula-
tions [10–14], and experiments [15–19]. In addition, research has been conducted in terms
of optimization [20,21] and actuation [22–26] of such structures. These structures have also
been used in various situations in which morphing and smart structures are required, such
as morphing wings [27–30], energy harvesters [31–35], and bionic structures [36–39].

Based on the manufacturing process, bistable polymer composite structures can be
categorized into unsymmetric cross-ply and antisymmetric layups, as shown in Figure 1.
The unsymmetric cross-ply laminate (CPL) is obtained by holding and curing at a high
temperature and naturally cooling to room temperature [40], whereas the antisymmetric
cylindrical shell (ACS) is obtained using a cylindrical steel mold rather than residual
thermal stresses [41]. The configurations of the two types of bistable polymer composite
structures are relatively regular cylinders. However, the principal curvature directions of
the two stable configurations of unsymmetric CPLs are different, whereas those of ACSs
are the same.
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Figure 1. Two different kinds of bistable polymer composite structures: (a) CPL; (b) ACS. 

Furthermore, the theoretical models of the two types of structures, which are em-
ployed to predict bistable or multistable configurations and their stable characteristics, are 
different. The bistability of CPL was first investigated by Hyer [42,43], and the theoretical 
model is based on an extension of classical lamination theory to account for the bistable 
behavior. Researchers have continuously improved the theoretical model by increasing 
the order and number of terms of the displacement polynomial. Higher-order polynomi-
als are used to model the in-plane strain field, and a 14-parameter theoretical model was 
proposed by Dano et al. [44]. Moreover, a refined high-order theoretical model, up to the 
11th order using a complete polynomial as the displacement function of the laminate, was 
established by Pirrera et al. [45]. In order to reduce the difficulty of solving the high-order 
model, the model was treated as dimensionless and the path-following numerical method 
was used to solve it. The high-order model can accurately predict the influence of factors 
such as aspect ratio and size on the unsymmetric CPL. However, the high order of the set 
of complete polynomials implied a large computational cost and thus a loss of efficiency 
of the method. 

To improve upon these methods, the snap-through phenomenon and snap loads 
gradually became the focus of modeling efforts. A simple model for dynamic analysis of 
the snap-through phenomena was proposed by Diaconu et al. [46]; the model is used to 
evaluate the initial displacements for the stable states and also to investigate the static and 
dynamic transitions from one stable state to another. On those grounds, an analytical 
model was developed by Mukherjee et al. [47], which extends the previously available 
models to account for the cantilever boundary condition for a special class of hybrid bi-
stable laminates. Seffen [48] applied a simple linear elastic model to ACS with constant 
curvatures and elliptical planforms. By combining the compatibility condition with the 
in-plane equilibrium equations, the closed-form solution for the membrane problem can 
be obtained. The assumption of uniform curvature was extended to linear and quadratic 
conditions by Vidoli [49]. By simplifying the Föppl–von Kármán (FVK) equations, sym-
metric boundary conditions are applied while using fewer degrees of freedom. The gov-
erning differential equations obtained using the in-plane equilibrium can be solved nu-
merically for ACS with different symmetrical planform shapes. Based on these studies, an 
accurate and efficient energy-based method is proposed by Lamacchia et al. [50]. The 
membrane and the bending components of the total strain energy are decoupled using the 
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Furthermore, the theoretical models of the two types of structures, which are employed
to predict bistable or multistable configurations and their stable characteristics, are different.
The bistability of CPL was first investigated by Hyer [42,43], and the theoretical model is
based on an extension of classical lamination theory to account for the bistable behavior.
Researchers have continuously improved the theoretical model by increasing the order and
number of terms of the displacement polynomial. Higher-order polynomials are used to
model the in-plane strain field, and a 14-parameter theoretical model was proposed by
Dano et al. [44]. Moreover, a refined high-order theoretical model, up to the 11th order
using a complete polynomial as the displacement function of the laminate, was established
by Pirrera et al. [45]. In order to reduce the difficulty of solving the high-order model, the
model was treated as dimensionless and the path-following numerical method was used to
solve it. The high-order model can accurately predict the influence of factors such as aspect
ratio and size on the unsymmetric CPL. However, the high order of the set of complete
polynomials implied a large computational cost and thus a loss of efficiency of the method.

To improve upon these methods, the snap-through phenomenon and snap loads
gradually became the focus of modeling efforts. A simple model for dynamic analysis
of the snap-through phenomena was proposed by Diaconu et al. [46]; the model is used
to evaluate the initial displacements for the stable states and also to investigate the static
and dynamic transitions from one stable state to another. On those grounds, an analytical
model was developed by Mukherjee et al. [47], which extends the previously available
models to account for the cantilever boundary condition for a special class of hybrid bistable
laminates. Seffen [48] applied a simple linear elastic model to ACS with constant curvatures
and elliptical planforms. By combining the compatibility condition with the in-plane
equilibrium equations, the closed-form solution for the membrane problem can be obtained.
The assumption of uniform curvature was extended to linear and quadratic conditions by
Vidoli [49]. By simplifying the Föppl–von Kármán (FVK) equations, symmetric boundary
conditions are applied while using fewer degrees of freedom. The governing differential
equations obtained using the in-plane equilibrium can be solved numerically for ACS with
different symmetrical planform shapes. Based on these studies, an accurate and efficient
energy-based method is proposed by Lamacchia et al. [50]. The membrane and the bending
components of the total strain energy are decoupled using the semi-inverse formulation of
the constitutive equations. Transverse displacements are approximated using Lagrange
polynomials, and the membrane problem is solved in isolation by combining compatibility
conditions and equilibrium equations.

At present, models for predicting the stability of bistable polymer composite structures
are usually characterized through a compromise between computational efficiency and
accuracy. In this work, a unified high-order model is proposed for two different bistable
polymer composite structures. Based on [48–50], this model increased the order of the
transverse displacement polynomial and could be applied to laminates with symmetrical
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planform shapes. The stretching strain energy and the bending strain energy in the total po-
tential energy were solved separately to simplify the expression. As with the Rayleigh–Ritz
method, the equilibrium configurations of the bistable polymer composite structures were
determined via minimization of the total potential energy with respect to the Lagrangian
parameters. The stability of the equilibria was then evaluated by assessing the positive
definiteness of the system’s Hessian matrix.

The remainder of this paper is organized as follows: In Section 2, the methodology
and modeling framework are presented. In Section 3, the processes of numerical simulation
of two different bistable polymer composite structures are described, including differences
in modeling, application of boundary conditions, and loading methods. In Section 4, the
sensitivity analyses of the structures using theoretical and numerical methods are detailed,
and the results obtained from the semianalytical method are compared with numerical
models developed in ABAQUS. Finally, conclusions are presented in Section 5.

2. Semianalytical Model
2.1. The Total Potential Energy

The bistable composite laminate was modeled using classical laminate theory com-
bined with the FVK nonlinear hypothesis. The in-plane strains and the out-of-plane
displacement were approximated using unknown polynomial functions.

The midplane strains and curvature fields are

ε0
x = ∂u

∂x + 1
2

(
∂w
∂x

)2
; ε0

y = ∂v
∂y + 1

2

(
∂w
∂y

)2
; ε0

xy = 1
2

(
∂v
∂x + ∂u

∂y + ∂w
∂y

∂w
∂x

)
kx = ∂2w

∂x2 ; ky = ∂2w
∂y2 ; kxy = 2 ∂2w

∂x∂y

(1)

The compatibility condition related to the midplane strain and curvature can be written
as

curlcurlε0 = kxky − k2
xy = ∆g

∂kx
∂y =

∂kxy
∂x ; ∂ky

∂x =
∂kxy
∂y

(2)

where ∆g denotes the variation of the Gaussian curvature with respect to the initial value
and curl mean curl operator. For composite laminate, the relationship between the in-plane
stress resultant N, bending moment resultant M, and the midplane strains is defined by
the constitutive equation as [

N
M

]
=

[
A B
B D

][
ε0 − e
k− h

]
(3)

where A, B, and D represent the in-plane stretching stiffness matrix, stretching–bending
stiffness matrix and bending stiffness matrix, respectively. e and h, respectively, refer to the
initial midplane strain and curvature. By inverting Equation (3),[

ε0 − e
M

]
=

[
A∗ B∗

−B∗T D∗

][
N

k− h

]
(4)

where
A∗ := A−1; B∗ := −A−1B; D∗ := D− BTA−1B (5)

The stable equilibria of the laminate are found as the local minimum of the total
potential energy, which is the sum of the stretching and bending energy:

U =
1
2

∫ a

−a

∫ b

−b

([
ε0 − e
k− h

]T[ A B
B D

][
ε0 − e
k− h

])
dxdy (6)
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By substituting Equation (4), the energy functional can be transformed in the following
form:

U =
1
2

∫ a

−a

∫ b

−b
[A∗N : N + D∗(k− h) : (k− h)]dxdy (7)

where the colon operator is the inner product between tensors (summed pairwise product
of all elements). To simplify the problem, dimensionless quantities are introduced [49]:

X = x/l, Y = y/l, W = w/l, a = a/l, b = b/l
K = R0k, H = R0h
A = A/A11, B = B/(A11R0), D = D∗/D∗11
Σ = N/A11, Û = UR2

0/(SD∗11)

(8)

where S is the area of laminate, l =
√

S is the characteristic length used to scale the
coordinates for the area of the laminate, and R0 is the characteristic radius.

The dimensionless form of the final energy expression is

Û =
1
2

∫ a

−a

∫ b

−b

[
D(K−H) : (K−H) +

12R2
0

te
A−1

Σ : Σ

]
dxdy (9)

where te =
√

12D∗11/A11 represents equivalent thickness of the laminate. For transversely
isotropic materials, the equivalent thickness is the same as the actual thickness of the
laminate, but it is different for orthotropic materials.

2.2. Estimation of In-Plane Stress Resultant

In order to calculate the stretching energy for the given transverse displacement more
accurately, it was important that the in-plane force equilibrium conditions of the laminate
were satisfied. The in-plane force equilibrium equations are written as

∇·Σ = 0 on S
Σ·n = 0 on ∂S
curlcurl

(
A−1Σ

)
= ∆g + curlcurl

(
A−1BK

) (10)

where n and ∂S respectively represent the outward unit normal at the boundary of the
laminate and its domain; curlcurl

(
A−1BK

)
is zero for straight fiber cross-ply laminates

and antisymmetric cylindrical shells. Equation (10) is a standard plane-elasticity problem.
The closed-form solution can only be obtained in the elliptical domain. If it is a domain of
other shapes, such as a rectangle, only numerical solutions can be obtained.

For plane-elasticity problems, the partial differential equation (PDE) can be written as

−∇·σ = f in Ω
σ·n = τ onΩ
ε = 1

2

(
∇u + (∇u)T

)
, σ = σ(ε)

(11)

where σ is the stress tensor, f is the body force per unit volume, and τ is the traction.
To solve Equation (11), it must be transformed into a variational problem. The basic

recipe for turning a PDE into a variational problem is to multiply the PDE by a test function
v, integrate the resulting equation over the domain Ω, and perform integration by parts
with second-order derivatives.

After variational processing, Equation (11) becomes

−
∫

Ω(∇·σ)·v dΩ =
∫

Ω σ : ∇v dΩ−
∫

∂Ω(σ·n)·vdΩ =
∫

Ω f ·v dΩ∫
Ω σ : ∇v dΩ =

∫
Ω f ·v dΩ +

∫
∂Ω τ·vdΩ

(12)
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Another feature of variational formulations is that the test function v is required
to vanish on parts of the boundary; hence, v = 0 on the entire boundary ∂Ω. The final
variational results of the plane-elasticity problem are

a(u, v) =
∫

Ω σ : ∇v dΩ

L(v) =
∫

Ω f ·v dΩ
(13)

where a(u, v) is known as a bilinear form and L(v) as a linear form. In order to equate
Equation (10) to a standard plane-elasticity problem, the in-plane stress resultant Σ can be
written as

Σ = Σa + Σb (14)

By substituting Equation (14) into Equation (10), we obtain

−∇·Σa = ∇·Σb

Σa·n = −Σb·n (15)

In comparison with Equation (11), Σa is equivalent to the stress tensor σ; ∇·Σb is
equivalent to the body force f ; and −Σb·n is equivalent to the traction τ, which can
be calculated using a 2 × 2 symmetric tensor Σb by imposing the condition curlcurl(

A−1Σb
)
= g(X, Y).Therefore, Equation (10) can be completely regarded as a standard

plane-elasticity problem to be solved.

2.3. High-Order Varying Curvatures (HVCs)

Based on the assumption of uniform curvature, high-order varying curvatures are
considered, assuming that the transverse displacement is

W =
1
2

q1X2 +
1
2

q2Y2 + q3XY +
1

(n + 2)(n + 1)
q4Xn+2 +

1
(n + 2)(n + 1)

q5Yn+2 (16)

The unknowns q1, q2, q3, q4, q5 are the Lagrangian parameters of the model. Then, the
associated curvature field is

k =

[
kx kxy
kxy ky

]
=

[
q1 + q4Xn q3

q3 q2 + q5Yn

]
(17)

Then, the average curvature of the laminate can be written as

kx =
∫

S kxdS
S = q1 +

((−a)n+an)q4
2(1+n) ;

ky =
∫

S kydS
S = q2 +

(
(−b)

n
+b

n)
q5

2(1+n) ;

kxy =
∫

S kxydS
S = q3

(18)

The variation of the Gaussian curvature can be obtained by Equation (2):

∆g = λ1 + λ2Xn + λ3Yn + λ4XnYn

λ1 = q1q2 − q2
3 − gH ; λ2 = q2q4; λ3 = q1q5; λ4 = q4q5

(19)

For the HVC polynomial, it is necessary to solve four PDE problems:

∇·Σa
i = 0 on S

Σa
i ·n = 0 on ∂S

curlcurl
(

A−1Σa
i

)
= ∆gi

(20)
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where for i = 1, 2, 3, 4, ∆gi = 1, Xn, Yn, XnYn, respectively. The in-plane stress field is
approximated as

Σ =
4

∑
i=1

l2

R2
0
(λiΣ

a
i ) (21)

The stretching energy equation in Equation (9) can be modified as follows:

Ûs =
1
2

4

∑
i=1

4

∑
j=1

λijΨij (22)

Furthermore, the total energy equation is modified as follows:

Û =
1
2

∫
S

[
D(K−H) : (K−H)

]
dS +

1
2

4

∑
i=1

4

∑
j=1

λijΨij (23)

where λij = λiλj; Ψij =
∫

S A−1
Σa

i : Σa
j dS (i, j = 1, 2, 3, 4). It is crucial to solve the

stretching–bending factor Ψij, because it determines the relative weight of bending and
stretching energies in Equation (23).

Equilibrium configurations correspond to extrema of Ψij, therefore satisfying the
expression

fi =
∂Û
∂qi

= 0 (i = 1, 2, 3, 4, 5) (24)

which results in a set of nonlinear equilibrium equations of the kind fi = 0. The stability
of the solutions of Equation (24) is assessed by confirming the positive definiteness of the
Hessian matrix of the total potential energy. Equilibria are stable if and only if

∂2Û
∂2qi

> 0 (i = 1, 2, 3, 4, 5) (25)

2.4. Selection of Σb

For the rectangular domain, these PDE problems cannot be solved in the closed
form. Therefore, a standard finite element method was used for their numerical solution
as part of the FEniCS project. To select the most suitable Σb and find the value of Σa

i ,

curlcurl
(

A−1Σb
)
= g(X, Y) = 1 is considered as an example to discuss.

(1) Consider one item in the Σb:

Σb
11 =

[
Y2/2 0

0 0

]
, Σb

12 =

[
0 0
0 X2/2

]
, Σb

13 =

[
0 −XY/2

−XY/2 0

]
(26)

(2) Consider two items in the Σb:

Σb
21 =

[
Y2/4 0

0 X2/4

]
, Σb

22 =

[
0 −XY/4

−XY/4 X2/4

]
, Σb

23 =

[
Y2/4 −XY/4
−XY/4 0

]
(27)

(3) Consider three items in the Σb:

Σb
31 =

[
Y2/8 −XY/4
−XY/4 X2/8

]
(28)

The closed-form solution of the elliptical domain has been given in [48]. When
considering the selection of different Σb in the FEniCS project, the variation of Ψij with the
number of mesh could be obtained. Thus, the relative error between the numerical solution
and the closed form could be obtained, as shown in Figure 2. As the number of mesh
increases, choosing various Σb generates a sufficiently accurate value of Ψij. However, it
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can be seen from Figure 2 that the relative error calculated by selecting Σb
12 under the same

number of mesh is the smallest. Therefore, consider choosing Σb
12 to calculate the value of

Ψij.
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3. Finite Element Simulation

Although the analytical model can predict stable states conveniently, validation based
on finite element analysis (FEA) is still required to confirm the accuracy of the predictions.
However, even in this validation stage, the analytical model plays a key role in finding
different stable configurations. The material properties used in the numerical simulation
are listed in Table 1. The nonlinear finite element software ABAQUS was used to simulate
the morphing processes of the bistable polymer composite structures, as shown in Figure 3.
For the two different types of bistable polymer composite structures, the simulation process
varied.

Table 1. Material properties of T700/epoxy unidirectional lamina.

Lamina Properties Value Units

Longitudinal Young’s modulus (E1) 120 GPa
Transverse Young’s modulus (E2) 8.42 GPa

Poisson’s ratio (ν12) 0.25
Shear modulus (G12) 4.5 GPa

Longitudinal thermal expansion coefficient (α1) −3.01 × 10−6 ◦C−1

Transverse thermal expansion coefficient (α2) 2.773 × 10−5 ◦C−1

Ply thickness (t) 0.10 mm

3.1. Simulation of CPL

Reduced integration can provide more accurate results and significantly reduced
computational time. The S4R reduced integration shell element is chosen here for its better
convergence. The FEA process for the CPL includes four steps: (1) Modeling process: The
CPL was modeled with a planar shell (3D deformable shell), and the stacking sequence
was [0/90]. (2) Curing process: An initial temperature field of 140 ◦C was applied to the
laminate and was then reduced to 20 ◦C to obtain the first stable state. (3) Loading process:
To obtain another stable state, as shown in Figure 4a, the center node of the laminate was
fully constrained, and four displacement loads in the same direction were applied on the
midpoints of the four boundaries. The options were set as “Nlgeom”, and stabilization
with dissipated energy fraction was utilized as a default parameter. (4) Unloading process:
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We deactivated the displacement loads to obtain the second stable state with the option
Nlgeom still on and stabilize off to avoid inaccuracies.
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In the postprocessing, the output of the curvatures of the second stable state of the
laminate was the average of the curvatures of all shell elements, as in the theoretical
assumption. The results of FE simulations for all specimens are discussed in Section 4.

3.2. Simulation of ACS

Compared with the simulation process of CPL, the curing process is not included in
the simulation of the ACS, and the first stable state after the curing process was directly
given following the modeling process. As the curing process of ACS was completed using
a cylindrical steel mold, the radius of curvature of the first stable state was known and
approximately equal to the radius of the mold. In the modeling process, the stacking
sequence of the ACS was set as [45/−45/45/−45]. As shown in Figure 4b, similar to the
CPL, the center node of the shell was also constrained, and two pairs of displacement loads
in different directions were applied on the midpoints of the four boundaries.
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4. Results and Discussion

The multiple parameters that affect the stable state characteristics of bistable polymer
composite structures are discussed in this section. The main parameters that affect the
bistable characteristics of CPL are temperature variation ∆T, ply thickness t, aspect ratio
a/b, and side lengths a and b. For ACS, central angle γ, longitudinal length L = 2a, ply
angle α, and initial curvature h0 are the main design parameters. Therefore, it is important
to predict the bifurcation point under various sensitivity factors. The order of the transverse
displacement polynomial (Equation (16)) was progressively increased until the desired
accuracy was achieved. It must be emphasized that numerical accuracy with respect to
FEA was not considered a primary goal. The curvature field (Equation (17)) was truncated
at orders n = 2, 4, 6, 8. Most of the numerical simulations presented herein converged at
order 6 (Ord. 6).

4.1. CPL

To highlight the difference between various orders and the FEA results more in-
tuitively, Figure 5 shows the cross-section configuration of the second stable state of
100 mm× 100 mm, [0/90] CPL. It can be seen from Figure 5a that increasing the order
does not lead to a major difference in the configuration diagram. Moreover, as shown the
Figure 5b, the maximum error between the theoretical model and the FE result is at the
edge. The maximum errors between the theoretical results of Ord. 2, Ord. 4, Ord. 6, and
Ord. 8 and those of the finite element simulation were 0.149, 0.114, 0.068, and 0.013 mm,
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respectively. The relative error was reduced from 0.797% for Ord. 2 to 0.068% for Ord. 8.
The prediction accuracy of the model increased with the order, but the number of degrees
of freedom did not increase. The computational time did not increase either.
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4.1.1. Temperature Variation

During the curing process, the CPL is cooled from the curing temperature to room
temperature and experiences inelastic deformation caused by the thermal effect, which
leads to warping. Then, CPL exhibits two stable configurations. As shown in Figure 6,
when keeping the size and thickness of the CPL constant, the bifurcation phenomenon
occurs with a continuous increase in the curing temperature differences, which explains
the existence of bistable behavior.

The FE results are represented by the red line in Figure 6a; the solid line and the dashed
line represent stable and unstable configurations, respectively. To compare the prediction
results for the bifurcation points of various orders, a close-up of the bifurcation points of
orders 2, 4, and 6 is shown in Figure 6b. It can be seen that the predicted bifurcation point
of Ord. 2 is 4.1 ◦C, whereas the curves of Ord. 4 and Ord. 6 are essentially coincident,
and the predicted bifurcation points are both 4 ◦C. From Ord. 2 to Ord. 6, a difference of
0.1 ◦C is observed; moreover, as the order increases, the bifurcation point moves toward
the convergence direction. The curvatures of the stable state with temperature are shown in
Figure 6c,d. The bifurcation points predicted for various orders can be obtained similarly.

4.1.2. Ply Thickness

In the next analysis, we maintained other parameters constant and changed the ply
thickness of the CPL to obtain the relationships between corner transversal displacement,
curvatures of the stable state, and ply thickness, as shown in Figure 7. When the CPL is in
a stable configuration, the corner transversal displacement and curvature of the stable state
decrease nonlinearly with the increase in the ply thickness, and bifurcation occurs. From
Ord. 2 to Ord. 6, the prediction values of the thickness bifurcation point were 0.54, 0.55,
and 0.55 mm, respectively.
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4.1.3. Aspect Ratio

The effect of the aspect ratio on the stable configuration of CPL is shown in Figure 8.
Side length b was held constant, and the aspect ratio was changed by changing the value of
side length a. As the aspect ratio decreased, the solutions reached a turning point and the
plate lost its bistability. The transversal displacement of the corner points is less affected by
the width of the laminate when the CPL has two stable configurations and bends along
the length. Figure 8b shows the relationship between the curvature of the second stable
state and the aspect ratio. Curves of all orders were within a similar range of aspect ratio,
showing an increasing trend and then converging to a certain value.
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4.1.4. Side Length

In order to explore the influence of side length on the stable configuration of CPL, the
aspect ratio of CPL was kept at 1. As shown in Figure 9, as the side length increases, the
bifurcation phenomenon reappears. The predicted bifurcation point of Ord. 2 was 18.6 mm,
whereas the Ord. 4 and Ord. 6 points were both 18.4 mm. Moreover, as the order increased,
the bifurcation point once again converged to Ord. 6. Figure 9c,d shows that the overall
trends of curvature prediction with various order assumptions are approximately the same.

4.2. ACS

The geometric parameters of the ACS were as follows: central angle γ = 180◦, lon-
gitudinal length L = 80 mm, stacking sequence [45/−45/45/−45], and initial curvature
h0 = 40 m−1. Figure 10a,b shows the out-of-plane displacement at x = 0 of the second
stable state and the differences between theoretical predictions at various orders and the
FE simulation. The prediction accuracy of the theoretical model on the edge of the shell
is relatively low, though the maximum error did not exceed 6 mm. A comparison with
respect to FE results is presented in Figure 10c, and the color map superimposed on the
structure represents the difference between the FE and theoretical solutions under the Ord.
8 assumption.
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4.2.1. Ply Angle

As the first stable state of ACS is determined by the mold, only the variation of the
curvature of the second stable state is discussed here. As shown in Figure 11a, the curves of
various orders predicting the influence of the ply angle on the curvature of the second stable
state are essentially coincident. When the ply angle was relatively large, the prediction
results from Ord. 2 to Ord. 8 showed that the higher the order was, the larger the curvature
of the second stable state became. However, the maximum relative error between the
minimum value of Ord. 2 and the maximum value of Ord. 8 did not exceed 8%. All showed
a gradually increasing trend of curvature of the second stable state and demonstrated that
the ply angle had a significant influence on the bistability of ACS.
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4.2.2. Longitudinal Length

Figure 11b presents the relationship between the longitudinal length of the ACS and
the curvature of the second stable state. As the longitudinal length gradually increases, the
predicted results from Ord. 2 to Ord. 8 converge to 29 m−1, and as the order increases, the
curves converge faster. Owing to the gradual increase in longitudinal length, the second
stable configuration of the ACS will become a rolled cylindrical shape. If the longitudinal
length was increased on this basis, the curvature of the second stable state would remain
basically constant.

4.2.3. Central Angle

The central angle is another important design parameter of the ACS, in addition to
the curvature of the second stable state against the central angle, as shown in Figure 11c.
All show a slowly increasing trend of curvature of the second stable state. Moreover, as
the central angle increases, the curvature of the second stable state gradually converges.
It can be seen from Figure 11c that the convergence values of Ord. 2 and Ord. 4 are both
27.3 m−1, whereas those of Ord. 6 and Ord. 8 are 27.8 and 28.2 m−1, respectively.
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4.2.4. Initial Curvature

The influence of the initial curvature on the curvature of the second stable state is
shown in Figure 11d. The curves in the figure basically coincide when the initial curvature
is small, and all of them show that the curvature of the second stable state increases with
the increase in the initial curvature.

5. Conclusions

There are two main types of bistable polymer composite structures: CPL and ACS.
The theoretical models predicting their bistable behavior are not uniform. In this paper, an
efficient and accurate unified semianalytical model HVC was proposed. The model was
based on the uniform curvature assumption and extended to the nonuniform curvature. In
addition, the order of the curvature polynomial was increased to the eighth order. Through
a CPL and ACS case study, it was shown that, despite bistable characteristics being well
resolved already at the second order, other aspects of the nonlinear behavior of the bistable
composite structure were only captured at higher orders. By combining the semianalytical
model with the numerical method, the parameters influencing CPL and ACS could be
discussed systematically. The temperature variation, ply thickness, aspect ratio, and side
length of CPL and the ply angle, longitudinal length, central angle, and initial curvature
of ACS were analyzed in detail. In principle, the order of curvature polynomial could be
increased indefinitely. However, the prediction of the bifurcation point in CPL for the fourth
and sixth orders reached satisfactory results. For ACS, the influence of each parameter
under various orders on the curvature of the second stable state was basically the same. In
the future, higher-order or more complex approximation polynomials might be considered
for the curvature field to enhance the predictive capabilities of the model.
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