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The paper presents a unified jackknife theory for a fairly general class
of mixed models which includes some of the widely used mixed linear
models and generalized linear mixed models as special cases. The paper
develops jackknife theory for the important, but so far neglected, prediction
problem for the general mixed model. For estimation of fixed parameters,
a jackknife method is considered for a general class of M-estimators which
includes the maximum likelihood, residual maximum likelihood and ANOVA
estimators for mixed linear models and the recently developed method of
simulated moments estimators for generalized linear mixed models. For both
the prediction and estimation problems, a jackknife method is used to obtain
estimators of the mean squared errors (MSE). Asymptotic unbiasedness of
the MSE estimators is shown to hold essentially under certain moment
conditions. Simulation studies undertaken support our theoretical results.

1. Introduction. Due to the advent of high-speed computers and powerful
software, computer-oriented statistical methods, including various resampling
methods, have received considerable attention in recent years as statisticians are
constantly facing complex problems. The jackknife method is one such simple
resampling method which is very popular among survey samplers, primarily due
to its simplicity.

The properties of jackknife estimators, especially in the i.i.d. and regression
cases, have been studied extensively in the literature [see, e.g., Efron and
Tibshirani (1993), page 150; Shao and Tu (1995)]. However, the studies of
jackknife for mixed models have been limited so far to simple random effects
models. In this context, we refer to Arvesen (1969), Rao and Prasad (1986) and
Prasad and Rao (1988) for jackknifing variance components and Lahiri (1995) and
Chattopadhyay, Lahiri, Larsen and Reimnitz (1999) for jackknifing mean squared
error (MSE) of empirical best predictors (EBP).

Received June 1998; revised January 2002.
1Supported in part by NSF Grants SES-95-11202 and SBR-97-05574 to P. Lahiri.
2Supported in part by NSF Grant SES-99-78101 and National Security Agency Grant MDA904-

98-1-0038.
3Supported in part by NSF Grant SES-99-78145 and a grant from the Gallup Organization.
AMS 2000 subject classifications. 62G09, 62D05.
Key words and phrases. Empirical best predictors, mean squared errors, M-estimators, mixed lin-

ear models, mixed logistic models, small-area estimation, uniform consistency, variance components.

1782



UNIFIED JACKKNIFE THEORY 1783

In this paper, we present a unified theory of the jackknife method for
a general model which includes some of the widely used mixed linear models
and generalized linear mixed models (GLMM) as special cases. Specifically, we
propose a jackknife MSE estimator of EBP of a general mixed effect. The proposed
jackknife MSE estimator can be obtained as long as it is possible to obtain an
expression for the best predictor (BP) and it captures all different sources of
variability. We show that, under certain mild regularity conditions, the proposed
jackknife MSE estimator of EBP tends to the true MSE of EBP at a rate faster
than that of a naive estimator for several important models. In fact, let m be the
number of small areas in the sample. Then, it can be seen from our general results
that under either a normal mixed linear model or a mixed logistic model the order
of bias for our jackknife MSE estimator is o(m−λ), where λ can be arbitrarily
close to 3/2, while for the naive MSE estimator the order of bias is O(m−1).
As a by-product, we establish a jackknife theory for general M-estimators which
include maximum likelihood (ML), restricted maximum likelihood (REML) and
method of moments (MOM) estimators. The latter method is used in inference
about GLMM [Jiang (1998)]. Our regularity conditions and asymptotic theory
cover many real life applications in small-area estimation, disease mapping and
animal breeding problems.

The proposed jackknife method is very simple to implement and does not
require the tedious derivations of various derivatives needed in the Taylor series
method (see below). Thus, the method should be very attractive to practitioners.

The particular case of mixed normal linear model deserves further attention.
In this case, certain MSE estimators of EBP based on Taylor series are equally
efficient (in the second order asymptotic sense) to the proposed jackknife MSE
estimator. See Prasad and Rao (1990) and Datta and Lahiri (2000), among others.
The normality assumption is in general very crucial in deriving the Taylor series
MSE estimators with the exception of Lahiri and Rao (1995) who derived Taylor
series MSE estimator for nonnormal Fay–Herriot model [Fay and Herriot (1979)].
In this case, the BP can be obtained under the assumption of posterior linearity and
hence the jackknife MSE estimator of EBP [also the empirical best linear unbiased
predictor (EBLUP); see Section 5] continues to enjoy accurate rate of convergence
even when the normality assumption does not hold true. For a discussion on
posterior linearity, readers are referred to Ericson (1969). Our simulation results
suggest that the jackknife estimators are more robust than the corresponding
normality-based MSE estimators of Prasad and Rao (1990).

Before the paper gets technical, we first present, in Section 2, a table that lists
a selection of applications of the main theorems to come. Section 3 introduces
different notation used throughout the subsequent sections. Section 4 discusses
jackknifing M-estimators. In Section 5, we propose a jackknife method to estimate
the MSE of the proposed EBP. The asymptotic properties of our jackknife MSE
estimators are also stated in these two sections. The mixed linear models and
mixed logistic models which are important special cases of our general model
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are discussed in Sections 6 and 7, respectively. Simulation results are presented in
Section 8. The proofs of these results are quite technically involved and therefore
are deferred to a technical report [see Jiang (1999)].

2. Selected applications. The purpose of this section is to present some
selected applications of our theorems given in later sections. The applications will
be related to the following models which have been used in the literature. We
begin with the simplest models. Whenever possible we motivate each model from
real-life applications and then spell out formulae for a jackknife MSE estimator of
EBP or variance estimator of a parameter of interest. We then indicate the relevant
theorem (or proposition) which can be applied to obtain the order of bias of a
particular jackknife MSE estimator.

2.1. The James–Stein estimator. Let Yi | θi
ind∼ N(θi,1), i = 1, . . . ,m. In the

context of simultaneous estimation of θ = (θ1, . . . , θm)′, it is well known that, for
m ≥ 3, the James–Stein estimator dominates the maximum likelihood estimator
Y = (Y1, . . . , Ym)′ in terms of the frequentist risk under a sum of squared errors
loss function; see Lehmann [(1983), page 302]. Efron and Morris (1973) provided
an empirical Bayes justification of the James–Stein estimator. Their Bayesian
model can be equivalently written as the following simple random effects model:

Yi = vi + ei, i = 1, . . . ,m,

where the sampling errors {ei} and the random effects {vi} are independently
distributed with vi ∼ N(0,A) and ei ∼ N(0,1), i = 1, . . . ,m. Let B = 1/(1 + A)

be the unknown model parameter. It can be easily shown that the James–Stein
estimator can be interpreted as an EBP under the above random effects model.
The BP of θ1 = v1 is given by θ̌1 = (1 − B)Y1. The model parameter B can be
unbiasedly estimated by B̂ = (m − 2)/

∑m
i=1 Y 2

i [Efron and Morris (1973)]. An
EBP is then given by θ̂ = (1 − B̂)Y1.

Note that the MSE of the BP is given by b(B) = 1 − B . Thus, a naive estimator
of MSE of EBP can be obtained by estimating b(B) by b(B̂). This, however,
underestimates the true uncertainty of EBP since it does not incorporate the
variability due to the estimation of the model parameter B . Note that, since in this
case b(B̂) is an unbiased estimator of b(B), our proposed jackknife MSE estimator
of θ is given by

mseJ = b(B̂) + m − 1

m

m∑
u=1

[θ̂−u − θ̂]2 = (1 − B̂) + vJY
2
1 ,

where θ̂−u = (1 − B̂−u)Y1, B̂−u = (m − 3)/
∑

i �=u Y 2
i and vJ = [(m − 1)/m]

× ∑m
u=1(B̂−u − B̂)2 denotes the jackknife variance estimator of B̂ .

The second term on the right-hand side of the above expression incorporates
the extra variability due to the estimation of B . Proposition 5.3 states that mseJ has
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a bias of an order arbitrarily close to O(m−3/2), which is lower than that of the
naive estimator b(B̂).

2.2. The baseball example. Efron and Morris (1975) considered a Bayesian
model to predict the true 1970 season batting average of each of 18 major league
baseball players using the data on batting averages based on first 45 official at bats.
Their model can be obtained as a simple mixed linear normal model by adding
an unknown µ term to the random effects model described in Section 2.1. The
prediction of the true season batting average of player 1 is the same as that of the
mixed effect: θ1 = µ + v1.

The BP of θ1 is given by θ̌1 = π1(Y1;φ) = µ + (1 − B)(Y1 − µ). Here
φ = (µ,B) can be estimated by φ̂ = (Ȳ , B̂), where Ȳ = m−1 ∑m

i=1 Yi , and
B̂ = min[(m − 3)/(m − 1), (m − 3)/

∑m
i=1(Yi − Ȳ )2]. Note that the cut-off point

(m − 3)/(m − 1) was suggested by Morris (1983). An EBP is given by θ̂ =
Ȳ + (1 − B̂)(Y1 − Ȳ ).

Note that MSE of the BP is given by b(φ) = (1 − B). Thus, a naive estimator
of MSE of EBP is obtained by estimating b(B) by b(B̂). This underestimates the
true uncertainty of EBP since it does not incorporate the variability due to the
estimation of φ. Note that since the bias of b(B̂) is of the order o(m−1), jackknife
bias correction of b(φ̂) is not needed and our proposed jackknife MSE estimator
of θ̂ is given by:

mseJ = b(B̂) + m − 1

m

m∑
u=1

[θ̂−u − θ̂]2,

where θ̂−u = Ȳ−u + (1 − B̂−u)(Y1 − Ȳ−u), Ȳ−u = (m − 1)−1 ∑m
i �=u Yi and B̂−u =

min[(m − 4)/(m − 2), (m − 4)/
∑m

i �=u(Yi − Ȳ−u)
2].

The second term on the right-hand side of the above expression incorporates the
extra variability due to the estimation of µ and B . Theorem 5.3 states that mseJ

has a bias of the same order as in Section 2.1.

2.3. The baseball example continued. Suppose in the above baseball data
analysis, we are interested in comparing the true season averages of two players
by taking the difference, say, θ = θ1 − θ2. In this case, the BP of θ is given by
θ̌ = π1(Y1;φ) − π2(Y2;φ). An EBP of θ is given by θ̂ = π1(Y1; φ̂) − π1(Y1; φ̂).

A naive estimator of MSE of EBP is obtained by estimating the MSE of the BP
and is given by mseN = b(B̂) + b(B̂) = 2b(B̂), say. Our proposed jackknife MSE
estimator is given by

mseJ = 2b(B̂) + m − 1

m

m∑
u=1

[θ̂−u − θ̂]2,

where θ̂−u = π1(Y1; φ̂−u) − π1(Y2; φ̂−u). As a consequence of Theorem 5.3, we
obtain the same order of bias as in Section 2.1 for mseJ.
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2.4. A simple nested error model. In many applications such as small-area
estimation and animal breeding, the following simple random effects model has
been used:

Yij = µ + vi + eij , i = 1, . . . ,m, j = 1, . . . , n,

where the vi ’s are independent N(0, σ 2
v ), eij ’s are independent N(0, σ 2

e ) and
u and e are independent. Let φ = (µ,σ 2

v , σ 2
e ). Researchers in genetics and animal

breeding are interested in the estimation of nonlinear functions of the variance
components such as the intraclass correlation g(σ 2

v , σ 2
e ) = σ 2

v /(σ 2
v + σ 2

e ) or a
similar ratio called heritability. Such functions are also of interest in psychological
and educational testing.

The MOM estimators of σ 2
v and σ 2

e , which are identical to a solution to the
REML equations [e.g., Searle, Casella and McCulloch (1992), page 253], are
given by σ̂ 2

e = [m(n − 1)]−1 ∑m
i=1

∑n
j=1(Yij − Ȳi·)2 and σ̂ 2

v = (MSA − σ̂ 2
e )/n,

where MSA = [n/(m − 1)]∑m
i=1(Ȳi· − Ȳ··)2. One can then estimate g(σ 2

v , σ 2
e ) by

g(σ̂ 2
v , σ̂ 2

e ). Our jackknife can then be used to reduce the bias of this estimator to
an order arbitrarily close to O(m−3/2). See Theorem 5.2.

2.5. Estimation of a finite population mean. Let Yij and xij = (x1ij , . . . , xpij )
′

denote the values of a characteristic of interest and a vector of p covariates for
the j th unit in the ith stratum of known size Ni (i = 1, . . . ,m, j = 1, . . . ,Ni).
Suppose a simple random sample of size ni is drawn from the ith stratum and
let {(Yij , xij ), i = 1, . . . ,m, j = 1, . . . , ni} denote the sample. We assume that
xij values (i = 1, . . . ,m, j = 1, . . . ,Ni) are known for the entire population.
Ghosh and Meeden (1986) and Ghosh and Lahiri (1987), among others, considered
empirical Bayes estimation of the finite population mean, Ȳi = N−1

i

∑Ni

j=1 Yij .

Such empirical Bayes estimators of Ȳi can be motivated from an EBLUP (same
as EBP in such a situation) approach under the following mixed linear normal
model for Yij [see Prasad and Rao (1990)]:

Yij = x′
ij β + vi + eij , i = 1, . . . ,m, j = 1, . . . ,Ni,

where vi is a random effect due to the ith stratum and eij is the pure error which
accounts for any unexplained variation not taken care of by the other terms of
the above mixed model. It is often assumed that {vi} and {eij } are independently
distributed with vi ∼ N(0, σ 2

v ) and eij ∼ N(0, σ 2
e ). Let φ = (β,σ 2

v , σ 2
e ) denote the

unknown vector of model parameters.
A real-life application of the above model can be found in Battese, Harter

and Fuller (1988), who considered EBLUP of areas under corn and soybeans for
m = 12 counties in north central Iowa. In their example, Yij denotes the number
of hectares under corn (soybeans) and xij = (1, x1ij , x2ij )

′ with x1ij and x2ij

representing the number of pixels of corn and soybeans for the j th segment in
the ith county. The sample was obtained from the June Enumerative Survey. The
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covariates x1ij and x2ij were obtained for the sample segments as well as for the
nonsample segments using Landsat satellite data. We are interested in predicting
average area under corn (soybeans) for each county.

The BP of Ȳi is given by ˆ̄Y i(ȳi;φ) = ciȳi + (1 − ci)θ̌i , where θ̌i = θ̂i (ȳi;φ) =
x̄∗′
i β + (1 − Bi)(ȳi − x̄′

iβ) is the BP of θi = x̄∗′
i β + vi, ȳi and x̄i are the sample

means of y and x for the ith stratum, x̄∗
i is the mean of x for nonsampled units,

ci = ni/Ni is the finite population correction factor and Bi = σ 2
e /(σ 2

e +niσ
2
v ), i =

1, . . . ,m. In this case, usually a weighted least square estimator with estimated
variance components is used to estimate β , and MOM, ML or REML (see
Section 6 for details) is used to estimate the variance components σ̂ 2

v and σ̂ 2
e . Let

φ̂ = (β̂, σ̂ 2
v , σ̂ 2

e ) be an estimator of φ. Plugging in these estimators in the BP, we

obtain the following EBP of Ȳi :
ˆ̄Y i(ȳi; φ̂) = ci ȳi +(1−ci)θ̂i , where θ̂i = θ̂i (ȳi; φ̂).

In this case, our jackknife estimator of MSE of θ̂i is given by

mseJ
i = bi(φ̂) − m − 1

m

m∑
u=1

[bi(φ̂−u) − bi(φ̂)]

+ m − 1

m

m∑
u=1

[
θ̂i (ȳi; φ̂−u) − θ̂i (ȳi; φ̂)

]2
,

where φ̂−u is obtained using the formula of φ̂, deleting the uth observation. In
the above, the second term in the right-hand side reduces the bias of bi(φ̂) (see
Theorem 5.2) and the third term incorporates the extra variability due to the

estimation of φ (see Theorem 5.1). The jackknife MSE estimator of ˆ̄Y i(ȳi; φ̂) is
then obtained as

mseJ
i

[ ˆ̄Y i(ȳi; φ̂)
] = (1 − ci)

2[
mseJ

i +N−1
i (1 − ci)

−1σ̂ 2
e

]
.

As a consequence of Theorem 5.3, we obtain the same order of bias as in

Section 2.1 for mseJ
i [ ˆ̄Y i(ȳi; φ̂)].

We are also interested in obtaining the variance estimator of h(φ̂), a nonlinear
function of φ̂. For example, h(φ̂) = σ̂ 2

v /(σ̂ 2
v + σ̂ 2

e ). Our jackknife variance
estimator is given by

vJ = m − 1

m

m∑
u=1

[h(φ̂−u) − h(φ̂)]2.

Theorem 5.1 can be applied to claim that vJ has a bias of an order arbitrarily close
to O(m−3/2). Note that, since MSE = variance + (bias)2 = variance + O(m−2)

(see Section 1, third paragraph), the variance estimator is equivalent to the MSE
estimator. Also note that a special case of π(YS,φ) is π(YS,φ) = h(φ).
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2.6. A mixed logistic model. Suppose that, conditional on pij , Yij , 1 ≤ i ≤ m,
1 ≤ j ≤ ni , are independent Bernoulli random variables with P(Yij = 1|pij ) = pij .
Furthermore, suppose that, conditional on the random effects α1, . . . , αm,

logit(pij ) = xt
ij β + αi,(2.1)

where xij = (xijk)1≤k≤p is a vector of known covariates, β is a vector of unknown
regression coefficients and logit(t) = log[t/(1 − t)]. We assume that the α’s are
independent and distributed as N(0, σ 2). Then the above is a special case of
the generalized linear mixed model which has received considerable attention
in recent years [e.g., Breslow and Clayton (1993) and Lee and Nelder (1996)].
Malec, Sedransk, Moriarity and Le Clere (1997) used a more general version
of model (2.1) to estimate the state level proportion of individuals who visited
a doctor’s office at least once during the past 12 months.

Suppose that one is interested in predicting a (possibly nonlinear) mixed effect
θ = hi(β,αi). For example, θ = αi ; or, if the covariates take values from a finite
set {x1, . . . , xK}, θ = ∑K

k=1 wklogit−1(xt
kβ +αi), where wk , 1 ≤ k ≤ K , is a set of

weights and logit−1(u) = eu/(1 + eu).
Jiang and Lahiri (2001) derived the BP of θ as

θ̌ = E(θ |Y )

= Ehi(β,σξ) exp(ψi(Yi·, σ ξ,β))

E exp(ψi(Yi·, σ ξ,β))
= πi(Yi·, φ),

(2.2)

where ψi(k,u, v) = ku − ∑ni

j=1 log[1 + exp(xt
ij v + u)], Yi· = ∑ni

j=1 Yij ,

φ = (βtσ )t and the expectations are taken over ξ ∼ N(0,1). Let φ̂ be the method
of simulated moments estimator of φ (see Section 7 for details). An EBP of θ is
then given by θ̂ = πi(Yi·, φ̂).

A naive estimator of MSE is given by bi(φ̂), which has an order of bias
O(m−1/2). Here bi(φ) ≡ MSE(θ̌ ) = Eh2

i (β, σ ξ) − ∑ni

k=0 π2
i (k,φ)pi(k,φ) and

pi(k,φ) = P(Yi· = k). Our jackknife MSE estimator of the EBP is given by

mseJ
i = bi(φ̂) − m − 1

m

m∑
u=1

[bi(φ̂−u) − bi(φ̂)]

+ m − 1

m

m∑
u=1

[πi(Yi·, φ̂−u) − πi(Yi·, φ̂)]2.

Once again, as a consequence of Theorem 5.3 we obtain the same order of bias as
in Section 2.1 for mseJ

i .
The jackknife variance estimator of h(φ̂), where h(·) is a smooth function, is

given by

vJ = m − 1

m

m∑
u=1

[h(φ̂−u) − h(φ̂)]2.
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Again, Theorem 5.1 can be applied to obtain the same order of the bias as in
Section 2.5 for vJ.

3. Notation. Let φ denote a vector of parameters associated with the
distribution of the observations. Then φ0, 
 and 
o represent the true vector
of parameters, the parameter space and the interior of 
, respectively. Also,
φ∗ denotes a given point in 
, which may be a reasonable guess of φ0 (but without
using the data). If φ is s-dimensional (s > 1), then φj represents the j th component
of φ, and similar notation applies to φ0, etc.

In this paper, E(·) means Eφ0(·), that is, expectation taken at φ0. Similarly, var(·)
means varφ0(·). When φ is a vector and φ̂ is an estimator of φ, the matrix MSE
and (scale) MSE of φ̂ are defined, respectively, as MSE(φ̂) = E(φ̂ − φ0)(φ̂ −φ0)

′
and MSE(φ̂) = E(|φ̂ − φ0|2) = tr[MSE(φ̂)]. Let θ denote a random vector. Then,
θ̌ represents the BP of θ , that is, θ̌ = E(θ |data). If θ̂ is a predictor of θ , we define
MSE(θ̂) = E(|θ̂ − θ |2). For convenience, we also define MSE(θ̌) = E(|θ̌ − θ |2),
even though θ̌ may not be a predictor (because it may depend on unknown
parameters). Similarly, we define the mean squared approximation error of θ̂

to θ̌ as MSAE(θ̂) = E(|θ̂ − θ̌ |2). As before, the latter has a matrix version; that is,
MSAE(θ̂ ) = E(θ̂ − θ̌ )(θ̂ − θ̌ )′, so that MSAE(θ̂ ) = tr[MSAE(θ̂)].

Let A be a matrix. Then A ≥ 0 means that A is nonnegative definite; and
‖A‖ = λ

1/2
max(A

′A), where λmax means largest eigenvalue. If A = (ai1,...,iq ) is a
q-way array (q ≥ 3), then ‖A‖ = maxi1,...,iq |ai1,...,iq |. If S is a set, then |S| denotes
the cardinality of S.

If f (φ, ξ) depends both on φ and on a random vector ξ , we simply write f for
f (φ0, ξ). If Yj is a random variable, we shall always write

fj = fj (φ;Yj), gj = (∂/∂φ)fj (φ;Yj), hj,k = (∂2/∂φ2)fj,k(φ;Yj),

where φ = φ0. Also,

f· =
m∑

j=1

fj , f·−i = ∑
j �=i

fj , f̄ = f·/m,

∂3f/∂φ3 = (∂3f/∂φi ∂φj ∂φk)i,j,k,

etc. For any w > 0, we define

|f |w = sup
|φ−φ0|≤w

|f (φ, ξ)|.

Similarly, if f and g are two functions of φ, we define

|f − g|w,w = sup
|u−φ0|≤w, |v−φ0|≤w

|f (u) − g(v)|.

The definitions extend to ‖ · ‖ in a natural way.
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Some functions a and a−i will be introduced in Section 4.2, for which we define
Ad,w,r , r = 1, . . . ,4, to be the following sets of quantities:

1. Ad,w,1: m−1|a−i |,m−1‖∂a−i/∂φ‖,m−1‖∂2a−i,k/∂φ2‖w,1≤k≤ s,0≤ i≤m;
2. Ad,w,2: m−1/(2d+1)‖∂a/∂φ‖w,m−1/(2d+1)|a−i |w,m(d−1)/(2d+1)|a − a−i|w,

|a − a−i|w,w , 0 ≤ i ≤ m;
3. Ad,w,3: | · |w(‖ · ‖w) of a−i and its up to third derivatives; |�i |w , mδ|�i |

and mδ‖∂�i/∂φ‖, 1 ≤ i ≤ m, where δ = (d − 2)/(2d + 1) (d > 2) and
�i = a − a−i ;

4. Ad,w,4: | · |w(‖ · ‖w) of a−i and its up to third derivatives; m(d−1)/(2d+1)|�i |w
and m(d−2)/(2d+1)‖∂�i/∂φ‖, 1 ≤ i ≤ m.

Finally, we use c to denote a constant whose value may be different at different
places.

4. Jackknifing M-estimators. For simplicity of exposition, we first state
results for a simple model and then for a very general case.

4.1. A simple case. Let φ be one-dimensional (e.g., Section 2.1). Let Y1, . . . ,Ym

be independent observations with the same distribution as Y , which depends on φ.
An M-estimator of φ is associated with the solution φ̇ to the equation

F(φ) =
m∑

j=1

f (φ,Yj ) = 0,

where f (φ,Yj ) is a function satisfying E[f (φ0, Y )] = 0. In general, φ̇ may not
always exist or, even if it does, may fall outside 
. Of course, the MSE(φ̇) also
may not exist. Therefore, we consider the following truncated version of φ̇. Let
φ̂ = φ̇ if φ̇ exists, lies in 
 and |φ̇| ≤ K(logm)α ; and let φ̂ = φ∗ otherwise, where
K and α are (known) constants such that K > 0, α ≥ 0 and |φ∗| ≤ K(log m)α .

REMARK 4.1. One may wonder why |φ̇| is truncated by a term of the order
(log m)α . First such a truncation will have no impact on the main theoretical results
proved in this paper; that is, the order of the asymptotic bias of the jackknife
estimator of the MSE remains the same irrespective of the value of α. Also, such a
truncation is not restrictive. To see this, consider the simple random effects model
given in Example 2.4 (although in this case φ is not one-dimensional). Suppose
that m → ∞ while n remains fixed. Then it can be shown that

P(σ̂ 2
e > logm) ≤ exp

(
−

√
logm

2
m

)
, P(σ̂ 2

v > log m) ≤ exp
(
−

√
logm

2
m

)
.

It is customary to truncate the ANOVA estimators of variances at 0 when they
are negative. It can be shown that P(σ̂ 2

v < 0) = O[exp(−am)] for some constant
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a > 0. Thus, asymptotically, the chance of σ̂ 2
e or σ̂ 2

v exceeding log m is much
smaller than that of σ̂ 2

v being negative.

We define a delete-i estimator, φ̂−i , which is associated with a solution φ̇−i to
the equation

F−i (φ) = ∑
j �=i

f (φ,Yj ) = 0.(4.1)

For convenience, we write F−0(φ) = F(φ) and φ̂−0 = φ̂.
Not surprisingly, the asymptotic behavior of the M-estimators is critical to the

theoretical development in the next section, in which the following property of an
estimator plays an important role.

DEFINITION 4.1. The M-estimators φ̂−i , 0 ≤ i ≤ m, are said to be consistent
uniformly (c.u.) at the rate m−d if, for any b > 0, there is a constant c (which may
depend on b) such that

P(Ac
i,b) ≤ cm−d,

0 ≤ i ≤ m, where Ai,b = {F−i (φ̂−i) = 0, and |φ̂−i − φ0| ≤ b}, and P(·) means
Pφ0(·).

Propositions 4.1 and 4.2 give sufficient conditions for the M-estimators to be
c.u. at rate m−d . First define the following.

DEFINITION 4.2. The M-estimating equations are said to be standard if
f (φ,Y ) = (∂/∂φ)l(φ,Y ) for some function l(φ,Y ) three times continuously
differentiable with respect to φ and satisfying

E
(

∂2

∂φ2 l(φ0, Y )

)
> 0.

REMARK 4.2. A standard M-estimating equation is similar to one considered
by Huber [(1981), Section 3.2], while a nonstandard one may be regarded as an
extension. Examples of both standard and nonstandard M-estimating equations
will be considered in Sections 6 and 7.

PROPOSITION 4.1. Suppose that the M-estimating equations are standard
and that

E

(∣∣∣∣ ∂r

∂φr
l(φ0, Y )

∣∣∣∣2d
)

< ∞, r = 1,2, and

E

(
sup

|φ−φ0|≤b0

∣∣∣∣ ∂3

∂φ3 l(φ,Y )

∣∣∣∣2d
)

< ∞
(4.2)
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for some d ≥ 1 and b0 > 0. Then there are M-estimators φ̂−i , 0 ≤ i ≤ m, which
are c.u. at rate m−d .

REMARK 4.3. Consider Section 2.1. It is easy to see that the ML equation
for estimating A is equivalent to

∑m
j=1(∂/∂A)l(A,Yj ) = 0, where l(A,Y ) =

log(A + 1) + Y 2/(A + 1). Clearly, the M-estimating equation is standard, and
it is straightforward to show that all the conditions of Proposition 4.1 are satisfied
(d ≥ 1).

We now consider cases where the M-estimating equations may not be standard.
It is more convenient to consider the following generalized M-estimator: Let
φ̂−i be any φ that minimizes |F−i(φ)|, if such a minimizer exists and is in 
;
otherwise, define φ̂−i = φ∗. Similar definitions have been adapted in the literature,
for example, for the generalized method of moments estimators [e.g., McFadden
(1989)]. It is clear that, if the solution to (4.1) exists and lies in 
, then φ̂−i

satisfies (4.1).

PROPOSITION 4.2. Suppose that f (φ,Y ) = t (Y ) − M(φ) for some function
t (·), where M(φ) = Eφt (Y ). Suppose that M ′(φ) is continuous and nonzero, and
that there is d ≥ 1 such that

E(|t (Y )|2d) < ∞.

Then the following hold:

(a) For any b > 0 there is a constant c (which may depend on b) such that

P(|φ̂−i − φ0| > b) ≤ cm−d, 0 ≤ i ≤ m.

(b) Let Rt be the range of t (Y ). If, in addition,

∀ r ∈ Rt, ∃φ ∈ 
 such that M(φ) = r,

then φ̂−i , 0 ≤ i ≤ m, are c.u. at rate m−d .

Now define the jackknife estimator of MSE(φ̂) as follows:

M̂SE(φ̂) = m − 1

m

m∑
i=1

(φ̂−i − φ̂)2.

PROPOSITION 4.3. Suppose that (i)

E
(

∂

∂φ
f (φ0, Y )

)
�= 0,(4.3)
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and there are d > 2 and b0 > 0 such that

E
(|f (φ0, Y )|2d) ∨ E

(∣∣∣∣ ∂

∂φ
f (φ0, Y )

∣∣∣∣2d
)

∨ E

(
sup

|φ−φ0|≤b0

∣∣∣∣ ∂2

∂φ2 f (φ,Y )

∣∣∣∣2d
)

< ∞,(4.4)

E

(
sup

|φ−φ0|≤b0

[
∂3

∂φ3
f (φ,Y )

]2)
< ∞,

where a ∨ b is the maximum of a and b; and (ii) φ̂−i , 0 ≤ i ≤ m, are c.u. at
rate m−d . Then

E
[
M̂SE(φ̂)

] − MSE(φ̂) = o(m−1−ε),

for any 0 < ε < (d − 2) ∧ [(d − 1)/(2d + 1)].
REMARK 4.4. Since MSE(φ̂) = O(m−1), the jackknife estimator is asymp-

totically unbiased.

REMARK 4.5. We now show that all the conditions of Proposition 4.3 are
satisfied in the case of Section 2.1. Note that here f (A,Y ) = (∂/∂A)l(A,Y ) =
(A + 1)−1 − Y 2/(A + 1)2. Thus,

E
[

∂

∂A
f (A0, Y )

]
= 1

(A0 + 1)2
> 0.(4.5)

Also, we have

E|f (A0, Y )|2d ≤ c

[
1

(A0 + 1)2d
+ E|Y |4d

(A0 + 1)4d

]
< ∞.

Similarly, we have

E
∣∣∣∣ ∂

∂A
f (A0, Y )

∣∣∣∣2d

≤ c

[
1

(A0 + 1)4d
+ E|Y |4d

(A0 + 1)6d

]
< ∞,

E

[
sup
A>0

∣∣∣∣ ∂2

∂A2 f (A,Y )

∣∣∣∣2d
]

≤ c[1 + E|Y |4d ] < ∞,

E

{
sup
A>0

[
∂3

∂A3 f (A,Y )

]2}
≤ c

(
1 + EY 4

)
< ∞.

It remains to show that Â−i , 0 ≤ i ≤ m, are c.u. at rate m−d , but this follows
immediately from Proposition 4.1, because the M-estimating equations are clearly
standard [see (4.5)], and we have shown that (4.2) is satisfied. Note that each of
the M-estimating equations has a unique solution.
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4.2. General results. Now suppose that φ is s-dimensional (s ≥ 1). See
Examples 2.2–2.6. Let Y1, . . . , Ym be independent (vector-valued) observations
whose joint distribution depends on φ. We are interested in an M-estimator of φ,
which is associated with a solution φ̇ = (φ̇k)1≤k≤s to the following equation:

F(φ) =
m∑

j=1

fj (φ;Yj) + a(φ) = 0.(4.6)

In the above, fj (φ,Yj ) = (fj,k(φ,Yj ))1≤k≤s are vector-valued functions such that
E[fj (φ0, Yj )] = 0, 1 ≤ j ≤ m, and a(φ) is a vector-valued function which may
depend on the joint distribution of (Yj )1≤j≤m. When a(φ) �= 0, it plays the role
of a modifier or penalizer. We assume that φ0 ∈ 
o. An M-estimator of φ, φ̂, is
then defined based on φ̇ in the same way as in Section 4.1. Similarly, a delete-i
estimator of φ, φ̂−i , is defined based on a solution φ̇−i to

F−i(φ) = ∑
j �=i

fj (φ;Yj) + a−i (φ) = 0.

Again, for convenience we write F−0(φ) = F(φ), a−0(φ) = a(φ) and φ̂−0 = φ̂.
The jackknife estimators of the MSE and MSE of φ̂ are defined as

M̂SE(φ̂) = m − 1

m

m∑
i=1

(φ̂−i − φ̂)(φ̂−i − φ̂)′,

M̂SE(φ̂) = tr
[
M̂SE(φ̂)

] = m − 1

m

m∑
i=1

|φ̂−i − φ̂|2.

Definition 4.1 is adopted here without any change. We now give an extension of
Definition 4.2.

DEFINITION 4.3. The M-estimating equations are said to be standard if
F−i (φ) = ∂l−i/∂φ for some functions l−i (φ;Y−i) three times continuously
differentiable with respect to φ, 0 ≤ i ≤ m, and E(ḡ) ≥ 0.

We now give analogues of Propositions 4.1, 4.2 and 4.3.

THEOREM 4.1. Suppose that (i) the M-estimating equations are standard;
(ii) there are d ≥ 1 and w > 0 such that the 2d th moments of |fj |, ‖gj‖, ‖hj,k‖w ,
1 ≤ k ≤ s, 1 ≤ j ≤ m, are bounded; (iii)

lim sup
m→∞

‖(Eḡ)−1‖ < ∞;(4.7)

and (iv) the quantities in Ad,w,1 converge uniformly to 0. Then there are
M-estimators φ̂−i , 0 ≤ i ≤ m, which are c.u. at rate m−d .
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As in Section 4.1, we define the generalized M-estimator, φ̂−i , as any φ that
minimizes |F−i (φ)|, if such a minimizer exists and is in 
; otherwise, define
φ̂−i = φ∗.

THEOREM 4.2. Suppose that fj (φ,Yj ) = tj (Yj ) − Eφtj (Yj ) for some
function tj (·), 1 ≤ j ≤ m, and a−i (φ) = 0, 0 ≤ i ≤ m. Write M(φ) =
m−1 ∑m

j=1 Eφtj (Yj ). Suppose that there are B,ε1, ε2 > 0 such that

lim inf
(

inf
φ /∈
B

|M(φ) − M(φ0)|
)

≥ ε1,(4.8)

lim inf
(

inf
φ∈
B,φ �=φ0

|M(φ) − M(φ0)|
|φ − φ0|

)
≥ ε2,(4.9)

where 
B = {φ ∈ 
 : |φ| ≤ B}, and that there is d ≥ 1 such that

E(|tj (Yj )|2d), 1 ≤ j ≤ m are bounded.(4.10)

Then the following hold:

(a) For any b > 0 there is a constant c which may depend on b such that

P(|φ̂−i − φ0| > b) ≤ cm−d, 0 ≤ i ≤ m.

(b) Let Rt be the range of m−1 ∑m
j=1 tj (Yj ). If, in addition,

∀ r ∈ Rt, ∃φ ∈ 
 such that M(φ) = r,(4.11)

then φ̂−i , 0 ≤ i ≤ m, are c.u. at rate m−d .

THEOREM 4.3. Suppose that (i) (4.7) holds, and there are d > 2 and w > 0
such that the 2d th moments of |fj |, ‖gj‖, ‖hj,k‖w and the second moments of
‖∂3fj,k/∂φ3‖w , where 1 ≤ j ≤ m, 1 ≤ k ≤ s, are bounded; (ii) the quantities in
Ad,w,2 are bounded; and (iii) φ̂−i , 0 ≤ i ≤ m, are c.u. at rate m−d . Then

E
[
M̂SE(φ̂)

] − MSE(φ̂) = o(m−1−ε)

for any 0 < ε < (d − 2) ∧ [(d − 1)/(2d + 1)], and hence for the same range of ε,

E
[
M̂SE(φ̂)

] − MSE(φ̂) = o(m−1−ε).

REMARK 4.6. Again, because MSE(φ̂) = O(m−1), the jackknife estimator is
asymptotically unbiased.

5. Jackknifing MSE of EBP. We first motivate our proposed jackknife MSE
estimator of EBP using the following simple example.
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5.1. A simple case. Suppose that one is interested in predicting a univariate
random variable θ based on i.i.d. observations Y1, . . . , Ym, and it is known that the
BP has the form

θ̌ = π(Y1, φ),

where φ is one-dimensional. The EBP and delete-i EBP of θ are, respectively,

θ̂ = π(Y1, φ̂),

θ̂−i = π(Y1, φ̂−i),

where φ̂, φ̂−i , 1 ≤ i ≤ m, are the M-estimators given in Section 4.1.
For example, consider Section 2.1. It is easy to show that the BP is in the

form π(Y1,A), namely, θ̌ = E(v1 | Y1, . . . , Yn) = [A/(A + D)]Y1, and the EBP
is θ̂ = π(Y1, Â) = [Â/(Â + D)]Y1, where Â is an M-estimator of A.

We now define the jackknife estimator of MSE(θ̂ ). First, we have the following
decomposition:

MSE(θ̂) = MSAE(θ̂ ) + MSE(θ̌ ).(5.1)

A jackknife estimator of the first term on the right-hand side of (5.1) is given by

M̂SAE(θ̂) = m − 1

m

m∑
i=1

(θ̂−i − θ̂ )2.

As for the second term, it is often possible to obtain a closed-form expression,
which is a function of φ. Suppose that MSE(θ̌ ) = b(φ). Then a jackknife estimator
of b(φ) is given by

M̂SE(θ̌) = b̂(φ) = b(φ̂) − m − 1

m

m∑
i=1

[b(φ̂−i ) − b(φ̂)].

Therefore, the jackknife estimator of the MSE of θ̂ is

M̂SE(θ̂) = M̂SAE(θ̂ ) + M̂SE(θ̌ ).(5.2)

REMARK 5.1. The definition of θ̂−i is different from that of a traditional
jackknife estimator (of a parameter) in the sense that Y1 stays the same for all i.
Some might wonder why one cannot use the traditional definition, that is, let
θ̂ = τ (Y ), where Y = (Yj )1≤j≤m, and define θ̂∗−i = τ (Y−i), where Y−i = (Yj )j �=i .

To see the reason, consider, once again, Section 2.1. It is easy to see that θ̌−1 = 0,
and θ̌−i = (1 − B)y1, if i ≥ 2. Also, one has Ȧ = m−1 ∑m

j=1 Y 2
j − 1, Ȧ−i =

(m − 1)−1 ∑
j �=i Y

2
j − 1, i ≥ 1. It can be shown that

MSE(θ̂) = (1 − B) + m − 1

m2 B3 var(Y 2
1 ) + O(m−3/2).
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Now, suppose that one defines the “delete-i EBP” in the “traditional way,” that is,
θ̂∗−1 = 0, and

θ̂∗−i = (1 − B̂−i )Y1, i ≥ 2,

where B̂−i = 1/(1 + Â−i ). Then it can be shown that

E(θ̂∗−1 − θ̂ )2 = E(θ̂2) = A(1 − B) + o(1),

E(θ̂∗−i − θ̂ )2 = 1

m2
B3 var(Y 2

1 ) + O(m−5/2), i ≥ 2.

Thus, if one defines the “jackknife estimator” of MSE(θ̂ ), say, M̂SE
∗
(θ̂), the same

way as M̂SE(θ̂) [see (5.2)], one has E[M̂SE
∗
(θ̂)] − MSE(θ̂ ) = A(1 − B) + o(1),

which does not even go to 0 as m → ∞.

In the following, we assume that

|π(Y1, φ)| ≤ ω(Y1)(1 ∨ |φ|λ)
for some constant λ > 0 and measurable function ω(·) such that ω(·) ≥ 1. Recall
that, in Section 4, we define M-estimators which are c.u. at rate m−d . We now
generalize the concept. Let B = σ(Y1, . . . , Ym), the σ -fields generated by the Yi’s.
Define a measure µω on B:

µω(B) = E
(
ω2(Y1)1B

)
, B ∈ B.(5.3)

DEFINITION 5.1. The M-estimators φ̂−i , 0 ≤ i ≤ m, are said to be consistent
uniformly with respect to µω (c.u. µω) at rate m−d , if for any b > 0, there is a
constant c which may depend on b such that

µω(Ac
i,b) ≤ cm−d,

0 ≤ i ≤ m, where Ai,b is the same as in Definition 4.1.

REMARK 5.2. Because ω(·) ≥ 1, c.u. µω at rate m−d implies c.u. at rate m−d .
On the other hand, if there is τ > 2 such that E(|ω(Y1)|τ ) is bounded, then,
by Hölder’s inequality, c.u. at rate m−d implies c.u. µω at rate m−d(1−2/τ); in
particular, if E(ω(Y1)

4) is bounded, then c.u. at rate m−2d implies c.u. µω at
rate m−d . Let Y be a random variable with the same distribution as the Yi’s.

PROPOSITION 5.1. Suppose that the following hold:

(i) (4.3) holds and there are d > 2, b0 > 0 such that (4.4) holds, and

E

(
sup

|φ−φ0|≤b0

[
∂3

∂φ3
f (φ,Y )

]4)
< ∞;
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(ii) there is τ ≥ 4 such that E(|ω(Y )|τ ) < ∞, and

E

([
∂2

∂φ2 π(Y,φ0)

]4)
∨ E

(
sup

|φ−φ0|≤b0

[
∂3

∂φ3 π(Y,φ)

]2)

∨ E

(
sup

|φ−φ0|≤b0

∣∣∣∣ ∂

∂φ
π(Y,φ)

∣∣∣∣2d
)

< ∞;

(iii) φ̂−i , 0 ≤ i ≤ m, are c.u. µω at rate m−d .

Then

E
[
M̂SAE(θ̂)

] − MSAE(θ̂) = o(m−1−ε)(5.4)

for any 0 < ε < (d − 2)/(2d − 1).

REMARK 5.3. Note that ε in (5.4) approaches 1/2 as d → ∞, but ε is always
less than 1/2. One may wonder if the order in (5.4) can be improved to O(m−3/2),
as in Section 2.1 [note that in this special case it can be shown that the order
is exactly O(m−3/2); see Remark 5.1]. However, in Section 2.1 we have used
the following special properties: (1) normality; (2) the BP has the form θ̌ =
g(A)Y1, where |g′′′(A)| is uniformly bounded; and (3) the M-estimating equation
has a closed-form solution which can be expressed as Ȧ = m−1 ∑m

j=1 h(Yj ),
where h(Yj ) has mean A and bounded moments of any order. These conditions,
especially (1) and (3), do not always hold in practice. Therefore, we do not
make such assumptions in Proposition 5.1 (and similarly in other propositions and
theorems). As a consequence, the order in (5.4) is not O(m−3/2).

REMARK 5.4. In practice, ω may be chosen in the following way. Suppose
that there is a positive number λ such that supφ{|π(y,φ)|/(1 ∨ |φ|λ)} < ∞ for
every y. Then let

ω(y) = sup
φ

{|π(y,φ)|/(1 ∨ |φ|λ)}.
Once ω is chosen, µω is determined by (5.3). Remark 5.2 is useful in checking
whether the c.u. µω property holds because, under a suitable moment condition, it
reduces to checking the c.u. property.

PROPOSITION 5.2. Suppose that (i) (4.3) holds, and there are d > 2 and
b0 > 0 such that

E
(|f (φ0, Y )|2d) ∨

{
max
r=1,2

E

(∣∣∣∣ ∂r

∂φr
f (φ0, Y )

∣∣∣∣2d
)}

∨ E

(
sup

|φ−φ0|≤b0

∣∣∣∣ ∂3

∂φ3 f (φ,Y )

∣∣∣∣2d
)

< ∞;
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(ii) sup|φ−φ0|≤b0
|b(4)(φ)| is bounded; and (iii) φ̂−i , 0 ≤ i ≤ m, are c.u. at

rate m−d . Then

E
[
M̂SE(θ̌ )

] − MSE(θ̌) = E
[
b̂(φ) − b(φ)

] = o(m−1−ε)

for any 0 < ε < (d − 2)/(2d + 1).

PROPOSITION 5.3. Suppose that Proposition 5.2 (i) and (ii) and Proposi-
tion 5.1 (ii) and (iii) hold. Then

E
[
M̂SE(θ̂)

] − MSE(θ̂) = o(m−1−ε)

for any 0 < ε < (d − 2)/(2d + 1).

Note that, by Propositions 4.1 and 4.2 and Remark 5.2, sufficient conditions for
c.u. µω can be easily obtained.

REMARK 5.5. Refer to Section 2.1. Note that π(Y,A) = [1 − B]Y so that
|π(Y,A)| ≤ |Y | and b(B) = 1 − B . Combining with discussions in the previous
section, it is straightforward to verify that all the conditions of Propositions 5.1
and 5.2 are satisfied, for any d > 2. Therefore, the conclusion of Proposition 5.3
holds for any 0 < ε < 1/2.

5.2. General results. In general, we are interested in predicting an unob-
servable random vector θ = (θl)1≤l≤t . The prediction will be based on inde-
pendent (vector-valued) observations Y1, . . . , Ym, whose distributions depend on
φ = (φk)1≤k≤s . Suppose that, when φ is known, the BP is

θ̌ = E(θ | Y1, . . . , Ym)

= π(YS,φ) = (
πl(YS,φ)

)
1≤l≤t ,

where S is a subset of {1, . . . ,m} and YS = (Yj )j∈S . Let φ̂, φ̂−i , 1 ≤ i ≤ m, be the
M-estimators given in Section 4.2. Then EBP and delete-i EBP are given by

θ̂ = π(Ys, φ̂),

θ̂−i = π(Ys, φ̂−i ), 1 ≤ i ≤ m.

Note that YS is kept the same for all θ̂−i ’s (i.e., not affected by deleting the ith
observation, see Remark 5.1). Again, we have the decomposition of the MSE:

MSE(θ̂) = MSAE(θ̂ ) + MSE(θ̌ ).(5.5)

A jackknife estimator of the first term on the right-hand side of (5.5) is given by

M̂SAE(θ̂) = m − 1

m

m∑
i=1

|θ̂−i − θ̂ |2.
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As for the second term, it is often possible to obtain a closed-form expression as
a function of φ. Suppose that MSE(θ̌) = b(φ). Then a jackknife estimator of b(φ)

is given by

M̂SE(θ̌) = b̂(φ) = b(φ̂) − m − 1

m

m∑
i=1

[b(φ̂−i ) − b(φ̂)].

Therefore, a jackknife estimator of the MSE of θ̂ is

M̂SE(θ̂) = M̂SAE(θ̂ ) + M̂SE(θ̌ ).

The jackknife estimator of MSAE(θ̂ ) is defined as

M̂SAE(θ̂ ) = m − 1

m

m∑
i=1

(θ̂−i − θ̂ )(θ̂−i − θ̂ )′.

We assume that

|π(YS,φ)| ≤ ω(YS)(1 ∨ |φ|λ)
for some constant λ > 0 and measurable function ω(·) such that ω(·) ≥ 1. Similar
to Section 5.1, we define a measure µω on B = σ(Y1, . . . , Ym) by

µω(B) = E
(
ω2(YS)1B

)
, B ∈ B.

Definition 5.1 can be adapted here without any change. Note that φ̂−i ,
0 ≤ i ≤ m, are now the more general M-estimators defined in Section 4.2.
Similarly, we have the connection between c.u. and c.u. µω (see Remark 5.2).

We now give analogues of Propositions 5.1–5.3.

THEOREM 5.1. Suppose that the following hold:

(i) (4.7) holds, and there are d > 2 and w > 0 such that the 2d th moments
of |fj |, ‖gj‖, ‖hj,k‖w , 1 ≤ k ≤ s, 1 ≤ j ≤ m, and the fourth moments of
‖∂3fj,k/∂φ3‖w , with the same range for j and k, are bounded;

(ii) the quantities in Ad,w,2 are bounded;
(iii) E(|ω(YS)|τ ), E(‖∂π/∂φ‖2d

w ), E(‖∂2πk/∂φ2‖4), E(‖∂3πk/∂φ3‖2
w),

1 ≤ k ≤ t , are bounded, where τ ≥ 4;
(iv) there is 0 ≤ κ ≤ [3(4d − 2)−1] ∧ [(τ − 4)(τ − 2)−1] such that |S| = (mκ);
(v) φ̂−i , 0 ≤ i ≤ m, are c.u. µω at rate m−d . Then

E
[
M̂SAE(θ̂)

] − MSAE(θ̂) = o(m−1−ε)

for any 0 < ε < (d − 2)/(2d − 1), and hence for the same range of ε,

E
[
M̂SAE(θ̂ )

] − MSAE(θ̂ ) = o(m−1−ε).
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THEOREM 5.2. Suppose that the following hold:

(i) (4.7) holds, and there are d > 2 and w > 0 such that the 2d th moments of
|fj |, ‖gj‖, ‖hj,k‖, ‖∂3fj,k/∂φ3‖w , 1 ≤ k ≤ s, 1 ≤ j ≤ m, are bounded;

(ii) the quantities in Ad,w,3 are bounded;
(iii) ‖∂4b/∂φ4‖w is bounded;
(iv) φ̂−i , 0 ≤ i ≤ m, are c.u. at rate m−d . Then

E
[
M̂SE(θ̌ )

] − MSE(θ̌) = E
[
b̂(φ) − b(φ)

]
= m−1

(
∂b

∂φ

)′
(Eḡ)−1

m∑
i=1

(a−i − a) + o(m−1−ε)

for any 0 < ε < (d − 2)/(2d + 1). In particular, if
∑m

i=1 �i = O(m−ν) for some
ν > 0, then

E
[
M̂SE(θ̌ )

] − MSE(θ̌) = E
[
b̂(φ) − b(φ)

] = o(m−1−ε)

for any 0 < ε < [(d − 2)/(2d + 1)] ∧ ν.

REMARK 5.6. In some cases, for example, if a = 0 (see Example 6.1; also
see Section 7),

∑m
i=1 �i = 0, and hence is O(mν) for any ν > 0. If

∑m
i=1 �i does

not vanish, then the value of ν depends on what a is. For example, in Example 6.2
we have

∑m
i=1 �i = O(m−1); hence ν = 1.

THEOREM 5.3. Suppose that Theorem 5.2(i) and (iii) and Theorem 5.1(iii)–(v)
hold and, furthermore, that the quantities in Ad,w,4 are bounded, and

∑m
i=1 �i =

O(m−ν) for some ν > 0. Then

E
[
M̂SE(θ̂)

] − MSE(θ̂) = o(m−1−ε)

for any 0 < ε < [(d − 2)/(2d + 1)] ∧ ν.

Note that, by Theorems 4.1 and 4.2, and Remark 5.2, sufficient conditions for
c.u. µω can be easily obtained.

6. Mixed linear models. In this section, we consider a mixed linear model:

Yi = Xiβ + Zivi + ei, i = 1, . . . ,m,

where Xi (ni × p) and Zi (ni × bi) are known matrices; vi ’s are independent
with E(vi) = 0 and Var(vi) = Gi , where Var represents covariance matrix; ei’s are
independent with E(ei) = 0 and Var(ei) = Ri ; and vi ’s and ei’s are independent.
Assume that Gi = Gi(ψ) (bi × bi) and Ri = Ri(ψ) (ni × ni) possibly depend
on ψ = (ψl)1≤l≤q , a q × 1 vector of variance components. This model covers
Sections 2.1–2.5.
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Here we are interested in predicting a mixed effect θ = h′β + λ′v, where v =
(vi)1≤i≤m, h and λ are known vectors of order p × 1 and b × 1, respectively, and
b = ∑m

i=1 bi . Let φ = (β ′ψ ′)′. We assume posterior linearity; that is, E(θ |Y ) =
c +d ′Y , where c is a constant and d a constant vector. Then, when φ is known, the
BP of θ is the best linear predictor given by θ̌ = h′β + λ′s′(ψ)(Y − Xβ), where
X = col1≤i≤m(Xi), Y = col1≤i≤m(Yi), s(ψ) = �−1(ψ)ZG(ψ) with �(ψ) =
R + ZGZ′, Z = diag1≤i≤m(Zi), G = diag1≤i≤m(Gi) and R = diag1≤i≤m(Ri).

Let �i(ψ) = Ri + ZiGiZ
′
i = Var(Yi), 1 ≤ i ≤ m. It is interesting to note that

θ̌ can be viewed as the linear Bayes estimator of θ under a squared error loss
function. Many well-known distributions, including the normal, satisfy posterior
linearity (see Section 1 for some references). It can be shown that MSE(θ̌ ) =
b(ψ) = λ′[G(ψ) − G(ψ)Z′�−1(ψ)ZG(ψ)]λ. Note that, typically, only a portion
of the components of λ are nonzero, so that θ̌ depends only on a subset of the Y ’s,
say YS = (Yi)i∈S . The EBP is given by θ̂ = h′β̂ + λ′s′(ψ̂)(Y − Xβ̂).

Two methods of M-estimation are the following:

EXAMPLE 6.1 (Maximum likelihood estimation). The ML estimator of φ is
defined as a solution to the ML equations. It is easy to show that the ML estimator
of φ is a solution to (4.6), where a(φ) = 0,

(fj,k(φ,Yj ))1≤k≤p = X′
j�

−1
j (ψ)(Yj − Xjβ),

fj,p+l(φ,Yj ) = (Yj − Xjβ)′�−1
j (ψ)

(
∂�j

∂ψl

)
�−1

j (ψ)(Yj − Xjβ)

− tr
(
�−1

j (ψ)
∂�j

∂ψl

)
, 1 ≤ l ≤ q.

EXAMPLE 6.2 (REML estimation). Similarly, the restricted maximum likeli-
hood estimator of ψ is defined as a solution to the REML equations and the REML
estimator of β as the EBLUE

β̂ = (X′�−1(ψ̂)X)−1X′�−1(ψ̂)Y,

where ψ̂ is the REML estimator. By the identity [e.g., Searle, Casella and
McCulloch (1992), page 451]

�−1 = �−1X(X′�−1X)−1X′�−1 + A(A′�A)−1A′,
which holds for any N × (N − p) matrix A of full rank (N is the dimension of Y )
such that A′X = 0, it is easy to show that the REML estimator of φ is a solution
to (4.6), where the fj ’s are the same as in Example 6.1; a(φ) = (ak(φ))1≤k≤p+q

with ak(φ) = 0, 1 ≤ k ≤ p, and

ap+l(φ) =
m∑

j=1

tr
(
�−1

j (ψ)Xj

(
X′�−1(ψ)X

)−1
X′

j�
−1
j (ψ)

∂�j

∂ψl

)
, 1 ≤ l ≤ q.
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As pointed out by Jiang (1996), these equations (ML or REML) may be
regarded as M-estimating equations, and the ML and REML estimators as
M-estimators. In other words, these equations may be used even if the actual
data are not normal, and, under suitable conditions, the resulting estimators are
consistent and asymptotically normal.

Suppose that the following regularity conditions (i)–(iv) are satisfied:

(i) |Xi |, |Zi |, 1 ≤ i ≤ m, are bounded;
(ii) the true parameter vector ψ ∈ �o, the interior of the parameter space for ψ ;

(iii) for any compact set B ⊂ �o, the supψ∈B ‖ · ‖ of up to fourth derivatives

of Ri(ψ) and Gi(ψ), 1 ≤ i ≤ m, are bounded; and supψ∈B ‖�−1
i (ψ)‖, 1 ≤ i ≤ m,

are bounded;
(iv) λmin(X

′
i�

−1
i Xi) and

λmin

[(
tr

(
�−1

i

∂�i

∂ψk

�−1
i

∂�i

∂ψl

))
1≤k,l≤q

]

are bounded away from zero, where λmin represents the smallest eigenvalue.

Recall that Ri(ψ) and Gi(ψ) are the covariance matrices of ei , the vector
of errors, and vi , the vector of random effects, respectively; and �i(ψ) is the
covariance matrix of Yi . Thus, condition (iii) may be interpreted as follows. First,
the covariance matrices of the random effects and errors, as functions of ψ , are
four-times differentiable, and their up to fourth derivatives are bounded over any
compact subset of ψ . Second, the covariance matrix of Yi is positive definite with
its smallest eigenvalue bounded away from 0 over any compact subset of ψ .
Note that here the boundedness means both in ψ and in i. We now interpret
condition (iv). Under normality, the information matrix is given by [e.g., Searle,
Casella and McCulloch (1992), Section 6.3]

I

(
β

ψ

)
=


X′�−1X 0

0
1

2

[
tr

(
�−1 ∂�

∂ψk

�−1 ∂�

∂ψl

)]
1≤k,l≤q

 .

Note that X′�−1X = ∑m
i=1 X′

i�
−1
i Xi and

tr
(
�−1 ∂�

∂ψk

�−1 ∂�

∂ψl

)
=

m∑
i=1

tr
(
�−1

i

∂�i

∂ψk

�−1
i

∂�i

∂ψl

)
.

Thus, condition (iv) is a nonsingularity condition which implies that the informa-
tion matrix is nonsingular with its smallest eigenvalue bounded from below by δm,
where δ is a positive constant.
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In addition to (i)–(iv), we assume that the following hold:

(v) E|Yi |8+δ , 1 ≤ i ≤ m, are bounded for some δ > 0;
(vi) |S| = O(mκ) for some 0 ≤ κ ≤ 3/(6 + δ).

A simple example may help to further illustrate these conditions.

EXAMPLE 6.3. Consider prediction of the mixed effect θ = µ + v1 in
Section 2.2. We show that conditions (i)–(vi) are satisfied.

Since Xi = Zi = 1, condition (i) is obvious. Condition (ii) holds because, by
assumption, A > 0. Also, since Ri(A) = 1, which does not depend on A, and
Gi(A) = A, we have �i(A) = A + 1. It follows that condition (iii) holds. Note
that �−1

i (A) ≤ 1, ∀A > 0. As for condition (iv), we have X′
i�

−1
i Xi = (A + 1)−1

and [�−1
i (∂�i/∂A)]2 = (A + 1)−2. Thus, condition (iv) holds. Condition (v) is

obvious. Here S = {1} and |S| = 1. Thus condition (vi) is satisfied. This example
will be revisited in a simulation study in Section 8.

If φ̂−i , 0 ≤ i ≤ m, are chosen as the ML estimators of Example 6.1, then
a−i = 0, 0 ≤ i ≤ m. Therefore, it is easy to show, by Theorem 5.3, that, under
conditions (i)–(vi), E[M̂SE(θ̂)] = MSE(θ̂) + o(m−1).

If φ̂−i , 0 ≤ i ≤ m, are chosen as the REML estimators of Example 6.2, the
a’s are no longer 0. However, it can be shown that the conditions on the a’s in
Theorem 5.3 are satisfied [see Jiang (1999)]. It follows from Theorem 5.3 that,
under conditions (i)–(vi), E[M̂SE(θ̂)] = MSE(θ̂ ) + o(m−1).

It is easy to apply the above general results to the specific models in
Sections 2.1–2.5.

Note that both the ML and REML equations are standard. In the following, we
consider a case in which the M-estimating equations may not be standard.

7. Mixed logistic models. Consider the mixed logistic model given in
Example 2.6. As for the M-estimators, we consider the MOM estimators of Jiang
(1998). The MOM estimator for φ is the solution to the following system of
equations:

m∑
i=1

ni∑
j=1

xijkYij =
m∑

i=1

ni∑
j=1

xijkEφYij , 1 ≤ k ≤ p,(7.1)

m∑
i=1

∑
j �=l

Yij Yil =
m∑

i=1

∑
j �=l

EφYijYil .(7.2)

It is clear that these equations are in the form of (4.6) with a = 0. Furthermore,
if the xijk’s are bounded, the terms corresponding to fj ’s in (4.6) and their
derivatives of any order are bounded. Note that EφYij = E logit−1(xt

ij β + σξ),
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EYijYil = E logit−1(xt
ij β + σξ) logit−1(xt

ilβ + σξ), j �= l. Note that, unlike the
ML and REML equations in the linear mixed model case, the MOM equations
are not necessarily standard. Nevertheless, by Theorem 4.2, it is easy to give
sufficient conditions, under which the MOM estimators are c.u. at rate m−d for
any d > 0. It follows, by Theorem 5.3, that E[M̂SE(θ̂)] = MSE(θ̂ ) + o(m−1−ε)

for any 0 < ε < 1/2. We consider a special case in the following.

EXAMPLE 7.1. Suppose that, in (2.1), xt
ij β = µ, an unknown intercept, and

that ni = n, 1 ≤ i ≤ m, where m → ∞ while n is fixed. We verify the conditions
of Theorem 4.2. First, note that (7.1) and (7.2) now can be written as

m∑
i=1

[Yi· − Eφ(Yi·)] = 0,

m∑
i=1

[Y 2
i· − Yi· − Eφ(Y 2

i· − Yi·)] = 0,

where Yi· = ∑n
j=1 Yij , φ = (µ,σ ). Furthermore, we have M(φ) = (M1(φ),

M2(φ)), where M1(φ) = nh1(φ), M2(φ) = n(n − 1)h2(φ) with hr(φ) =
Ehr(µ + σξ), r = 1,2, h(x) = ex/(1 + ex) and ξ ∼ N(0,1).

It is easy to show that supµ∈R[h1(φ) − h2(φ)] → 0 as σ → ∞. Thus, there are
ε > 0 and B2 > 0 such that

sup
σ>B2

sup
µ∈R

[h1(φ) − h2(φ)] < ε.

On the other hand, we have sup0≤σ≤B2
[1 − h1(φ)] → 0 as µ → ∞; and

sup0≤σ≤B2
h1(φ) → 0 as µ → −∞. Thus, there is B1 > 0 such that{

sup
µ>B1

sup
0≤σ≤B2

[1 − h1(φ)]
}

∨
[

sup
µ<−B1

sup
0≤σ≤B2

h1(φ)

]
< ε.

Let B = B1 ∨ B2. It follows that infφ /∈
B
|h(φ) − h(φ0)| ≥ ε, from which (4.8)

easily follows.
Furthermore, it is easy to show, by Taylor expansion, that there is δ > 0 and

ε > 0 such that

|h(φ) − h(φ0)| ≥ ε|φ − φ0|, |φ − φ0| < δ, σ ≥ 0,

where h(φ) = (h1(φ),h2(φ)). On the other hand, it can be shown that h(·) is
injective [Jiang (1998)]. Thus, for any D > δ ∨ |φ0|, the continuous function
g(φ) = |h(φ) − h(φ0)|/|φ − φ0|, δ ≤ |φ − φ0| ≤ D, σ ≥ 0, has a lower bound
η > 0. Thus, infφ∈
B,φ �=φ0{|h(φ) − h(φ0)|/|φ − φ0|} ≥ ε ∧ η, from which (4.9)
easily follows.

Statements (4.10) and (4.11) are obvious. Note that, in this case, Rt =
{(u, v) : 0 < u,v < 1, u2 ≤ v < u}.
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8. Monte Carlo simulations. Although our jackknife method is not specifi-
cally designed to produce MSE estimators for mixed linear normal models, it is
instructive to compare its performance with a number of other measures of uncer-
tainties of EBLUP (or EB) in the normal case. Let us first consider the prediction
of θ = µ + v1 in Section 2.2 (also Example 6.3).

We consider two different values of m, m = 30 or 60. The data are generated
with µ = 0.0 and A = 1.0. The values of average relative bias (ARB) are reported
as percentages, given by

ARB = 100 ×
[

E( ˆMSE) − MSE

MSE

]
.

There are various measures of uncertainty of the above EBLUP (or EB)
available in the literature, proposed from different approaches. To compare these
different methods, we investigate how accurately they estimate MSE (same as
the Bayes risk). The naive estimator of MSE does not capture uncertainty due to
estimation of A and is given by (1 − B̂). The measure proposed by Morris (1983)
is actually an approximation to the posterior variance of θ under a flat prior on
µ and A. Laird and Louis (1987) used a parametric bootstrap to mimic a hyperprior
Bayesian calculation. Butar (1997) used a parametric bootstrap method to estimate
MSE of EBLUP. All the measures other than our jackknife are based on normality.
However, the performance of our jackknife method is quite impressive. Table 1
shows results based on one million simulations. Note that the naive estimator
generally underestimates (sometimes severely) the true MSE since it does not
incorporate the uncertainty due to estimation of A. The Laird–Louis measure also
tends to underestimate the true MSE. This is consistent with the result of Butar
(1997), who showed that the bias of the Laird–Louis measure in estimating MSE
is of the order O(m−1), same as that of the naive measure. We reiterate that the
orders of the biases are o(m−1) for Morris (1983), Prasad and Rao (1990), Butar
(1997) and the proposed jackknife measure. The performances of all the measures
improve as m increases. For the sake of comparison, we consider a hierarchical
Bayesian method with flat priors on µ and A to produce a measure of uncertainty
for θ̂ . The posterior variance underestimates the MSE of θ̂ . However, under a
hierarchical Bayesian setup a more meaningful measure of uncertainty of θ̂ is
E[(θ − θ̂ )2|y] = V (θ |y) + [E(θ |y) − θ̂]2. This measure compares quite well with
the other measures given in Table 1.

TABLE 1
ARB for Example 6.3 (Section 2.2)

m Naive Jackknife Morris Butar Prasad–Rao Laird–Louis HB

30 −8.4 0.6 0.7 0.1 0.7 −3.8 −3.0
60 −4.8 0.2 −0.1 −0.2 −0.1 −2.9 −0.4
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TABLE 2
ARB for normal–normal case (Section 2.4)

σ 2
v Naive Jackknife Prasad–Rao

1.5 −2.0 0.4 1.3
1.0 −3.1 0.5 1.4
0.5 −6.7 0.2 1.5

In Table 2, we report ARB (based on 4,000 simulations) of our proposed
jackknife MSE estimator for the simple random effects normal model given in
Section 2.4 with µ = 0, σ 2

e = 1, m = 30 and n = 5. Here the EBP (also EBLUP)
of θi = µ + vi is given by θ̂i = Ȳ.. + (1 − B̂)(Yi − Ȳ..), where B̂ = σ̂ 2

e /(σ̂ 2
e + σ̂ 2

v ).
Clearly, this table shows that our proposed jackknife method is very accurate (more
accurate than the Prasad–Rao estimator developed using normality). Also, larger
values of σ 2 tend to improve the ARB.

The purpose of Table 3 is to investigate robustness of our proposed jackknife
MSE estimator compared to the naive and the Prasad–Rao MSE estimators when
Yij is generated from a nonnormal model. For illustration, we assume that Yij |θi

are independent point binomial with parameter θi and a priori θi’s are i.i.d.
beta(α,β). By choosing various values of α and β , we can get a variety of beta
distributions. Note that all the formulas involved can be expressed as a function
of Ȳi since MSW = n

∑m
i=1 Ȳi (1− Ȳi )/m(n−1). This simplifies the computations

since we can equivalently generate
∑n

j=1 Yij from binomial distributions with
parameters n and θi . Here, again, we use m = 30 and n = 5. The results (based
on 4,000 simulations) show that the naive estimator underestimates the true MSE
considerably. Both the Prasad–Rao and our proposed jackknife MSE estimators
improve on the naive estimator. Also, the jackknife estimator tends to perform
better than the Prasad–Rao estimator. This simulation demonstrates that although
the assumption of posterior linearity produces the same normality-based point
estimator, the assumption makes a difference when one is interested in MSE
estimator of the same point estimator.

TABLE 3
ARB for the beta–binomial case

(α,β) Naive Jackknife Prasad–Rao

(2, 4) −7.5 −1.4 −2.7
(2, 0.5) −5.2 −2.5 −4.0

(0.5, 0.5) −6.3 0.0 −2.3
(0.5, 2) −3.6 0.5 −2.0
(2, 2) −8.7 −0.2 −4.0
(1, 1) −6.9 0.1 −1.2
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TABLE 4
ARB for mixed logistic model

Naive method Jackknife method Taylor series method

m MSE Mean ARB Mean ARB Mean ARB

10 0.996 0.729 −26.8 0.952 −4.4 0.917 −7.9
20 0.805 0.724 −10.1 0.819 1.7 0.813 1.0
40 0.767 0.721 −6.0 0.765 −0.2 0.764 −0.3

Note that our jackknife method is applicable to other kinds of nonnormal
nonlinear models such as the mixed logistic models, while other rival measures
considered so far in this section are not. As a final example, we consider a
simulation which is related to Section 2.6.

The data are generated with µ = 0.5 and σ = 1.0. By (2.2), the BP or Bayes
estimator is given by

θ̃ = E(µ + ξ) exp(φ(Y1·, ξ,µ))

E exp(φ(Y1·, ξ,µ))
≡ ψ(Y1·,µ),

where Yi· = ∑n
j=1 Yij and ξ ∼ N(0,1). The parameter µ is estimated by the

method of simulated moments [Jiang (1998)]; that is, by solving Eh(µ + ξ) = Ȳ··,
where h(u) = eu/(1 + eu) and Ȳ·· = (mn)−1 ∑m

i=1 Yi·. Three different sample
size configurations are considered: m = 10, 20 and 40, and n = 2 in all cases.
The results in Table 4 for m = 10, 20 and 40 are based on 1,000, 10,000 and
80,000 simulations, respectively. [There is a reason for the varying simulation
sizes: It may be argued that, for the purpose of simulations in this section, the
order of the simulation size should be higher than m2. Thus, in cases of close
competitor(s) such as the current example, we have chosen the simulation sizes
proportional to m3.] The table shows the true MSE; the mean of the jackknife
MSE estimator based on the simulation; and the ARB. Similar results are also
presented, as comparison, for the naive estimator of the MSE and for the estimator
of MSE of Jiang and Lahiri (2001). The latter method is based on Taylor series
expansion, which may be regarded as an extension of Prasad and Rao (1990)
to mixed logistic models. As expected, the jackknife and Taylor series methods
perform similarly with high accuracy for this nonnormal and nonlinear case when
the sample size is relatively large (m = 20 or 40). For small sample size (m = 10)
the jackknife method seems to perform better. Moreover, the jackknife method has
a computational advantage over the Taylor series method, especially for complex
models. This is because to compute the MSE estimator of Jiang and Lahiri (2001)
one has to obtain analytic forms of the first and second derivatives involved
(numerical differentiation is unstable), which is not easy when the model gets
complicated, and errors are often made in derivation and programming. Note that
here we only consider a very simple model.
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