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ABSTRACT
We develop an evolutionary model for starbursts, quasars, and spheroidal galaxies in which supermassive

black holes play a dominant role. In this picture, mergers between gas-rich galaxies drive nuclear inflows of gas,
producing intense starbursts and feeding the growth of supermassive black holes. During this phase, the black
hole is heavily obscured (a “buried” quasar), but feedback energy from its growth expels the gas, rendering
the black hole briefly visible as a bright, optical source (a “visible” quasar), and eventually halting accretion
(a “dead” quasar). The self-regulated growth of the black hole accounts for the observed correlation between
black hole mass and stellar velocity dispersion in spheroidal galaxies. We show that the quasar lifetime and
obscuring column density depend on both the instantaneous and peak luminosities of the quasar, and determine
this dependence using a large set of simulations of galaxy mergers varying the host galaxy properties, orbital
geometry, and gas physics.

We use our fits to the lifetime and column density to deconvolve observed quasar luminosity functions and
obtain the evolution of the formation rate of quasars with a certain peak luminosity, ṅ(Lpeak,z). In our model,
quasars spend extended periods of time at luminosities well below their peaks, and so ṅ(Lpeak,z) has a maxi-
mum, falling off at both brighter and fainter luminosities, corresponding to the “break” in the observed quasar
luminosity function. We obtain self-consistent fits to hard and soft X-ray and optical quasar luminosity func-
tions for a model in which ṅ(Lpeak,z) varies with redshift according to pure peak luminosity evolution. From
this form for ṅ(Lpeak,z), and our simulation results for the luminosity dependence of the quasar lifetime and
obscuring column, we are able to reproduce many observable quantities, including: the column density dis-
tribution of both optical and X-ray selected quasar samples, the luminosity function of broad-line quasars in
X-ray samples and the broad-line (Type I, Type II) fraction as a function of luminosity, the mass function of
active black holes, the observed distribution of Eddington ratios at both low and high redshift, the present-day
mass function of relic, inactive supermassive black holes and total black hole mass density, and the spectrum
of the cosmic X-ray background. In each case, our predictions agree well with observations, matching them
to higher precision than previous tunable models for quasar lifetimes and obscuration similarly fit to the lumi-
nosity function. We provide a library of Monte Carlo realizations of our modeling for comparison with a wide
range of observations, using various selection criteria.
Subject headings: quasars: general — galaxies: nuclei — galaxies: active — galaxies: evolution — cosmology:

theory

1. INTRODUCTION

The measurement of anisotropies in the cosmic microwave
background (e.g. Spergel et al. 2003) combined with observa-
tions of high redshift supernovae (e.g. Riess et al. 1998, 2000;
Perlmutter et al. 1999) have established a “standard model”
for the Universe, in which the energy density is dominated by
an unknown form driving accelerated cosmic expansion, and
most of the mass is non-baryonic, in a ratio of roughly 5:1
to ordinary matter. On small scales, it is believed that struc-
ture formed through gravitational instability. In the currently
favored cold dark matter (CDM) paradigm, objects grow hi-
erarchically, with smaller ones forming first and then merg-
ing into successively larger bodies. As baryons fall into dark
matter potential wells, the gas is shocked and then cools radia-
tively to form stars and galaxies, in a “bottom-up” progression
(White & Rees 1978).

Even with the many successes of this picture, the processes
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underlying galaxy formation and evolution are poorly under-
stood. For example, there has yet to be an ab initio calcula-
tion, starting from an initial state prescribed by the standard
model, resulting in a population of objects that reproduces
observed galaxies. However, from the same initial condi-
tions, computer simulations have yielded a new, successful
interpretation of the Lyman-alpha forest in which absorption
in caused by density fluctuations in the intergalactic medium
(e.g. Cen et al. 1994; Zhang et al. 1995; Hernquist et al. 1996),
over many orders of magnitude in column density (e.g. Katz et
al. 1996a), explicitly related to growth of structure in a CDM
universe (e.g. Croft et al. 1998, 1999, 2002; McDonald et al.
2000, 2004; Hui et al. 2001; Viel et al. 2003, 2004). This sug-
gests that the difficulties with understanding galaxy formation
and evolution lie not in the initial conditions or with the de-
scription of dark matter, but rather with the physics that has
been used to model the baryons.

Observations have revealed regularities in the structure of
galaxies that point to some of this “missing” physics. Super-
massive black holes appear to reside at the centers of most
galaxies (e.g. Kormendy & Richstone 1995; Richstone et al.
1998; Kormendy & Gebhardt 2001) and the masses of these
black holes are correlated with either the mass (Magorrian et
al. 1998; McLure & Dunlop 2002; Marconi & Hunt 2003) or

http://arXiv.org/abs/astro-ph/0506398v3
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the velocity dispersion (i.e. the MBH-σ relation: Ferrarese &
Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002) of
spheroids, demonstrating a direct link between the origin of
galaxies and supermassive black holes. Simulations which
follow the self-regulated growth of black holes in galaxy
mergers (Di Matteo et al. 2005; Springel et al. 2005a) have
shown that the energy released through this process has a
global impact on the structure of the merger remnant. If this
conclusion applies to spheroid formation in general, the sim-
ulations demonstrate that models for the origin and evolution
of galaxies must account for black hole growth and feedback
in a fully self-consistent manner.

Analytical and semi-analytical modeling (Silk & Rees
1998; Fabian 1999; Wyithe & Loeb 2002, 2003;
Begelman & Nath 2005) suggests that, beyond a certain
threshold, feedback energy from black holes can expel gas
from the centers of galaxies, shutting down accretion onto
them and limiting their masses. However, these calculations
usually ignore the impact of this process on star formation
and therefore do not explain the link between black hole
growth and spheroid formation, and furthermore make sim-
plifying assumptions about the dynamics of such accretion.
For example, the duration of black hole growth is a free
parameter, which is fixed either using observational estimates
or assumed to be similar to e.g. the dynamical time of the
host galaxy or the e-folding time for Eddington-limited
black hole growth tS = MBH/Ṁ = 4.5× 107 l−1 (ǫr/0.1)yr for
accretion with radiative efficiency ǫr = L/Ṁc2 ∼ 0.1 and
l = L/LEdd . 1 (Salpeter 1964). Moreover, these studies have
adopted idealized models for quasar light curves, usually
corresponding to growth at a constant Eddington ratio or
on-off, “light bulb,” scenarios. As we discuss below, less
restrictive modeling suggests that this phase is actually more
complex.

Efforts to model quasar accretion and feedback more self-
consistently (e.g., Ciotti & Ostriker 1997, 2001; Granato et al.
2004) by treating the hydrodynamical response of gas to
black hole growth have generally been restricted to idealized
geometries, such as spherical symmetry, employing simple
models for star formation and galaxy-scale quasar fueling.
However, these works have made it possible to estimate duty
cycles of quasars and shown that the objects left behind have
characteristics similar to those observed, with quasar feed-
back being a critical element in reproducing these features
(e.g. Sazonov et al. 2005; Kawata & Gibson 2005; Cirasuolo
et al. 2005; for a review, see Ostriker & Ciotti 2005).

Springel et al. (2005b) have incorporated black hole growth
and feedback into simulations of galaxy mergers and included
a multiphase model for star formation and pressurization
of the interstellar gas by supernovae (Springel & Hernquist
2003) to examine implications of these processes for galaxy
formation and evolution. Di Matteo et al. (2005) and Springel
et al. (2005a,b) have shown that gas inflows excited by grav-
itational torques during a merger both trigger starbursts and
fuel rapid black hole growth. The growth of the black hole
is determined by the gas supply and terminates as gas is ex-
pelled by feedback, halting accretion, leaving a dead quasar
in an ordinary galaxy. The self-regulated nature of black
hole growth in mergers explains observed correlations be-
tween black hole mass and properties of normal galaxies
(Di Matteo et al. 2005), as well as the color distribution of el-
lipticals (Springel et al. 2005a). These results lend support to
the view that mergers have played an important role in struc-

FIG. 1.— Schematic representation of a “cosmic cycle” for galaxy forma-
tion and evolution regulated by black hole growth in mergers.

turing galaxies, as advocated especially by Toomre & Toomre
(1972) and Toomre (1977). (For reviews, see, e.g., Barnes &
Hernquist 1992; Barnes 1998; Schweizer 1998.)

Subsequent analysis by Hopkins et al. (2005a,b,c,d)
has shown that the merger simulations can account for
quasar phenomena as a phase of black hole growth. Unlike
what has been assumed in e.g. semi-analytical studies of
quasars, the simulations predict complicated evolution for
quasar lifetimes, fueling rates for black hole accretion,
obscuration, and quasar light curves. The light curves were
studied by Hopkins et al. (2005a,b), who showed that the
self-termination process gives observable lifetimes ∼ 107 yr
for bright optical quasars and predicts a large population
of obscured sources as a natural stage of quasar evolution,
as implied by observations (for a review, see Brandt &
Hasinger 2005). Hopkins et al. (2005b) analyzed simulations
over a range of galaxy masses and found that the quasar
light curves and lifetimes are always qualitatively similar,
with both the intrinsic and observed quasar lifetimes being
decreasing functions of luminosity, with longer lifetimes at
all luminosities for higher-mass (higher peak luminosity)
systems. The dependence of the lifetime on luminosity led
Hopkins et al. (2005c) to suggest a new interpretation of the
quasar luminosity function, in which the steep bright-end
consists of quasars radiating near the Eddington limit and
is directly related to the distribution of intrinsic peak lumi-
nosities (or final black hole masses) as has been assumed
previously (e.g., Small & Blandford 1992; Haiman & Loeb
1998; Haiman & Menou 2000; Kauffmann & Haehnelt 2000;
Somerville et al. 2001; Tully et al. 2002; Wyithe & Loeb
2003; Volonteri et al. 2003; Haiman, Quataert, & Bower
2004; Croton et al. 2005), but where the shallow, faint-end
of the luminosity function describes black holes growing
towards or declining from peak phases of quasar activity,
with Eddington ratios generally between l ∼ 0.01 and 1. The
“break” in the luminosity function corresponds directly to
the peak in the distribution of intrinsic quasar properties. As
argued by Hopkins et al. (2005c,d) this new interpretation
of the luminosity function can self-consistently explain
various properties of both the quasar and galaxy populations,
connecting the origin of galaxy spheroids, supermassive
black holes, and quasars.

Motivated by these results, and earlier work by many others
which we summarize below, in this paper we consider a pic-
ture for galaxy formation and evolution, illustrated schemat-
ically as a “cosmic cycle” in Figure 1, in which starbursts,
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quasars, and the simultaneous formation of spheroids and su-
permassive black holes represent connected phases in the lives
of galaxies. Mergers are expected to occur regularly in a hi-
erarchical universe, particularly at high redshifts. Those be-
tween gas-rich galaxies drive nuclear inflows of gas, trigger-
ing starbursts and fueling the growth of supermassive black
holes. During most of this phase, quasar activity is obscured,
but once a black hole dominates the energetics of the central
region, feedback expels gas and dust, making the black hole
visible briefly as a bright quasar. Eventually, as the gas is
further heated and expelled, quasar activity can no longer be
maintained and the merger remnant relaxes to a normal galaxy
with a spheroid and a supermassive black hole. In some cases,
depending on the gas content of the progenitors, the remnant
may also have a disk (Springel & Hernquist 2005; Robert-
son et al. 2005a). The remnant will then evolve passively and
would be available as a seed to repeat the above cycle. As the
Universe evolves and more gas is consumed, the mergers in-
volving gas-rich galaxies will shift towards lower masses, ex-
plaining the decline in the population of the brightest quasars
from z ∼ 2 to the present, and the remnants that are gas-poor
will redden quickly owing to the termination of star formation
by black hole feedback (Springel et al. 2005a), so that they re-
semble elliptical galaxies, surrounded by hot X-ray emitting
halos (e.g. Cox et al. 2005).

There is considerable observational support for this sce-
nario, which has led the development of this picture for the
co-evolution of galaxies and quasars over recent decades. In-
frared (IR) luminous galaxies are thought to be powered in
part by starbursts (e.g. Soifer et al. 1984a,b; Sanders et al.
1986, 1988a,b; for a review, see e.g. Soifer et al. 1987),
and the most intense examples locally, ultraluminous infrared
galaxies (ULIRGs), are invariably associated with mergers
(e.g. Allen et al. 1985; Joseph & Wright 1985; Armus et al.
1987; Kleinmann et al. 1988; Melnick & Mirabel 1990; for
reviews, see Sanders & Mirabel 1996 and Jogee 2004). Ra-
dio observations show that ULIRGs have large, central con-
centrations of dense gas (e.g. Scoville et al. 1986; Sargent et
al. 1987, 1989), providing a fuel supply to feed black hole
growth. Indeed, some ULIRGs have “warm” IR spectral en-
ergy distributions (SEDs), suggesting that they harbor buried
quasars (e.g. Sanders et al. 1988c), an interpretation strength-
ened by X-ray observations demonstrating the presence of
two non-thermal point sources in NGC6240 (Komossa et al.
2003), which are thought to be supermassive black holes that
are heavily obscured at visual wavelengths (e.g. Gerssen et
al. 2004; Max et al. 2005, Alexander et al. 2005a,b). These
lines of evidence, together with the overlap between bolomet-
ric luminosities of ULIRGs and quasars, indicate that quasars
are the descendents of an infrared luminous phase of galaxy
evolution caused by mergers (Sanders et al. 1988a), an in-
terpretation supported by observations of quasar hosts (e.g.
Stockton 1978; Heckman et al. 1984; Stockton & MacKenty
1987; Stockton & Ridgway 1991; Hutchings & Neff 1992;
Bahcall et al. 1994, 1995, 1997; Canalizo & Stockton 2001).

However, many of the physical processes that connect the
phases of evolution in Figure 1 are not well understood. Early
simulations showed that mergers produce objects resembling
galaxy spheroids (e.g. Barnes 1988, 1992; Hernquist 1992,
1993a) and that if the progenitors are gas-rich, gravitational
torques funnel gas to the center of the remnant (e.g. Barnes &
Hernquist 1991, 1996), producing a starburst (e.g. Mihos &
Hernquist 1996), but these works did not explore the relation-
ship of these events to black hole growth and quasar activity.

While a combination of arguments based on time variability
and energetics suggests that quasars are produced by the ac-
cretion of gas onto supermassive black holes in the centers
of galaxies (e.g. Salpeter 1964; Zel’dovich & Novikov 1964;
Lynden-Bell 1969), the mechanism that provides the trigger to
fuel quasars therefore remains uncertain. Furthermore, there
have been no comprehensive models that describe the tran-
sition between ULIRGs and quasars that can simultaneously
account for observed correlations like the MBH-σ relation.

Here, we study these relationships using numerical simu-
lations of galaxy mergers that account for the consequences
of black hole growth. In our simulations, black holes ac-
crete and grow throughout a merger event, producing com-
plex, time-varying quasar activity. Quasars reach a peak lumi-
nosity, Lpeak, during the “blowout” phase of evolution where
feedback energy from black hole growth begins to drive away
the gas, eventually slowing accretion. Prior to and following
this brief period of peak activity, quasars radiate at instan-
taneous luminosities, L, with L < Lpeak. However, we show
that even with this complex behavior, the global character-
istics that determine the observed properties of quasars, i.e.
lifetimes, light curves, and obscuration, can be expressed as
functions of L and Lpeak, allowing us to make predictions for
quasar populations that agree well with observations, support-
ing the scenario sketched in Figure 1.

In § 2, we discuss our methodology and show how the
quasar lifetimes and obscuration from our simulations can be
expressed as functions of the instantaneous and peak lumi-
nosities of quasars. We also define a set of commonly adopted
models for the quasar lifetime and obscuration against which
we compare our predictions throughout. In § 3, we apply our
models to the quasar luminosity function, using the observed
luminosity function to determine the distribution of quasar
peak luminosities, and show that this allows us to simultane-
ously reproduce the hard X-ray, soft X-ray, and optical quasar
luminosity functions at all redshifts z . 3, and the distribution
of column densities in both optical and X-ray samples. In § 4,
we determine the time in our simulations when quasars will
be observable as broad-line objects, and use this to predict the
broad-line luminosity function and fraction of broad-line ob-
jects in quasar samples, as a function of luminosity, as well as
the mass function of low-redshift, active broad-line quasars.
In § 5, we estimate the distribution of Eddington ratios in our
simulations as a function of luminosity, and infer Eddington
ratios in observed samples at different redshifts. In § 6, we
use our modeling to predict both the mass distribution and to-
tal density of present-day relic supermassive black holes, and
describe their evolution with redshift. In § 7, we similarly
apply this model to predict the integrated cosmic X-ray back-
ground spectrum, accounting for the observed spectrum from
∼ 1 −100 keV. In § 8, we discuss the primary qualitative im-
plications of our results and propose falsifiable tests of our
picture. Finally, in § 9, we conclude and suggest directions
for future work.

Throughout, we adopt a ΩM = 0.3, ΩΛ = 0.7, H0 =
70kms−1 Mpc−1 (h = 0.7) cosmology.

2. THE MODEL: METHODOLOGY

Our model of quasar evolution has several elements, which
we summarize here and describe in greater detail below.

• In what follows, a “quasar” is taken to mean the course
of black hole activity in a single merger event. We use
the term “quasar lifetime” to refer to the time spent by
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such a quasar at a given luminosity or fraction of the
quasar peak luminosity, integrated over all black hole
activity in a single merger event. This is not meant
to suggest that this would constitute the entire accre-
tion history of a black hole – a given black hole may
have multiple “lifetimes” triggered by different merg-
ers, with each merger in principle fueling a distinct
“quasar” with its own lifetime. There is no a priori lu-
minosity threshold for quasar activity – the time history
can include various epochs at low luminosities and ac-
cretion rates.

• We model the galaxy mergers using hydrodynamical
simulations, varying the orbital parameters of the en-
counter, the internal properties of the merging galax-
ies, prescriptions for the gas physics, initial “seed”
black hole masses of the merging systems, and nu-
merical resolution of the simulations. The black hole
accretion rate is determined from the surrounding gas
(smoothed over the scale of our spatial resolution,
reaching 20pc in the best cases), i.e. the density and
sound speed of the gas, and its motion relative to
the black hole, using Eddington-limited, Bondi-Hoyle-
Lyttleton accretion theory. The black hole radiates
with a canonical efficiency ǫr = 0.1 corresponding to
a standard Shakura & Sunyaev (1973) thin disk, and
we assume that ∼ 5% of this radiated luminosity is
deposited as thermal energy into the surrounding gas,
weighted by the SPH smoothing kernel (which has
a ∼ r−2 profile) over the scale of the spatial resolu-
tion. This scale is such that we cannot resolve the
complex accretion flow immediately around the black
hole, but we adopt this prescription because: (1) it re-
produces the observed slope and normalization in the
MBH − σ relation (Di Matteo et al. 2005), (2) it fol-
lows from observations, based on estimates of the en-
ergy contained in highly-absorbed UV portion of the
quasar SED (e.g., Elvis et al. 1994; Telfer et al. 2002),
(3) it follows from theoretical considerations of mo-
mentum coupling to dust grains in the dense gas very
near the quasar (Murray et al. 2005) and hydrodynam-
ical simulations of small-scale radiative heating from
quasar accretion (Ciotti & Ostriker 2001), and (4) even
if the feedback is initially highly collimated, a driven
wind or shock in a dense region such as the cen-
ter of the merging galaxies will rapidly isotropize, so
long as it is decelerated by gravity and the surround-
ing medium, allowing the high sound speed within the
shock to equalize angle-dependent pressure variations
(e.g., Koo & McKee 1990), and furthermore initial lo-
cal distortions will be washed away in favor of triax-
ial structure determined by the large-scale density gra-
dients (Bisnovatyi-Kogan & Silich 1991), as occurs in
our simulations.

• For each of our merger simulations, we compute the
bolometric black hole luminosity and column density
along ∼ 1000 lines of sight to the black hole(s) (evenly
spaced in solid angle), as a function of time from the
beginning of the simulation until the system has relaxed
for ∼ 1Gyr after the merger.

• We bin different merger simulations by Lpeak, the peak
bolometric luminosity of the black hole in the sim-
ulation, and the conditional distributions of luminos-

ity, P(L|Lpeak), and column density, P(NH|L, Lpeak), are
computed using all simulations that fall into a given bin
in Lpeak. The final black hole mass (black hole mass
at the end of the individual merger – subsequent merg-
ers and quasar episodes could further increase the black
hole mass) is approximately M

f
BH ≈ MEdd(Lpeak) (but

not exactly, see § 2.4), so we obtain similar results if we
bin instead by M

f
BH . Our calculation of M

f
BH(Lpeak) al-

lows us to express our conditional distributions of lumi-
nosity and column density in terms of either peak lumi-
nosity or final black hole mass. Critically, we find that
expressed in terms of Lpeak or M

f

BH, there is no system-
atic dependence in the quasar evolution on the varied
merger simulation properties – this allows us to calcu-
late a large number of observables in terms of Lpeak or
M

f
BH without the large systematic uncertainties inher-

ent in attempting to directly estimate e.g. quasar light
curves in terms of host galaxy mass, gas fraction, multi-
phase pressurization of the interstellar medium, orbital
parameters and merger stage, and other variables.

• The observed quasar luminosity function is the convo-
lution of the time a given quasar spends at some ob-
served luminosity with the rate at which such quasars
are created. Knowing the distributions P(L|Lpeak) and
P(NH|L, Lpeak), we can calculate the time spent by a
quasar with some Lpeak at an observed luminosity in
a given waveband. We use this to fit to observational
estimates of the bolometric quasar luminosity func-
tion φ(L), de-convolving these quantities to determine
the function ṅ(Lpeak); i.e. the rate at which quasars of
a given peak luminosity must be created or activated
(triggered in mergers) in order to reproduce the ob-
served bolometric luminosity function.

• Given these inputs, we determine the joint distribu-
tion in instantaneous luminosity and black hole mass,
column density distribution, peak luminosity and fi-
nal black hole mass, as a function of redshift, i.e.
n(L, Lν , MBH, NH, Lpeak, M

f
BH | z), at all redshifts where

the observed quasar luminosity function can provide
the necessary constraint. From this joint distribution,
we can compute, for example, luminosity functions in
other wavebands, conditional column density distribu-
tions, active black hole mass functions and Eddington
ratio distributions, and relic black hole mass functions
and cosmic backgrounds. We can compare each of
these results to those determined using simpler models
for either the quasar lifetime or column density distri-
butions; in § 2.5 we describe a canonical set of such
models, to which we compare throughout this paper.

2.1. The Simulations

The simulations were performed with GADGET-2 (Springel
2005), a new version of the parallel TreeSPH code GADGET
(Springel, Yoshida, & White 2001). GADGET-2 is based on
a fully conservative formulation (Springel & Hernquist 2002)
of smoothed particle hydrodynamics (SPH), which maintains
simultaneous energy and entropy conservation when smooth-
ing lengths evolve adaptively (for a discussion, see e.g., Hern-
quist 1993b, O’Shea et al. 2005). Our simulations account for
radiative cooling, heating by a UV background (as in Katz et
al. 1996b, Davé et al. 1999), and incorporate a sub-resolution
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model of a multiphase interstellar medium (ISM) to describe
star formation and supernova feedback (Springel & Hernquist
2003). Feedback from supernovae is captured in this sub-
resolution model through an effective equation of state for
star-forming gas, enabling us to stably evolve disks with ar-
bitrary gas fractions (see, e.g. Springel et al. 2005b; Robert-
son et al. 2004). In order to investigate the consequences of
supernova feedback over a range of conditions, we employ
the scheme of Springel et al. (2005b), introducing a parame-
ter qEOS to interpolate between an isothermal equation of state
(qEOS = 0) and the full multiphase equation of state (qEOS = 1)
described above.

Supermassive black holes (BHs) are represented by “sink”
particles that accrete gas at a rate Ṁ estimated using an
Eddington-limited version of Bondi-Hoyle-Lyttleton accre-
tion theory (Bondi 1952; Bondi & Hoyle 1944; Hoyle & Lyt-
tleton 1939). The bolometric luminosity of the black hole is
Lbol = ǫrṀc2, where ǫr = 0.1 is the radiative efficiency. We
assume that a small fraction (typically ≈ 5%) of Lbol couples
dynamically to the surrounding gas, and that this feedback is
injected into the gas as thermal energy, as described above.

We have performed several hundred simulations of collid-
ing galaxies, varying the numerical resolution, the orbit of the
encounter, the masses and structural properties of the merg-
ing galaxies, initial gas fractions, halo concentrations, and
the parameters describing star formation and feedback from
supernovae and black hole growth. This large set of simu-
lations allows us to investigate merger evolution for a wide
range of galaxy properties and to identify any systematic de-
pendence of our modeling. The galaxy models are described
in Springel et al. (2005b), and we briefly review their proper-
ties here.

The progenitor galaxies in our simulations have virial ve-
locities Vvir = 80, 113, 160, 226, 320, and 500kms−1. We con-
sider cases with gas equation of state parameters qEOS = 0.25
(moderately pressurized, with a mass-weighted temperature
of star-forming gas ∼ 104.5K) and qEOS = 1.0 (the full, “stiff”
Springel-Hernquist equation of state, with a mass-weighted
temperature of star-forming gas ∼ 105K), and initial disk gas
fractions (by mass) of fgas = 0.2, 0.4, 0.8, and 1.0. Finally, we
scale these models with redshift, altering the physical sizes of
the galaxy components and the dark matter halo concentration
in accord with cosmological evolution (Mo, Mao & White
1998). Details are provided in Robertson et al. (2005b), and
here we consider galaxy models scaled appropriately to re-
semble galaxies of the same Vvir, fgas,and qEOS at redshifts
zgal = 0, 2, 3, and 6.

For each simulation, we generate two stable, isolated disk
galaxies, each with an extended dark matter halo with a
Hernquist (1990) profile, motivated by cosmological simula-
tions (e.g. Navarro et al. 1996; Busha et al. 2004) and ob-
servations of halo properties (e.g. Rines et al. 2002, 2002,
2003, 2004), an exponential disk of gas and stars, and (option-
ally) a bulge. The galaxies have masses Mvir = V 3

vir/(10GH0)
for zgal = 0, with the baryonic disk having a mass fraction
md = 0.041, the bulge (when present) has a mass fraction mb =
0.0136, and the rest of the mass is in dark matter typically
with a concentration parameter c = 9.0. The disk scale-length
is computed based on an assumed spin parameter λ = 0.033,
chosen to be near the mode in the observed λ distribution
(Vitvitska et al. 2002), and the scale-length of the bulge is set
to 0.2 times the resulting value. In Hopkins et al. (2005a), we
describe our analysis of simulation A3, one of our set with

Vvir = 160kms−1, fgas = 1.0, qEOS = 1.0, and zgal = 0, a fidu-
cial choice with a rotation curve and mass similar to the Milky
Way, and Hopkins et al. (2005b,c,d) used a set of simulations
with the same parameters but varying Vvir = 80, 113, 160, 226,
and 320kms−1, which we refer to below as runs A1, A2, A3,
A4, and A5, respectively.

Typically, each galaxy is initially composed of 168000 dark
matter halo particles, 8000 bulge particles (when present),
24000 gas and 24000 stellar disk particles, and one BH parti-
cle. We vary the numerical resolution, with many of our sim-
ulations using instead twice as many particles in each galaxy,
and a subset of simulations with up to 128 times as many par-
ticles. We vary the initial seed mass of the black hole to iden-
tify any systematic dependence of our results on this choice.
In most cases, we choose the seed mass either in accord with
the observed MBH-σ relation or to be sufficiently small that its
presence will not have an immediate dynamical effect. Given
the particle numbers employed, the dark matter, gas, and star
particles are all of roughly equal mass, and central cusps in the
dark matter and bulge profiles are reasonably well resolved
(see Fig 2. in Springel et al. 2005b). The galaxies are then set
to collide from a zero energy orbit, and we vary the inclina-
tions of the disks and the pericenter separation.

A representative example of the behavior of the simulations
is provided in Figure 2, which shows the time sequence of
a merger involving two bulge-less progenitor galaxies with
virial velocities of 160kms−1 and initial gas fractions of 20%.
During the merger, gas is driven to the galaxy centers by
gravitational tides, fueling nuclear starbursts and black hole
growth. The quasar activity is short-lived and peaks twice in
this merger, both during the first encounter and the final co-
alescence of the galaxies. To illustrate the bright, optically
observable phase(s) of quasar activity which we identify be-
low, we have added nuclear point sources in the center at the
position(s) of the black hole(s) at times T = 1.03, 1.39 and
1.48Gyr, generating a surface density in correspondence to
the relative luminosities of stars and quasar at these times.
At other times, the accretion activity is either obscured or the
black hole accretion rate is negligible. To make the appear-
ance of the quasar visually more apparent, we have put a small
part of its luminosity in “rays” around the quasar. These rays
are artificial and are only a visual guide.

2.2. Column Densities & Quasar Attenuation

From the simulation outputs, we determine the obscuration
of the black hole as a function of time during a merger by cal-
culating the column density to a distant observer along many
lines of sight. Typically, we generate ∼ 1000 radial lines-of-
sight (rays), each with its origin at the black hole location and
with directions uniformly spaced in solid angle dcosθdφ. For
each ray, we begin at the origin and calculate and record the
local gas properties using the SPH formalism and move a dis-
tance along the ray ∆r = ηhsml, where η ≤ 1 and hsml is the
local SPH smoothing length. The process is repeated until
a ray is sufficiently far from the origin (& 100 kpc) that the
column has converged. We then integrate the gas properties
along a particular ray to give the line-of-sight column density
and mean metallicity. We have varied η and find empirically
that gas properties along a ray converge rapidly and change
smoothly for η = 0.5 and smaller. We similarly vary the num-
ber of rays and find that the distribution of line-of-sight prop-
erties converges for & 100 rays.

From the local gas properties, we use the multiphase model
of the ISM described in Springel & Hernquist (2003) to deter-
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FIG. 2.— Time sequence from one of our merger simulations (Vvir = 160km s−1 , initial gas fraction 20%). Each panel is 80h−1kpc on a side and shows the
simulation time in the upper left corner. Brightness of individual pixels gives the logarithm of the projected stellar mass density, while color hue indicates the
baryonic gas fraction, from 20% (blue) to less than 5% (red). At T = 1.03, 1.39 and 1.48Gyr, when the black hole could be seen as an optical quasar, nuclear
point sources are shown, providing a representation of the relative luminosities of stars and the quasar at these times.

mine the mass fraction in “hot” (diffuse) and “cold” (molecu-
lar and HI cloud core) phases of dense gas and, assuming pres-
sure equilibrium, we obtain the local density of the hot and
cold phases and their corresponding volume filling factors.
The resulting values are in rough agreement with those of
McKee & Ostriker (1977). Given a temperature for the warm,
partially ionized component of the hot-phase ∼ 8000K, deter-
mined by pressure equilibrium, we further calculate the neu-
tral fraction of this gas, typically ∼ 0.3 −0.5. We denote the
neutral and total column densities as NH I and NH, respectively.
Using only the hot-phase density allows us to place an effec-
tive lower limit on the column density along a particular line

of sight, as it assumes a given ray passes only through the
diffuse ISM, with & 90% of the mass of the dense ISM con-
centrated in cold-phase “clumps.” Given the small volume
filling factor (< 0.01) and cross section of cold clouds, we ex-
pect that the majority of sightlines will pass only through the
“hot-phase” component.

Using Lbol = ǫrṀc2, we model the intrinsic quasar con-
tinuum SED following Marconi et al. (2004), based on opti-
cal through hard X-ray observations (e.g., Elvis et al. 1994;
George et al. 1998; Vanden Berk et al. 2001; Perola et al.
2002; Telfer et al. 2002; Ueda et al. 2003; Vignali et al.
2003), with a reflection component generated by the
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PEXRAV model (Magdziarz & Zdziarski 1995). This yields,
for example, a B-band luminosity log(LB/L⊙) = 0.80 −
0.067L+ 0.017L2 − 0.0023L3, where L = log(Lbol/L⊙) − 12,
and we take λB = 4400Å, but as we model the entire intrin-
sic SED we can determine the bolometric correction in any
frequency interval.

We then use a gas-to-dust ratio to determine the extinction
along a given line of sight at optical frequencies. Observations
suggest that the majority of reddened quasars have reddening
curves similar to that of the Small Magellanic Cloud (SMC;
Hopkins et al. 2004, Ellison et al. 2005), which has a gas-
to-dust ratio lower than the Milky Way by approximately the
same factor as its metallicity (Bouchet et al. 1985). Hence,
we consider both a gas-to-dust ratio equal to that of the Milky
Way, (AB/NH I)MW = 8.47× 10−22 cm2, and a gas-to-dust ra-
tio scaled by metallicity, AB/NH I = (Z/0.02)(AB/NH I)MW. In
both cases we use the SMC-like reddening curve of Pei
(1992). The form of the correction for hard X-ray (2-10
keV) and soft X-ray (0.5-2 keV) luminosities is similar to
that of the B-band luminosity. We calculate extinction at X-
ray frequencies (0.03-10 keV) using the photoelectric absorp-
tion cross sections of Morrison & McCammon (1983) and
non-relativistic Compton scattering cross sections, similarly
scaled by metallicity. In determining the column density for
photoelectric X-ray absorption, we ignore the inferred ionized
fraction of the gas, as it is expected that the inner-shell elec-
trons which dominate the photoelectric absorption edges will
be unaffected in the temperature ranges of interest. We do not
perform a full radiative transfer calculation, and therefore do
not model scattering or re-processing of radiation by dust in
the infrared.

For a full comparison of quasar lifetimes and column den-
sities obtained varying our calculation of NH, we refer to
Hopkins et al. (2005b) (see their Figures 1, 5, & 6), and note
their conclusion that, after accounting for clumping of most
mass in the dense ISM in cold-phase structures, the column
density does not depend sensitively on our assumptions for
the small-scale physics of the ISM and obscuration – typi-
cally, the uncertainties in the resulting quasar lifetime as a
function of luminosity are a factor ∼ 2 at low luminosities
in the B-band, and smaller in e.g. the hard X-ray. Because
our determination of the quasar luminosity functions is sim-
ilar using the hard X-ray data alone or the hard X-ray, soft
X-ray, and optical data simultaneously, the added uncertain-
ties in our calculation of ṅ(Lpeak) in § 3.2 below owing to the
uncertainty in our NH calculation are small compared to the
uncertainties owing to degeneracies in the fitting procedure
and uncertain bolometric corrections.

2.3. The NH Distribution as a Function of Luminosity

Next, we consider the distribution of column densities as a
function of both the instantaneous and peak quasar luminosi-
ties. For each simulation, we consider NH values at all times
with a given bolometric luminosity L (in some logarithmic
interval in L), and determine the distribution of column den-
sities at that L weighted by the total time along all sightlines
with a given NH. At each L, we approximate the simulated
distribution and fit it to a lognormal form,

P(NH) =
1

σNH

√
2π

exp

[

−log2(NH/N̄H)
2σ2

NH

]

. (1)

This provides a good fit for all but the brightest luminosi-
ties, where quasar feedback becomes important driving the

“blowout” phase, and the quasar sweeps away surrounding
gas and dust to become optically observable.

We show the resulting median column density N̄H at each
luminosity L in Figure 3. In the upper left panel, simulations
with zgal = 0 are shown in black, those with zgal = 2 in blue, and
those with zgal = 3 in yellow. In the upper right, simulations
with fgas = 0.4 are shown in black, those with fgas = 0.8 in red.
In the lower left, simulations with qEOS = 0.25 are shown in
black, those with qEOS = 1.0 in green. And in the lower right,
simulations with Vvir = 80,113,160,226,320,and 500kms−1

are shown as black asterisks, purple dots, red diamonds, green
triangles, yellow squares, and red crosses, respectively. Sim-
ulations with other values for these parameters (not shown
for clarity, but see e.g. Hopkins et al. [2005d]) show similar
trends.

While the increase in typical NH values with luminosity ap-
pears to contradict observations suggesting that the obscured
fraction decreases with luminosity, this is because the rela-
tionship shown above is dominated by quasars in growing,
heavily obscured phases. In these stages, the relationship be-
tween column density and luminosity is a natural consequence
of the fact that both are fueled by strong gas flows into the
central regions of the galaxy – more gas inflow means higher
luminosities, but also higher column densities. During these
phases, the lognormal fits to column density as a function
of instantaneous and peak luminosity presented in this sec-
tion are reasonable approximations, but they break down in
the brightest, short-lived stages of merger activity when the
quasar rapidly heats the surrounding gas and drives a power-
ful wind, lowering the column density, resulting in a bright,
optically observable quasar. Including in greater detail the ef-
fects of quasar blowout during the final stages of its growth in
§ 4, we find that this modeling actually predicts the observed
decrease in obscured fraction with luminosity.

The relationship between NH and L shows no strong sys-
tematic dependence on any of the simulation parameters con-
sidered. At most, there is weak sensitivity to qEOS, in the sense
that the simulations with qEOS = 1.0 have slightly larger col-
umn densities at a given luminosity than those with qEOS =
0.25. We derive an analytical model relating both the ob-
served column density and quasar luminosity to the inflowing
mass of gas in Hopkins et al. (2005d), by assuming that while
it is growing, the black hole mass is proportional to the inflow-
ing gas mass in the galaxy core (which ultimately produces
the Magorrian et al. [1998] relation between black hole and
bulge mass), and assuming Bondi accretion, with obscuration
along a sightline through this (spherically symmetric) gas in-
flow. Such a model gives the observed correlation between
NH and L, and explains the weak dependence of the column
density-luminosity relation on the ISM gas equation of state.
The assumptions above give a relationship of the form

NH ∼ f0
1

mHRc

(cs

c

)( cL

G2

)1/3
, (2)

where f0 ∼ 50 is a dimensionless factor depending on the ra-
diative efficiency, mean molecular weight, density profile, and
assumed MBH −σ relation; mH is the mass of hydrogen; Rc

the radius of the galaxy core (∼ 100pc); and cs the effective
sound speed in the central regions of the galaxy. A qEOS = 1.0
equation of state, with a higher effective temperature, results
in a factor of ≈ 2 larger sound speed in the densest regions of
the galaxy than a qEOS = 0.25 equation of state (Springel et al.
2005b), explaining the weak trend seen. In any event, the de-
pendence is small compared to the intrinsic scatter for either
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FIG. 3.— The median fitted total (neutral and ionized) column density N̄H at each luminosity L in the snapshots from our series of simulations described in
§ 2. We compare changing concentrations and halo properties with redshift zgal (upper left), gas fractions fgas (upper right), the equation of state parameter qEOS

(lower left), and virial velocity Vvir (lower right). At lower right, simulations with Vvir = 80,113,160,226,320,and 500km s−1 are shown as black asterisks, purple
dots, red diamonds, green triangles, yellow squares, and red crosses, respectively. Other than a possible weak sensitivity to qEOS, the column density distribution
as a function of luminosity shows no systematic dependence on any of the varied simulation parameters.

equation of state in the value of N̄H at a given luminosity, and
further weakens at high luminosity, so it can be neglected.
What may appear to be a systematic offset in N̄H with Vvir is
actually just a tendency for larger Vvir systems to be at higher
luminosities; there is no significant change in the dependence
of NH on L.

We use our large set of simulations to improve our fits (rel-
ative to those of Hopkins et al. 2005d) to the NH distribution
as a function of instantaneous and peak luminosities. Looking
at individual simulations, there appears to be a “break” in the
power-law scaling of N̄H with L at L ∼ 1011 L⊙. We find that
the best fit to the median column density N̄H is then

N̄H =











1022.8 cm−2
(

L
Lpeak

)0.54
if L < 1011 L⊙

1021.9 cm−2
(

L
1011 L⊙

)0.43
if L > 1011 L⊙.

(3)

Either of these two relations provides an acceptable fit to
the plotted N̄H distribution if applied to the entire luminosity
range (χ2/ν ≈ 2.8, 3.2 for the first and second relations, re-
spectively), but their combination provides a significantly bet-
ter fit (χ2/ν ≈ 1.5), although it is clear from the large scatter
in N̄H values that any such fit is a rough approximation. De-
spite the complicated form of this equation, it is, in practice,
similar to our N̄H ∝L0.35 fit from previous work and N̄H ∝L1/3

analytical scaling over the range of relevant luminosities, but
is more accurate by a factor ∼ 2 −3 at low (. 109 L⊙) lumi-
nosities. For comparison, however, we do consider this sim-

pler form for NH(L) as well as our more accurate fit above in
our subsequent analysis, and find that it makes little difference
to most observable quasar properties. At the highest luminosi-
ties, near the peak luminosities of the brightest quasars, the
scatter about these fitted median N̄H values increases, and as
noted above the impact of the quasar in expelling surrounding
gas becomes important and column densities vary rapidly. We
consider this “blowout” phase in more detail in § 4.

We find that any dependence of σNH
(the fitted lognormal

dispersion) on L or Lpeak is not statistically significant, with
approximately constant σNH

≈ 0.4 for individual simulations.
We similarly find no systematic dependence of σNH

on any of
our varied simulation parameters. However, it is important to
note that while the dispersion in NH for an individual simula-
tion is σNH

≈ 0.4, the dispersion in N̄H across all simulations
at a given luminosity is large, ∼ 1 dex. Thus, we fit the effec-
tive σNH

at a given luminosity for the distribution of quasars
and find it is σNH

≈ 1.2. Although we have slightly revised
our fits for greater accuracy at low luminosities, we note that
this relation is shallower than the relation NH ∝ L roughly ex-
pected if MBH is constant (L ∝ ρ ∝ NH) or L ∝ MBH always,
and strongly contrasts with unification models which predict
static obscuration, or evolutionary models in which NH is in-
dependent of L up to some threshold (e.g., Fabian 1999).

2.4. Quasar Lifetimes & Sensitivity to Simulation Parameters

We define the luminosity-dependent quasar lifetime tQ =
tQ(Lmin) as the time a quasar has a luminosity above a certain
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FIG. 4.— Integrated intrinsic quasar lifetime above a given reference bolo-
metric luminosity, tQ(L), as a function of luminosity for simulations with host
galaxies with total mass (top panel) Mgal = 0.5 −2.0× 1012 M⊙, and simula-

tions with final black hole masses (bottom panel) M
f
BH = 0.5 −2.0× 108 M⊙

(i.e. similar peak luminosity Lpeak ∼ 1012 L⊙). The simulations cover a
range in equation of state parameter qEOS, initial disk gas fraction fgas,
galaxy redshift (for scaling of halo properties) zgal, and virial velocities
Vvir = 113 − 160km s−1 . The black line in both cases is for a merger in-
volving Milky Way-like galaxy models, which we refer to as A3, with
fgas = 1, qEOS = 1, zgal = 0, and Vvir = 160km s−1 .

reference luminosity Lmin; i.e. the total time the quasar shines
at L ≥ Lmin. For ease of comparison across frequencies, we
measure the lifetime in terms of the bolometric luminosity,
L, rather than e.g. the B-band luminosity. Knowing the dis-
tribution of column densities NH as a function of luminosity
and system properties (see § 2.3), we can then analytically or
numerically calculate the distribution of observed lifetimes at
any frequency if we know this intrinsic lifetime. Below ∼ 1
Myr, our estimates of tQ become uncertain owing to the ef-
fects of quasar variability and our inability to resolve the local
small-scale physics of the ISM, but this is significantly shorter
than even the most rapid timescales ∼ 10 Myr of substantial
quasar evolution.

As before, we use our diverse sample of simulations to test
for systematic effects in our parameterization of the quasar
lifetime. Figure 4 shows the quasar lifetime as a function of
reference luminosity Lmin for both a set of simulations with
similar total galaxy mass, Mgal ≈ 1012 M⊙, and similar final
black hole mass (i.e. similar peak quasar luminosity), M

f
BH ≈

108 M⊙. In each case, the simulations cover a range in qEOS,
fgas, zgal, and Vvir.

As Figure 4 demonstrates, at a given Mgal, there is a wide
range of lifetimes, with a systematic dependence on several
quantities. For example, for fixed Mgal, a lower qEOS means
that the gas is less pressurized and more easily collapses to
high density, resulting in larger M

f

BH and longer lifetimes at
higher luminosities. Similarly, higher fgas provides more fuel
for black hole growth at fixed Mgal. However, for a given M

f
BH,

the lifetime tQ as a function of Lmin is similar across simula-
tions and shows no systematic dependence on any of the var-
ied parameters. We find this for all final black hole masses
in our simulations, in the range M

f
BH ∼ 106 − 1010 M⊙. We

have further tested this as a function of resolution, comparing
with alternate realizations of our fiducial A3 simulation with
up to 128 times as many particles, and find similar results as
a function of M

f
BH.

From Figure 4, it is clear that the final black hole mass or
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FIG. 5.— Fits to the quasar lifetime as a function of luminosity from our
simulations. Upper left shows the intrinsic, bolometric quasar lifetime tQ
of a set of simulations with Lpeak within a factor of 2 of 1010 L⊙, in the
manner of Figure 4. The black histogram shows the geometric mean of these
lifetimes, and the black histogram in the lower left shows the differential
lifetime dt/d log L from this geometric mean. The black thick line in the
upper left and red line in the lower left show the best-fit to our analytical form,
dt/d log L = t∗Q exp(−L/L∗

Q). Upper right shows the fitted t∗Q and resulting
errors in each peak luminosity (final black hole mass) interval, and the best-
fit power-law to t∗Q(Lpeak) (red line). Lower right shows the fitted L∗

Q and
resulting errors in each peak luminosity (final black hole mass) interval, and
the best-fit proportionality L∗

Q ∝ Lpeak (red line).

peak luminosity is a better variable to use in describing the
lifetime than the host galaxy mass. The lack of any system-
atic dependence of either the quasar lifetime or NH(L,Lpeak)
on host galaxy properties implies that our earlier results (Hop-
kins et al. 2005a-d) are reliable and can be applied to a wide
range of host galaxy properties, redshifts, and luminosities,
although we refine and expand the various fits of these works
and their applications herein. Furthermore, the large scatter
in tQ at a given galaxy mass has important implications for
the quasar correlation function as a function of luminosity, as
one cannot associate a single quasar luminosity with hosts of
a given mass (see Lidz et al. 2005).

Although the truncated power-laws we have previously fit-
ted to tQ using only the A-series simulations (Hopkins et al.
2005b) provide acceptable fits to all our runs, we use our new,
larger set of simulations to improve the accuracy of the fits
and average over peculiarities of individual simulations, giv-
ing a more robust prediction of the lifetime as a function of in-
stantaneous and peak luminosity. For a given peak luminosity
Lpeak, we consider simulations with an Lpeak within a factor of
2, and take the geometric mean of their lifetimes tQ(L) (we ig-
nore any points where tQ < 1 Myr, as our calculated lifetimes
are uncertain below this limit). We can then differentiate this
numerically to obtain dt/dlogL (the time spent in a given log-
arithmic luminosity interval), and fit some functions to both
curves simultaneously. Figure 5 illustrates this and shows the
results of our fitting. We find that both the integrated lifetime
tQ(L) and the differential lifetime dt/dlogL are well fitted by
an exponential,

dt/dlogL = t∗Q exp[−L/L∗
Q], (4)

where both t∗Q and L∗
Q are functions of M

f

BH or Lpeak. The best-
fit such dt/dlogL is shown in the figure as a solid line for sim-
ulations with Lpeak ∼ 1010 L⊙, and agrees well with both the
numerical derivative dt/dlogL (lower left, black histogram)
and the geometric mean tQ(L) (upper left, black histogram).
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This of course implies

tQ(L) = t∗Q

∫ Lpeak

L

e−L/L∗
Q d logL, (5)

but we are primarily interested in dt/dlogL in our subsequent
analysis.

Although our fitted lifetime involves an exponential, it is
in no way similar to the exponential light curve of con-
stant Eddington-ratio black hole growth or the model in, e.g.,
Haiman & Loeb (1998), which give dt/dlogL = constant∼
tS ≪ t∗Q.

Our functional form also has the advantage that, although it
should formally be truncated with dt/dlogL = 0 for L > Lpeak,
the values in this regime fall off so quickly that we can safely
use the above fit for all large L. Similarly, at L . 10−4 Lpeak,
dt/dlogL falls below the constant t∗Q to which this equa-
tion asymptotes. Furthermore, in this regime, the fits above
begin to differ significantly from those obtained by fitting
e.g. truncated power-laws or Schechter functions. However,
these luminosities are well below those we generally consider
and well below the luminosities where the contribution of a
quasar with some Lpeak is significant to the observed quanti-
ties we predict. Moreover, this turndown (i.e. the lower value
predicted by an exponential as opposed to a power-law or
Schechter function at low luminosities) is at least in part an
artifact of the finite simulation duration. The values here are
also significantly more uncertain, as by these low relative ac-
cretion rates, the system is likely to be accreting in some low-
efficiency, ADAF state (e.g. Narayan & Yi 1995), which we
do not implement directly in our simulations. Rather than in-
troduce additional uncertainties into our modeling when they
do not affect our predictions, we adopt these exponential fits
which are accurate at L & 10−4 −10−3 Lpeak. However, for pur-
poses where the faint-end behavior of the quasar lifetime is
important, such as predicting the value and evolution of the
faint-end quasar luminosity function slope with redshift, a
more detailed examination of the lifetime at low luminosities
and relaxation of quasars after the “blowout” phase is neces-
sary, and we consider these issues separately in Hopkins et al.
(2005f).

We also note that in Hopkins et al. (2005c) we considered
several extreme limits to our modeling, neglecting all times
before the final merger and applying an ADAF correction at
low accretion rates (taken into account a posteriori by rescal-
ing the radiative efficiency ǫr with accretion rate, given the
assumption that such low accretion rates do not have a large
dynamical effect on the system regardless of radiative effi-
ciency), and found that this does not change our results – the
lifetime at low luminosities may be slightly altered but the
key qualitative point, that the quasar lifetime increases with
decreasing luminosity, is robust against a wide range of limits
designed to decrease the lifetime at low luminosities.

Figure 5 further shows the fitted t∗Q (upper right) and L∗
Q

(lower right) as a function of peak quasar luminosity for each
Lpeak. We find that L∗

Q, the luminosity above which the life-
time rapidly decreases, is proportional to Lpeak,

L∗
Q = αLLpeak, (6)

with a best fit coefficient αL = 0.20 (solid line). The weak
dependence of t∗Q on Lpeak is well-described by a power-law,

t∗Q = t (10)
∗

( Lpeak

1010 L⊙

)αT

, (7)

with t (10)
∗ = 1.37×109 yr and αT = −0.11
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FIG. 6.— Predicted quasar lifetime as a function of luminosity compared to
that obtained in simulations with and without bulges and with different initial
seed black hole masses. All simulations shown in this plot are initially iden-
tical to our fiducial A3 (Milky Way-like) case, but with or without an initial
stellar bulge and with an initial seed black hole mass as labeled. Diamonds
show the predicted quasar lifetime tQ , a function of the peak luminosity of
each simulated quasar, determined from the fits shown in Figure 5. Crosses
show the lifetime determined directly in the simulations.

The presence or absence of a stellar bulge in the progen-
itors can have a significant impact on the quasar light curve
(Springel et al. 2005b), primarily affecting the strength of the
strong accretion phase associated with initial passage of the
merging galaxies (e.g. Mihos & Hernquist 1994). Likewise,
the seed mass of the simulation black holes could have an
effect, as black holes with smaller initial masses will spend
more time growing to large sizes, and more massive black
holes may be able to shut down early phases of accretion in
mergers in minor “blowout” events. In Figure 6, we show var-
ious tests to examine the robustness of our fitted quasar life-
times to these variations. We have re-run our fiducial Milky
Way-like A3 simulation both with (right panels) and without
(left panels) initial stellar bulges in the merging galaxies and
varying the initial black hole seed masses from 104 −107 M⊙.
In each case we compare the lifetime tQ determined directly
from the simulations (crosses) to that predicted from our fits
above (diamonds), based only on the peak luminosity (final
black hole mass) of the simulated quasar. Again, we find that
varying these simulation parameters can have a significant ef-
fect on the final black hole mass, but that the quasar lifetime
as a function of peak luminosity is a robust quantity, indepen-
dent of initial black hole mass or the presence or absence of a
bulge in the quasar host.

We can integrate the total radiative output of our model
quasars,

Erad =
∫ Lpeak

Lmin

L
dt

dlogL
dlogL, (8)

and using our fitted formulae and Lmin ≪ L∗
Q we find

Erad = L∗
Q t∗Q loge (1 −e−Lpeak/L∗

Q ). (9)

Knowing Erad = ǫrM
f
BHc2, we can compare the final black hole

mass as a function of peak luminosity to what we would ex-
pect if the peak luminosity were the Eddington luminosity of
a black hole with mass MEdd, LEdd = ǫrMEddc2/tS, where tS is
the Salpeter time for ǫr = 0.1. Equating Erad = ǫrM

f
BHc2 with

the value calculated in Equation 9, and using the definition of
the Eddington mass at L = Lpeak and our fitted L∗

Q = αLLpeak,
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we obtain

M
f
BH(Lpeak)

MEdd(Lpeak)
= αL

( t∗Q

tS

)

loge ≈ 1.24 fT , (10)

where fT = (Lpeak/1013 L⊙)−0.11 for the power-law fit to t∗Q.
For our calculations explicitly involving black hole mass, we
adopt this conversion unless otherwise noted, as we have per-
formed our primary calculation (i.e. calculated ṅ(Lpeak)) in
terms of peak luminosity. Moreover, although this agrees well
with the black hole masses in our simulations as a function of
peak luminosity (as it must if the fitted quasar lifetimes are
accurate), this allows us to smoothly interpolate to the high-
est black hole masses (∼ a few × 109 − 1010 M⊙), which are
of particular interest in examining the black hole population
but for which the number of simulations we have with a given
final black hole mass drops rapidly.

This gives explicitly the modifications to the black hole
mass compared to that inferred from the “light bulb” and
“constant Eddington ratio” models which we outline below in
§ 2.5, in which quasars shine at constant luminosity or follow
exponential light curves, and for which M

f
BH = MEdd(Lpeak)/l,

where l, the (constant) Eddington ratio, is generally adopted.
The corrections are small, and therefore most of the black hole
mass is accumulated in the bright, near-peak quasar phase,
in good agreement with observational estimates (e.g., Soltan
1982; Yu & Tremaine 2002); we discuss this in greater de-
tail in § 4 and § 6. Furthermore, the increase of fT with de-
creasing Lpeak implies that lower-mass quasars accumulate a
larger fraction of their mass in slower, sub-peak accretion af-
ter the final merger, while high-mass objects acquire essen-
tially all their mass in the peak quasar phase. This is seen
directly in our simulations, and is qualitatively in good agree-
ment with expectations from simulations and semi-analytical
models in which the MBH − σ relation is set by black hole
feedback in a strong quasar phase. Compared to the assump-
tion that M

f
BH = MEdd(Lpeak), this formula introduces a small

but non-trivial correction in the relic supermassive black hole
mass function implied by the quasar luminosity function and
ṅ(Lpeak) (see § 6).

The predictions of our model for the quasar lifetime
and evolution can be applied to observations which at-
tempt to constrain the quasar lifetime from individual
quasars, for example using the proximity effect in the Lyα
forest (Bajtlik, Duncan, & Ostriker 1988; Haiman & Cen
2002; Jakobsen et al. 2003; Yu & Lu 2005) and multi-
epoch observations (Martini & Schneider 2003). However,
many observations designed to constrain the quasar life-
time do so not for individual quasars, but using demo-
graphic or integral arguments based on the population of
quasars in some luminosity interval (e.g., Soltan 1982;
Haehnelt, Natarajan, & Rees 1998; Yu & Tremaine 2002;
Yu & Lu 2004; Porciani, Magliocchetti, & Norberg 2004;
Grazian et al. 2004). Our prediction for these observations
is similar but slightly more complex, as an observed luminos-
ity function at a given luminosity will consist of sources with
different peak luminosities Lpeak, but the same instantaneous
luminosity, L. Furthermore, the lifetime being probed may be
either the integrated quasar lifetime above some luminosity
threshold or the differential lifetime at a particular luminos-
ity.

For a given determination of the quasar luminosity func-
tion using our model for quasar lifetimes and some distribu-
tion of peak luminosities, we can predict the distribution of

quasar lifetimes as a function of the observed luminosity in-
terval. Figure 7 shows an example of such a result, using the
determination of the luminosity function below in § 3.2, at
redshift z = 0.5. We consider several bolometric luminosities
spanning the luminosity function from 109 −1014 L⊙, and for
each, the distribution of sources (peak luminosities), and the
corresponding distribution of quasar lifetimes. We show both
the distribution of integrated quasar lifetimes tQ (left panel)
and the distribution of differential quasar lifetimes dt/dlogL
(right panel). The evolution with redshift is weak, with the
lifetime increasing by ∼ 1.5 −2 at a given luminosity at z = 2.
There is furthermore an ambiguity of a factor ∼ 2, as some
of the quasars observed at a given luminosity will only be en-
tering a peak quasar phase, whereas the lifetimes shown are
integrated over the whole quasar evolution. This prediction is
quite different from that of the optical quasar phase which we
describe below in § 4 and in Hopkins et al. (2005a), as it con-
siders only the intrinsic bolometric luminosity, but our model-
ing and the fits provided above for the bolometric lifetime and
column density distributions should enable the prediction of
these quantities, considering attenuation, in any waveband. In
either case, it is clear that the lifetime distribution for lower-
luminosity quasars is increasingly more strongly peaked and
centered around longer lifetimes, in good agreement with the
limited observational evidence from e.g. Adelberger & Stei-
del (2005). This is a consequence of the fact that in our
model quasar lifetimes decrease with increasing luminosity.
The range spanned in the figure corresponds well to the range
of quasar lifetimes implied by the observations above and oth-
ers (e.g. Martini 2004, and references therein).

2.5. Alternative Models of Quasar Evolution

Our modeling reproduces at least the observed hard X-
ray quasar luminosity function by construction, since we use
the observed quasar luminosity functions to determine the
birthrate of quasars of a given Lpeak, ṅ(Lpeak), in § 3.2. It is
therefore useful to consider in detail the differences in our
subsequent predictions between various models for the quasar
lifetime and obscuration, in order to determine to what extent
these predictions are implied by any model that successfully
reproduces the observed quasar luminosity function, and to
what extent they are independent of the observed luminosity
functions and instead depend on the model of quasar evolu-
tion adopted. To this end, we define two models for the quasar
lifetime, and two models for the distribution of quasar column
densities, combinations of which have been commonly used
in most previous analyses of quasars.

For the quasar lifetime, we consider the following two
cases:

“Light-Bulb Model” (e.g., Small & Blandford 1992;
Kauffmann & Haehnelt 2000; Wyithe & Loeb 2003;
Haiman, Quataert, & Bower 2004). The simplest possi-
ble model for the quasar light curve, the “feast or famine”
or “light-bulb” model assumes that quasars have only two
states, “on” and “off.” Quasars turn “on”, shine at a fixed
bolometric luminosity L = Lpeak, defined by a “constant”
Eddington ratio (i.e. Lpeak = l M

f
BH) and constant quasar

lifetime tQ,LB. Models where quasars live arbitrarily long
with slowly evolving mean volume emissivity or mean light
curve (e.g. Small & Blandford 1992; Haiman & Menou 2000;
Kauffmann & Haehnelt 2000) are equivalent to the “light
bulb” scenario, as they still assume that quasars observed at a
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FIG. 7.— Predicted distribution (fractional number density per logarithmic interval in lifetime) of quasar lifetimes at different bolometric luminosities, for the
luminosity function determined in § 3 at z = 0.5. Left panel plots the distribution of integrated lifetimes tQ (time spent over the course of each quasar lifetime
above the given luminosity). Right panel plots the distribution of differential lifetimes dt/d log L (time spent by each quasar in a logarithmic interval about the
given luminosity).

luminosity L radiate at that approximately constant luminos-
ity over some universal lifetime tQ,LB at a particular redshift.
We adopt l = 0.3 and tQ,LB = 107 yr, as is commonly assumed
in theoretical work and suggested by observations (given
this prior) (e.g. Yu & Tremaine 2002; Martini 2004; Soltan
1982; Yu & Lu 2004; Porciani, Magliocchetti, & Norberg
2004; Grazian et al. 2004), and similar to the e-folding time
of a black hole with canonical radiative efficiency ǫr = 0.1
(Salpeter 1964) or the dynamical time in a typical galactic
disk or central regions of the merger. These choices control
only the normalization of ṅ(Lpeak), and therefore do not affect
most of our predictions. Where the normalization (i.e. value
of the constant tQ or l) is important, we allow it to vary in
order to produce the best possible fit to the observations.

“Exponential (Fixed Eddington Ratio) Model.” A some-
what more physical model of the quasar light curve is ob-
tained by assuming growth at a constant Eddington ra-
tio, as is commonly adopted in e.g. semi-analytical mod-
els which attempt to reproduce quasar luminosity functions
(e.g. Kauffmann & Haehnelt 2000; Wyithe & Loeb 2003;
Volonteri et al. 2003). In this model, a black hole accretes
at a fixed Eddington ratio l from an initial mass Mi to a final
mass M f (or equivalently, a final luminosity L f = l LEdd(M f )),
and then shuts off. This gives exponential mass and luminos-
ity growth, and the time spent in any logarithmic luminosity
bin is constant,

dt/dlog(L) = tS (ln(10)/l) (11)

for Li < L < L f . This is true for any exponential light
curve; i.e. this model includes cases with an exponen-
tial decline in quasar luminosity), f (t) ∝ e±t/t∗ , such as
that of Haiman & Loeb (1998), with only the normalization
dt/dlog(L) = t∗ ln(10) changed, and thus any such model will
give identical results with correspondingly different normal-
izations. As with the “light-bulb” model, we are free to
choose the characteristic Eddington ratio and corresponding
timescale for this lightcurve, and we adopt l = 0.3 (i.e. t∗ ∼
108 yr) in general. Again, however, we allow the normaliza-
tion to vary freely where it is important, such that these mod-
els have the best chance to reproduce the observations. For
our purposes, models in which this timescale is determined
by e.g. the galaxy dynamical time and thus are somewhat de-
pendent on host galaxy mass or redshift are nearly identical
to this scenario. Further, insofar as the dynamical time in-
creases weakly with increasing host galaxy mass (as, e.g. for
a spheroid with MBH ∝Mvir ∼ aσ2/G, where a is the spheroid
scale length and MBH ∝ σ4, such that tdyn ∼ a/σ ∝ σ ∝ M

1/4
vir ),

this produces behavior qualitatively opposite to our predic-
tions (of increasing lifetime with decreasing instantaneous lu-
minosity), and yields results which are even more discrepant
from our predictions and the observations than the constant
(host-galaxy independent) case.

A wide variety of “light-bulb” or exponential (constant Ed-
dington ratio) models are possible, allowing for different dis-
tributions of typical Eddington ratios and/or quasar lifetimes
(see e.g. Steed & Weinberg 2003 for an extensive comparison
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of several classes of such models), but for our purposes they
are essentially identical insofar as they do not capture the es-
sential qualitative features of our quasar lifetimes, namely that
the quasar lifetime depends on both instantaneous and peak
luminosities, and increases with decreasing instantaneous lu-
minosity.

We fit both of the simple models above to the observed
quasar luminosity functions in the same manner described in
§ 3, (i.e. in the same manner as we fit our more complicated
models of quasar evolution), to determine ṅ(Lpeak)LB for the
“light-bulb” model and ṅ(Lpeak)Edd for the “fixed Eddington
ratio” model (see Equations 15 and 16, respectively). Thus
all three models of the quasar light curve, the “light-bulb”,
“fixed Eddington ratio”, and our luminosity-dependent life-
times model produce an essentially identical bolometric lu-
minosity function.

We also consider two commonly adopted alternative mod-
els for the column density distribution and quasar obscuration:

“Standard (Luminosity-Independent) Torus” (e.g.
Antonucci 1993). This is the canonical obscuration
model, based on observations of local, low-luminosity
Seyfert galaxies (e.g., Risaliti et al. 1999). The column
density distribution is derived from the torus geometry, where
we assume the torus inner radius lies at a distance RT from
the black hole, with a height HT, and a density distribution
ρ(θ) ∝ exp(−γ|cosθ|), where θ is the polar angle and the
torus lies in the θ = 0 plane. This results in a column density
as a function of viewing angle of

NH(θ) = NH,0 exp(−γ|cosθ|) cos(90 −θ)

×
√

( RT

HT

)2
−sec2(90 −θ)

(( RT

HT

)2
−1

)

(12)

(Treister et al. 2004). Here, NH,0 is the column density along
a line of sight through the torus in the equatorial plane and γ
parameterizes the exponential decay of density with viewing
angle. This is a phenomenological model, and as a result the
parameters are essentially all free. We adopt typical values, an
equatorial column density NH,0 = 1024 cm−2, radius-to-height
ratio RT/HT = 1.1, and density profile γ = 4. This combination
of parameters follows Treister et al. (2004), and is designed to
fit the observed X-ray column density distribution and give a
ratio of obscured to unobscured quasars ∼ 3, similar to the
mean locally observed value (e.g. Risaliti et al. 1999).

“Receding (Luminosity-Dependent) Torus” (e.g.
Lawrence 1991). Many observations suggest that the
fraction of obscured objects depends on luminosity
(Steffen et al. 2003; Ueda et al. 2003; Hasinger 2004;
Grimes, Rawlings, & Willott 2004; Sazonov & Revnivtsev
2004; Barger et al. 2005; Simpson 2005). Therefore, some
theoretical works have adopted a “receding torus” model,
in which the torus radius RT (i.e. distance from the quasar)
is allowed to vary with luminosity, but the height and other
parameters remain constant. The torus radius is assumed to
increase with luminosity, enlarging the opening angle and
thus the fraction of unobscured quasars. In this case, the
column densities are identical to those shown above, but now
RT/HT = (L/L0)0.5, where L0 ≈ 1011 L⊙ is the luminosity at
which the ratio of obscured to unobscured quasars is ≈ 3 : 1
and the power-law slope is chosen to fit the dependence of
obscured fraction on luminosity.

Both of these column density distributions represent phe-
nomenological models with several free parameters, explic-
itly chosen to reproduce the observed differences in quasar
luminosity functions and column density distributions. De-
spite this, it is not clear that these functional forms represent
the best possible fit to the observations they are designed to
reproduce. Furthermore, comparison of our results in which
column density distributions depend on luminosity and peak
luminosity elucidates the importance of proper modeling of
the dependence of column density on quasar evolution.

3. THE QUASAR LUMINOSITY FUNCTION

3.1. The Effect of Luminosity-Dependent Quasar Lifetimes

Given quasar lifetimes as functions of both instantaneous
and peak luminosities, the observed quasar luminosity func-
tion (in the absence of selection effects) is a convolution of
the lifetime with the intrinsic distribution of sources with a
given Lpeak. If sources of a given L are created at a rate ṅ(L,t)
(per unit comoving volume) at cosmological time tH ∼ 1/H(z)
and live for some lifetime ∆tQ(L), the total comoving number
density observed will be

∆n =
∫ tH +∆tQ(L)

tH

ṅ(L,t)dt, (13)

which, for a cosmologically evolving ṅ(L,t), can be expanded
about ṅ(L,tH), yielding ∆n = ṅ(L,tH )∆tQ(L) to first order in
∆tQ(L)/tH . Considering a complete distribution of sources
with some Lpeak, we similarly obtain the luminosity function

φ(L) ≡ dΦ

dlogL
(L) =

∫

dt(L,Lpeak)
d log(L)

ṅ(Lpeak)d log(Lpeak). (14)

Throughout, we will denote the differential luminosity func-
tion, i.e. the comoving number density of quasars in some log-
arithmic luminosity interval, as φ≡ dΦ/dlogL. Here, ṅ(Lpeak)
is the comoving number density of sources created per unit
cosmological time per logarithmic interval in Lpeak, at some
redshift, and dt/dlogL is the differential quasar lifetime, i.e.
the total time that a quasar with a given Lpeak spends in a loga-
rithmic interval in bolometric luminosity L. This formulation
implicitly accounts for the “duty cycle” (the fraction of active
quasars at a given time), which is proportional to the lifetime
at a given luminosity. Corrections to this formula owing to fi-
nite lifetimes are of order (dt/dlogL)/tH , which for the lumi-
nosities and redshifts considered here (except for Figure 11),
are never larger than ∼ 1/5 and are generally ≪ 1, which
is significantly smaller than the uncertainty in the luminosity
function itself.

We next consider the implications of our luminosity-
dependent quasar lifetimes for the relation between the ob-
served luminosity function and the distribution of peak lumi-
nosities (i.e. intrinsic properties of quasar systems). In tradi-
tional models of quasar lifetimes and light curves, this relation
is trivial. For example, models in which quasars “turn on” at
fixed luminosity for some fixed lifetime (i.e. the “light-bulb”
model defined in § 2.5) imply

ṅ(Lpeak)LB ∝ φ(L = Lpeak), (15)

and models in which quasar light curves are a pure exponen-
tial growth or decay with some cutoff(s) (e.g., exponential or
fixed Eddington-ratio models) imply

ṅ(Lpeak)Edd ∝
dφ

dlog(L)|L=Lpeak

. (16)
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FIG. 8.— We reproduce (thin histogram) the luminosity function of
Ueda et al. (2003) at redshift z = 0.5 (thin curve) using the binned differ-
ential quasar lifetime dt/d log L directly from our simulations and a fitted
distribution of peak luminosities ṅ(Lpeak) (thick histogram). For each bin in
log(Lpeak), we average the binned differential lifetime of a set of simulations
with peak luminosity in the bin. This clearly demonstrates our key qualitative
result, that the faint end of the luminosity function is reproduced by quasars
with peak luminosity around the break luminosity but observed primarily in
sub-Eddington states (luminosities L ≪ Lpeak), is not an artifact of our fitting
formulae or extrapolation to extreme luminosities.

These both have essentially identical shape to the observed lu-
minosity function, qualitatively different from our model pre-
diction that ṅ(Lpeak) should turn over at luminosities approx-
imately below the break in the observed luminosity function
(see, e.g. Fig. 1 of Hopkins et al. 2005e). The luminosity-
dependent quasar lifetimes determined from our simulations
imply a new interpretation of the luminosity function, with
ṅ(Lpeak) tracing the bright end of the luminosity function sim-
ilar to traditional models, but then peaking and turning over
below Lpeak ∼ Lbreak, the break luminosity in standard dou-
ble power-law luminosity functions. In our deconvolution of
the luminosity function, the faint end corresponds primarily
to sources in sub-Eddington phases transitioning into or out
of the phase(s) of peak quasar activity. There is also some
contribution to the faint-end lifetime from quasars accreting
efficiently (i.e. growing exponentially at high Eddington ratio)
early in their activity and on their way to becoming brighter
sources, but this becomes an increasingly small fraction of
the lifetime at lower luminosities. For example, in Figure
7 of Hopkins et al. (2005b), direct calculation of the quasar
lifetime shows that sub-Eddington phases begin to dominate
the lifetime for L . 0.1Lpeak, with & 90% of the lifetime at
L ∼ 10−3 Lpeak corresponding to sub-Eddington growth. By
definition, a “fixed Eddington ratio” or “light bulb” model is
dominated at all luminosities by a fixed, usually large, Ed-
dington ratio. Even models which assume an exponential de-
cline in the quasar luminosity from some peak, although they
clearly must spend a significant amount of time at low Ed-
dington ratios, have an identical ṅ(Lpeak) = ṅ(Lpeak)Edd (mod-
ulo an arbitrary normalization), and predict far less time at
most observable (& 10−4 Lpeak) low luminosities and accretion
rates (because the accretion rates fall off so rapidly); i.e. the
population at any observed luminosity is still dominated by
objects near their peak.

From our new, large set of simulations, we test this model
of the relationship between the distribution of peak quasar lu-
minosities and observed luminosity functions, namely our as-
sertion that ṅ(Lpeak) should peak around the observed break
in the luminosity function, and turn over below this peak,

with the observed luminosity function faint-end slope dom-
inated by sources with peak luminosities near the break in
sub-Eddington (sub-peak luminosity) states. In particular, we
wish to ensure that this behavior for ṅ(Lpeak) is real, and not
some artifact of our fitting functions for the quasar lifetime.

Figure 8 shows the best fit ṅ(Lpeak) distribution (solid thick
histogram) fitted to the Ueda et al. (2003) hard X-ray quasar
luminosity function (solid curve) at redshift z = 0.5, as well
as the resulting best-fit luminosity function (solid thin his-
togram). For ease of comparison with other quasar lumi-
nosities, we rescale the luminosity function to the bolomet-
ric luminosity using the corrections of Marconi et al. (2004).
We determine ṅ(Lpeak) by logarithmically binning the range of
Lpeak, and considering for each bin all simulations with Lpeak
in the given range. For each bin, then, we take the average
binned time the simulations spend in each luminosity inter-
val, and take that to be the quasar lifetime dt/dlogL. We then
fit to the observed luminosity function of Ueda et al. (2003),
fitting

φ(L) ≈
∑

i

ṅi(Lpeak, i)
〈

∆t(L, Lpeak, i)
∆ logL

〉

(17)

and allowing ṅi(Lpeak, i) to be a free coefficient for each binned
Lpeak = Lpeak, i. Despite our large number of simulations, the
numerical binning process makes this result noisy, especially
at the extreme ends of the luminosity function. However, the
relevant result is clear – the qualitative behavior of ṅ(Lpeak)
described above is unchanged. For further discussion of the
qualitative differences between the ṅ(Lpeak) distribution from
different quasar models, and the robust nature of our inter-
pretation even under restrictive assumptions (e.g. ignoring the
early phases of merger activity or applying various models for
radiative efficiency as a function of accretion rate), we refer
to Hopkins et al. (2005c).

3.2. The Luminosity Function at Different Frequencies and
Redshifts

Given a distribution of peak luminosities ṅ(Lpeak), we can
use our model of quasar lifetimes and the column density dis-
tribution as a function of instantaneous and peak luminosi-
ties to predict the luminosity function at any frequency. From
a distribution of NH values and some a priori known mini-
mum observed luminosity Lmin

ν
, the fraction fobs of quasars

with a peak luminosity Lpeak and instantaneous bolometric lu-
minosity L which lie above the luminosity threshold is given
by the fraction of NH values below a critical Nmax

H , where
Lmin

ν
= fνL exp(−σνNmax

H ). Here, fν (L)≡ Lν/L is a bolometric
correction and σν is the cross-section at frequency ν. Thus,

Nmax
H (ν,L,Lmin

ν
) =

1
σν

ln
( fν (L)L

Lmin
ν

)

, (18)

and for the lognormal distribution above,

fobs(ν,L,Lpeak,L
min
ν

) =
1
2

[

1 +erf
( log(Nmax

H /N̄H)√
2σNH

)]

. (19)

This results in a luminosity function (in terms of the bolomet-
ric luminosity)

φ(ν,L,Lmin
ν

) =
∫

fobs(ν,L,Lpeak,L
min
ν

)

×dt(L,Lpeak)
d log(L)

ṅ(Lpeak)d log(Lpeak), (20)
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where φ(ν,L,Lmin
ν

) is the number density of sources with
bolometric luminosity L per logarithmic interval in L, with
an observed luminosity at frequency ν above Lmin

ν
.

Based on the direct fit for ṅ(Lpeak) in Figure 8, we wish
to consider a functional form for ṅ(Lpeak) with a well-defined
peak and falloff in either direction in log(Lpeak). Therefore,
we take ṅ(Lpeak) to be a lognormal distribution, with

ṅ(Lpeak) = ṅ∗

1

σ∗

√
2π

exp
[

−
1
2

( log(Lpeak/L∗)
σ∗

)2]

. (21)

Here, ṅ∗ is the total number of quasars being created or acti-
vated per unit comoving volume per unit time; L∗ is the center
of the lognormal, the characteristic peak luminosity of quasars
being born (i.e. the peak luminosity at which ṅ(Lpeak) itself
peaks), which is directly related to the break luminosity in the
observed luminosity function; and σ∗ is the width of the log-
normal in ṅ(Lpeak), and determines the slope of the bright end
of the luminosity function. Since our model predicts that the
bright end of the luminosity function is made up primarily of
sources at high Eddington ratio near their peak luminosity, i.e.
essentially identical to “light-bulb” or “fixed Eddington ratio”
models, the bright-end slope is a fitted quantity, determined by
whatever physical processes regulate the bright-end slope of
the active black hole mass function (possibly feedback from
outflows or threshold cooling processes, e.g. Wyithe & Loeb
2003; Scannapieco & Oh 2004; Dekel & Birnboim 2004), un-
like the faint-end slope which is a consequence of the quasar
lifetime itself, and is only weakly dependent on the underly-
ing faint-end active black hole mass or ṅ(Lpeak) distribution.

We note that although this choice of fitting function has ap-
propriate general qualities, it is ultimately somewhat arbitrary,
and we choose it primarily for its simplicity and its capacity to
match the data with a minimum of free parameters. We could
instead, for example, have chosen a double power-law form
with ṅ(Lpeak) = ṅ∗/[(Lpeak/L∗)γ1 + (Lpeak/L∗)γ2 ] and γ1 < γ2,
but given that the entire faint end of the luminosity function
is dominated by objects with Lpeak ∼ L∗, the observed lumi-
nosity function has essentially no power to constrain the faint
end slope γ1, other than setting an upper limit γ1 . 0. The
“true” ṅ(Lpeak) will, of course, be a complicated function of
both halo merger rates at a given redshift and the distribution
of host galaxy properties including, but not necessarily lim-
ited to, masses, concentrations, and gas fractions.

Having chosen a form for ṅ(Lpeak), we can then fit to
an observed luminosity function to determine (ṅ∗, L∗, σ∗).
We take advantage of the capability of our model to pre-
dict the luminosity function at multiple frequencies, and con-
sider both fits to just the Ueda et al. (2003) hard X-ray (2-
10 keV) luminosity function, φHX , and fits to the Ueda et al.
(2003), Miyaji et al. (2001) soft X-ray (0.5-2 keV; φSX ),
and Croom et al. (2004) optical B-band (4400 Å; φB) lumi-
nosity functions simultaneously. These observations agree
with other, more recent determinations of φHX , φSX , φB

(e.g. Barger et al. 2005; Hasinger, Miyaji, & Schmidt 2005;
Richards et al. 2005, respectively) at most luminosities, and
therefore we do not expect revisions to the observed lumi-
nosity functions to dramatically change our results. In order
to avoid numerical artifacts from fitting to extrapolated, low-
luminosity slopes in the analytical forms of these luminosity
functions, we directly fit to the binned luminosity function
data. Thus, we fit each luminosity function in all redshift in-
tervals for which we have binned data.

We find good fits (χ2/ν = 68.8/104 ≈ 0.66) to all lumi-
nosity functions at all redshifts with a pure peak-luminosity

evolution (PPLE) model, for which

L∗ = L0
∗ exp(kL τ ), ṅ∗ = constant, σ∗ = constant, (22)

where τ is the fractional lookback time (τ ≡ H0
∫ z

0 dt) and
kL is a dimensionless constant fitted with L∗, ṅ∗, σ∗. It is
important to distinguish this from “standard” pure luminos-
ity evolution (PLE) models (e.g., Boyle et al. 1988), as with
ṅ(Lpeak) > 0 and L∗ = L∗(z) always, the density of sources,
especially as a function of observed luminosity at some fre-
quency, evolves in a non-trivial manner.

We do not find significant improvement in the fits if we ad-
ditionally allow ṅ∗ or σ∗ to evolve with redshift (∆χ2 ∼ 1−2,
depending on the adopted form for the evolution), and there-
fore consider only the simplest parameterization above (Equa-
tion 22). We also find acceptable fits for a pure density evo-
lution model, with L∗ = constant and ṅ∗ = ṅ0

∗ exp(kN τ ) (both
keeping σ∗ fixed and allowing it to evolve as well). However,
the fits are somewhat poorer (χ2/ν ≈ 1), and the resulting
parameters over-produce the present-day density of low-mass
supermassive black holes and the intensity of the X-ray back-
ground by an order of magnitude, so we do not consider them
further. In either case, there is a considerable degeneracy be-
tween the parameters σ∗ and L∗, where a decrease in L∗ can be
compensated by a corresponding increase in σ∗. This degen-
eracy is present because, as indicated above, the observed lu-
minosity function only weakly constrains the faint-end slope
of ṅ(Lpeak).

The observations shown are insufficient at high redshift to
strongly resolve the “turnover” in the total comoving quasar
density at z ∼ 2 −3, and thus we acknowledge that there must
be corrections to this fitted evolution at higher redshift, which
we address below. However, as we primarily consider low
redshifts, z . 3, and show that the supermassive black hole
population and X-ray background are dominated by quasars
at redshifts for which our ṅ(Lpeak) distribution is well deter-
mined, this is not a significant source of error in most of our
calculations even if we extrapolate our evolution to z ≫ 3.

Figure 9 shows the resulting best-fit PPLE luminosity
functions from the best-fit ṅ(Lpeak) distribution, for red-
shifts z = 0 − 3. This has the best-fit (χ2/ν = 0.67) values
(logL∗,kL, log ṅ∗, σ∗) = (9.94, 5.61, −6.29, 0.91) with corre-
sponding errors (0.29,0.28,0.13,0.09). Here, L∗ is in so-
lar luminosities and ṅ∗ in comoving Mpc−3 Myr−1. Fit-
ting to the hard X-ray data alone gives a similar fit,
with the slightly different values (logL∗,kL, log ṅ∗, σ∗) =
(9.54, 4.90, −5.86, 1.03)± (0.66,0.43,0.37,0.13), χ2/ν = 0.7
(note the degeneracy between L∗ and σ∗ in the two fits). Our
best-fit value of kL = 5.6 compares favorably to the value ∼ 6
found by e.g. Boyle et al. (2000) and Croom et al. (2004) for
the evolution of the break luminosity in the observed luminos-
ity function, demonstrating that the break luminosity traces
the peak in the ṅ(Lpeak) distribution at all redshifts. These fits
and the errors were obtained by least-squares minimization
over all data points (comparing each to the predicted curve at
its redshift and luminosity), assuming the functional form we
have adopted for ṅ(Lpeak).

The agreement we obtain at all redshifts, in each of the hard
X-ray (black solid line), soft X-ray (red dashed line), and B-
band (dark blue dotted line) is good. This is not at all guaran-
teed by our procedure, as the fit is highly over-constrained, be-
cause we fit three luminosity functions each at five redshifts to
only four free parameters. Of course, the choice of the func-
tional form for ṅ(Lpeak) ensures that we should be able to re-
produce at least one luminosity function and its evolution (e.g.
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FIG. 9.— Best-fit luminosity function from the pure peak-luminosity evolution ṅ(Lpeak) distribution, for redshifts z = 0 −3. From our fitted lognormal ṅ(Lpeak)
distribution, we simultaneously reproduce the luminosity function in the hard X-ray (2-10 keV; solid black line), soft X-ray (0.5-2 keV; dashed red line), and
optical B-band (4400 Å; dotted blue line) at all redshifts. Moreover, we reproduce the distribution of broad-line quasars in hard X-ray selected samples (cyan
dot-dashed line), as described in § 4. All quantities have been rescaled to bolometric luminosities for ease of comparison, using the corrections of Marconi et al.
(2004), with the plotted error bars representing both quoted measurement errors and the estimated errors in the bolometric corrections. The observations are
from Miyaji et al. (2001) (soft X-ray; red squares), Ueda et al. (2003) (hard X-ray; black circles), Croom et al. (2004) (B-band, blue diamonds), and Barger et al.
(2005) (X-ray selected broad-line quasars; cyan crosses).

the hard X-ray luminosity function, which is least affected by
attenuation), but our modeling of the column density distribu-
tions in mergers allows us to simultaneously reproduce the lu-
minosity functions in different wavebands without imposing
assumptions about obscured fractions or sources of attenua-
tion. Expressed as bolometric luminosity functions, φB, φSX ,
and φHX would be identical in the absence of obscuration,
similar to the predicted φHX as obscuration is minimal in the
hard X-ray.

For redshifts z ≤ 1, we reproduce in our Figure 10, Fig. 2
of Hopkins et al. (2005d), which shows in detail the agree-
ment between hard X-ray (Ueda et al. 2003), soft X-ray
(Miyaji et al. 2000), and optical (Boyle et al. 2000) luminos-
ity functions resulting from the time and luminosity depen-
dent column density distributions derived from the simula-
tions. The differential extinction predicted for different fre-
quencies (and magnitude limits) of observed samples based
on the column density distributions in our simulations ac-
counts for the different shape of the luminosity function in
each band, and the evolution of the luminosity function with
redshift is driven by a changing L∗, the peak of the ṅ(Lpeak)
distribution (Equation 22). We emphasize that in our anal-
ysis, the key quantity constrained by observations is the fit-
ted ṅ(Lpeak) distribution with redshift. All other quantities
and distributions are derived from the basic input physics of
our simulations, with no further assumptions or adjustable
factors in our modeling beyond the prescription for Bondi
(Eddington-limited) accretion and ∼ 5% energy deposition in
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FIG. 10.— Hard X-ray (thick), soft X-ray (thin), and B-band (dot-dash) LFs
determined from our model of quasar lifetimes and column densities, based
on a distribution of intrinsic source properties fitted to the observed hard X-
ray LF and the limiting magnitudes of observed samples, at the different red-
shifts shown. All quantities are rescaled to bolometric luminosities with the
bolometric corrections of Marconi et al. (2004). Symbols show the observed
LFs for hard X-rays (Ueda et al. 2003, diamonds), soft X-rays (Miyaji et al.
2000, triangles), and B-band (Boyle et al. 2000, crosses). Reproduced from
Hopkins et al. (2005d).

the ISM, which are themselves constrained by observations
and theory as discussed in § 2 and in Di Matteo et al. (2005).

We can, of course, fit the previously defined simpler model
of quasar lifetimes, either a “light-bulb” or exponential light
curve/fixed Eddington ratio model, and obtain an identi-
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cal hard X-ray luminosity function. We determine these
fits (see also Equation 15 & 16) and use them through-
out when we compare the predictions of such models (de-
scribed in § 2.5) to those of our simulated quasar life-
times in our subsequent analysis. Applying a standard torus
model to any model of the luminosity function reproduces,
by design, the mean offset between the B-band and hard X-
ray luminosity functions, as the parameters of this model
are tuned to reproduce this offset. As many observations
show, the fraction of broad-line quasars increases with lumi-
nosity (Steffen et al. 2003; Ueda et al. 2003; Hasinger 2004;
Sazonov & Revnivtsev 2004; Barger et al. 2005; Simpson
2005), and so reproducing the relationship between B-band
and hard X-ray luminosity functions requires adding param-
eters to the standard torus model which allow luminosity-
dependent scalings, i.e. the class of “receding torus” models.
These, again by construction, reproduce the distinction be-
tween hard X-ray and B-band quasar luminosity functions,
including the dependence of this difference on luminosity.
These are, however, phenomenological models designed to
fit these observations. Our simulations, on the other hand,
provide a self-consistent description of the column density,
which predicts the differences between hard X-ray, soft X-
ray, and optical luminosity functions without the addition of
tunable parameters or model features designed to reproduce
these observations.

Our fits are accurate down to low luminosities, as is clear
from our prediction for the X-ray luminosity function at bolo-
metric luminosities L ∼ 109 L⊙. Furthermore, we have calcu-
lated the predicted z . 0.1 luminosity function in the B-band
as well as in Hα emission, using the conversion between the
two from Hao et al. (2005) and comparing directly to their
luminosity functions for Seyfert galaxies and low-luminosity
active galactic nuclei (AGN) (both type I and II), and find
that our distribution ṅ(Lpeak) and model for quasar lifetimes
and obscuration reproduces the complete observed luminosity
function down to a B-band luminosity MB ∼ −16. Although
our prediction falls below the observed Seyfert luminosity
function at fainter magnitudes, there is no reason to believe
that mergers should be responsible for all nuclear activity at
these luminosities (and indeed alternative fueling mechanisms
for such faint objects likely exist) - it is surprising, in fact,
that this picture reproduces the observed AGN activity to such
faint luminosities.

Using the bolometric corrections of Elvis et al. (1994) in-
stead of Marconi et al. (2004) results in a significantly steeper
cutoff in the luminosity function at high bolometric luminosi-
ties, as the bolometric luminosity inferred for the brightest ob-
served X-ray quasars is almost an order of magnitude smaller
using the Elvis et al. (1994) corrections. However, this is be-
cause the Elvis et al. (1994) bolometric corrections do not
account for any dependence on luminosity, and further the
quasars in the sample of Elvis et al. (1994) are X-ray bright
(Elvis et al. 2002), whereas it has been well-established that
the ratio of bolometric luminosity to hard or soft X-ray lumi-
nosity increases with increasing luminosity (e.g., Wilkes et al.
1994; Green et al. 1995; Vignali et al. 2003; Strateva et al.
2005). Recent comparisons between large samples of quasars
selected by both optical and X-ray surveys (Risaliti & Elvis
2005) further suggests that this is an intrinsic correlation,
not driven by e.g. the dependence of obscuration on lumi-
nosity. For a direct comparison of the bolometric luminos-
ity functions resulting from the two corrections, we refer to
Hopkins et al. (2005d). Our analysis uses the form for the UV

to X-ray flux ratio, αOX, from Vignali et al. (2003), but our re-
sults are relatively insensitive to the different values found in
the literature. It is important to account for this dependence,
as it creates a significant difference in the high-luminosity end
of the bolometric quasar luminosity function and implies that
a non-negligible fraction of the brightest quasars are not seen
in optical surveys (see the discussion in Marconi et al. 2004;
Richards et al. 2005).

Finally, our fitted form for the evolution of the break lu-
minosity, with L∗ ∝ exp(kLτ ), cannot continue to arbitrar-
ily high redshift. At redshifts z & 2 − 3, this asymptotes be-
cause τ → 1, whereas the observed quasar population declines
above z ∼ 2. This difference is not important for most of our
calculated observables, as they are either independent of high-
redshift evolution or evolve with cosmic time in some fashion
as ∝

∫

ṅ(Lpeak)dt, with little time and thus negligible contri-
butions to integrated totals at high redshifts. However, some
quantities, in particular the high-mass end of the black hole
mass function (see § 6), which is dominated by the small num-
ber of the brightest quasars at high redshifts, can receive large
relative contributions from these terms. Therefore, it is impor-
tant in estimating these quantities to be aware of the turnover
in the quasar density at high redshifts.

We quantify this in Figure 11, where we show the predicted
broad-line luminosity function (where the broad-line phase
is determined below in § 6) in six luminosity intervals from
z ∼ 1.2 − 4.8. The intervals are those of the COMBO-
17 luminosity function from Wolf et al. (2003), but we
further compare to the observed luminosity functions of
Warren et al. (1994), Schmidt, Schneider, & Gunn (1995),
Kennefick, Djorgovski, & De Carvalho (1995), Fan et al.
(2001), and Richards et al. (2005) at the appropriate (labeled)
redshifts. At each redshift z > 2, we take the fitted ṅ(Lpeak)
distribution above (Equations 21, 22) and rescale it according
to an exponential cutoff: either pure density evolution (PDE),
ṅ(Lpeak) → ṅ(Lpeak) × 10−αPDE (z−2), or pure peak luminosity
evolution (PPLE), L∗ → L∗×10−αPPLE (z−2). Fitting to the data
gives αPDE ∼ 0.65 and αPPLE ∼ 0.55, (χ2/ν ≈ 1.3 for both)
in reasonable agreement with the density evolution of e.g.
Fan et al. (2001). We note that this evolution, extrapolated as
far as z ∼ 6, is consistent also with the constraints on z ∼ 6
quasars from Fan et al. (2003), especially in the PPLE case.

In each panel, we plot the resulting broad-line luminos-
ity function (see § 4), for both the minimum and maximum
redshift of the redshift bin, and both the PPLE (solid lines)
and PDE (dashed lines) cases. The degeneracy between these
possibilities is well-known, as current observations do not
resolve the break in the luminosity function. Furthermore,
the predicted luminosity function should be considered un-
certain especially at low luminosities, as the quasar lifetime
at these luminosities and redshifts can become comparable to
the age of the Universe, at which point our formalism for the
luminosity function as a function of ṅ(Lpeak) becomes inac-
curate. However, we are able to make testable predictions,
based on differences between the two models in integrated
galaxy properties (for example, color-magnitude diagrams of
red sequence galaxies at low masses or the fraction of recently
formed spheroids as a function of mass and redshift), which
distinguish the PPLE and PDE models for the evolution of the
quasar luminosity function at z & 2−3 (Hopkins et al. 2005e).
Owing to these degeneracies and the poor constraints on the
observed high-redshift luminosity functions, we have not con-
sidered them (those at z > 3) in our fits to ṅ(Lpeak), but use
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FIG. 11.— Running our predicted broad-line luminosity function (determined in § 3, 4) to high redshifts, with either total density (dashed lines) or break
luminosity (L∗; solid lines) decreasing exponentially with redshift above z = 2. In each panel, our prediction is shown for the minimum and maximum
redshift of the corresponding interval from the COMBO-17 luminosity function of Wolf et al. (2003) (W03; black squares). Other references for the obser-
vations shown are: R05 - Richards et al. (2005), WHO - Warren et al. (1994), F01 - Fan et al. (2001), SSG - Schmidt, Schneider, & Gunn (1995), KDC -
Kennefick, Djorgovski, & De Carvalho (1995).

them here to roughly constrain the turnover in the quasar den-
sity above z∼ 2 (i.e. fitting to αPDE and αPPLE). Which form of
the turnover we use makes little difference in our subsequent
analysis, but, as discussed above, including some turnover is
important in calculating select quantities such as the extreme
high-mass end of the black hole mass function.

3.3. The Observed NH Distribution

Given the column density distributions and quasar life-
times calculated from our simulations in § 2, and the quantity
ṅ(Lpeak) determined above (§ 3.2), we can predict the distri-
bution of column densities observed in a given sample. This
will depend not only on the range of observed luminosities
and the redshift of the sample, but also on the minimum ob-
served magnitude and frequency (i.e. the selection function)
of the sample. For a nearly complete sample or estimate
of the luminosity function, for example the hard X-ray lu-
minosity function, at least to NH ∼ 1025 cm−2, we can inte-
grate the NH(L,Lpeak) distribution over the ṅ(Lpeak) distribu-
tion (weighted by the lifetime at L).

Figure 12 plots the resulting distribution of column densi-
ties for this analysis. The left panel reproduces and expands
upon a portion of Fig. 3 of Hopkins et al. (2005b), showing
the distribution of column densities (scaled linearly) expected
from the characteristic quasars Lpeak ∼ L∗ of the luminosity
function observed in optical samples, based on the simulated
column density distributions as a function of luminosity and
peak luminosity (solid black line). Specifically, we plot the

distribution of neutral NH I values requiring that the observed
B-band luminosity be above some reference value LB,min. The
smooth curve shown is the best-fit to the EB−V distribution
of bright SDSS quasars with z < 2.2, from Hopkins et al.
(2004). The curve has been rescaled in terms of the col-
umn density (inverting our gas-to-dust prescription) and plot-
ted about a peak (mode) NH I (undetermined in Hopkins et
al. 2004) of NH I ≈ 0.5× 1021 cm−2. The observationally im-
plied EB−V distribution is determined from fitting to the dis-
tribution of photometric reddening in all SDSS bands (i.e.
using the five-band photometry as a proxy for spectral fit-
ting) in Sloan quasars, relative to the modal quasar colors at
each redshift, for quasars with an absolute magnitude limit
Mi < −22. The i-band absolute magnitude limit imposed in
the observed sample, Mi < −22, corresponds approximately to
our plotted B-band limit LB,obs > 1011 L⊙. This estimate does
not account for bright but strongly reddened quasars having
their colors altered to the point where color selection crite-
ria of quasar surveys will not include them. However, this
effect would only serve to bring our distribution into better
agreement with observations, as it would slightly lower the
high-NH I tail. We also consider the predictions of a standard
torus model and receding (luminosity-dependent) torus model
in the figure (dashed and dotted lines, respectively). These
should not be taken literally in this case – they reflect that
these phenomenological models do not predict the distribu-
tion of low/moderate column densities, but rather assume that
all lines of sight not intersecting the torus are “unobscured,”
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FIG. 12.— Left panel: Distribution of column densities expected from the characteristic quasars Lpeak ∼ L∗ of the luminosity function observed in optical
samples, for a standard torus model of quasar obscuration (dashed), a receding torus model (dotted), and the distributions of column densities as a function
of instantaneous and peak luminosity in our simulations (solid). The distribution of neutral NH I values is obtained requiring an observed B-band luminosity
> 1011 L⊙. The smooth red curve is the best-fit to the EB−V distribution of bright SDSS quasars with z < 2.2, from Hopkins et al. (2004), rescaled to column
densities and plotted about a peak (mode) NH I (undetermined in Hopkins et al. 2004) of NH I ≈ 0.5×1021 cm−2 . The i-band absolute magnitude limit imposed in
the observed sample, Mi < −22, corresponds approximately to our plotted B-band limit LB,obs > 1011 L⊙. Reproduced from Hopkins et al. (2005b). Right panel:
Integrated distribution of total (neutral and ionized) column densities expected for a complete hard X-ray sample, from the column densities of our simulations
and the ṅ(Lpeak) distribution. The distribution below 1021 cm−2 is shown (dot-dashed line) and re-plotted as a single bin at NH = 1020 cm−2 for our modeled
columns. Data shown are the results of Treister et al. (2004) (blue squares) and Mainieri et al. (2005) (red circles), with assumed Poisson errors. Solid squares
assume an intrinsic photon index Γ = 1.9, for the soft X-ray quasar spectrum, open squares Γ = 1.7.

and encounter some constant, small column density (usually
chosen to be NH ∼ 1020 cm−2).

The right panel of 12 shows the integrated distribution (in
logNH) for a complete hard X-ray sample, both as predicted
from our simulations based on the joint distribution of col-
umn density, luminosity, and peak luminosity (solid), and for
both the standard torus model (dashed) and receding torus
model (dotted) described in § 2.5. The data shown are the re-
sults of Treister et al. (2004) (blue squares) and Mainieri et al.
(2005) (red circles), with assumed Poisson errors, from multi-
band Chandra and HST observations of GOODS fields. The
solid squares are obtained by assuming an intrinsic photon in-
dex for the soft X-ray quasar spectrum of Γ = 1.9, the open
squares assuming Γ = 1.7. For the sake of direct comparison
with observed distributions, objects with NH < 1021 cm−2, for
which only an upper limit to the column density would be
determined in X-ray observations, are grouped together and
plotted as a single bin at NH = 1020 cm−2. The actual distri-
bution below 1021 cm−2 is shown as a dot-dashed line. We
note that our model of the quasar spectrum assumes a photon
index Γ = 1.9 in the soft X-ray, but this has no effect on the
column densities calculated from the surrounding gas in our
simulations.

The agreement between the observed column density dis-
tribution and the result of our simulations once the same se-
lection effect is applied supports our model for quasar evo-
lution, and the good agreement extends to both optical and
X-ray samples. Probing to fainter luminosities or frequen-
cies less affected by attenuation broadens the column den-
sity distribution, as is seen from the inferred column den-
sity distributions in the X-ray. This broadening occurs be-
cause, at lower luminosities, observers will see both intrin-

sically bright periods extinguished by larger column densi-
ties (broadening the distribution to larger NH values) and in-
trinsically faint periods with small column densities (broad-
ening the distribution to smaller NH values). The distribu-
tion as a function of reference luminosity is a natural conse-
quence of the dynamics of the quasar activity. Throughout
much of the duration of bright quasar activity, column den-
sities rise to high levels as a result of the same process that
feeds accretion, producing the well-known reddened popu-
lation of quasars (e.g. Webster et al. 1995; Brotherton et al.
2001; Francis et al. 2001; Richards et al. 2001; Gregg et al.
2002; White et al. 2003; Richards et al. 2003), extending to
bright quasars strongly reddened by large NH I. Furthermore,
a significant number of quasars are extinguished from optical
samples or attenuated to lower luminosities, giving rise to the
distinction between luminosity functions in the hard X-ray,
soft X-ray, and optical.

The standard torus model described in § 2.5, although un-
able to predict the distribution of column densities seen in op-
tically, relatively unobscured quasars, does a fair job of repro-
ducing the observed distribution of X-ray column densities.
The parameters of the model are, of course, chosen to repro-
duce the data shown (the model parameters are taken from
Treister et al. 2004). Nevertheless, our prediction is still a bet-
ter fit to the observed distribution, with χ2/ν ≈ 2 as opposed
to χ2/ν ≈ 7 (although the absolute values depend on the es-
timated systematic errors in the column density estimations).
The receding torus model fares even more poorly in reproduc-
ing the observed column density distributions, and is ruled out
at high significance (χ2/ν ≈ 10), although this can be allevi-
ated if the observed samples are assumed to be incomplete
above NH ∼ 1023 cm−2. This disagreement results because, in
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order to match the observed scaling of broad-line fraction with
luminosity (see § 4 below), this model assumes a larger cover-
ing fraction for the torus at lower luminosities, normalized to a
similar obscured fraction as the standard torus model near the
break in the observed quasar luminosity function. However,
since quasars with luminosities below the break dominate the
total number counts, this predicts that the cumulative column
density distribution must be significantly more dominated by
objects with large covering angles, giving a larger Compton-
thick population, inconsistent with the actual observed col-
umn density distribution.

Although we do not see a significant fraction of extremely
Compton-thick column densities NH & 1026 cm−2 in the dis-
tributions from our simulations, our model does not rule out
such values. It is possible that bright quasars in unusually
massive galaxies or quasars in higher-redshift, compact galax-
ies which we have not simulated may, during peak accre-
tion periods, reach such values in their typical column den-
sities. Moreover, as our model assumes ∼ 90% of the mass of
the densest gas is clumped into cold-phase molecular clouds,
a small fraction of sightlines will pass through such clouds
and measure column densities similar to those shown for the
“cold phase gas” in, e.g. Figure 2 of Hopkins et al. (2005a),
NH & 1025−26cm−2.

Furthermore, we have not determined the “shape” at any
instant of the obscuration (e.g. the dependence of obscura-
tion on radial direction), as in practice, for most of the most
strongly obscured phases in peak merger activity, the central
regions of the merging galaxies are highly chaotic. Gener-
ally, the scale of the obscuration in the peak merger phases
is ∼ 100pc, quite different than that implied by most tra-
ditional molecular torus models, but we note that our res-
olution limits, ∼ 20pc in the dense central regions of the
merger, prevent our ruling out collapse of gas in the central
regions into a smaller but more dense torus. However, sev-
eral efforts to model traditional tori through radiative transfer
simulations (e.g., Granato & Danese 1994; Schartmann et al.
2005) suggest significant column densities produced on scales
of ∼ 100−200pc, comparable to our predictions, and we note
that only the solid angle covered by a torus, not the abso-
lute torus scale, is constrained in the typical phenomenologi-
cal torus model (e.g. Antonucci 1993).

Whether the obscuration of bright quasars originates on
larger scales than is generally assumed is observationally
testable, either through direct probes of polarized scat-
tered light tracing the obscuring/reflecting structure (e.g.,
Zakamska et al. 2005), or through correlations between ob-
scuration and e.g. host galaxy morphologies and inclinations
(e.g., Donley et al. 2005). These larger scales typical of the
central regions of a galaxy are widely accepted as the scales of
obscuration in starbursting systems (e.g. Soifer et al. 1984a,b;
Sanders et al. 1986, 1988a,b; for a review, see e.g. Soifer et
al. 1987), which in our modeling is associated with rapid ob-
scured quasar growth and precedes the quasar phase. Thus,
it is natural to associate obscuration with these large scales in
any picture which associates starbursts and rapid black hole
growth or quasar activity, as opposed to the smaller scales
∼ pc implied by torus models primarily developed to repro-
duce observations of quiescent, low-luminosity Type II AGN,
which are usually not directly associated with merger activity.
These low-luminosity AGN are in a relaxed state, suggesting
the possibility that the remaining cold gas in the central re-
gions of our merger remnants will collapse once the violent
effects of the merger and bright quasar phase have passed,

producing a more traditional small torus in a quiescent nu-
cleus. The central point is that regardless of the form of obscu-
ration, the typical magnitude of the obscuration is a strongly
evolving function of time, luminosity, and host system prop-
erties, and the observed column density distributions reflect
this evolution.

4. BROAD-LINE QUASARS

4.1. Determining the Broad-Line Phase

Optical samples typically identify quasars through their col-
ors, relying on the characteristic non-stellar power-law con-
tinua of such objects. However, observations of X-ray se-
lected AGN show a large population of so-called Type 2
AGN, most of which have Seyfert-like luminosities and typ-
ical spectra in X-rays and wavelengths longward of 1µm
(e.g., Elvis et al. 1994), but are optically obscured to the point
where no broad lines are visible. Their optical continua,
in other words, resemble those of typical galaxies and thus
they are not identified by conventional color selection tech-
niques in optical quasar surveys. Traditional unification mod-
els (Antonucci 1993) have postulated a static torus as the ex-
planation for the existence of the Type 2 population, with
such objects viewed through the dusty torus and thus op-
tically obscured. Moreover, both synthesis models of the
X-ray background (Setti & Woltjer 1989; Madau et al. 1994;
Comastri et al. 1995; Gilli et al. 1999, 2001) and recent di-
rect observations in large surveys (e.g., Zakamska et al. 2004,
2005) indicate the existence of a population of Type 2 quasars,
with similar obscuration but intrinsic (unobscured) quasar-
like luminosities.

Observations of both radio-loud (Hill, Goodrich, & DePoy
1996; Simpson, Rawlings, & Lacy 1999; Willott et al. 2000;
Simpson & Rawlings 2000; Grimes, Rawlings, & Willott
2004) and radio-quiet (Steffen et al. 2003; Ueda et al. 2003;
Hasinger 2004; Sazonov & Revnivtsev 2004; Barger et al.
2005; Simpson 2005) quasars, however, have shown that
the broad-line fraction increases with luminosity, with
broad-line objects representing a large fraction of all AGN
at luminosities above the “break” in the luminosity function
and rapidly falling off at luminosities below the break.
Modifications to the standard torus unification model ex-
plain this via a luminosity-dependent inner torus radius
(Lawrence 1991), but this represents a tunable modification
to a purely phenomenological model. Furthermore, as the
observations have improved, it has become clear that even
these luminosity-dependent torus models cannot produce
acceptable fits to the broad line fraction as a function of
luminosity (e.g., Simpson 2005). However, we have shown
above that the obscuring column, even at a given luminosity,
is an evolutionary effect, dominated by different stages of
gas inflow in different merging systems giving rise to varying
typical column densities, rather than a single static structure.
It is of interest, then, to calculate when quasars will be
observed as broad-line objects, and to compare this with
observations of broad line quasars and their population as a
function of luminosity.

Figure 13 shows the B-band luminosity as a function of
time for both the quasars and host galaxies in three rep-
resentative simulations: the A2, A3, and A5 cases de-
scribed in detail in § 2.1. These simulations each have
fgas = 1.0, qEOS = 1.0, zgal = 0, with virial velocities Vvir =
113, 160and 320kms−1, with resulting final black hole
masses M

f
BH = 3 × 107, 3 × 108, and 2 × 109 M⊙, respec-
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FIG. 13.— Intrinsic (right panels) and median attenuated (left panels) B-band luminosity of the quasar (thick line) and host galaxy (integrated over all stars,
thin line; ignoring bulge stars, dotted line) as a function of time. Results are shown from three representative simulations: A2, A3, and A5 (see § 2.1) with
qEOS = 1.0, zgal = 0, and virial velocities Vvir = 113, 160, and 320km s−1 . Each quasar should be observable as a broad-line AGN when LB,QSO & LB,host. Colors
show the stellar light curve with different gas fractions fgas = 1.0 (black), fgas = 0.4 (blue), and fgas = 0.2 (red); quasar light curves are similar for each gas
fraction.

tively. The thick line in each case shows the quasar B-
band luminosity, and the thin line shows the integrated B-
band luminosity of all stars in the galaxy. New stars are
formed self-consistently in the simulations according to the
ISM gas properties, equation of state and star formation model
described in Springel & Hernquist (2003), with the age and
metallicity taken from the local star-forming ISM gas, which
is enriched by supernova feedback from previous star forma-
tion. We then use the stellar population synthesis model of
Bruzual & Charlot (2003) to determine the B-band luminos-
ity (the B-band mass-to-light ratio) of new stars based on the
stellar age and metallicity. The dotted line shows the result
neglecting bulge particles, which must be initialized at the
beginning of the simulation with random or uniform ages and
metallicities instead of those quantities being determined self-
consistently from the simulation physics. The right panels
plot the intrinsic values of these quantities, and the left panels
plot the median observed values of these quantities, where we
have used our method for determining column densities and
dust attenuation (§ 2.2) to every star and bulge particle for
each line of sight.

Unfortunately, the host galaxy luminosity does not scale
with instantaneous and peak quasar luminosity as do, for ex-
ample, the quasar lifetime and obscuration. Rather, there are
important systematic dependencies, the largest of which is the
dependence on host galaxy gas fraction. If the host galaxies
are more massive, more concentrated, or have a weaker ISM
equation of state pressurization, then they will more effec-

tively drive gas into the central regions and maintain high gas
densities for longer periods of time, as the deeper potential
well or lack of gas pressure requires more heat input from the
quasar before the gas can be expelled. These conditions will
generally produce a quasar with a larger peak luminosity (fi-
nal black hole mass), but also form more new stars, meaning
that the B-band relation between host and quasar luminosity
is roughly preserved.

However, the the black hole consumes only a small fraction
of the available gas (comparison of e.g. the stellar mass and
black hole mass suggests the black hole consumes ∼ 0.1% of
the gas mass), and so, at least above some threshold fgas . 0.1,
the quasar peak luminosity does not significantly depend on
the galaxy gas fraction (see, e.g. Figure 2 of Robertson et
al. 2005b). But, the mass of new stars formed during the
merger does strongly depend on the available gas. For exam-
ple, simulations which are otherwise identical but have initial
fgas = 0.2, 0.4, 0.8, 1.0 (i.e. an increasing fraction of the ini-
tial disk mass in gas instead of stars) produce similar peak
quasar luminosity and final total stellar mass (within ∼ 30%
of one another), reflecting the conversion of most gas into
stars and the fact that the peak quasar luminosity is deter-
mined more by the depth of the potential well than the total
available gas supply. But, the mass of new stars formed in a
merger scales roughly as M∗,new ∝ fgas (as it must if the initial
gas fraction does not change the final total stellar mass), and
since young stellar populations dominate the observed B-band
luminosity (especially during the peak merger and starburst
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FIG. 14.— Ratio of observed (attenuated) B-band quasar luminosity to host
galaxy luminosity as a function of the ratio of instantaneous to peak quasar
bolometric luminosity. Results are from simulations A2 (black diamonds),
A3 (blue circles), and A5 (red ×’s) (the same simulations shown in Figure 13)
with qEOS = 1.0, zgal = 0, and virial velocities Vvir = 113, 160, and 320km s−1.
Each panel shows the same simulations except for a different initial gas frac-
tion fgas = 0.2, 0.4, 0.8, 1.0 as labeled. Solid lines are the predictions of
Equation 26.

phases associated with the bright quasar phase of interest),
this implies roughly that LB ∝ fgas.

We demonstrate this explicitly in Figure 13, where we show
in each panel the host galaxy and stellar B-band light curves
for otherwise identical simulations with different gas frac-
tions, fgas = 0.2 (red), 0.4 (blue), and 1.0 (black). In each
of these cases, the quasar light curve is nearly identical (we
show only the fgas = 1.0 quasar lightcurve, for clarity, but the
others are within ∼ 30% of the curve shown at most times,
with no systematic offset).

In order for a quasar to be classified as a “broad-line” ob-
ject, the optical spectrum must be visible and identified as
such in the observed sample. This is clearly related to the ratio
of quasar to host galaxy luminosity, but the threshold for clas-
sification is not obvious. In an X-ray or IR-selected sample,
optical follow-up should be able to disentangle host galaxy
light and identify quasar broad-line spectra with fluxes a fac-
tor of several fainter than the host. However, automated op-
tical selection based on color or morphological criteria might
well exclude objects unless the quasar luminosity is a factor
of several greater than that of the host galaxy. Therefore, there
is significant systematic uncertainty in the theoretical defini-
tion of a broad-line quasar. To first order, based on the above
arguments, we can classify “broad-line quasars” as objects in
which the quasar optical luminosity is larger than some mul-
tiple fBL of the host galaxy optical luminosity. Because the
relevant ratio is different depending on the survey and selec-
tion techniques, we consider the range fBL = 0.3 − 3, with a
rough median fBL = 1. Furthermore, because our simulations
do not allow us to model the broad-line regions of the quasar
or spectral line structures as influenced by e.g. reddening and
dust absorption, we adopt the B-band luminosity of the quasar
and host galaxy as a proxy for optical luminosity and more
complex (but often quite sample-specific) color and morpho-
logical selection criteria.

In Figure 13, the B-band host galaxy luminosity is quite
flat as a function of time, relative to the quasar B-band lumi-
nosity, and is roughly given by L

gal
B /L⊙ ∼ M∗,new/M⊙, where

M∗,new is the mass of new stars formed in the merger. As
noted above, this scales approximately linearly with initial gas

fraction at fixed final total stellar mass M∗, giving L
gal
B /L⊙ ≈

cgal(M∗/M⊙) fgas, where cgal is a correction of order unity
which we can fit from the simulations (essentially a mean
mass-to-light ratio for the newly formed stars). The bolomet-
ric correction of the quasar is usually defined by L

qso
bol = cBL

qso
B ,

and the quasar peak luminosity is Lpeak = cL LEdd(M f
BH), where

again cL is a correction factor of order unity which we can cal-
culate from our form for the quasar lifetime (see Equation 10)
or measure in the simulations.

If we require that the quasar B-band luminosity be larger
than a factor fBL of the host galaxy B-band luminosity, we
obtain

L
qso
bol /L⊙ > fBLcB cgal(M∗/M⊙) fgas. (23)

Dividing this through by Lpeak, we have

L
qso
bol

Lpeak
& 0.4 fgas fBL

(cgal

1.0

)( cB

12.0

)(M
f
BH/M∗

0.001

)−1( cL

1.24

)−1
.

(24)
We can test this scaling relation against the results of our sim-
ulations, and do so in Figure 14. Rearranging the equations
above gives

L
qso
B

L
gal
B

≈ 3.4 f −1
gas

L
qso
bol

Lpeak

×
(cgal

1.0

)−1( cB

12.0

)−1(M
f
BH/M∗

0.001

)( cL

1.24

)

, (25)

which we can compare to our direct calculation of L
qso
B /L

gal
B

and L
qso
bol /Lpeak for each simulation snapshot.

Ultimately, we are not interested so much in the intrinsic
B-band luminosity of the quasar and host galaxy, but rather
the observed luminosities; i.e. we are interested in the ratio
L

qso
B, obs/L

gal
B, obs = (Lqso

B /L
gal
B ) (exp{−(τQ − τG)}), where τQ and

τG are “effective” optical depths which we use to denote the
mean attenuation of quasar and host galaxy B-band luminosi-
ties, respectively. We have considered the distribution of col-
umn densities attenuating the quasar as a function of instanta-
neous and peak quasar luminosity in detail in § 2.3 above; the
attenuation of the host galaxy as a function of luminosity, ob-
served band, halo mass, and star formation rate are discussed
in detail in Jonsson et al. (2005). Combining these fits gives,
roughly, (exp{−(τQ −τG)}) ∼ (M f

BH/108 M⊙)0.16, but a better
approximation can be determined directly from the simula-
tions.

This scaling can be understood roughly using toy models
of uniformly mixed luminous sources within the galaxy de-
scribed by Jonsson et al. (2005), after accounting for the fact
that the luminosity (star formation rate) dependent portion of
the attenuation scales with luminosity in a similar manner
to our quasar attenuation (compare our τQ ∝ NH ∝ L0.43−0.54

qso

to their τG ∝ L0.55
B, gal). The key consequence of this is that

more massive systems (higher bulge and black hole masses)
have their host galaxy light proportionally more attenuated
in mergers, meaning that (as suggested by the comparison of
light curves in Figure 13) the quasar is more likely to be ob-
served with an optical luminosity larger than that of its host.

Figure 14 plots the ratio of the observed (attenuated) B-
band quasar luminosity to the observed host galaxy B-band
luminosity as a function of the ratio of instantaneous to peak
quasar bolometric luminosity. We show the results for four
different gas fractions fgas = 0.2, 0.4, 0.8, 1.0 as labeled. For
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each gas fraction, we consider our simulations A2 (black dia-
monds), A3 (blue circles), and A5 (red ×’s) (the same simula-
tions shown in Figure 13) with qEOS = 1.0, zgal = 0, and virial
velocities Vvir = 113, 160and 320kms−1, using the labeled ini-
tial gas fraction. The colored lines in each panel show the pre-
dictions of combining the scalings expected for the intrinsic
luminosities (Equation 25) and attenuations as above, giving

L
qso
B, obs

L
gal
B, obs

= 7.9
1

fgas

( M
f
BH

108 M⊙

)0.2 L

Lpeak
, (26)

where the colored lines each use the M
f

BH and fgas of the simu-
lation of the corresponding color and panel. This scaling pro-
vides a good estimate of the observed optical quasar-to-galaxy
luminosity ratio, including the complicated effects of atten-
uation, evolving mass-to-light ratios, metallicities, and host
galaxy properties, as a function of gas fraction, final black
hole mass, and the ratio of the current to peak quasar lumi-
nosity. Although, for clarity, we have not shown a range of
simulations varying other parameters, we find that this scaling
is robust to the large number of quantities we have considered
in our simulations – there are systematic offsets in e.g. Lpeak

and M
f
BH with changes such as e.g. different ISM equations of

state, but the scaling in terms of Lpeak and M
f

BH is unchanged.
Because the ratio of observed quasar and host galaxy B-

band luminosities in our simulations obeys the scaling of
Equation 26, we can use it to predict the properties of “broad-
line” quasars, defined by L

qso
B, obs > fBLL

gal
B, obs. To do so, how-

ever, we must assume a typical host galaxy gas fraction. Un-
fortunately, because our empirical modeling in terms of the
quasar lifetime as a function of L and Lpeak does not have a
systematic dependence on host galaxy gas fraction (see § 2.4),
we have no constraint on this parameter. It is, however, con-
venient for several reasons to consider fgas = 0.3 as a typical
value for bright quasars.

First, such a gas fraction is capable of yielding the brightest
observed quasars; second, scaling a Milky-Way like disk with
the observed z = 0 gas fraction ∼ 0.1 to the redshifts of peak
quasar activity gives a similar gas fraction (e.g., Springel et al.
2005a); third, gas fractions & 30% in major mergers are
needed to explain the observed fundamental plane (Robert-
son et al. 2005c, in preparation), kinematic properties (Cox
et al. 2005c, in preparation), and central phase space den-
sities (Hernquist, Spergel & Heyl 1993) of elliptical galax-
ies; fourth, this choice implies that the brightest quasars with
M

f
BH ∼ 1010 M⊙ attain observed B-band luminosities ∼ 1000

times that of their hosts at their peaks, as is observed (e.g.,
McLure & Dunlop 2004). Finally, and most important, the
assumed fgas and fBL are degenerate in our predictions for the
broad-line population, as they both enter linearly in the ra-
tio of host galaxy to quasar B-band luminosity. Therefore,
the range of fBL = 0.3 −3 which we consider (for a fixed me-
dian fgas = 0.3) can be equivalently considered, for a fixed
median fBL = 1, to represent a theoretical uncertainty in the
host galaxy gas fraction, fgas = 0.1 − 0.9; i.e. spanning the
range from present, relatively gas-poor Milky-Way like disks
to almost completely gaseous disks. This, then, gives for our
“broad-line” criterion,

L

Lpeak
& 0.2

( fBL

1.0

)( fgas

0.3

)( M
f
BH

107 M⊙

)−0.2
. (27)

The “broad-line” phase is thus, as is clear from Figure 13
and implicit in our definition of the broad-line phase, closely

associated with the final “blowout” stages of quasar evolu-
tion, when the mass of the quasar reaches that correspond-
ing to its location on the MBH −σ relation and gas is expelled
from the central regions of the galaxy, shutting down accretion
(Di Matteo et al. 2005). We note that combining the equation
above with our fitted quasar lifetimes gives an integrated time
when the quasar would be observable as a broad line object
of tBL ∼ 10 − 20 Myr, in good agreement with the optically
observable bright quasar lifetimes we calculate directly from
our quasar light curves, including the effects of attenuation,
and with empirical estimates of the quasar lifetime which are
based directly on optically-selected, broad-line quasar sam-
ples.

The (M f
BH/107 M⊙)0.2 term in the above equation reflects

the fact that, below a certain peak luminosity, quasars are less
likely to reach luminosities above that of the host galaxy, as
can be seen in the uppermost panels of Figure 13 for a final
black hole mass of M

f

BH = 3×107 – i.e. the smallest AGN are
proportionally less optically luminous than their hosts. This
does not imply that such systems are not inherently broad-
line objects, but only that the host galaxy light will increas-
ingly dominate at lower luminosities. We also caution against
extrapolating this to large or small M

f
BH, as the attenuation

becomes more difficult to predict at these peak luminosities,
and the linear formula above is not always accurate (see Fig-
ure 14).

We can use this estimate of the broad-line phase and our
model of the quasar lifetime to calculate the total energy
radiated in this bright, optically observable stage following
the calculation of § 2.4, but with a minimum luminosity de-
termined by Equation 27. This gives an integrated fraction
∼ 0.3 −0.4 (∼ exp{−0.2 fBL ( fgas/0.3)/αL}) of the total radi-
ant energy emitted during the broad-line phase. Thus, despite
the short duration of this optical quasar stage, a large fraction
of the total radiated energy is emitted (as it represents the fi-
nal e-folding in the growth of the black hole) when most of
the final black hole mass (§ 2.4) is accumulated. Account-
ing for the luminosity dependence of our bolometric correc-
tions (with the optical fraction of the quasar energy increas-
ing with bolometric luminosity) as well as the small fraction
of objects observable at lower luminosities (with larger typ-
ical obscuring column densities) increases this fraction to as
much as ∼ 0.6 − 0.7 for bright quasars. Therefore, despite
the fact that the duration of the optically observable broad-
line quasar phase may be ∼ 1/10 that of the obscured quasar
growth phase, the changing quasar luminosity over this period
and non-trivial quasar lifetime as a function of luminosity im-
plies only small corrections to counting arguments such as
that of Soltan (1982), which rely on the total observed optical
quasar flux density to estimate the relic supermassive black
hole density.

4.2. The Broad-Line Fraction as a Function of Luminosity

By estimating the time that a quasar with some Lpeak will
be observable as a broad-line quasar at a given luminosity, we
can then calculate the broad-line quasar luminosity function
in the same fashion as the complete quasar luminosity func-
tion in § 3.2. Instead of the full quasar lifetime dt/dlogL,
we consider only the time during which broad-lines would be
observed (i.e. that the quasar spectrum would be recognized
as opposed to the host galaxy spectrum), as identified in our
simulations (§ 4.1).

For a sample selected in hard X-rays (i.e. the selection func-
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tion only being relevant at column densities & 1024 cm−2), we
show the resulting “broad-line” luminosity function in Fig-
ure 9 (cyan dot-dashed lines), and compare it to the broad-line
quasar luminosity function identified in the hard X-ray lumi-
nosity function of Barger et al. (2005). The agreement is good
at all luminosities, and our model explains both the fact that
broad-line quasars dominate the luminosity function at lumi-
nosities well above the “break” in the luminosity function, and
the downturn in the broad-line quasar population at luminosi-
ties below the peak. Essentially, the broad-line quasar popula-
tion more closely traces the shape of the ṅ(Lpeak) distribution,
giving rise to the observed behavior as a dual consequence
of luminosity-dependent quasar lifetimes and the evolution-
ary nature of quasar obscuration in our simulations.

Figure 15 compares our theoretical predictions to the
2dF-SDSS (2SLAQ) g-band luminosity function of broad-
line quasars from Richards et al. (2005) (black squares), as
well as the B-band luminosity function from Croom et al.
(2004) (green circles), at several redshifts from z ∼ 0.3 −
2, over which range the surveys are expected to be rela-
tively complete (for broad-line quasars). The 2dF-SDSS
result is the most recent determination of the broad-
line luminosity function, but compares well with previous
determinations by, e.g., Boyle et al. (1988), Koo & Kron
(1988), Marano, Zamorani, & Zitelli (1988), Boyle et al.
(1990), Boyle, Jones, & Shanks (1991), Zitelli et al. (1992),
Boyle et al. (2000), and Croom et al. (2004). Open squares
correspond to bins in luminosity which have been corrected
for incompleteness following Page & Carrera (2000), but this
correction is uncertain as the bins are not uniformly sampled.
We compare this at each redshift to the prediction of our deter-
mination of the quasar “broad-line” phase, where we estimate
that the quasar is observable as a broad line object when its
observed B-band luminosity is greater than a factor fBL = 1 of
that of the host galaxy. We calculate this for both the mini-
mum and maximum observed redshift of each bin to show the
range owing to evolution of the luminosity function over each
interval in redshift. The systematic uncertainty in our predic-
tion can be estimated from the dotted lines, which show the
prediction (at the mean redshift of the bin) if we instead re-
quire the observed quasar B-band luminosity to be above a
factor of 0.3 (upper lines) or 3 (lower lines) of the observed
host galaxy B-band luminosity, which as discussed in § 4.1
can alternatively be considered an uncertainty in host galaxy
gas fraction, with fgas = 0.1 and fgas = 0.9, respectively.

The agreement at all luminosities and redshifts shown is
encouraging, given the simplicity of our determination of the
broad-line phase from the simulations, but the systematic un-
certainties are large, emphasizing the importance of calculat-
ing detailed selection effects in contrasting e.g. “broad-line”
samples from optical and X-ray surveys, as opposed to assum-
ing a constant obscured fraction at a given luminosity based
on the ratio of luminosity functions as has been adopted in
previous phenomenological models. The difference between
different choices of fgas is suppressed at the high luminos-
ity (and correspondingly high redshift) end of the luminosity
function, because the quasar-to-galaxy B-band luminosity ra-
tio scales as ∝ (M f

BH)0.2; i.e. regardless of the choice of fBL,
quasars increasingly overwhelm their host galaxy in large sys-
tems near their peak luminosity. However, at low luminosity,
the predictions rapidly diverge, implying that a measurement
of the faint end of the broad-line quasar luminosity function,
with a reliable calibration of fBL, can constrain the typical gas

fractions of quasar host galaxies and the evolution of these gas
fractions with redshift.

By dividing out the predicted luminosity function φHX , we
can estimate the fraction of “broad line” objects observed in
reasonably complete X-ray samples as a function of luminos-
ity. This is shown in Figure 16, where for ease of comparison
we have shown the broad-line fraction as a function of hard
X-ray (2-10 keV) luminosity. Our prediction, based on de-
termining the time a quasar with a given luminosity L and
peak luminosity Lpeak in our simulations will be observable
with a B-band luminosity greater than a fraction fBL = 1.0
of the host galaxy observed B-band luminosity, is shown as
the thick black line. This is compared to the observations
of Ueda et al. (2003) (squares), Hasinger (2004) (circles),
Grimes, Rawlings, & Willott (2004) (triangles), and Simpson
(2005) (diamonds). The data from Hasinger (2004) has been
scaled from soft X-ray (0.5-2 keV) using our bolometric
corrections, and the data from Grimes, Rawlings, & Willott
(2004) and Simpson (2005) have been converted from [O III]
luminosity as in Simpson (2005) using the mean correction
for Seyfert galaxies (Mulchaey et al. 1994), L[O III] = 0.015×
L2−10 keV.

We also plot as upper and lower dashed lines the results
of changing fBL, the fraction of the host galaxy B-band lu-
minosity above which the quasar B-band luminosity must be
observed for identification as a “broad-line” object, consider-
ing fBL = 0.3, and 3, respectively. We determine this for the
low-redshift z . 0.3 quasar distribution, from which most of
the data are drawn. The red dot-dashed line shows the differ-
ence at high redshift, if just z & 1 quasars are considered (for
fBL = 1). The broad-line fraction is systematically lower, pri-
marily because the break luminosity in the luminosity func-
tion moves to higher luminosity with redshift, meaning that at
a fixed luminosity below the break, a smaller fraction of ob-
served objects are at L ∼ Lpeak in the “blowout” phase of peak
optical quasar luminosity. Finally, the dotted line shows the
results assuming a “light bulb” model for the broad-line phase
(but still using our ṅ(Lpeak) distribution, otherwise this trans-
lates to a constant obscured fraction with luminosity) life-
times, with a fixed broad-line lifetime of tQ = 20Myr.

The prediction of the most basic torus model, with con-
stant broad-line fraction ∼ 0.36, is ruled out to high sig-
nificance (χ2/ν = 18.5, 17.2 if we consider all data points,
or if we consider only the most well-constrained data, from
Simpson [2005], respectively). Furthermore, the solid cyan
line shows the best-fit luminosity-dependent torus model, in
which the broad line fraction is given by (e.g., Simpson 1998;
Grimes, Rawlings, & Willott 2004)

f = 1 −1/
√

1 +3L/L0, (28)

where L0 is the luminosity where the number of broad line ob-
jects is equal to the number of non-broad line objects. This fit
is at best marginally acceptable over a narrow range in lumi-
nosities (χ2/ν = 14.0, 7.3). Modified luminosity-dependent,
receding torus models have been proposed which give a better
fit to the data by, for example, allowing the torus height to vary
with luminosity (e.g., Simpson 2005), but there is no physical
motivation for these changes, and they introduce such varia-
tion through additional free parameters that allow a curve of
essentially arbitrary slope to be fitted to the data.

However, the prediction of our model agrees reasonably
well (χ2/ν = 4.0, 1.2) with the observations over the entire
range covered, a span of six orders of magnitude in luminos-
ity. We emphasize that our prediction, which matches the
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FIG. 15.— Broad-line quasar luminosity function of Richards et al. (2005) from the 2dF-SDSS (2SLAQ) survey (black squares) and that of Croom et al. (2004)
(green circles) from the 2dF survey, compared to our predicted “broad-line” luminosity function from our determination of the relative quasar and host galaxy
luminosities in our simulations (solid line), where we estimate that quasars are observable as “broad-line” objects when their observed B-band luminosity is
greater than a factor fBL of that of the host galaxy, Solid lines are shown for the minimum and maximum observed redshift in each bin (as labeled), assuming
fBL = 1. Dotted lines show the result for fBL = 0.3 and fBL = 3, at the mean redshift of the bin, i.e. corresponding to “broad-line” luminosity functions in surveys
which are complete to quasars with observed optical luminosity ∼ 0.3 and 3 times that of the host galaxy, respectively, or alternatively reflecting nearly complete
theoretical uncertainty regarding merging galaxy gas fractions ( fgas = 0.1 − 0.9). Open squares are observations with uncertain incompleteness corrections in
Richards et al. (2005).

data better than standard torus models that are actually fit-
ted to the data, is not a fit to the observations. Instead, it is
derived from the physics of our simulations, including black
hole accretion and feedback which are critical in driving the
“blowout” phase which constitutes most of the time a quasar
is visible as a “broad-line” object by our estimation, and from
the ṅ(Lpeak) distribution implied by our model of quasar life-
times and the bolometric quasar luminosity function. The
agreement suggests that our choice of the parameter combi-
nation fBL fgas = 0.3 is a good approximation. As noted above,
this implies that calibrating fBL for an observed sample, com-
bined with the mean broad-line fraction and our modeling,
can provide a constraint (albeit model-dependent) on the host
galaxy gas fraction of quasars at a given redshift, which can-
not necessarily be directly measured even with difficult, de-
tailed host galaxy probes, as gas is rapidly converted into stars
throughout the merger. The uncertainty plotted, while large,
actually represents a larger theoretical uncertainty – as dis-
cussed above, if an observational sample were well-defined
such that it were complete to broad-line objects with observed
optical luminosity above a fraction fBL of the host galaxy lu-
minosity, the range we consider would correspond to a range
fgas = 0.1 −0.9 in the quasar host galaxy gas fraction, which
the observations could then constrain.

In our modeling, the broad line fraction as a function of
luminosity does not depend sensitively on the observed lu-

minosity function, as evidenced by the relatively similar pre-
diction at high redshift. The evolution we do predict with
redshift, in fact, agrees well with that found by Barger et al.
(2005) over the redshift range z = 0.1−1.2 (see also La Franca
et al. 2005), an aspect of the observations which is not re-
produced in any static or luminosity-dependent torus model
but follows from the evolution of the quasar luminosity func-
tion in our picture for quasar growth. However, we do cau-
tion that gas fractions may systematically evolve with red-
shift, and as discussed above, a higher gas fraction will give
generally shorter “broad-line” lifetimes using our criteria of
quasar optical luminosity being higher than some fraction of
the host galaxy luminosity, which will also contribute to the
evolution in the mean “broad-line” fraction with redshift. Fi-
nally, neglecting the role of luminosity-dependent quasar life-
times gives unacceptable fits to the data (χ2/ν = 66.0, 77.5),
as the broad-line fraction as a function of luminosity is a con-
sequence of both the evolution of obscuration and the depen-
dence of lifetime on luminosity.

Our model for quasar evolution provides a direct physical
motivation for the change in broad line fraction with luminos-
ity and suggests that it is not a complicated selection effect.
As an observational sample considers higher luminosities (i.e.
approaches and passes the “break” in the observed luminos-
ity function), a comparison of the luminosity function and the
underlying ṅ(Lpeak) shows that it is increasingly dominated by
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FIG. 16.— Predicted “broad-line” fraction of a complete X-ray sample at
low z . 0.3 redshift, from our simulations (where the object is observable
as a broad-line quasar when it has an observed B-band luminosity greater
than a factor fBL = 1.0 of that of its host galaxy), is shown (thick black
line). The results, changing our fBL to 0.3 and 3.0 are shown, or equiv-
alently of assuming a host galaxy gas fraction fgas = 0.1 or 0.9 instead of
∼ 0.3 (dashed), as are the results assuming a “light bulb” model where
quasars spend a fixed time tQ = 20 Myr as broad line objects with a lumi-
nosity of Lpeak (dotted). For comparison, the (scaled to 2-10 keV luminos-
ity) observations of Ueda et al. (2003) (squares), Hasinger (2004) (circles),
Grimes, Rawlings, & Willott (2004) (triangles), and Simpson (2005) (dia-
monds) are shown. The predicted result at higher redshift (z & 1) is shown
(red dot-dashed line), offset owing to the shift in break luminosity of the lumi-
nosity function with redshift. The best-fit luminosity-dependent torus model,
fitted to the data, is shown as the solid cyan line. The best-fit static torus
model is a constant broad-line fraction ∼ 0.3 (not shown for clarity).
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FIG. 17.— Predicted “obscured” fraction (solid line) in an X-ray sample
with identical redshift and luminosity range to that of Ueda et al. (2003), as a
function of hard X-ray (2-10 keV) luminosity. Vertical error bars show Pois-
son errors estimated from the total time at a given luminosity across all our
simulations (absolute values of the error bars should not be taken literally).
The “obscured” fraction is defined as the fraction of quasars with X-ray col-
umn densities NH > 1022 cm−2 in bins of ∆ logL2−10 keV. The observations
from Ueda et al. (2003) are shown as black squares.

sources near their peak luminosity in the final stages of Ed-
dington limited growth. The final stages of this growth ex-
pel the large gas densities obscuring the quasar, rendering it a
bright, optically observable broad-line object for a short time.
Therefore, we expect that the fraction of broad-line objects
should increase with luminosity in quasar samples, as indi-
cated by the observations.

Many observational measures do not consider a direct op-
tical analysis of the quasar spectrum in estimating the frac-
tion of broad-line objects as a function of luminosity. For
example, Ueda et al. (2003) adopt a proxy, classifying as “ob-
scured” any quasars with an X-ray identified column density

NH > 1022 cm−2, and as “unobscured” quasars below this col-
umn density. We can compare to their observations, using the
column density distributions as a function of luminosity from
our simulations, which cover the entire range in luminosity of
the observed sample. Specifically, we use a Monte Carlo re-
alization of these distributions, employing our fitted ṅ(Lpeak)
distribution at each redshift to produce a list of quasar peak
luminosities and then generating all other properties based on
the probability distribution of a given property in simulations
with a similar peak luminosity. We describe this methodol-
ogy in detail in § 8, and provide several such mock quasar
distributions at different redshifts.

In Figure 17, we compare our estimated “obscured” and
“unobscured” fractions as a function of hard X-ray luminos-
ity, using the same definitions as well as redshift and lumi-
nosity limits as the observed sample. The solid line shows
our prediction, with vertical error bars representing Poisson
errors, where the number of “counts” is proportional to the
total time spent by simulations at the plotted luminosity (the
absolute value of these errors should not be taken seriously).
The “obscured” fraction is determined in bins of luminosity
∆ logL2−10 keV = 0.5. Despite our large number of simula-
tions, there is still some artificial “noise” owing to incomplete
coverage of the merger parameter space, namely the apparent
oscillations in the obscured fraction. However, the mean trend
agrees well with that observed (black squares), suggesting
that the success of our modeling in reproducing the fraction of
“broad line” objects as a function of luminosity is not a con-
sequence of the definitions chosen above. We do not show the
predictions of the standard and luminosity-dependent torus
models, as (because essentially any line of sight through the
torus encounters a column density NH > 1022 cm−2) the pre-
dictions of these models are identical to those shown and com-
pared to the same observations in Figure 16.

Our prediction that the fraction of broad-line objects should
rise with increasing luminosity is counterintuitive, given our
fitted column density distributions in which typical (median)
column densities increase with increasing luminosity. This
primarily owes to the simplicity of our NH fits; we assume
the distribution is lognormal at all times, but a detailed in-
spection of the cumulative (time-integrated) column density
distribution shows that at bright (near-peak) luminosities, the
distribution is in fact bimodal (see e.g. Figure 3 of Hopkins
et al. 2005b and Figure 2 of Hopkins et al. 2005d), represent-
ing both the heavily obscured growth phase and the “blowout”
phase we have identified here as the “broad line” phase. Over
most of a simulation, we find the general trend shown in Fig-
ure 3 and discussed above, namely that typical column den-
sities increase with intrinsic (unobscured) luminosity. This
is because the total time at moderate to large luminosities is
dominated by black holes growing in the obscured/starburst
stages; here, the same gas inflows fueling black hole growth
also give rise to large column densities and starbursts which
obscure the black hole activity. However, when the quasar
nears its final, peak luminosity, there is a rapid “blowout”
phase as feedback from the growing accretion heats the sur-
rounding gas, driving a strong wind and eventually terminat-
ing rapid accretion, leaving a remnant with a black hole sat-
isfying the MBH −σ relation. This can be identified with the
traditional bright optical quasar phase, as the final stage of
black hole growth with a rapidly declining density (allowing
the quasar to be observed in optical samples), giving typi-
cal luminosities, column densities, and lifetimes of optical
quasars. In these stages, larger luminosities imply more vi-
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olent “blowout” events, i.e. a brighter peak luminosity quasar
more effectively expels the nearby gas and dust, rendering
a dramatic decrease in column density at these bright stages
(see Hopkins et al. 2005f).

We are essentially modeling this bimodality in more detail
by directly determining the “broad-line” phase from our sim-
ulations. However, the broad line fraction-luminosity rela-
tion we predict is also a consequence of the more compli-
cated relationship between column density, peak luminosity,
and bolometric and observed luminosity, as opposed to the
predictions from a model with correlation between NH and
only observed luminosity. The key point is that we find, near
the peak luminosity of the quasar, as feedback drives away
gas and slows down accretion, the typical column densities
fall rapidly with luminosity in a manner similar to that ob-
served. In our model for the luminosity function, quasars be-
low the observed “break” are either accreting efficiently in
early stages of growth or are in sub-Eddington phases com-
ing into or out of their peak quasar activity. Around and
above the break, the luminosity function becomes dominated
by sources at high Eddington ratio at or near their peak lumi-
nosities. Based on the above calculation, we then expect what
is observed, that in this range of luminosities, the fraction
of objects observed with large column densities will rapidly
decrease with luminosity as the observed sample is increas-
ingly dominated by sources at their peak luminosities in this
blowout phase. This also further emphasizes that the evolu-
tion of quasars dominates over static geometrical effects in
determining the observed column density distribution at any
given luminosity.

Finally, if host galaxy contamination were not a factor, we
would expect from our column density model that, at low lu-
minosities (L . 1010 L⊙, well below the range of most obser-
vations shown), the broad-line fraction would again increase
(i.e. the obscured fraction would decrease), as the lack of gas
to power significant accretion would also imply a lack of gas
to produce obscuring columns. However, at these luminosi-
ties, typical of faint Seyfert galaxies or LINERs, our model-
ing becomes uncertain; it is quite possible, as discussed pre-
viously, that cold gas remaining in relaxed systems could col-
lapse to form a traditional dense molecular torus on scales
∼pc, well below our resolution limits. Furthermore, host
galaxy light is likely to overwhelm any AGN broad-line con-
tribution, and selection effects will also become significant at
these luminosities.

4.3. The Distribution of Active Broad-Line Quasar Masses

Our determination of the “broad-line” or optical phase
in quasar evolution allows us to make a further prediction,
namely the mass distribution of currently active broad-line
quasars. At some redshift, the total number density of ob-
served, currently active broad-line quasars with a given Lpeak
will be (in the absence of selection effects)

nBL(Lpeak) ≈ ṅ(Lpeak) tBL(Lpeak), (29)
where tBL(Lpeak) is the total integrated time that a quasar with
peak luminosity Lpeak spends as a “broad-line” object (us-
ing our criterion for the ratio of the observed quasar B-band
luminosity to that of the host galaxy), given by integrating
our formulae in § 4.1 or directly calculated from the sim-
ulations. Since we have determined roughly that a quasar
should be observable as a “broad-line” object at times with
L & 0.2Lpeak primarily just after it reaches its peak luminos-
ity, in the “blowout” phase of its evolution, we expect the in-
stantaneous black hole mass at the time of observation as a

broad-line quasar to be, on average, MBL
BH ≈M

f
BH(Lpeak), where

M
f
BH ∼ MEdd(Lpeak) modulo the order unity corrections de-

scribed in § 2.4. Using our fitted ṅ(Lpeak) distribution from
the luminosity function, extrapolated to low redshift (z ∼ 0),
and combining it with the integrated “broad-line” lifetimes
from our simulations as above, we obtain the differential num-
ber density of sources in a logarithmic interval in Lpeak. Fi-
nally, we use our Equation 10 for M

f
BH(Lpeak) determined from

our fitted quasar lifetimes (demanding that Erad = ǫrM
f

BHc2) to
convert this to a distribution in black hole mass.

Our predicted n(MBH), i.e. the number of observed active
quasars at low redshift in a logarithmic interval of black hole
mass, is shown in Figure 18. We consider the complete dis-
tribution of active quasar masses, for both broad-line and non
broad-line objects, in the left panel of the figure, and the dis-
tribution of broad-line objects only, n(MBL

BH), in the right panel.
On the left, we show the complete distribution which would
be observed without any observational limits (dashed line).
We calculate this from the distributions of Eddington ratios in
our simulations, as a function of current and peak luminosity,
and our fit to ṅ(Lpeak) (as, e.g. for our Monte Carlo realiza-
tions). We also consider the observed distribution if we apply
the luminosity limit for completeness from the SDSS sam-
ple of Heckman et al. (2004) (dotted), L[O III] > 106 L⊙, which
using their bolometric corrections yields L > 3.5× 109 L⊙,
and then additionally applying their minimum velocity dis-
persion σ > 70kms−1 (dot-dashed). Finally, we can weight
this distribution by luminosity (solid line) to compare directly
to that determined in their Fig. 1. The red points are taken
from the luminosity-weighted black hole mass function of
Heckman et al. (2004), which serves as a rough estimate of
the active black hole mass distribution given their selection
effects. Vertical error bars represent the range in parame-
terizations of the mass function from Heckman et al. (2004),
including whether or not star formation is corrected for and
limiting the sample to luminosities L & 1010 L⊙ or Eddington
ratios > 0.01. Horizontal errors represent an uncertainty of
0.2dex in the black hole mass estimation (representative of
uncertainties in the MBH −σ relation used). The agreement is
good, especially given the significant effects of the selection
criteria and luminosity-weighting.

We also consider the predictions of a “light-bulb” or “expo-
nential / fixed Eddington ratio” model of the quasar lifetime
for the active black hole mass distribution (red lines). For
purposes of the active black hole mass function, the two pre-
dictions are identical and independent of the assumed quasar
lifetime (modulo the arbitrary normalization), as both assume
that all observed quasars are accreting at a fixed Eddington
ratio, giving the distribution of active black hole masses. The
dashed line shows the prediction for the complete active black
hole mass function, which rises sharply to lower luminosi-
ties, as it must given a luminosity function which increases
monotonically to lower luminosities. The solid line shows
the prediction of such a model with the complete set of se-
lection effects from Heckman et al. (2004) described above
applied, as with the solid black line showing the prediction
of our modeling. Here, we chose the characteristic Eddington
ratio ≈ 1.0 by fitting the predicted curve to the Heckman et al.
(2004) observations. Note that both the characteristic Edding-
ton ratio and lifetime (normalization) of the curve are fitted,
so the relative normalization of this curve and our full model
prediction are not the same; for example, the predicted to-
tal absolute number of active MBH > 109 quasars is higher in
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FIG. 18.— Predicted distribution of currently active black hole masses, both considering all types (Type I & II; left) and only those visible as broad-line
quasars (Type I; right), at low z . 0.3 redshift, from our ṅ(Lpeak) distribution and the estimation of the “broad-line” phase directly from the simulations. In the
left panel (all quasar types), we consider the result with arbitrarily faint luminosity limits (dashed line), and with the luminosity completeness limit (dotted) and
both luminosity limit and velocity dispersion limit (dash-dot) of the SDSS sample of Heckman et al. (2004). We then consider the mass distribution with these
limits, weighted by OIII luminosity, for direct comparison to the mass function of Heckman et al. (2004), shown as red circles (vertical errors represent the range
in different parameterizations of the luminosity-weighted mass function from Heckman et al. (2004), their Fig. 1, horizontal errors a ∼ 0.2 dex uncertainty in the
black hole mass). Black lines show this for our full model, red lines show the full distribution (dashed) and distribution with the same weighting and selection
effects as Heckman et al. (2004) (solid) for a light-bulb or exponential light curve model of quasar evolution. At right, the distribution of active “broad-line”
quasar masses (solid, where an object is a “broad-line” quasar if the observed quasar B-band luminosity is above a factor fBL = 1 of that of the host galaxy –
dotted and dashed lines show the result if fBL = 0.3 or 3, respectively). Black lines show the prediction of the full model, red and blue lines the predictions of a
light-bulb/exponential light curve model with a standard torus model (red) and receding torus model (blue) used to determine the broad-line fraction.

the full model than in the light-bulb or exponential models.
Still, it is clear that these models produce too broad a distri-
bution of active black hole masses, in disagreement with the
observations. We could, of course, obtain an arbitrarily close
agreement with the observations if we fit to the distribution of
accretion rates, but such a model would recover a quasar life-
time and accretion rate distribution quite similar to ours, as
is evident from the agreement between the predictions of our
simulations and the observations. A purely empirical model
of this type is considered by e.g. Merloni (2004), who finds
that similar qualitative evolution in the quasar lifetime and
anti-hierarchical black hole assembly to that predicted by our
modeling is implied by the combination of quasar luminosity
functions and the black hole mass function.

On the right of the figure, we show our predicted mass dis-
tribution for low-redshift, active “broad-line” quasars (solid
black lines), where we estimate that an object is a “broad-line”
quasar if the observed quasar B-band luminosity is above a
factor fBL = 1 of that of the host galaxy – dotted and dashed
lines show the result if fBL = 0.3 or 3, respectively, parameter-
izing the range of different observed samples. As discussed
above, the range of fBL shown can be, alternatively, thought
of as a parameterization of uncertainty in the host galaxy gas
fraction, if (in an observed sample), the sensitivity to see-
ing quasar broad lines against host galaxy contamination is
known. Therefore, the location of the peak in the active broad-
line black hole mass function can be used, just as the mean
broad line fraction vs. luminosity, as a test of the typical gas
fractions of bright quasar host galaxies, and can constrain po-
tential evolution in these gas fractions with redshift.

The prediction shown is testable, but appears to be in
good agreement with preliminary results for the distribution

of active broad-line black hole masses from the SDSS (e.g.,
McLure & Dunlop 2004). The observations may show fewer
low-mass black holes than we predict, but this is expected, as
observed samples are likely incomplete at the low luminosi-
ties of these objects (even at the Eddington limit, a 105 M⊙

black hole has magnitude Mg ∼ −16). If, in our model, we
were to consider instead a standard torus scenario for the def-
inition of the broad-line phase, we would predict the same
curve as that shown in the left half of the figure (black dashed;
our prediction for the cumulative active black hole mass func-
tion). This is because the standard torus model predicts that
a constant fraction of objects are broad-line quasars, regard-
less of mass or luminosity, thus giving identical distribu-
tions of Type I and Type II quasar masses. If we consider a
luminosity-dependent or receding torus model, the prediction
is nearly identical to the black line shown. This is because, as
shown in Figure 16, our prediction for the broad line fraction
as a function of luminosity is similar to that of the receding
torus model. The differences in the model predictions for the
broad-line fraction as a function of luminosity do manifest in
the prediction for the active broad-line black hole mass func-
tion, but the difference in these models is smaller than the
∼ 1σ range from different values of fBL shown. However,
if we consider different models for the quasar light curve or
lifetime, the predicted active broad-line mass function is quite
different (as is the cumulative active black hole mass func-
tion).

We show the predictions of a light-bulb or exponential light
curve model for quasar evolution in the figure, adopting either
a standard torus model (red) or receding torus model (blue) to
determine the broad-line fraction as a function of luminosity.
For the standard torus model, this predicts that the broad line
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mass function should trace the observed luminosity function,
rising monotonically to lower black hole masses in power-law
fashion (just as seen in the red dashed line in the left half of
the figure for the cumulative black hole mass function). For
the receding torus model, the active black hole mass func-
tion shows a peak (because, at lower luminosities, there are
more observed quasars, but a larger fraction of them are ob-
scured). However, the location of this peak is at roughly an
order of magnitude smaller black hole mass than for our pre-
diction. This assumes a typical Eddington ratio ∼ 1, which
we have fitted to the cumulative black hole mass function –
the peak in the broad-line active black hole mass function in
these models could be shifted to larger black hole masses by
assuming a smaller typical Eddington ratio, but this would
only worsen the agreement with the cumulative black hole
mass function of Heckman et al. (2004). Furthermore, a ro-
bust difference between the models is that the light bulb or
Eddington-limited/exponential models predict, for the stan-
dard torus case, no turnover in the active broad-line black hole
mass function, and for the receding torus case, a broader dis-
tribution in active broad-line quasar black hole masses than
is predicted in our modeling. Roughly, the lognormal width
of this distribution in our model is ∼ 0.6 dex, whereas the
light-bulb or exponential light curve models have a distribu-
tion with width∼ 1.0 dex. As noted above, we obtain a similar
prediction if we adopt our full obscuration model instead of
the receding torus model here. A determination of the range
of active, broad-line quasar masses can, therefore, constrain
quasar lifetimes and light curves.

Our model makes an accurate prediction for the distribution
of active black hole masses, even at z∼ 0 where our extrapola-
tion of the luminosity function is uncertain. It is important to
distinguish this from the predicted relic black hole mass dis-
tribution, derived in § 6, which must account for all quasars,
i.e. ṅ(Lpeak) integrated over redshift. We additionally find for
broad-line quasars, as we expect from our prediction of the
broad-line phase, that these objects are primarily radiating at
large Eddington ratios, l ∼ 0.2−1, but we address this in more
detail in § 5. The success of this prediction serves not only to
support our model, but also implies that we can extrapolate to
fairly low luminosities, even bright Seyfert systems at z ∼ 0.
This suggests that many of these systems, at least at the bright
end, may be related to our assumed quasar evolution model,
fueled by similar mechanisms and either exhibiting weak in-
teractions among galaxies or relaxing from an earlier, brighter
stage in their evolution. As we speculate in § 8, our descrip-
tion of self-regulated black hole growth may also be relevant
to fainter Seyferts, even those that reside in apparently undis-
turbed galaxies.

5. THE DISTRIBUTION OF EDDINGTON RATIOS

In traditional models of quasar lifetimes and light curves,
the Eddington ratio, l ≡ L/LEdd is generally assumed to be
constant. Even complex models of the quasar population
which allow for a wide range of Eddington ratios according to
some probability distribution P(l) implicitly associate a fixed
Eddington ratio with each individual quasar, and do not al-
low for P(l) to depend on instantaneous luminosity or host
system properties. However, this is a misleading assumption
in the context of our model, as the Eddington ratio varies in
a complicated manner over most of the quasar light curve.
Furthermore, the integrated time at a given Eddington ratio
is different in different systems, with more massive, higher
peak luminosity systems spending more time at large (l ∼ 1)
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FIG. 19.— Distribution of Eddington ratios (left panels) and instantaneous
black hole mass (right panels) as a function of quasar bolometric luminosity
for our fiducial Milky Way-like A3 simulation, with Vvir = 160km s−1 and
Lpeak ∼ 5×1013 L⊙. The trend of an increasingly narrow Eddington ratio and
mass distribution (concentrated at higher values) with increasing luminosity
is clear. The result of applying an ADAF-type radiative efficiency correction
at low accretion rates is shown (dashed) as well as the result of considering
only times after the final merger, with MBH ∼ M

f

BH (dotted).

Eddington ratios.
The probability of being at a given Eddington ratio should

properly be thought of as a conditional joint distribution
P(l |L, Lpeak) in both instantaneous and peak luminosity, just
as the quasar “lifetime” is more properly a conditional dis-
tribution tQ(L |Lpeak). Rather than adopting a uniform Ed-
dington ratio or Eddington ratio distribution, empirical esti-
mates must consider more detailed formulations such as the
framework presented in Steed & Weinberg (2003), which al-
lows for a conditional bivariate Eddington ratio distribution
and can therefore incorporate these physically motivated de-
pendencies and complications in de-convolving observations
of the quasar luminosity function to determine e.g. Eddington
ratio distributions, active black hole mass functions, and other
physical quantities.

Figure 19 shows the distribution of Eddington ratios as a
function of luminosity for the fiducial, Milky Way-like A3
simulation (Vvir = 160kms−1). Over the course of the simula-
tion, the system spends a roughly comparable amount of time
at a wide range of Eddington ratios from l ∼ 0.001−1. At high
luminosities, L > 1012 L⊙ for a system with Lpeak ≈ 1013 L⊙,
the range of Eddington ratios, is concentrated at high values
l ∼ 0.5 − 1 with some time spent at ratios as low as l ∼ 0.1.
Note, however, that the y-axis of the plot is scaled logarithmi-
cally, so the time spent at l ∼ 0.1 in this luminosity interval is a
factor ∼ 5 smaller than the time spent at l & 0.5. Considering
lower luminosities 1011 L⊙ < L < 1012 L⊙, the distribution of
Eddington ratios broadens down to l ∼ 0.01. Going to lower
luminosities still, L < 1011 L⊙, the distribution broadens fur-
ther, with comparable time spent at ratios as low as l ∼ 0.001,
and becomes somewhat bimodal. At large luminosities near
Lpeak, the system is primarily in Eddington-limited or near-
Eddington growth. However, as we consider lower luminosi-
ties, we include both early times when the black hole is grow-
ing efficiently (high l) and late or intermediate times when the
black hole is more massive but the accretion rate falls (low
l). As we go to lower luminosities, the total time spent in
sub-Eddington states increasingly dominates the time spent at
l ∼ 1, although the time spent at any given value of l is fairly
flat with log(l).
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Roughly, at some luminosity L, there is a constant proba-
bility of being in some logarithmic interval in l,

P(l|L,Lpeak) ∼
[

log
(Lpeak

L

)

]−1

,
L

Lpeak
< l < 1, (30)

and P(l|L,Lpeak) = 0 otherwise. This is especially clear if we
compare the distribution of Eddington ratios in each luminos-
ity range obtained if we consider only times after the final
merger of the black holes (dotted histograms). At the high-
est luminosities, the distribution is identical to that obtained
previously, since all the time at these luminosities is during
the final merger. However, as we move to lower luminosi-
ties, the characteristic l move systematically lower, as we are
seeing only the relaxation after the final “blowout” near Lpeak,
with characteristic Eddington ratio l = L/Lpeak at any given
luminosity L. These trends are also clear if we consider the
distribution of instantaneous black hole masses in each lumi-
nosity interval shown in the figure, which is trivially related
to the Eddington ratio distribution at a given luminosity L as

MBH = M0
L

l LEdd(M0)
=

LtS

l ǫrc2
. (31)

Of course, it is clear here that MBH ≈ M
f

BH = 3×108 M⊙ if we
consider only times after the final merger.

It has also been argued from observations of stellar black
hole binaries that a transition between accretion states oc-
curs at a critical Eddington ratio ṁ ≡ Ṁ/ ˙MEdd, from ra-
diatively inefficient accretion flows at low accretion rates
(e.g., Esin, McClintock, & Narayan 1997) to radiatively effi-
cient accretion through a standard Shakura & Sunyaev (1973)
disk. Although the critical Eddington ratio for supermassive
black holes is uncertain, observations of black hole binaries
(Maccarone 2003) as well as theoretical extensions of ac-
cretion models (e.g., Meyer, Liu, & Meyer-Hofmeister 2000)
suggest ṁcrit ∼ 0.01. We can examine whether this has a
large impact on our predictions for the luminosity function
and ṅ(Lpeak) distribution, by determining whether the distri-
bution of Eddington ratios is significantly changed by such a
correction. Because we assume a constant radiative efficiency
L = ǫr Ṁ c2 with ǫr = 0.1, we account for this effect by multi-
plying the simulation luminosity at all times by an additional
“efficiency factor” feff which depends on the Eddington ratio
l = L/LEdd,

feff =

{

1 if l > 0.01
100 l if l ≤ 0.01. (32)

This choice for the efficiency factor follows from ADAF mod-
els (Narayan & Yi 1995) and ensures that the radiative effi-
ciency is continuous at the critical Eddington ratio lcrit = 0.01.
Applying this correction and then examining the distribution
of Eddington ratios as a function of luminosity (dashed his-
tograms in Figure 19), we see that the distribution of Ed-
dington ratios is essentially identical, with only a slightly
higher probability of observing extremely low Eddington ra-
tios l . 0.001. Of course, our modeling of accretion processes
does not allow us to accurately describe ADAF-like accretion
at these low Eddington ratios, but such low values are not rele-
vant for the observed luminosity functions and quantities with
which we make our comparisons. This implies that such a
transition in the radiative efficiency with accretion rate should
not alter our conclusions regarding the luminosity function
and the ṅ(Lpeak) distribution (essentially, the corrections are
important only at luminosities well below those relevant in
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FIG. 20.— Predicted distribution of Eddington ratios based on the lumi-
nosity function and the quasar evolution in our simulations, in two redshift
intervals z < 0.5 (upper left) and 1.5 < z < 3.5 (upper right). The observed
distributions for radio loud (black squares) and radio quiet (green circles)
quasars are shown from Vestergaard (2004) with Poisson errors. Thick black
lines show the predicted distribution given the same minimum observed lumi-
nosity as the observed sample. Thin red lines show the predicted distributions
for a sample extending to arbitrarily faint luminosities, dotted lines show the
same, with the ADAF correction of § 5 applied at low accretion rates. Blue
dashed lines show the prediction for a fixed (luminosity-independent) Ed-
dington ratio distribution in a light-bulb or exponential light curve model,
fitted to the z < 0.5 data and used to predict the 1.5 < z < 3.5 Eddington ratio
distribution given the observational luminosity limit. Lower panels show the
predicted distributions for z . 1 in two luminosity intervals, above and be-
low the “break” luminosity in the observed luminosity function (red lines here
correspond to an observed (attenuated) B-band luminosity LB,obs > 1011 L⊙).

constructing the observed luminosity functions; see also Hop-
kins et al. 2005c for a calculation of the effects of such a cor-
rection on the fitted quasar lifetime and ṅ(Lpeak) distributions,
which leads to the same conclusion).

Despite the broad range of Eddington ratios in the simu-
lations, this entire distribution is unlikely to be observable in
many samples. The effect of this can be predicted based on the
behavior seen in Figure 19. For example, we consider the dis-
tribution of Eddington ratios that would be observed if the B-
band luminosity LB,obs ≥ 1011 L⊙, comparable to the selection
limits at high redshift of many optical quasar samples. As ex-
pected from the change in l with luminosity, this restricts the
observed range of Eddington ratios to large values l ∼ 0.1−1,
in good agreement with the range of Eddington ratios actu-
ally observed in such samples. Essentially, it has reduced the
observed range to a bolometric luminosity L & 1012 L⊙ in the
case shown, giving a similar distribution to that seen in the
lower panel of the figure.

We compare our predicted distribution of Eddington ratios
to observations in Figure 20. Using the distribution of peak lu-
minosities ṅ(Lpeak) determined from the luminosity function,
we can integrate over all luminosities to infer the observed
Eddington ratio distribution,

P(l)∝
∫

dlogL

∫

dlogLpeak

×P(l|L,Lpeak)
dt(L,Lpeak)

d logL
ṅ(Lpeak). (33)

As our estimate of P(l|L,Lpeak) above is rough, we
do this by binning in Lpeak and averaging the binned
P(l|L,Lpeak)dt/dlogL for each simulation in the range of
Lpeak, then weighting by ṅ(Lpeak) and integrating. We con-
sider both the entire distribution that would be observed in the
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absence of selection effects (red histograms), and the distri-
bution observed demanding a B-band luminosity above some
reference value, LB,obs > Lmin (black histograms). The results
are shown for redshifts z < 0.5 and z = 1.5 − 3.5, along with
the observed distribution from Vestergaard (2004), with as-
sumed Poisson errors. The observations should be compared
to the black histograms, which have luminosity thresholds
L = 1010 L⊙ and 1011 L⊙ for z < 0.5 and z = 1.5 −3.5, respec-
tively, corresponding approximately to the minimum observ-
able luminosities in the observed samples in each redshift in-
terval.

The agreement is good, given the observational uncertain-
ties, and it suggests that the observed Eddington ratio distribu-
tion can be related to the non-trivial nature of quasar lifetimes
and light curves we model, rather than some arbitrary distribu-
tion of fixed l across sources. However, the selection effects
in the observed samples are quite significant – the complete
distribution of Eddington ratios is similar in both samples,
implying that the difference in the observed Eddington ratio
distribution is primarily a consequence of the higher luminos-
ity limit in the observed samples – and a more detailed test of
this prediction requires fainter samples.

Still, there is a systematic offset in the observed samples
at z < 0.5 and z = 1.5 −3.5 which does not owe to selection
effects. At progressively lower redshifts, more quasars with
luminosities further below the “break” in the luminosity func-
tion are observed, and therefore the observed Eddington ratio
is broadened to lower Eddington ratios l ∼ 0.1, whereas at
high redshift the distribution is more peaked at slightly higher
Eddington ratios. This difference, although not dramatic, is a
prediction of our model not captured in “light bulb” or “fixed
Eddington ratio” models, even when allowing for a distribu-
tion of Eddington ratios, if such a distribution is static. We
demonstrate this by fitting the low-redshift Eddington ratio
distribution to a Gaussian (blue dashed lines in upper left),
and then assuming that this distribution of accretion rates is
unchanged with redshift, giving (after applying the same se-
lection effects which yield the black histograms plotted) the
blue dashed line in the upper right panel. Although the agree-
ment may appear reasonable, the difference is significant –
such a fit overpredicts the fraction of high redshift objects
at Eddington ratios . 0.1 and underpredicts the fraction at
∼ 0.3, giving a somewhat poor fit overall (χ2/ν = 2.7, but with
typical & 3σ overpredictions for Eddington ratios . 0.1).

Furthermore, without being modified to allow for a distribu-
tion of Eddington ratios, such models are clearly inconsistent
with the observations, as they would predict a single, constant
Eddington ratio. However, models which fit the observed evo-
lution in the quasar luminosity function with a non-static dis-
tribution of accretion rates do recover the broadening of the
Eddington ratio distribution at low redshift, so long as strong
evolution in the distribution of accretion rates for systems of
a given black hole mass is not allowed (Steed & Weinberg
2003), giving a qualitatively similar picture of the evolution
we model. Regardless of the evolution in accretion rates, an
advantage of our modeling is that it provides a physically mo-
tivated predicted distribution of accretion rates, as opposed to
being forced to adopt the distribution of accretion rates from
observational input (which can be, as demonstrated in the fig-
ure, significantly biased by observational selection effects).
The dotted histograms show the distribution if we apply our
ADAF correction to the intrinsic distribution, and demon-
strate that this does not significantly change the result. We
note that our model for black hole accretion employs the Ed-
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FIG. 21.— Predicted distribution of Eddington ratios based on the luminos-
ity function and the quasar evolution in our simulations, at three redshifts z =
0.5 (top panels), z = 1.0 (middle), and z = 2.0 (bottom). The inferred distribu-
tion of Eddington ratios, adopting a constant bolometric correction from the
observed (attenuated) luminosity in each of three bands is shown, i.e. assum-
ing L = 12Lobs

B (4400Å; left), L = 52Lobs
SX

(0.5-2 keV; middle), and L = 35Lobs
HX

(2-10 keV; right). For each waveband, results are shown for three reference
luminosities. In B-band, MB < −19 (red), MB < −22 (blue), and MB < −25
(black). In soft X-rays, log(LSX [ergs−1]) > 40 (red), 42 (blue), 44 (black).
In hard X-rays, log(LHX [ergs−1]) > 41 (red), 43 (blue), 45 (black).

dington limit as a maximum accretion rate; if we remove this
restriction, we find that the simulations spend some small but
non-negligible time with l ∼ 1 − 2, which is also consistent
with the observations.

Furthermore, we can make a prediction of this model which
can be falsified, namely that the Eddington ratio distribution
at luminosities well below the break in the luminosity func-
tion should be broader and extend to lower values than the
distribution at luminosities above the break luminosity. We
quantify this in the lower panels of Figure 20, for the distri-
bution at low redshifts z . 1. Here we consider two bins in
luminosity, L = 109.5 −1010.5 L⊙ and L = 1012.5 −1013.5 L⊙, for
redshifts where the break in the luminosity function is at ap-
proximately L ∼ 1011 − 1012 L⊙. Clearly, the distribution is
broader and extends to lower Eddington ratios in the former
luminosity interval, whereas in the latter it is strongly peaked
about l ∼ 0.2 − 1, for both the complete distribution (black)
and that with LB,obs ≥ 1011 L⊙ (red). The distribution obtained
applying the ADAF correction described above is shown as
dotted histograms. Despite the fact that the Eddington ratio
distribution at low luminosities will be strongly biased by se-
lection effects, a reasonably complete sample should be able
to test this prediction, at least qualitatively.

We illustrate the effects of changing observed waveband,
redshift, and luminosity thresholds on the observed Edding-
ton ratio distribution in Figure 21. Here, we plot the pre-
dicted distribution of Eddington ratios determined as in Fig-
ure 20, from our fitted ṅ(Lpeak) distribution at each redshift
and the distribution of Eddington ratios as a function of in-
stantaneous and peak luminosity in each of our simulations
(specifically, these are drawn from the Monte Carlo real-
izations of the quasar population described in § 8). We
show the predictions at three redshifts z = 0.5 (top panels),
z = 1.0 (middle), and z = 2.0 (bottom). For each redshift,
results are shown in three wavebands, and with three refer-
ence luminosities. In B-band, we require MB < −19 (red),
MB < −22 (blue), and MB < −25 (black). In soft X-rays,
log(LSX [ergs−1]) > 40 (red), 42 (blue), 44 (black). In hard
X-rays, log(LHX [ergs−1]) > 41 (red), 43 (blue), 45 (black).



32 Hopkins et al.

The observationally inferred distribution of Eddington ratios
at each redshift is loosely estimated by adopting a constant
bolometric correction from the observed (attenuated) lumi-
nosity in each of three bands shown, i.e. assuming L = 12Lobs

B

(4400Å; left), L = 52Lobs
SX (0.5-2 keV; middle), and L = 35Lobs

HX

(2-10 keV; right). This follows common practice in many ob-
servational estimates of the Eddington ratio distribution and
allows for the effects of attenuation, but we caution that it can
be misleading.

If we instead use the luminosity-dependent bolometric cor-
rections of Marconi et al. (2004) which we adopt through-
out, even given that we are calculating from the observed
(attenuated) luminosities, we do not see the large population
of highly sub-Eddington (Eddington ratios . 10−3) quasars
in soft and hard X-ray samples with low luminosity thresh-
olds. This is because these are actually reasonably high-
Eddington ratio quasars, but our bolometric corrections im-
ply that a larger fraction of the bolometric luminosity is ra-
diated in the X-ray at low bolometric luminosity, meaning
that assuming a constant bolometric correction will under-
estimate the Eddington ratios of high-bolometric luminosity
sources. Regardless, the figure illustrates both the importance
of different wavelengths (i.e. the ability to observe more low-
Eddington ratio sources in X-ray as compared to optical sam-
ples) and luminosity/magnitude limits on the inferred distri-
bution of Eddington ratios. For example, even for relatively
deep B-band quasar samples complete to MB < −23 (i.e. com-
plete to essentially all objects traditionally classified as having
“quasar-like” luminosities), the expected observed Eddington
ratio distribution at z ∼ 0.5 −2 is quite sharply peaked about
∼ 0.1 −0.3, in good agreement with recent observational re-
sults (Kollmeier et al. 2005).

We do not compare to the z = 0 distribution of black
hole accretion rates, as this is dominated by objects at
extremely low Eddington ratios l ∼ 10−5 − 10−4 (e.g.,
Ho 2002; Marchesini et al. 2004; Jester 2005), which
are well below the range we model, and are not likely
to be driven by merger activity (many of these objects
are quiescent, low-luminosity Seyferts in normal spi-
ral galaxy hosts); furthermore, many of these objects
are not accreting at the Bondi rate (Fabian & Canizares
1988; Blandford & Begelman 1999; Di Matteo et al.
2000; Narayan et al. 2000; Quataert & Gruzinov 2000;
Di Matteo et al. 2001; Loewenstein et al. 2001; Bower et al.
2003), clearly showing that our simulations must incorporate
more sophisticated models for accretion in quiescent, low-
luminosity states (when gravitational torques cannot provide
a mechanism to drive large amounts of gas to the central
regions of the galaxy) in order to describe such phases.

However, it has been suggested that the rapid “blowout”
phase and subsequent decay in accretion rates seen in our
simulations, coupled with spectral modeling of radiatively
inefficient accretion modes, can explain the apparently bi-
modal distribution of low-redshift accretion rates (Cao & Xu
2005). Moreover, present-day, relaxed ellipticals are observed
to have mass accretion rates ∼ 10−4 implying a long relaxation
time at moderate and low accretion rates, qualitatively similar
to that seen after the “blowout” in our modeling (Hopkins et
al. 2005f). A pure exponential decay in accretion rate after the
peak quasar phase would give ṁ = Ṁ/ṀEdd ∼ exp(−tH/tQ) at
present, where tH is the Hubble time and tQ is the quasar life-
time of order e.g. the Salpeter time tS = 4×107 yr, yielding an
unreasonably low expected accretion rate ṁ ∼ 10−145. Even

assuming an order of magnitude larger quasar lifetime, this
gives ṁ ∼ 10−15, far below observed values, implying that re-
gardless of the fueling mechanisms at low luminosities, the
basic key point of our modeling must be true to some extent,
namely that quasars spend long times relaxing at moderate to
low Eddington ratios.

6. THE MASS FUNCTION OF RELIC SUPERMASSIVE BLACK
HOLES FROM QUASARS

From the MBH-σ relation and other host galaxy-black
hole scalings, estimates of bulge and spheroid veloc-
ity dispersions have been used to determine the to-
tal mass density (ρBH) and mass distribution of lo-
cal, primarily inactive supermassive black holes (e.g.,
Salucci et al. 1999; Marconi & Salvati 2002; Yu & Tremaine
2002; Ferrarese 2002; Aller & Richstone 2002; Marconi et al.
2004; Shankar et al. 2004). These estimates, along
with others based on X-ray background synthesis (e.g.,
Fabian & Iwasawa 1999; Elvis et al. 2002), have compared
these quantities to those expected based on the mass distribu-
tion of ‘relic’ black holes grown in quasars. It appears that
most, and perhaps nearly all of the present-day black hole
mass density was accumulated in bright quasar phases, and
the MBH −σ and MBH −Lbulge correlations yield estimates of
the local mass function in good agreement with those from
hard X-ray AGN luminosity functions (Marconi et al. 2004).

However, this modeling is dependent on several assump-
tions. Namely, the average radiative efficiency ǫr, Eddington
ratio l, and average quasar lifetime tQ are generally taken to be
constants and either input into the model or constrained by de-
manding agreement with the local mass function. In our sim-
ulations, we find the quasar lifetime and Eddington ratio to be
complex functions of both luminosity and host system proper-
ties (as opposed to being constants). We also find that quasars
spend a large fraction of their lives in obscured growth phases,
suggesting some mass gain outside of the bright quasar phase.
It is thus of interest to determine the relic black hole mass
function expected from our model for quasar evolution.

Using our estimate for the birthrate of quasars with a given
peak luminosity at a particular redshift, ṅ(Lpeak), obtained
from the luminosity function in § 3.2, we can estimate the
total number density of relic quasars accumulated by a partic-
ular redshift that were born with a given Lpeak (per logarithmic
interval in Lpeak) from

n(Lpeak) =
∫

ṅ(Lpeak)dt =
∫

ṅ(Lpeak,z)dz

(1 +z)H(z)
. (34)

By redshift z = 0, most of these quasars will be “dead,” with
only a small residual fraction having been activated in the re-
cent past.

Using our log-normal form for ṅ(Lpeak), with normaliza-
tion ṅ∗ and dispersion σ∗ held constant and only the me-
dian L∗ = L0

∗ exp(kLτ ) evolving with redshift, this integral can
be evaluated numerically to give the space density of relic
quasars n(Lpeak). Finally, we use M

f
BH(Lpeak), roughly the Ed-

dington mass of the given peak luminosity (but determined
more precisely in § 2.4) to convert from dn(Lpeak)/dlogLpeak
to dn(MBH)/dlogMBH. This formulation implicitly assumes
that black holes do not undergo subsequent mergers after the
initial quasar-producing event. However, this effect should
be small (a factor . 2) as subsequent mergers would be dry
(gas poor). We explicitly calculate the effects of dry merg-
ers on the spheroid mass function (essentially a rescaling of
the black hole mass function calculated here) in Hopkins et al.
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(2005e), and show that this is a small effect (significantly less
than the uncertainties owing to our fit to the quasar luminos-
ity function) even assuming the maximum dry merger rates of
e.g. van Dokkum (2005).

This mass function can then be integrated over dMBH to
give the total present-day black hole mass density, ρBH. Ne-
glecting temporarily the small corrections to M

f
BH(Lpeak) from

§ 2.4, we expect

M
f
BH ≈ MEdd(Lpeak) =

Lpeak tS

ǫrc2
(35)

where tS/ǫrc
2 ≈ 2.95×10−5 M⊙/L⊙, so therefore,

ρBH =
tS

ǫrc2

∫

Lpeak n(Lpeak)d logLpeak. (36)

This can be combined with the integral over redshift for
n(Lpeak), giving, at each z, a pure Gaussian integral over
log(Lpeak), in the form

ρBH =
L0
∗ tS

ǫrc2

ṅ∗

H0
e

1
2 (σ∗ ln 10)2

∫

ekLτ dz

(1 +z) Ĥ(z)

=
L0
∗ tS

kLǫrc2

ṅ∗

H0
e

1
2 (σ∗ ln 10)2

(

ekLτ f −ekLτ

)

, (37)

where Ĥ(z) ≡ H(z)/H0 and τ f is the fractional lookback time
at some upper limit. We must modify this integral above
z ∼ 2 to account for the decreasing space density of bright
quasars, applying either our density or peak-luminosity evo-
lution turnover from § 3.2, but quasars at these high redshifts
contribute only a small fraction to the present-day density.
Thus, in this formulation, the evolution of the total supermas-
sive black hole mass density, i.e. ρBH(z)/ρBH(z = 0), is given
approximately by the dimensionless integral above, and de-
pends only on how L∗ evolves, essentially the rate at which
the break in the quasar luminosity function shifts. Although
this is not strictly true if we include corrections to M

f
BH(Lpeak)

based on Lpeak, the difference is small and this behavior is es-
sentially preserved. Note that the total supermassive black
hole mass density is independent of corrections from sub-
sequent dry mergers, which (being gas poor) conserve total
black hole mass.

Figure 22 shows our prediction for the mass distribution
of supermassive black holes, as well as the total density
ρBH and its evolution with redshift. We find a total relic
black hole mass density of ρBH = 2.9+2.3

−1.2 × 105 M⊙ Mpc−3, in
agreement with the observational estimate of ρBH = 2.9 ±
0.5h2

0.7 × 105 M⊙ Mpc−3, by Yu & Tremaine (2002) (h0.7 ≡
H0/70kms−1 Mpc−1; their result is converted from h = 0.65),
and within 1σ of the value ρBH = 4.6+1.9

−1.4h2
0.7 ×105 M⊙ Mpc−3,

of Marconi et al. (2004), based on the observations of
Marzke et al. (1994), Kochanek et al. (2001), Nakamura et al.
(2003), Bernardi et al. (2003), and Sheth et al. (2003). The
fractional evolution of ρBH with redshift is quite well con-
strained, and we find, as with previous estimates, that most of
the present-day black hole mass density accumulates at mod-
erate to low redshifts z ≈ 0.5 −2.5. The 1σ errors are shown
as dotted lines in the figure, and are close to our best-fit es-
timate, as we have demonstrated that this quantity depends
only on kL, the rate of evolution of the break in the lumi-
nosity function with redshift, which is fairly well-constrained
by observations (from our fitting to the luminosity functions,
kL = 5.61±0.28). The difference in ρBH if we include or ne-
glect the small corrections to M

f
BH is negligible compared to

our errors (∼ 5%).

Our estimate for the relic black hole mass distribution (thick
black line) also agrees well with observational estimates,
with all observations within the range allowed by the 1σ er-
rors of our fitting to the luminosity function (dotted lines).
The observations shown are again from Marconi et al. (2004),
based on the combination of observations by Marzke et al.
(1994), Kochanek et al. (2001), Nakamura et al. (2003),
Bernardi et al. (2003), and Sheth et al. (2003). The high mass
end of the black hole mass function MBH > 109 M⊙ is rel-
atively sensitive to whether or not we apply the M

f
BH(Lpeak)

corrections of § 2.4, instead of taking M
f
BH = MEdd(Lpeak) (thin

line), as well as to our fitting procedure. However, the agree-
ment is still good, and this is also where the observational es-
timates of the mass distribution are most uncertain, as they are
generally extrapolated to these masses, and are sensitive to the
assumed intrinsic dispersions in the MBH −σ and MBH −Lbulge
relations (Yu & Tremaine 2002).

If, instead, we adopt a light-bulb, constant Eddington
ratio, or exponential light curve model for quasar evolu-
tion, we would have M

f

BH ∝ Lpeak, and thus the prediction
would be similar to the thin black line shown, a some-
what worse fit at high black hole masses. However, in
these models this can be remedied by adjusting the typi-
cal Eddington ratios, quasar lifetimes, or radiative efficien-
cies. We do not show the range of predictions of these
models for the relic supermassive black hole mass func-
tion, as they have been examined in detail previously (e.g.,
Salucci et al. 1999; Marconi & Salvati 2002; Yu & Tremaine
2002; Ferrarese 2002; Aller & Richstone 2002; Marconi et al.
2004; Shankar et al. 2004). These works demonstrate that the
observed quasar luminosity functions are consistent with the
relic supermassive black hole mass function, given typical ra-
diative efficiencies ǫr ∼ 0.1 and Eddington ratios ∼ 0.5 −1.0,
and that most of the mass of black holes is accumulated in
bright, observed phases, or else the required radiative effi-
ciency would violate theoretical limits.

That our model of quasar lifetimes and obscuration repro-
duces the observed z = 0 supermassive black hole mass func-
tion explicitly demonstrates that we are consistent with these
constraints. By choice, the radiative efficiency in our simula-
tions is ǫr = 0.1, and accretion rates are not allowed to exceed
Eddington. As noted in § 4, most of the black hole mass is ac-
cumulated and radiant energy released in the final, “blowout”
phase of quasar evolution, and here our black hole mass func-
tion and cumulative black hole mass density demonstrate that
our modeling is consistent with integrated energy and mass
arguments such as that of Soltan (1982), despite the fact that
quasars spend more time in obscured phases than they do
in bright optical quasar phases. In fact, comparison of our
predicted total black hole mass density with estimates from
the z = 0 black hole mass distribution allows some latitude
for significant mass gain in radiatively inefficient growth or
black holes in small, disky spheroids, although we emphasize
that this is mainly because the uncertainty in our prediction is
large, it is not inherent or necessary in our modeling.

The anti-hierarchical nature of black hole formation, where
less massive black holes are formed at lower redshift, is re-
flected in our modeling by the shift of the break in the quasar
luminosity function to lower values with decreasing redshift.
This can be seen in Figure 22, where the black hole mass
distributions are shown at redshifts z = 1.5, 3.0 and 5.0, as-
suming either pure peak luminosity evolution or pure den-
sity evolution for z > 2 (dot-dashed and dashed, respectively).
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While the choice for the turnover in the z > 2 quasar den-
sity matters little for the z < 2 black hole mass functions,
the low-MBH distribution at high redshift (where observations
do not constrain ṅ(Lpeak) well) is quite different between the
two models. Figure 23 plots the fractional number density
of black holes of a given mass as a function of redshift, i.e.
n(M, z)/n(M, z = 0), where n(M) = dn/dlog(M) is just the
number density at mass M. This figure demonstrates that
higher-mass black holes originated over a larger range of red-
shifts, and that they mostly formed at higher redshift, com-

pared to lower-mass black holes.
The right panel of Figure 23 compares our prediction

to that of a light-bulb or exponential light curve model
for quasar lifetimes. In these models, the anti-hierarchical
nature of black hole assembly is dramatically suppressed.
At the high-mass end, there is no measurable difference
in the distribution of formation redshifts (i.e. the MBH =
109 M⊙ and MBH = 1010 M⊙ curves are indistinguishable),
and there is little change in the formation times at MBH =
108 M⊙. The shift in formation redshift at lower masses,
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although significant, is smaller than that predicted in our
model. If spheroids and black holes are produced to-
gether, as in our picture, these models of the quasar life-
time would imply that spheroids of masses Mvir ∼ 1011 −
1013 M⊙ all formed over nearly identical ranges of redshifts,
which is inconsistent with many observations indicating anti-
hierarchical growth of the red, elliptical galaxy population
(e.g., Treu et al. 2001; van Dokkum et al. 2001; Treu et al.
2002; van Dokkum & Stanford 2003; Gebhardt et al. 2003;
Rusin et al. 2003; van de Ven et al. 2003; Wuyts et al. 2004;
Treu et al. 2005; Holden et al. 2005; van der Wel et al. 2005;
di Serego Alighieri et al. 2005; Nelan et al. 2005). Implica-
tions of our model for the red galaxy sequence are considered
in Hopkins et al. (2005e), where we show that this weaker
anti-hierarchical black hole (and correspondingly, spheroid)
evolution is inconsistent with observed luminosity functions,
color-magnitude relations, and mass-to-light ratios of ellipti-
cal galaxies.

Our modeling reproduces the observed total density and
mass distribution of supermassive black holes at z = 0 with
black holes accreting at the canonical efficiency ǫr = 0.1 ex-
pected for efficient accretion through a Shakura & Sunyaev
(1973) disk. Presumably, a large change in ǫr would give a
significantly different relation between peak luminosity and
black hole mass (for the same Lpeak, M

f
BH ∝ 1/ǫr), and thus

if the quasar lifetime remained similar as a function of peak
luminosity, this would translate to a shift in the black hole
mass function. The long obscured stage in black hole evolu-
tion does not generate problems in reproducing the black hole
mass density, and the final phases of growth are still in bright
optical quasar stages. However, a large Compton-thick popu-
lation of black holes at all luminosities (or even at some range
of luminosities at or above the break in the luminosity func-
tion) (e.g., Gilli et al. 2001; Ueda et al. 2003), or a large pop-
ulation accreting in a radiatively inefficient ADAF-type so-
lution, as invoked to explain discrepancies in the X-ray back-
ground produced by synthesis models (Di Matteo et al. 1999),
would result in a significant over-prediction of the present-
day supermassive black hole density. As we demonstrate in
§ 7.2, invoking such populations is unnecessary, as our pic-
ture for quasar lifetimes and evolutionary obscuration self-
consistently reproduces the observed X-ray background.

Finally, we note that we reproduce the z = 0 distri-
bution of black hole masses inferred from the distribu-
tion of spheroid velocity dispersions (Sheth et al. 2003) and
luminosity functions (Marzke et al. 1994; Kochanek et al.
2001; Nakamura et al. 2003), based on the observed MBH −
σ relation and fundamental plane for galaxy properties
(e.g., Bernardi et al. 2003; Gebhardt et al. 2003). Therefore,
since our modeling also reproduces the observed MBH − σ
(Di Matteo et al. 2005; Robertson et al. 2005b) and funda-
mental plane (Robertson et al., in preparation) relations, we
implicitly reproduce the z = 0 distribution of spheroid velocity
dispersions and spheroid luminosity functions, given our ba-
sic assumption that the mergers that produce these spheroids
also give rise to luminous quasar activity.

7. THE COSMIC X-RAY BACKGROUND

7.1. The Integrated Spectra of Individual Quasars

Unresolved extragalactic sources, specifically obscured
AGN, have been invoked to explain the cosmic X-ray back-
ground (e.g, Setti & Woltjer 1989). This picture has been
confirmed as deep surveys with Chandra and XMM-Newton

have resolved most or all of the X-ray background into
discrete sources, primarily obscured and unobscured AGN
(Brandt et al. 2001; Hasinger et al. 2001; Rosati et al. 2002;
Giacconi et al. 2002; Baldi et al. 2002). The X-ray back-
ground, however, has a harder X-ray spectrum than typical
quasars, with a photon index Γ ∼ 1.4 in the 1 −10 keV range
(Marshall et al. 1980). Therefore, obscured AGN are impor-
tant in producing this shape, as absorption in the ultraviolent
and soft X-rays hardens the observed spectrum. Indeed, pop-
ulation synthesis models based on observed quasar luminosity
functions and involving large numbers of obscured AGN have
been successful at matching both the X-ray background in-
tensity and spectral shape (Madau et al. 1994; Comastri et al.
1995; Gilli et al. 1999, 2001). However, these models make
arbitrary assumptions about the ratio of obscured to unob-
scured sources and its evolution with redshift, choosing these
quantities to reproduce the X-ray background. Furthermore,
as X-ray surveys have been extended to higher redshifts, it
has become clear that both the observed redshift distribution
of X-ray sources and the ratio of obscured to unobscured
sources is inconsistent with that required by these models
(Hasinger 2002; Barger et al. 2003). Even synthesis models
based on higher-redshift X-ray surveys and using observation-
ally derived ratios of obscured to unobscured sources (e.g.,
Ueda et al. 2003) have invoked ad hoc assumptions about ad-
ditional populations of obscured sources to reproduce the X-
ray background shape and intensity.

We can test our model by examining whether the quasar
luminosity function, relic AGN mass distribution, and X-
ray background can be simultaneously reproduced in a self-
consistent manner. Because our formulation describes the
birthrate of quasars with a peak luminosity Lpeak, it is most
useful to consider the integrated energy spectrum of such a
quasar over its lifetime,

νEν =
∫

dt νLν (t) =
∫

ν fν (L)L
dt(L,Lpeak)

d logL
dlogL, (38)

where fν (L) is the bolometric correction (Lν ≡ fν L). As
an example, Figure 24 shows the integrated intrinsic spec-
tra (thick solid lines) from the simulations A1, A2, A3, A4,
and A5, described in § 2.1. The final black hole masses for
these simulations are M

f
BH = 7 × 106, 3 × 107, 3 × 108, 7 ×

108, and 2 × 109 M⊙, respectively. The integrated spectral
shape in the X-ray, in particular, is ultimately determined
by the observationally motivated bolometric corrections of
Marconi et al. (2004), with a reflection component in the
X-ray determined following Magdziarz & Zdziarski (1995),
and, in the case of the observed spectrum, the distribution of
column densities calculated from the simulations. Using our
fits to the lifetime dt/dlogL as a function of instantaneous and
peak luminosities, we can calculate the expected νEν from
the integral above. These integrated spectra are shown as the
dot-dashed lines in the figure, and agree well with the actual
integrated spectra of the simulations, demonstrating the self-
consistency of our model and applicability of our fitted life-
times.

This can be compared to idealized models for the quasar
lifetime, where we allow the quasar to radiate just at its peak
luminosity Lpeak ≈ LEdd(M f

BH) for some fixed lifetime t0
Q. We

determine t0
Q by demanding that the total energetics be correct,

Lpeakt0
Q = ǫrM

f

BHc2. The predicted integrated energy spectra
are shown as the dashed lines, and under-predict the soft and
hard X-ray energy output by a factor ∼ 1.5 − 2. This is be-
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FIG. 24.— Left: Integrated intrinsic spectra (thick solid lines) from simulations A1, A2, A3, A4, and A5 (black, blue, green, yellow, red, respectively), with
virial velocities Vvir = 80, 113, 160, 226, and 320km s−1 . The predicted integrated spectra from our model for quasar lifetimes are shown as dot-dashed lines, and
the prediction of a “light bulb” model, where the same total energy is radiated at L = Lpeak, as dashed lines. Integrated observed spectra are shown as thin solid
lines. Right: Integrated observed X-ray spectrum from the A3 simulation (thick black line), compared with the integrated intrinsic spectrum, reddened by various
column density distributions: our fitted NH distributions from § 2.3 (thick black dashed line), constant (luminosity-independent) lognormal NH distribution with
N̄H = 1022 cm−2 and σNH

= 0.4, 0.7, 1.0 (blue, green, and red dashed lines, respectively), and constant NH = 1021, 1021.5, 1022, 1022.5, and 1023 cm−2 (thin
dot-dashed lines).

cause higher-luminosity quasars tend to have a larger fraction
of their energy radiated in the UV-optical rather than the X-
ray (e.g., Wilkes et al. 1994; Green et al. 1995; Vignali et al.
2003; Strateva et al. 2005), reflected in our bolometric cor-
rections. Thus, assuming that the quasar spends all its time
at Lpeak does not account for extended times at lower lumi-
nosity, where the ratio of X-ray to total luminosity is higher,
which would generate an integrated spectrum with a larger
fraction of its energy in the X-ray. Assuming that the quasar
undergoes pure Eddington-limited growth to its peak luminos-
ity produces an almost identical integrated spectrum to this
light-bulb model, as it is similarly dominated by L ∼ Lpeak.

Of course, the intrinsic integrated energy spectrum of the
simulations is not what determines the X-ray background, but
rather the integrated observed spectrum is the critical quantity.
This is shown as the thin lines in the left panel of Figure 24,
and in detail for our fiducial A3 simulation in the right panel
of the figure (thick solid line). Along a given sightline, the
observed integrated spectrum will be

ν
dEν

dΩ
=

∫

dt ν
Lν(t)
4π

e−τν (Ω, t), (39)

where τν is the optical depth at a given frequency. We can
integrate over solid angle and obtain

νEν,obs =
∫

ν fν〈e−τν 〉L
dt(L,Lpeak)

d logL
dlogL, (40)

where 〈e−τν 〉 is the averaged e−τν over the column den-
sity distribution P(NH|L,Lpeak). Using our fits to the col-
umn density distribution and quasar lifetimes and calcu-
lating νEν,obs as above, we reproduce the integrated ob-
served spectrum quite well (black dashed line). For com-
parison, we show that it is not a good approximation to red-
den the spectrum with a constant NH, giving the results for
NH = 1021,1021.5,1022,1022.5, and 1023 cm−2 (thin dot-dashed

lines). Even allowing for a distribution of NH values, the re-
sulting spectrum is a poor match to the observed one if that
distribution is taken to be static (i.e. luminosity-independent,
as in traditional torus models, for example). We show the
results of reddening the intrinsic spectrum by such a (Gaus-
sian) distribution, varying the dispersion σNH

= 0.4, 0.7, 1.0
(blue, green, and red dashed lines, respectively), for a median
column density N̄H = 1022 cm−2, the median column density
expected around Lpeak in this simulation. Therefore, the lumi-
nosity and host system property dependence of both quasar
lifetimes and the column density distribution must be ac-
counted for in attempting to properly predict the X-ray back-
ground spectrum from observations of the quasar luminosity
function. Finally, note that the hard cutoff in the observed UV
spectra at 912Å owes to our calculated cross-sections being
incomplete in the extreme UV. Properly modeling the escape
fraction and observed emission at these frequencies, while not
important for the X-ray background, is critical to calculat-
ing the contribution of quasars to reionization, and requires
a more detailed modeling of scattering and absorption, espe-
cially in the bright optical quasar phase.

7.2. The Integrated X-Ray Background

Given the volume emissivity jν (z) (per unit comoving vol-
ume) of some isotropic process at a given frequency at redshift
z, the resulting background specific intensity at frequency ν0
at z = 0 is (Peacock 1999)

Iν0 =
c

4π

∫

jν [(1 +z)ν0,z]
(1 +z)H(z)

dz. (41)

If we were to consider the emissivity jν per unit physical vol-
ume, there would be an extra factor of (1 +z)−3 in the integral
above. In § 7.1, we determined the integrated observed en-
ergy Eν,obs(Lpeak) produced by a quasar with peak luminosity
Lpeak. We have also inferred ṅ(Lpeak)(z) in § 3.2, the rate at
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which quasars of peak luminosity Lpeak are created per unit
comoving volume per unit cosmological time. Therefore, the
comoving volume emissivity is just

jν (z) =
∫

Eν,obs(Lpeak) ṅ(Lpeak)d logLpeak, (42)

or, expanding Eν,obs,

jν(z) =
∫

d logLpeak

∫

d logL

× fν〈e−τν 〉L
dt(L,Lpeak)

d logL
ṅ(Lpeak). (43)

If the column density distribution were independent of Lpeak,
as is assumed in even luminosity-dependent torus models or
observationally determined NH functions used for X-ray back-
ground synthesis (e.g., Ueda et al. 2003), then we could com-
bine terms in Lpeak and integrate over them. This simplifica-
tion, along with the definition of the luminosity function in
terms of Lpeak, gives the more traditional formula for the X-
ray background in terms of only the observed column density
distribution and luminosity function,

jν (z) =
∫

d logL
dΦ

d logL
Lν〈e−τν 〉. (44)

However, as we showed in § 3.3 and § 7.1, neglecting the
dependence on Lpeak is not a good approximation at all lu-
minosities and gives an inaccurate estimate of the integrated
quasar spectrum; therefore, “purely observation-based” syn-
thesis models of the X-ray background will be inaccurate in
a similar manner to synthesis models with an inappropriate
model for the quasar lifetime. Essentially, this “averages out”
the varying distribution of column densities with Lpeak, which
changes the shape of the spectrum in a non-linear manner, es-
pecially when integrated over varying bolometric corrections
as shown above.

Figure 25 (upper panel) shows the predicted X-ray back-
ground spectrum from our full modeling of quasar lifetimes
and obscuration (solid lines). We use our analytical fits to the
quasar lifetime and column density distributions as in § 7.1
above, as Figure 24 demonstrates that they accurately repro-
duce the actual integrated quasar X-ray spectra of the simu-
lations, and the analytical forms are integrated over all lumi-
nosities and redshifts. The dotted lines show the deviation
resulting from shifting the parameters describing our fitted
ṅ(Lpeak) distribution by 1σ in either direction, although degen-
eracies in the parameters suggest that the actual uncertainty in
the background prediction is smaller. The dashed line shows
the predicted X-ray background if we ignore the broadening
of the NH distribution across simulations (σNH

= 1.2) and in-
stead consider only the dispersion of an individual simulation
at a given luminosity (σNH

= 0.4).
These can be compared to the observations of Gruber et al.

(1999) (red curve, for E ≥ 3keV) and Barcons et al. (2000)
(cyan curve, for E ≤ 10keV). We increase the normalization
of the Gruber et al. (1999) spectrum to match that of the best
estimate from Barcons et al. (2000) over the range of overlap,
determined from combined ASCA, BeppoSAX, and ROSAT
data to be 10.0+0.6

−0.9 keVcm−2 s−1 sr−1 keV−1 at 1 keV. The uncer-
tainty in the normalization between the two samples, ∼ 20%,
is shown as the shaded yellow range (alternatively, this repre-
sents the ∼ 2σ errors in the ROSAT normalization).

In the middle panel of the figure, we calculate the predicted
X-ray background using our full model of the quasar life-
time, but with different models for quasar obscuration. The
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FIG. 25.— Predicted integrated X-ray background spectrum (solid black
line) from our model of quasar lifetimes and attenuation, with the peak lu-
minosity distribution ṅ(Lpeak) determined from the luminosity function. Blue
and red thick lines show the observed spectrum from Barcons et al. (2000)
and Gruber et al. (1999), respectively. The shaded yellow area illustrates the
uncertainty in normalization between both samples (alternatively, 2σ errors
in the Barcons et al. 2000 normalization). The predictions given 1σ devia-
tions in the fitted ṅ(Lpeak) distribution (dotted lines) and given the ṅ(Lpeak)
distribution determined from hard X-ray data only (dashed line) are shown in
the upper panel. Middle panel shows the prediction using our modeling of
quasar lifetimes but different models of obscuration, lower panel the predic-
tion with a “light-bulb” or exponential (constant Eddington ratio) model and
different obscuration models.

solid black line shows the prediction using our full model
of quasar obscuration, and is identical to the solid black line
in the upper panel. The observations are likewise shown in
an identical manner to the upper panel. The dashed black
line is the prediction adopting the standard torus model for
quasar obscuration, and the dotted line adopts the receding
(luminosity-dependent) torus model. These models produce
the same overall ∼ 30keV normalization, as this is relatively
unaffected by obscuration, but they predict a slightly (∼ 20%)
higher background at low energies, giving a slightly softer
spectrum. This may appear counterintuitive, given that in
Figure 12 these models tend to overpredict the number of
high-column density sources, but this is because these models
predict a strongly bimodal column density distribution, with
unobscured sightlines encountering negligible column densi-
ties. These unobscured sightlines dominate the soft X-ray in-
tegrated spectrum, where the large column densities through
the torus attenuate the quasar spectrum heavily. However,
this net offset in the predicted background spectrum is gen-
erally within the range of the systematic theoretical and ob-
servational uncertainties, and can further be alleviated by tun-
ing the parameters of the torus model to fit the X-ray back-
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ground spectrum (e.g. Treister & Urry 2005, although their
fits require a larger fraction of Compton-thick NH ∼ 1025 cm−2

sources than shown for even the receding torus model in
Figure 12). The feature at . 5keV in the standard torus
model prediction is a consequence of assuming that “unob-
scured” lines of sight encounter negligible column density,
and does not appear if such sightlines encounter moderate
(∼ 1021 cm−2) columns.

The lower panel of the figure shows the predicted X-ray
background spectrum if we instead consider a light-bulb or
exponential light curve (fixed Eddington ratio) model for the
quasar lifetime, again with various descriptions of quasar ob-
scuration. In such models, the predicted X-ray background
spectrum is independent of the quasar lifetime or character-
istic Eddington ratio assumed (see Equation 44). However,
as shown in Figure 24, these models do imply a different inte-
grated spectrum for quasars; i.e. different effective bolometric
corrections for predicting the X-ray background. In particular,
in this model, the observed quasar spectrum at a given lumi-
nosity (averaged over the quasar population at that luminos-
ity) is the same as the “effective” quasar spectrum one would
use to calculate the total contribution to the X-ray background
from quasars of the corresponding observed or peak luminos-
ity, whereas this is not true in our model of quasar lifetimes.
The observations are shown in the same manner as the pre-
ceding panels. The black solid line shows the prediction with
this simplified model for the quasar lifetime, but still adopting
our full model for obscuration as a function of instantaneous
and peak luminosity, the dashed line assumes instead a stan-
dard torus model for obscuration, and the dotted line assumes
a receding torus for the obscuration. The variations among
different obscuration models are relatively small at most en-
ergies, and similar to those discussed above adopting our full
model of quasar lifetimes.

In all three cases, however, this model for the quasar life-
time significantly under-predicts the X-ray background, par-
ticularly at the ∼ 30keV peak. This shortfall is well-known,
and earlier attempts (e.g., Madau et al. 1994; Comastri et al.
1995; Gilli et al. 1999, 2001; Pompilio et al. 2000; Ueda et al.
2003) have generally had to invoke additional assumptions
about large obscured populations or a strong increase in the
obscured fraction with redshift, neither of which is consistent
with observations (e.g., Hasinger 2002; Barger et al. 2003;
Ueda et al. 2003; Szokoly et al. 2004; Barger et al. 2005).
The difference between the predictions of various quasar life-
time models is, as explained above, attributable to the differ-
ence between the integrated quasar spectrum produced in our
full model of the quasar lifetime (in which quasars spend long
periods of time at low luminosities, with harder X-ray spec-
tra), and the integrated spectrum in these simplified quasar
lifetime models, which is proportional to the instantaneous
quasar spectrum, and therefore underpredicts the hard X-ray
portion of the spectrum by as much as ∼ 50%.

Our prediction of the X-ray background agrees well with
the observed spectrum over the range ∼ 1 −100keV. (At en-
ergies above 100keV it is likely that processes we have not
included, such as those involving magnetic fields, contribute
significantly to the background.) Unlike previous synthesis
models for the X-ray background, we are able to do so without
invoking assumptions about large Compton thick populations
or larger obscured populations at different redshifts. In part,
this is because our modeling allows us to predict, based on
ṅ(Lpeak) and our column density formulation, the population
of Compton thick sources (see Figure 12). However, as we

have demonstrated, it is primarily because the deficit in pre-
vious synthesis models can be attributed to their inability to
properly account for the dependence of quasar lifetimes and
attenuation on both the instantaneous quasar luminosity and
the host system properties (peak luminosity). Our picture, on
the other hand, yields an estimate for the X-ray background
spectrum that is simultaneously consistent with the observed
supermassive black hole mass distribution and total density,
as well as the “luminosity-dependent density evolution” ob-
served in X-ray samples (Hopkins et al. 2005f). The back-
ground is primarily built up from z ∼ 2.5 to z ∼ 0.5, as is
evident from the evolution of the black hole mass density in
Figure 22, although a harder spectrum at low luminosities will
weight this slightly towards lower redshifts (where more low-
luminosity quasars are forming). Compton thick and relaxing,
low-luminosity sources are accounted for, not as large, inde-
pendent populations, but as evolutionary phenomena continu-
ously connected to the “normal” quasar population.

8. DISCUSSION

8.1. General Implications of our Model

Our modeling suggests two important paradigm shifts in
interpreting quasar populations and evolution:

(1) First, as proposed in Hopkins et al. (2005c), a proper ac-
counting of the luminosity dependence of quasar lifetimes (as
opposed to models in which quasars grow in a pure exponen-
tial fashion or turn on and off as “light bulbs”) implies a novel
interpretation of the luminosity function. The steep bright
end (luminosities above the “break” in the luminosity func-
tion) consists of quasars radiating near their Eddington limits
and is directly related to the distribution of intrinsic peak lu-
minosities (or final black hole masses) as has been assumed
previously. However, the shallow, faint end of the luminosity
function describes black holes either growing in early stages
of activity or in extended, quiescent states going into or com-
ing out of a peak bright quasar phase, with Eddington ratios
generally between l ∼ 0.01 and 1. The “break” luminosity in
the luminosity function corresponds directly to the peak in the
birthrate of quasars as a function of peak luminosity ṅ(Lpeak).

This interpretation resolves inconsistencies in a num-
ber of previous theoretical studies. For example, semi-
analytical models of the quasar luminosity functions
(e.g., Kauffmann & Haehnelt 2000; Haiman & Menou 2000;
Wyithe & Loeb 2003) assume, based on simplified models for
the quasar lifetime, that quasars at the faint end of the lumi-
nosity function correspond to low final-mass black holes (low
Lpeak ∼ L), presumably in small halos. Consequently, these
models overpredict the number of active low-mass black holes
(as estimated from radio source counts), especially at high
redshift, by orders of magnitude (Haiman, Quataert, & Bower
2004), and overpredict the number of low-mass spheroids and
red galaxies observed (Hopkins et al. 2005e).

Moreover, both observations (McLure & Dunlop 2004) and
comparison of the present-day black hole mass function with
radio and X-ray luminosity functions (e.g. Merloni 2004) sug-
gest anti-hierarchical evolution for the growth of supermas-
sive black holes, where the most massive black holes were
produced mainly at high (z & 2) redshift, and low-mass black
holes mostly formed later, which does not follow from ideal-
ized descriptions of quasar lifetimes and the luminosity func-
tion (for a review, see e.g. Combes 2005).

A one-to-one correspondence between observed luminos-
ity and black hole mass does produce anti-hierarchical be-
havior in some sense at the high-mass end, because the most



Quasar Origins & Evolution 39

massive black holes are formed at z ∼ 2 −3 during the peak
of bright quasar activity and the quasar luminosity function
evolves to lower luminosities at lower redshifts (as is also
the case for our model because the bright end of the lumi-
nosity function is dominated by sources near their peak lu-
minosities). However, at black hole masses equal to or be-
low ∼ 108 M⊙ (i.e. galaxies of stellar mass . 1011 M⊙), the
evolution in the quasar luminosity function implies a roughly
constant production of black holes with these masses at all
redshifts, which is inconsistent with observations of galaxy
spheroids indicating that typical ages increase with mass,
ruling out a large population of low-mass spheroids with
ages equal to or older than those of high-mass spheroids
(e.g., Treu et al. 2001; van Dokkum et al. 2001; Treu et al.
2002; van Dokkum & Stanford 2003; Gebhardt et al. 2003;
Rusin et al. 2003; van de Ven et al. 2003; Wuyts et al. 2004;
Treu et al. 2005; Holden et al. 2005; van der Wel et al. 2005;
di Serego Alighieri et al. 2005; Nelan et al. 2005). As demon-
strated in Figure 23, such a model does not produce anti-
hierarchical growth or any age gradients within the high-
mass spheroid population, also inconsistent with observa-
tions. Even given observed “luminosity-dependent density
evolution” (e.g. Page et al. 1997; Miyaji et al. 2000, 2001;
La Franca et al. 2002; Cowie et al. 2003; Ueda et al. 2003;
Fiore et al. 2003; Hunt et al. 2004; Cirasuolo et al. 2005;
Hasinger, Miyaji, & Schmidt 2005), implying that the densi-
ties of lower redshift quasars peak at lower redshift, the in-
ferred anti-hierarchical evolution if observed luminosity di-
rectly corresponds to black hole mass (i.e. as in “light-bulb”
or “fixed Eddington ratio” models) is not strong enough to ac-
count for observed anti-hierarchical growth of the correspond-
ing galaxy spheroids (Hopkins et al. 2005e).

Furthermore, in these earlier models, a “break” in the lumi-
nosity function is not necessarily reproduced (Wyithe & Loeb
2003), and the faint-end slope has no direct physical moti-
vation. The break may be caused by feedback mechanisms
which set a characteristic turnover in both the galaxy mass
function and quasar luminosity function (e.g., Scannapieco &
Oh 2004; Dekel & Birnboim 2004), as in our modeling. The
ṅ(Lpeak) distributions in our model and “light bulb” or “fixed
Eddington ratio” models are comparable at and above the
break in the quasar luminosity function, and therefore make
similar predictions for some observations at these luminosi-
ties. However, the faint-end slope has a different physical mo-
tivation in our model. Unlike the bright-end slope, which is
determined directly by the active final black hole mass func-
tion or peak luminosity distribution (in essentially all models
of the quasar lifetime), the faint-end slope in our modeling
is a consequence of the quasar lifetime as a function of lu-
minosity, and is a prediction of our simulations and model-
ing almost independent of the underlying faint-end slope of
the active black hole mass function or peak luminosity dis-
tribution. In Hopkins et al. (2005f) we examine this in more
detail, and demonstrate that it predicts well the evolution in
the faint-end quasar luminosity function slope with redshift
and the observed “luminosity-dependent density evolution”
in many samples (Page et al. 1997; Miyaji et al. 2000, 2001;
La Franca et al. 2002; Cowie et al. 2003; Ueda et al. 2003;
Fiore et al. 2003; Hunt et al. 2004; Cirasuolo et al. 2005;
Hasinger, Miyaji, & Schmidt 2005).

Other observational evidence for our picture exists; for ex-
ample in the observed distribution of Eddington ratios (see
§ 5), the distribution of low-redshift, active black hole masses
(see § 4.3), and the turnover in the expected distribution of

black hole masses in early-type galaxies at ∼ 108 M⊙ (e.g.,
Sheth et al. 2003). Total (integrated) quasar lifetimes esti-
mated from observations are inferred to increase with increas-
ing black hole mass as we predict (Yu & Tremaine 2002), and
furthermore, the Eddington ratios of observed quasar samples
are seen to increase systematically with redshift, as the sample
becomes increasingly dominated by luminosities above the
break in the luminosity function (McLure & Dunlop 2004).

Moreover, observations show that the evolution of the lu-
minosity function with decreasing redshift is driven by a de-
crease in the characteristic mass scale of actively accreting
black holes (e.g., Heckman et al. 2004), which can be ex-
plained in our model by the relation of the observed lumi-
nosity function to the peak in the distribution of active black
hole masses ṅ(Lpeak). This observation, however, has caused
considerable confusion, as observations of both radio-quiet
(Woo & Urry 2002) and radio-loud (O’Dowd et al. 2002) lo-
cal (low redshift) AGN indicate that nuclear and host lu-
minosities are uncorrelated, implying that nuclear luminos-
ity does not depend on black hole mass (Heckman et al.
2004), and therefore that the primary variable determining
the nuclear luminosity is the Eddington ratio, with the lumi-
nosity function spanning a broad range in Eddington ratios
(Hao et al. 2005). Furthermore, observations show that this
is not true of high redshift quasars, as both direct estimates
of accretion rates (e.g., Vestergaard 2004; McLure & Dunlop
2004) and the fact that their high luminosities would yield un-
reasonably large black hole masses rule out substantially sub-
Eddington accretion rates for most objects. Many previous
empirical and semi-analytical models could not simultane-
ously account for these observations. To explain just the low-
redshift observations, such models adopt tunable distributions
of Eddington ratios fitted to the data. However, both these
observations are consequences of our interpretation of the lu-
minosity function, as observations of local AGN and the low-
redshift luminosity function are dominated by quasars below
the break in the luminosity function, which are undergoing
sub-Eddington growth and span a wide range of Eddington
ratios, while observations at high redshift are dominated by
bright objects at or above the break in the luminosity function,
which are undergoing Eddington-limited (or near Eddington-
limited) growth near their peak luminosity (see § 5).

(2) The second paradigm shift indicated by our modeling is
that quasar obscuration is not a static or quasi-static geomet-
ric effect, but is primarily an evolutionary effect. The physical
reasoning for this is simple: the massive gas inflows required
to fuel quasar activity produce large obscuring columns, and
so column densities are correlated with quasar luminosity.
The basic picture of buried quasar activity associated with the
early growth of supermassive black holes and starburst activ-
ity has been proposed previously and studied for some time
(e.g., Sanders & Mirabel 1996; Fabian 1999), but our model-
ing allows us to describe the evolution of obscuration in a self-
consistent manner, defining obscured and unobscured phases
appropriately and identifying dynamical correlations between
the column density distribution and instantaneous and peak
luminosities.

There is substantial observational support for this picture.
Point-like X-ray sources have been observed in many bright
sub-millimeter or infrared and starburst sources, with es-
sentially all very luminous infrared galaxies showing ev-
idence of buried quasar activity (e.g., Sanders & Mirabel
1996; Komossa et al. 2003; Ptak et al. 2003), indicating si-
multaneous buried black hole growth and star formation
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at redshifts corresponding to peak quasar activity (z & 1)
(Alexander et al. 2005a,b). The buried black holes in high-
z starbursting galaxies appear to be active but undermassive
compared to the quiescent galaxy black hole-stellar mass rela-
tion (Borys et al. 2005), implying that they are rapidly grow-
ing in the starburst but have not yet reached their final masses,
presumably set in the subsequent “blowout” phase. Simi-
larly, observations suggest that obscured AGN are signifi-
cantly more likely to exhibit strong sub-millimeter emission
characteristic of star formation, implying both that obscured
black hole growth and star formation are correlated and that
obscuration mechanisms (responsible for re-radiation in the
submm and IR) may be primarily isotropic in at least some
cases (e.g., Page et al. 2004; Stevens et al. 2005). Evidence
from quasar emission line structure (e.g., Kuraszkiewicz et al.
2000; Tran 2003), directly related to the inner broad-line re-
gion, suggests that isotropic obscuration of quasars can be
important, in contradiction to angle-dependent models. Fi-
nally, many observations (e.g., Steffen et al. 2003; Ueda et al.
2003; Hasinger 2004; Grimes, Rawlings, & Willott 2004;
Sazonov & Revnivtsev 2004; Barger et al. 2005; Simpson
2005) indicate that the fraction of broad-line or obscured
quasars is a function of luminosity, which cannot be
accounted for in traditional static “torus” models (e.g.,
Antonucci 1993) or reproduced even by modified luminosity-
dependent torus models (Lawrence 1991), an observation that
is explained by our model (see § 4 for a detailed discussion).

Much of the obscuration in our modeling comes from large
scales, arising from the inner regions of the host galaxy on
scales ∼ 50pc or larger. While our resolution limits prevent
our ruling out the possibility of gas collapse to a dense, ∼pc
scale torus surrounding the black hole, during the peak ob-
scured phases of the final merger, our simulations indicate
that these large scales dominate the contribution to the col-
umn density, with quite large columns, which should be ob-
servationally testable. Indeed, this is suggested by the typi-
cal scales of obscuration in starbursting systems (e.g. Soifer
et al. 1984a,b; Sanders et al. 1986, 1988a,b; for a review,
see e.g. Soifer et al. 1987), given that, as discussed above,
the dominant obscured phase of growth is closely associated
with a starburst as implied observationally (Alexander et al.
2005a,b; Borys et al. 2005).

Observations of polarized light in intrinsically bright Type
II AGN with unobscured luminosities typical of quasars (as
opposed to local, dim Seyfert II objects in relaxed hosts) show
scattering on large scales ∼kpc, and in some cases obscura-
tion clearly generated over scales extending beyond the host
galaxy in the form of distortions, tidal tails, and streams from
interactions and major mergers (Zakamska et al. 2004, 2005).
The angular structure seen in these observations is consistent
with our modeling. Moreover, in optically faint X-ray quasars
(e.g. Donley et al. 2005) it appears that obscuration is gener-
ated by the host galaxies, and is directly related to host galaxy
morphologies and line-of-sight distance through the host. The
critical point is that, regardless of the angular structure of
obscuration, typical column densities are strongly evolving
functions of time, luminosity, and host system properties, and
the observed distribution of column densities is dominated
by these effects, not by differences in viewing angle across
a uniform population. This is the case in our modeling as the
lognormal dispersion (across different lines of sight) in col-
umn densities is σNH

∼ 0.4 for a given simulation at some in-
stant, whereas typical column densities across simulations, as
a function of instantaneous and peak luminosities, span sev-

eral orders of magnitude from NH ∼ 1018 −1026 cm−2.

8.2. Specific Predictions of our Model

Our predictions include:

• Quasar Lifetimes: We find that for a particular source,
the quasar lifetime depends sensitively on luminos-
ity, with the observed lifetime in addition depending
on the observed waveband. Intrinsic quasar lifetimes
vary from tQ ∼ 106 −108 yrs, with observable lifetimes
∼ 107 yrs in optical B-band (Hopkins et al. 2005a,b), in
good agreement with observational estimates (for a re-
view, see Martini 2004).

• Luminosity Functions: Using a parameterization of the
intrinsic distribution of peak luminosities (final quasar
black hole masses) at a given redshift, our model of
quasar lifetimes allows us to reproduce the observed
luminosity function at all luminosities and redshifts
z = 0 −6. Although this is an empirical determination
of the peak luminosity distribution, it implies a new in-
terpretation of the luminosity function (Hopkins et al.
2005c), which provides a physical basis for the ob-
served “break” corresponding to the peak in the peak
luminosity distribution. Moreover, the faint end slope
is not determined by our empirical fitting procedure,
but instead by the dependence of the quasar lifetime
on luminosity, with its value and redshift evolution pre-
dicted by our modeling (Hopkins et al. 2005f). The
evolution of typical column densities in different stages
of merger activity produces a significant population
of obscured quasars, accounting for the difference be-
tween hard X-ray (e.g., Ueda et al. 2003), soft X-ray
(e.g., Miyaji et al. 2001), and optical B-band (e.g.,
Croom et al. 2004) luminosity functions (§ 3.2).

• Column Density Distributions: The evolution of the
column densities in our simulations reproduces the
observed distribution of columns in optically-selected
quasar samples, when the appropriate selection criteria
are applied (Hopkins et al. 2005b), as well as complete
column distributions in hard X-ray selected samples
(§ 3.3). Column density evolution over the course of a
merger yields a wider observed distribution of columns
than that produced across different viewing angles at a
given point in a merger.

• Broad Line Luminosity Function and Fraction: Using
our simulations to estimate when quasars will be ob-
servable as broad-line objects (either based on the ra-
tio of quasar to host galaxy optical B-band luminos-
ity or the obscuring column density), we reproduce
the luminosity function of broad-line quasars in hard
X-ray selected samples as well as optical broad-line
quasar surveys, and the fraction of broad-line quasars
in a given sample as a function of luminosity, to bet-
ter precision than traditional or luminosity-dependent
(but non-dynamical) torus models which are fitted to
the data (§ 4.2). By providing an a priori prediction
of the broad-line fraction as a function of luminosity
and redshift which depends systematically on the typ-
ical quasar host galaxy gas fraction, we propose that
observations of the broad line fraction at different red-
shifts can be used to constrain the gas fraction of quasar
hosts and its evolution with redshift.
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• Active Black Hole Mass Functions: Using our pre-
scription for deciding when objects will be visible as
“broad-line” quasars, we predict the distribution of low-
redshift, broad-line and non-broad line active quasar
masses, in good agreement with observations from the
SDSS, with expected incompleteness in the observed
sample at low MBH . 106 M⊙ black hole masses (§ 4.3).
This is a new prediction which can be tested in greater
detail by future observations, and our calculations allow
us to model the differences in active black hole mass
functions of the Type I and Type II populations. The
width of the expected broad-line black hole mass func-
tion depends significantly on the model of quasar life-
times, enabling such measurements to probe the statis-
tics of quasar evolution.

• Eddington Ratios: We determine Eddington ratio distri-
butions from our simulations, given the peak luminosity
distribution implied by the observed quasar luminosity
function. The predicted distribution, once the appropri-
ate observed magnitude limit is imposed, agrees well
with observations at both low (z < 0.5) and high (1.5 <
z < 3.5) redshifts (§ 5). As noted above, our inter-
pretation of the luminosity function explains seemingly
contradictory observations of Eddington ratios at dif-
ferent redshifts. There is even a suggestion (Cao & Xu
2005) that the evolution of quasars seen in our simula-
tions (with bright phases in mergers and extended re-
laxation after) can account for observations of bimodal
Eddington ratio distributions at z ∼ 0 (Marchesini et al.
2004), when coupled with an appropriate description
of radiatively inefficient accretion phases, although it is
possible that many of these low-redshift black holes are
not fueled by mergers, especially in e.g. low-luminosity
Seyferts.

• Relic Black Hole Mass Function: With our model for
quasar lifetimes, the luminosity function at a given red-
shift implies a birthrate of sources with given peak lu-
minosities, ṅ(Lpeak), which translates to a distribution
in final black hole masses. Integrating this over red-
shift, we predict the present-day mass distribution and
total mass density of supermassive black holes. They
agree well with observational estimates inferred from
local populations of galaxy spheroids. In our picture,
these spheroids are produced simultaneously with the
supermassive black holes they harbor (§ 6). We demon-
strate that the integrated supermassive black hole den-
sity, quasar flux density, and number counts in differ-
ent wavebands can be reconciled with a radiative effi-
ciency ǫr = 0.1, satisfying the constraints of counting
arguments such as that of Soltan (1982). Further, we
show in § 2.4 and § 4.1 that the corrections to such
observational arguments based on optical quasar sam-
ples are small (order unity) when we account for the
luminosity dependence of quasar lifetimes, despite an
extended obscured phase of quasar growth. In other
words, although a quasar spends more time obscured
than it does as a bright optical source, the total mass
growth and radiated energy are dominated by the final
“blowout” stage visible as a bright optical quasar.

• X-ray Background: The integrated quasar spectrum
from our models of quasar lifetimes and column den-
sities as a function of instantaneous and peak luminosi-

ties can be combined with the birthrate of quasars with
a given peak luminosity to give the integrated cosmic
background in any frequency range. We predict both
the normalization and shape of the X-ray background
from ∼ 1 −100 keV, with our modeling accounting for
quasar obscuration as an evolutionary process (with a
corresponding population of Compton-thick objects),
avoiding any need for arbitrary assumptions about ad-
ditional obscured populations (§ 7.2). For any model
in which the quasar spectrum depends on luminosity or
accretion rate, we demonstrate that a proper modeling
of the quasar lifetime is critical to reproducing observed
backgrounds.

• Correlation Functions: In Lidz et al. (2005), we predict
the quasar correlation function and bias as a function
of redshift and luminosity using our model, and com-
pare it to that expected using “light bulb” or exponential
light curves. As most quasars in our modeling have a
characteristic peak luminosity or final black hole mass
corresponding to the peak of the ṅ(Lpeak) distribution,
they reside in hosts of similar mass, and there is lit-
tle change in bias with luminosity at a given redshift,
in contrast to idealized models for the quasar lifetime
and luminosity function. Our predicted bias agrees well
with the observations of Croom et al. (2005), who also
find no evidence for a dependence of the correlation
on quasar luminosity at a given redshift, as we expect.
In fact, Porciani, Magliocchetti, & Norberg (2004) and
Croom et al. (2005) find that their observations can be
explained if quasars lie in hosts with a constant char-
acteristic mass ∼ 2×1012 M⊙ (h = 0.7). If we consider
their redshift range z ∼ 1−2, we predict the quasar pop-
ulation will be dominated by sources with Lpeak = L∗(z),
which given M

f

BH(Lpeak) and using the MBH −Mhalo rela-
tion of Wyithe & Loeb (2003) yields a nearly constant
characteristic host halo mass ∼ 1−2×1012 M⊙, in good
agreement. Similarly, Adelberger & Steidel (2005) find
that the quasar-galaxy cross-correlation function does
not vary with luminosity, implying with ∼ 90% confi-
dence that faint and bright quasars reside in halos with
similar masses and that fainter AGN are longer lived,
strongly disfavoring traditional “light bulb” and expo-
nential light curve models. Furthermore, Hennawi et al.
(2005) find an order of magnitude excess in quasar clus-
tering at small scales . 40h−1 kpc, with the correlation
function becoming progressively steeper at sub-Mpc
scales, suggesting that quasar activity is triggered by
interactions and mergers.

• Host Galaxy Properties: Because black hole growth
and spheroid formation occur together in our picture,
our modeling allows us to describe relationships be-
tween black hole and galaxy properties. For exam-
ple, we reproduce both the observed MBH −σ relation
(Di Matteo et al. 2005; Robertson et al. 2005b) and the
fundamental plane of elliptical galaxies (Robertson et
al., in preparation). Since we also reproduce the distri-
bution of relic black holes inferred from the z = 0 dis-
tribution of spheroid velocity dispersions or luminosity
functions using the observed versions of these relations,
our match to these relations indicates that we also re-
produce these distributions of host spheroid properties.
We consider this in detail in Hopkins et al. (2005e), and
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find that we are able to account for a wide range of host
galaxy properties, including luminosity and mass func-
tions, color-magnitude relations, mass-to-light ratios,
and ages as a function of size, mass, and redshift. With
our modeling of the quasar lifetime as motivated by our
simulations, the evolution and distribution of properties
of red-sequence galaxies and the quasar population are
shown to be self-consistent, which is not the case for
idealized models of quasar evolution.

Aside from an empirical estimate of the distribution of peak
quasar luminosities ṅ(Lpeak), we determine all of the quantities
summarized above self-consistently from the input physics of
our simulations, including a physically motivated dynamic ac-
cretion and feedback model in which black holes accrete at the
Bondi rate determined from the surrounding gas, and ∼ 5% of
the radiant energy couples thermally to that gas. Beyond this,
our simulations enable us to calculate the various predictions
above a priori, without the need for additional assumptions or
tunable parameters.

We compare each of these predictions to those obtained us-
ing idealized descriptions of the quasar lifetime, i.e. “light-
bulb” and exponential light curve (constant Eddington ratio)
models, and the column density distribution, i.e. standard and
“receding” (luminosity-dependent) torus models. We fit all
these (along with our full model) to the observed luminos-
ity function in the same manner (allowing the same degree
of freedom to ensure that they all yield the same observed
luminosity function), and we fit the free parameters of these
tunable models (e.g. typical Eddington ratios and quasar life-
times for the “light-bulb” or exponential models, typical col-
umn densities and torus scalings for the torus models) inde-
pendently to each observation to maximize their ability to re-
produce observations. However, we still find better agreement
between our model (with no parameters tuned to match obser-
vations) and the observations in nearly every case where the
tunable phenomenological model is not guaranteed to repro-
duce the observation by construction. The one exception is
the relic supermassive black hole mass function, for which
the predictions of our modeling and idealized lifetime models
are essentially identical, reflecting the fact that in both cases
black hole growth is dominated by bright, optically observ-
able, high Eddington ratio phases.

Moreover, the best-fit parameters for the idealized mod-
els, when fitted independently to each observation, are not
self-consistent. For example, calculations of the black hole
mass function imply high Eddington ratios l ∼ 0.5 −1 (e.g.,
Yu & Tremaine 2002), and our fit to the active black hole
mass function (Heckman et al. 2004) suggests l ∼ 1, but the
observed distribution of accretion shows a typical l ∼ 0.3
(Vestergaard 2004), and fitting to the broad-line fraction as
a function of luminosity with our full obscuration model but
these lifetime models implies a lower l ∼ 0.05. Likewise,
fitting torus models to the X-ray background suggests typ-
ical column densities through the torus of NH ∼ 1025 cm−2

(e.g., Treister & Urry 2005), while fitting to the observed col-
umn density distributions (Treister et al. 2004; Mainieri et al.
2005) suggests equatorial columns NH . 1024 cm−2. Clearly
then, reproducing the observations listed above, and in partic-
ular doing so self-consistently, is not implicit in any model
which successfully reproduces the quasar luminosity func-
tion, even at multiple frequencies.

8.3. Further Testable Predictions of our Model

Our model for quasar evolution makes a number of obser-
vationally testable predictions:

• Quasar lifetimes are only weakly constrained by obser-
vations (e.g. Martini 2004), but future studies may be
able to measure both the lifetime of individual quasars
and the statistical lifetimes of quasar populations as
a function of luminosity. We describe in detail our
predictions for the evolution of individual quasars and
quantify their lifetimes in § 2, and further predict the
distribution of both integrated and differential lifetimes
in an observed sample as a function of luminosity. This
should provide a basis for comparison with a wide
range of observations, with the most important predic-
tion being that the quasar lifetime should increase with
decreasing luminosity.

• For a reasonably complete, optically selected sample
above some luminosity, the distribution of observed
column densities should broaden to both larger and
smaller NH values as the minimum observed luminosity
is decreased, as both intrinsically faint periods with low
column density and intrinsically bright periods with
high column density become observable.

• Similarly, the Eddington ratio distribution should be a
function of observed luminosity, with a broad distribu-
tion of Eddington ratios down to l ∼ 0.01 −0.1 at lumi-
nosities well below the break in the observed luminos-
ity function, and a more strongly peaked distribution
about l ∼ 0.2 −1 for luminosities above the break (Fig-
ure 20).

• In our interpretation, the bright and faint ends of the
luminosity function correspond statistically to similar
mixes of galaxies, but in various stages of evolution;
whereas in all other competing scenarios, the quasar
luminosity is directly related to the mass of the host
galaxy. Therefore, any observational probe that differ-
entiates quasars based on their host galaxy properties
such as, for example, the dependence of the cluster-
ing of quasars on luminosity, or the host stellar mass
and size as a function of luminosity (although we cau-
tion that this is somewhat dependent of the modeling
of star formation in mergers), can be used to discrim-
inate our picture from older models. We present a
detailed prediction of the quasar correlation function
based on our modeling for comparison with observa-
tions in Lidz et al. (2005).

• Our distribution ṅ(Lpeak) directly translates to a black
hole merger rate, as a function of mass, in our model-
ing, allowing a detailed prediction of the gravitational
wave signal from black hole mergers as a function of
redshift.

• The broad line fraction as a function of luminosity, de-
fined by requiring that “broad-line” objects have an ob-
served B-band luminosity above a fraction fBL of that
of their host galaxy, is a prediction of our model quasar
and galaxy light curves. However, the uncertainties are
large, primarily because different observational sam-
ples have varying sensitivity to quasar vs. host galaxy
optical light. Furthermore, the host galaxy gas fraction
and fBL are degenerate in these predictions – a well-
defined observational sample complete to some fBL can
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constrain our modeling of quasar fueling and the rela-
tion between quasar and host galaxy light curves. In
particular, such observations, either by measuring the
faint-end shape of the “broad-line” quasar luminosity
function or the mean “broad-line” fraction at a given lu-
minosity as a function of redshift, can constrain the gas
fractions of quasar host galaxies and their evolution, es-
sentially a free parameter in our empirical modeling.

• We also predict the distribution of active, low-redshift
black hole masses in § 4. These predictions can be com-
pared to mass functions for active black holes from nu-
merous quasar surveys, which should include improved
mass functions of the entire quasar population complete
to lower luminosities as well as future mass functions
for the population of active broad-line AGN. We pro-
vide predictions for the black hole mass function of all
active quasars, and for just the “broad-line” population
(as a function of the survey selection).

• Because the evolution of spheroids and supermassive
black holes is linked in our modeling, with each affect-
ing the evolution of the other, we can also use the distri-
bution of observed quasar properties to predict galaxy
properties such as number counts, spheroid masses and
luminosities, and colors as a function of redshift. For
the calculation and discussion of these predictions, see
Hopkins et al. (2005e).

• In our model, the growth of supermassive black holes
is dominated by galaxy mergers. Therefore, at any
given redshift, the mass (and as a consequence, lu-
minosity) function of galaxy mergers should have a
similar shape to our distribution of quasar birthrates,
ṅ(Lpeak), distinct from the shapes of either the quasar
or total galaxy luminosity functions. Indeed, prelim-
inary observational estimates of both the merger lu-
minosity function (e.g., Xu et al. 2004; Conselice et al.
2003; Wolf et al. 2005) and quasar host galaxy lu-
minosity function (Bahcall et al. 1997; Hamilton et al.
2002), primarily at low redshifts, appear be consistent
with this expectation. Theoretically, it may be possi-
ble to predict the merger luminosity function using ei-
ther cosmological simulations or semi-analytical mod-
els; we discuss this further in § 9.

8.4. Mock Quasar Catalogs

In principle, our modeling can be used to predict the distri-
butions of quasar luminosities in various wavebands, column
densities, active black hole masses, and peak luminosities for
a wide range of observational samples, but it is impractical
for us to plot predictions of these quantities for all possible
sample selection criteria. To enable comparison with a wider
range of observations, we have used our modeling and the
conditional probability distributions for these quantities from
our simulations to generate Monte Carlo realizations of quasar
populations, which we provide publicly via ftp4.

At a particular redshift, we use our fitted ṅ(Lpeak) distribu-
tion and our suite of simulations to generate a random popula-
tion of mock “quasars.” We first generate the peak luminosi-
ties of each “quasar” according to the fitted ṅ(Lpeak) at that
redshift. For each object, we then use the probability of be-
ing at a given instantaneous luminosity in simulations with a

4 ftp://cfa-ftp.harvard.edu/pub/phopkins/qso_catalogs/

similar peak luminosity to generate a current bolometric lumi-
nosity. In practice, we calculate the P(L |Lpeak) distribution by
summing w(Lpeak, Lpeak, i)× P(L |Lpeak, i), where Lpeak is the
mock quasar peak luminosity, Lpeak, i is the peak luminosity
of each simulation and w(Lpeak, Lpeak, i) is a Gaussian weight-
ing factor (∝ exp(−log2(Lpeak/Lpeak, i)/2(0.05)2)). Knowing
the instantaneous bolometric luminosity L and peak luminos-
ity Lpeak, we then follow an identical procedure to determine
the joint distribution P(X |L, Lpeak) of each subsequent quan-
tity X , from simulations with similar L and Lpeak. We have
compared this with Monte Carlo realizations based on our fit-
ted probability distributions in this paper, and find that essen-
tially identical results are achieved for e.g. the distribution of
L and Lpeak, and column densities in phases of growth not near
peak luminosity. However, this modeling is not identical for
e.g. the distribution of Eddington ratios and column densities
around L ∼ Lpeak, which reflects the fact that our fits to the
Eddington ratio distribution (§ 5) are rough and that our fits
to the column density distribution do not apply to the final
“blowout” phase of quasar evolution (as discussed in detail in
§ 4).

For each mock quasar, we generate a peak luminosity, fi-
nal (post-merger) black hole mass, instantaneous bolomet-
ric luminosity, intrinsic (un-attenuated) B-band (νLν at ν =
4400Å), soft X-ray (0.5-2 keV), and hard X-ray (2-10 keV)
luminosity, observed (attenuated using the generated column
density and the reddening/dust extinction modeling described
in § 2.2, with SMC-like reddening curves and extinction fol-
lowing e.g. Pei 1992, Morrison & McCammon 1983) B-band,
soft X-ray, and hard X-ray luminosities, column density of
neutral hydrogen, column density of neutral+ionized hydro-
gen, and instantaneous black hole mass. The intrinsic lumi-
nosities in each band are calculated using the bolometric cor-
rections described in Marconi et al. (2004), which account for
the luminosity dependence of the optical-to-X-ray luminos-
ity ratio αOX (as discussed in § 3.2), and then attenuated to
give the observed luminosities. We also provide intrinsic and
attenuated luminosities in each waveband using the constant
bolometric corrections of Elvis et al. (1994), but we caution
that these are not calculated in a completely self-consistent
manner, as our assumed bolometric luminosity function to
which we fit the ṅ(Lpeak) distribution is based on using the
luminosity-dependent bolometric corrections. We do not di-
rectly calculate Eddington ratios, as these are defined differ-
ently in many observed samples, but they should be calculable
with the given luminosities and black hole masses.

We calculate these quantities for a mock sample of ∼ 109

quasars at each redshift z = 0.2, 0.5, 1, 2, and 3. Most of
these quasars are at luminosities orders of magnitude below
those observed, therefore for space considerations and be-
cause our predictions become uncertain at low luminosities,
we retain only the 106 quasars with brightest bolometric lu-
minosities at each redshift. This introduces some uncertainty
in our statistics at the lowest luminosities in any given band,
but these luminosities are generally still well below those ob-
served in most samples. At any luminosity, but especially at
the brightest luminosities, there is also a significant amount
of effective “noise” owing to our incomplete sampling of the
enormous parameter space of possible mergers, and decreas-
ing total time across simulations spent at large luminosities,
which can be estimated from e.g. Figures 8 and 17. Finally,
at each redshift, we generate two distributions, reflecting the
∼ 1σ range in ṅ(Lpeak), and roughly parameterizing the de-

ftp://cfa-ftp.harvard.edu/pub/phopkins/qso_catalogs/
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generacies in our fit to the observed luminosity functions and
uncertainty in the faint-end of ṅ(Lpeak) – “Fit 1” has a lower
L∗ (lower peak in ṅ(Lpeak)), with a larger σ∗ (broader ṅ(Lpeak)
distribution), and “Fit 2” has a higher L∗ and smaller σ∗ (more
narrowly peaked ṅ(Lpeak) distribution). We show a few exam-
ple “quasars” from our z = 0.2 mock distribution in Table 1,
to demonstrate the format and units used.

8.5. Starburst Galaxies

Although we do not yet model the re-radiation of absorbed
light by dust or the contribution of stellar light to quasar host
IR luminosities, including these in our picture for quasar evo-
lution will enable us to predict luminosity functions in the
IR and sub-mm and their evolution with redshift. We can at
this point, however, estimate if our model for quasar lifetimes
and merger-driven evolution with ṅ(Lpeak) is consistent with
the observed distribution of ultraluminous infrared galaxies.
Naively, we might expect that since the obscured quasar phase
has a duration up to ∼ 10 times that of the optically observable
quasar phase, there should be ∼ 10 times as many ULIRGs as
bright optical QSOs. But, this neglects the complicated, lumi-
nosity dependent nature of quasar lifetimes.

Given that the bright quasars we simulate attain, during
their peak growth phase, an intrinsic luminosity comparable
to that of the host starburst, and that this period of peak growth
has a similar duration to the starburst phase (see Figure 13
and Di Matteo et al. 2005; Springel et al. 2005b), we can es-
timate (roughly) the ULIRG bolometric luminosity function
from our bolometric quasar luminosity function. Thus, the
more accurate comparison to the ULIRG luminosity func-
tion is with the hard X-ray quasar luminosity function, as
this recovers (and at some luminosities can be dominated by)
“buried” quasars in starburst phases. This is only applica-
ble above the break in the luminosity function, where quasars
are undergoing peak quasar growth. Below the break, quasars
are, on average, sub-Eddington and can have luminosities well
below that of their star-forming hosts (see Figure 13), so we
expect our quasar luminosity function to be significantly shal-
lower than the ULIRG luminosity function at these luminosi-
ties. Note also that this does not imply that ULIRGs are all
AGN-dominated, as the starburst and peak AGN activity can
be (and generally are) somewhat offset, but only says that the
lifetime curves at the bright end should be similar.

Considering the luminosity function at z = 0.15, then,
we expect ULIRG densities dΦ/dMbol ∼ 3 × 10−7 and 9 ×
10−8 Mpc−3 mag−1 at L ∼ 1.6×1012 L⊙ and 2.5×1012 L⊙, re-
spectively. These estimates are consistent with the observed
density in the IRAS 1 Jy Survey (Kim & Sanders 1998) at
a mean redshift z = 0.15, with dΦ/dMbol ∼ 5 × 10−7, 7 ×
10−8 Mpc−3 mag−1 (rescaled to our cosmology), and as ex-
pected, our quasar luminosity function slope becomes signif-
icantly shallower than the observed 1 Jy survey luminosity
function slope below L ∼ 1011 − 1012 L⊙, roughly the break
luminosity of the luminosity function. We predict these den-
sities to change with redshift according to the evolution of
ṅ(Lpeak), decreasing by a factor ∼ 1.5 at z = 0.04, in good
agreement with the evolution of IRAS ULIRG luminosity
functions (Kim & Sanders 1998). Likewise, at z ∼ 1 − 3,
we predict a mean space density Φ(L > 1011 L⊙) ∼ 1 − 3×
105 Mpc−3, in agreement with the ∼ 5×105 Mpc−3 density of
such sources expected to reproduce the observed cumulative
source density 4×104 deg−2 of 1 mJy 850µm SCUBA sources
(Barger et al. 1999). Furthermore, our prediction of the frac-
tion of buried AGN and its evolution with redshift agrees well

with determinations from X-ray samples (Barger et al. 2005)
and recent Spitzer results in the mid and near-infrared at z ∼ 2
(Martinez-Sansigre et al. 2005).

8.6. AGN not Triggered by Mergers

Some low redshift quasars (e.g. Bahcall et al. 1996) and
many nearby, low-luminosity Seyferts appear to reside in or-
dinary, relatively undisturbed galaxies. Our picture for quasar
evolution does not immediately account for these objects be-
cause we suppose that nuclear activity is mainly triggered by
tidal torques during a merger.

This work is primarily concerned with the origin of the ma-
jority of the mass in spheroids and supermassive black holes,
and as a consequence, the relation of this to the abundance and
evolution of quasars and the cosmic X-ray background. Based
on our present analysis, we believe that a merger-driven pic-
ture can account for the main part of each of these, and, as
described earlier, that the most relevant phase in the history
of the Universe to these phenomena appears to have been at
moderate redshifts, z ∼ 2.5 to z ∼ 0.5.

Our model does not exclude other mechanisms for trigger-
ing AGN and it is likely that a variety of stochastic or con-
tinuous processes are relevant to nuclear activity in undis-
turbed disks and residual low-level accretion in relaxed sys-
tems. This is not contrary to our picture because most of the
total black hole mass density in the Universe is in spheroid-
dominated systems. The principal requirement of our model
is that AGN activity in undisturbed galaxies should not con-
tribute a large fraction of the black hole mass density in
the Universe, to avoid spoiling tight correlations between the
black hole and host galaxy properties and producing too large
a present-day black hole mass density in violation of the
Soltan (1982) constraint.

For example, if a molecular cloud passed through the cen-
ter of our Galaxy near Sgr A∗, it is possible that the Milky
Way would resemble a Seyfert for some period of time.
Alternatively, it has long been recognized that mass loss
from normal stellar evolution of bulge stars or stellar clus-
ters near the centers of galaxies can provide a continuous
supply of fuel for low-level accretion (e.g., McMillan et al.
1981; MacDonald & Bailey 1981; Shull 1983). Typical galac-
tic stellar mass loss rates (Ṁ ∼ 1M⊙ yr−1 (1011 M⊙)−1) yield
Bondi-Hoyle accretion rates ∼ 10−5 −10−4 of Eddington in re-
laxed, dynamically hot systems; and mass loss rates from O
and W-R stars (Ṁ ∼ 10−6 M⊙ yr−1 (10M⊙)−1) in young, dense
star clusters near the centers of galaxies with sufficient cold
gas for continued star formation can yield rates as high as
∼ 10−2 of Eddington.

Even though these fueling mechanisms do not involve
mergers, the scenario we have discussed might still be rele-
vant to the origin of these black holes. Of course, the black
holes and spheroids in disk-dominated systems may have pro-
duced in a manner that did not involve mergers. Alternatively,
most of the black hole mass in these objects (which is small
compared to that in spheroid-dominated galaxies) could have
been assembled long ago in mergers with bright quasar phases
and then these “dead” quasars are resurrected sporadically by
other fueling mechanisms.

Independent of how these black holes were formed, ele-
ments of our modeling may still account for certain observed
properties of Seyferts. The observed Seyfert luminosity func-
tion appears to join smoothly onto the quasar luminosity func-
tion (Hao et al. 2005). It is not obvious that this would be
the case if the two types of objects are produced by entirely
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distinct mechanisms. In addressing this, it is useful to sepa-
rate the process by which gas is delivered to the black hole
from the subsequent evolution that determines the observed
activity. In our picture, gas is delivered to the black hole by
gravitational torques during a merger, but other mechanisms,
like bar-induced fueling may be important for objects such as
Seyferts. Regardless, the induced activity may be generic, if
black hole growth is self-regulated in the way we describe it
in our simulations.

In Hopkins et al. (2005f) we show that the faint end slope
of the quasar luminosity function in our model is partly de-
termined by the time dependence of the “blowout” phase of
black hole growth. We derive an analytical model for this us-
ing a Sedov-Taylor type analysis and show that the impact of
this feedback depends on the mass of the host. This analy-
sis does not depend on the fueling mechanism, only on the
subsequent evolution. If this self-regulated growth applies to
Seyferts as well (for example if Seyfert growth is regulated
by a balance between accretion feedback and the spheroid po-
tential, as expected if these objects obey a similar MBH −σ
relation), we would expect the Seyfert luminosity function to
smoothly join onto the quasar one, even if the fuel is delivered
in a different manner.

9. CONCLUSIONS

We have studied the evolution of quasars in simulations of
galaxy mergers spanning a wide region of parameter space. In
agreement with earlier work (Hopkins et al. 2005a), we find
that the lifetime of a particular source depends on luminosity
and increases at lower luminosities, and that quasar obscu-
ration is time-dependent. Our new, large set of simulations
shows that the lifetime and obscuration can be expressed in
terms of the instantaneous and peak luminosities of a quasar
and that these descriptions are robust, with no systematic de-
pendence on simulation parameters. We have combined these
results with a semi-empirical method to describe the cosmo-
logical distribution of quasar properties, allowing us to predict
a large number of observables as a function of e.g. luminosity
and redshift. This approach also makes it possible to compare
our picture to simpler models for quasar lifetimes and obscu-
ration.

In the model we examine, quasars are triggered by mergers
of gas-rich galaxies, which produce inflows of gas through
gravitational torquing, fueling starbursts and rapid black hole
growth. The large gas densities obscure the central black hole
at optical wavelengths until feedback energy from the growth
of the black hole ejects gas and rapidly slows further accre-
tion (“blowout”). Quasar lifetimes and light curves are non-
trivial, with strong accretion activity during first passage of
the merging galaxies and extended quiescent (sub-Eddington)
phases leading into and out of the phase of peak quasar activ-
ity associated with the final merger. The “blowout” phase in
which the quasar is visible as a bright, near-Eddington optical
source has a lifetime related to the dynamical time in the in-
ner regions of the merging galaxies, which characterizes the
timescale over which obscuring gas and dust are expelled, but
the quasar spends a longer time at lower luminosities before
and after this stage. These evolutionary processes have im-
portant consequences which cannot be captured in models of
pure exponential or “on/off” quasar growth.

Our work emphasizes several goals for quasar and galaxy
observations and theory. Observationally, it is important to
constrain the faint end of the peak luminosity distribution;
i.e. the low-mass active black hole distribution. Unfortu-

nately, our modeling of quasar lifetimes implies that the faint-
end quasar luminosity function is dominated by quasars with
peak luminosities around the break in the luminosity func-
tion, and can provide only weak constraints on the faint-end
Lpeak distribution. However, there is still hope, as for ex-
ample broad-line quasar activity is more closely associated
with near-peak luminosities, and thus probing the faint-end
of broad-line luminosity functions may in particular improve
the estimates. Moreover, studies of the black hole mass dis-
tribution (or the distribution of galaxy spheroids) as a func-
tion of redshift, extending to small spheroid masses/velocity
dispersions probes the faint end of ṅ(Lpeak). Other tech-
niques, such as studies of faint radio sources at high red-
shift (Haiman, Quataert, & Bower 2004) can similarly con-
strain these populations. Furthermore, the calculations in this
paper can be combined to better determine ṅ(Lpeak), as, given
a model for the quasar lifetime and obscuration, they all derive
from this fundamental quantity. Additional observational tests
of the modeling we have presented will provide an important
means of constraining models for AGN accretion and feed-
back; for example, the faint-end slope of the quasar lifetime
depends on how the “blowout” phase occurs and could pro-
vide a sensitive probe of feedback models, enabling the adop-
tion of more realistic and sophisticated feedback prescriptions
than we have thus far employed. Of course, improved con-
straints on the luminosity function at all luminosities at high
redshift remains a valuable means of testing theories of quasar
evolution.

Our simulations are based on isolated galaxy mergers, and
thus do not provide a cosmological prediction for the distri-
bution of peak luminosities ṅ(Lpeak), merger rates, or mass
functions - we instead have adopted a semi-empirical model,
in which we use our modeling of quasar evolution to deter-
mine these distributions from the observed luminosity func-
tion. While this allows us to predict a large number of ob-
servables and to demonstrate that a wide range of quasar and
galaxy properties are self-consistent in a model of merger-
driven quasar activity with realistic quasar lifetimes, future
theoretical work in these areas should predict the distribution
of peak luminosities ṅ(Lpeak) and its evolution with redshift.
These quantities are to be distinguished from the distribution
of observed luminosities, as the two are not trivially related in
our model or any other with a non-trivial quasar lifetime.

Although the quasar birthrate as a function of peak lumi-
nosity will be, in general, a complicated function of galaxy
merger rates, gas fractions, morphologies, and other factors,
we have parameterized it for comparison with the results of
future cosmological simulations and semi-analytical models.
This distribution is particularly valuable as a theoretical quan-
tity because it is more directly related to physical galaxy prop-
erties than even the complete (intrinsic) luminosity function,
and additionally because theoretical modeling which success-
fully reproduces this ṅ(Lpeak) distribution is guaranteed to re-
produce the large number of observable quantities we have
discussed in detail in this work. We cannot determine the cos-
mological context in our detailed simulations of the relatively
small-scale physics of galaxy mergers, and conversely, cos-
mological simulations and semi-analytical models cannot re-
solve the detailed physics driving quasar activity in mergers.
However, our determination of quasar evolution as a function
of peak luminosity or final black hole mass can be grafted
onto these cosmological models to greatly increase the effec-
tive dynamic range of such calculations. Combined with our
modeling, this would remove the one significant empirical el-
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ement we have adopted, and allow for a complete prediction
of the above quantities from a single theoretical framework.

In these efforts, we emphasize that the mergers relevant to
our picture are of a specific type. First, the merging galaxies
must contain a supply of cold gas in a rotationally supported
disk. Hot, diffuse gas, as in the halos of elliptical galaxies,
will not be subject to the gravitational torques which drive
gas into galaxy centers and fuel black hole growth. Clearly,
gas-poor mergers are also not important for this process. Sec-
ond, the mergers will likely involve galaxies of comparable,
although not necessarily equal, mass, so that the gravitational
torques excited are strong enough and penetrate deep enough
into galaxy centers to drive substantial inflows of gas. The
precise requirement for the mass ratio is somewhat ill-defined
because it also depends on the orbit geometry, but mergers
with a mass ratio larger than 10 : 1 are probably not generally
important to our model. Simulations of minor mergers involv-
ing galaxies with mass ratios . 10 : 1 (e.g. Hernquist 1989;
Hernquist & Mihos 1995) have shown that for particular or-
bital geometries, these events can produce starbursts similar
to those in major mergers, leaving behind disturbed remnants
with dynamically heated disks (e.g. Quinn et al. 1993; Mihos
et al. 1995; Walker et al. 1996). It is of interest to estab-
lish whether black hole growth can also be triggered in minor
mergers, as these events may be relevant to weak AGN activ-
ity like that in some Seyfert galaxies or LINERs.

In summary, the work presented here supports the conjec-
ture that many aspects of galaxy formation and evolution can
be understood in terms of the “cosmic cycle” in Figure 1. To
be sure, much of what is summarized in Figure 1 has been pro-
posed elsewhere, either in the context of observations or theo-
retical models. Our modeling of galaxy formation and evolu-
tion emphasizes the possibility that supermassive black holes
could be responsible for much of what goes on in shaping
galaxies, rather than being bystanders, closing the loop in Fig-
ure 1. In this sense, black holes may be the “prime movers”
driving galaxy evolution, as has been proposed earlier for ex-

tragalactic radio sources (e.g. Begelman, Blandford & Rees
1984; Rees 1984). It may seem counterintuitive that com-
pact objects with masses much smaller than those of galaxies
could have such an impact, but it is precisely the concentrated
nature of matter in black holes that makes this idea plausible.

Consider a black hole of mass MBH at the center of a spher-
ical galaxy of mass Msph with a characteristic velocity disper-
sion σ. The energy available to affect the galaxy through the
growth of the black hole will be some small fraction of its
rest-mass, Efeed ∼ ǫ f MBHc2. This can be compared with the
binding energy of the galaxy, Ebind ∼ Msphσ

2. Observations
indicate that MBH and Msph are correlated and that, roughly
MBH ∼ (0.002 −0.005)Msph (Magorrian et al. 1998; Marconi
& Hunt 2003). Therefore, the ratio of the feedback energy to
the binding energy of the galaxy is Efeed/Esph > 10ǫ f ,−2 σ−2

300,
for an assumed efficiency of 1%, ǫ f ,−2 ≡ ǫ/0.01 and scaling
the velocity dispersion to σ300 ≡ σ/300 km/sec, as for rel-
atively massive galaxies. This result demonstrates that the
supermassive black holes in the centers of spheroidal galax-
ies are by far the largest supply of potential energy in these
objects, exceeding even the galaxy binding energy. When
viewed in this way, if even a small fraction of the black hole
radiant energy can couple to the surrounding ISM, then black
hole growth is not an implausible mechanism for regulating
galaxy formation and evolution; in fact, it appears almost in-
evitable that it should play this role.
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TABLE 1
MOCK QUASAR DISTRIBUTION EXAMPLES

1Lpeak
2M

f
BH

3L 4MBH
5NH

6NH I
7Li

B
8Li

SX
9Li

HX
10Lobs

B
11Lobs

SX
12Lobs

HX

10.6 6.1 8.5 6.1 20.5 20.1 7.2 7.5 7.4 6.8 7.6 7.0 7.2 7.4 7.4 6.8 7.6 7.0
10.4 6.4 8.7 6.0 22.2 22.0 7.4 7.6 7.6 7.0 7.8 7.2 5.8 6.0 7.5 6.9 7.8 7.2
...

1Peak quasar bolometric luminosity, log10(Lpeak/L⊙)
2Final (post-merger) black hole mass, log10(M f

BH/M⊙)
3Current (at time of “observation”) intrinsic (no attenuation) bolometric luminosity, log10(L/L⊙)
4Current black hole mass, log10(MBH/M⊙)
5Total (neutral+ionized) hydrogen column density along the “observed” sightline, log10(NH/cm−2)
6Neutral hydrogen column density along the “observed” sightline, log10(NH I/cm−2)
7Intrinsic (no attenuation) B-band luminosity, log10(Li

B/L⊙), where LB = νBLνB
at νB = 4400Å.

Calculated with the luminosity-dependent bolometric corrections from (Marconi et al. 2004; left),
and constant (luminosity-independent) L = 11.8 LB (Elvis et al. 1994; right).

8Intrinsic soft X-ray (0.5-2 keV) luminosity, log10(Li
SX /L⊙).

Calculated with the luminosity-dependent bolometric corrections from (Marconi et al. 2004; left),
and constant (luminosity-independent) L = 52.5 LSX (Elvis et al. 1994; right).

9Intrinsic hard X-ray (2-10 keV) luminosity, log10(Li
HX /L⊙).

Calculated with the luminosity-dependent bolometric corrections from (Marconi et al. 2004; left),
and constant (luminosity-independent) L = 35.0 LHX (Elvis et al. 1994; right).

10“Observed” (with attenuation) B-band luminosity, log10(Lobs
B /L⊙).

Left and right use luminosity-dependent and luminosity-independent bolometric corrections, respectively, as Li
B .

11“Observed” soft X-ray luminosity, log10(Lobs
SX /L⊙).

Left and right use luminosity-dependent and luminosity-independent bolometric corrections, respectively, as Li
SX .

12“Observed” hard X-ray luminosity, log10(Lobs
HX /L⊙).

Left and right use luminosity-dependent and luminosity-independent bolometric corrections, respectively, as Li
HX .

The complete tables can be downloaded at ftp://cfa-ftp.harvard.edu/pub/phopkins/qso_catalogs/

ftp://cfa-ftp.harvard.edu/pub/phopkins/qso_catalogs/

