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ABSTRACT People usually spend several hours per day inside buildings, and they require great amounts

of energy and resources to operate. Although there are numerous studies about smart buildings, there is

still a need for new intelligent techniques for efficient smart building management. This paper proposes

the use of Wi-Fi network association information as a basis for the design of intelligent systems for smart

buildings. We propose a unified experimental methodology to evaluate machine learning (ML) models on

their capacity to accurately predict Wi-Fi access point demand for energy-efficient smart buildings. The

evaluation involves the use of multiple classification and regression models using a variety of configurations

and algorithms.We conducted an experimental analysis using our proposedmethodology to determine which

ML models provide the best performance results using data collected from a large scale Wi-Fi network

located at Fluminense Federal University (UFF) over a period of 6 months. The proposed methodology

enables the user to evaluate and to create ML models for energy efficient smart building management

systems.We achieved 86.69% accuracy for occupancy prediction using classification techniques andRMSPE

(Root Mean Squared Percentage Error) of 0.29 for occupancy count prediction using regression techniques.

INDEX TERMS Access point occupancy prediction, energy saving, machine learning, smart buildings,

Wi-Fi networks.

NOMENCLATURE
S Dataset

D Fixed and unknown distribution

xi Feature vector of the ith instance

xMi Value of the Mth feature of the feature vector of

the ith instance

Yi Set of labels associated with the ith instance

L Set of possible label values

lq qth label in the label set

|L| Label cardinality

t Set of time slots

tj jth time slot in the time slot set

tmax Maximum time slot value

Y
tj
i Label value in the jth time slot of the ith instance

Stj Training set of the jth time slot

S ′
tj

Test set of the jth time slot

Atj Accuracy of time slot tj

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonino Orsino .

TPi
tj True positive value of the jth time slot of the

ith instance

FPi
tj False positive value of the jth time slot of the

ith instance

TNi
tj True negative value of the jth time slot of the

ith instance

FNi
tj False negative value of the jth time slot of the

ith instance

Ptj Precision of time slot tj
Rtj Recall of time slot tj
F1tj F1-score of time slot tj
M Set of metrics used

RMSPEtj Root Mean Squared Percentage Error of time

slot tj
RMSEtj Root Mean Square Error of time slot tj
MAPEtj Mean Absolute Percentage Error of time

slot tj
Pext_on Access point external power when the wire-

less network interface is switched on

Pext_off Access point external power when the wire-

less network interface is switched off
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ton Time that the access points stayed with their wire-

less interface switched on

toff Time that the access points stayed with their wire-

less interface switched off

I. INTRODUCTION

Buildings play an important role in our lives. People usually

spend in average 20 hours per day inside buildings [1]. Also,

the number of inhabitants in urban areas is quickly increas-

ing [2]. Since buildings are heavily occupied, they require

great amounts of energy and resources to operate. As a con-

sequence, there are numerous studies about smart buildings

[3]–[5], specially on the creation of low cost, efficient smart

building management systems.

The key concept behind smart building management sys-

tems is the preemptive control of building infrastructure in

order to save resources such as lighting, Heating, Ventilat-

ing and Air Conditioning (HVAC), elevators and even net-

work infrastructure [3], [5], [6]. Some building management

systems do not require precise occupancy information to be

functional and capable of saving energy, especially HVAC

systems, by using fixed building control schedules [7].

Several studies have demonstrated that occupancy informa-

tion could help to reduce energy consumption in buildings,

specially in non-residential buildings [3], [8], which operate

under more predictable schedules [3].

Wi-Fi networks can be used to conduct occupancy detec-

tion or occupancy counting for buildings. The ubiquity

of large-scale Wi-Fi networks on non-residential buildings

turns them into an excellent source of information with no

additional cost [3], [4], [9]. There are several studies that

use Wi-Fi infrastructure and machine learning techniques

to create prediction models for smart building manage-

ment. Some of them collect information on the building

areas occupancy history to predict if they are occupied or

not (occupancy detection) [3], [5], [8], [10]. Others use

Wi-Fi information to predict the occupancy count of some

building areas [1], [4], [6], [9]. In this scenario, several

studies use Wi-Fi infrastructure combined with machine

learning methods to predict occupancy of building areas,

floors and rooms [1], [3]–[5], [8], [10], [11]. They do not

necessarily use the association history information from the

Wi-Fi network to build their dataset and create prediction

systems, but rather other information such as channel uti-

lization or bandwidth [1], [3]–[5], [8], [10]–[13]. Those

studies used single-label or multi-label machine learning

classification models and artificial neural networks (ANNs)

to address the occupancy detection problem using Wi-Fi

association history and developed mechanisms that decide

whether an AP should be turned on or off [1], [6], [9],

[12], [14]–[16]. There are others that use Wi-Fi associa-

tion data to create single-label machine learning regression

models to estimate the occupancy count that can also be

used on Wi-Fi AP energy saving mechanisms [3], [17].

However, those models are mostly used to develop HVAC

scheduling systems [5], [10], [11], [18]. On the other hand,

none of them has used multi-label regression methods for

occupancy count or compared and evaluated single-label and

the multi-label methods to classification models to determine

which would have greater accuracy on occupancy detection.

Thus, we fill this gap with our work.

According to Cui et al [19], energy consumption in a

Wi-Fi network is considerable. University wireless networks

display a bimodal periodic behavior with daily and weekly

cycles, and Wi-Fi Access Points (APs) may stay unused for

extensive periods of time [6], [20], [21]. These long idle

periods represent a considerable energy waste that presents

an excellent optimization opportunity. That scenario allows

the use of machine learning prediction models capable of

delivering occupancy demand predictions for network APs

throughout the day [6]. The Wi-Fi network controller can

switch off the network interface of unused APs during idle

time slots based on those predictions. Some wireless net-

work controllers have limited CPU power making it unfea-

sible to collect and predict occupancy in real time, therefore

requiring these systems tomake predictions based exclusively

on past information. But even such networks could benefit

from intelligent systems and few to no adjustments would be

required. Those systems can aid bothwireless network energy

savings and also other building systems such as elevator

scheduling. Therefore our scenario requires an analysis on

how machine learning algorithms are capable of looking at

the future based on previous information and giving accurate

predictions about the Wi-Fi network demand in both occu-

pancy detection and count methods. Such mechanism would

use the presence and number of users to create a final demand

prediction that could be used to group neighbor APs, and

choose which APs should be active to cope with the actual

network demand.

The main contribution of this paper is the proposal of a

unified experimental methodology based on machine learn-

ing to evaluate classification and regression models about

their capacity to accurately predict access point demands for

energy-efficient smart buildings. Our proposed experimen-

tal methodology considers several machine learning algo-

rithms and methods for constructing distinct classification

and regressionmodels usingmultiple input and output config-

urations. We did an experimental analysis using our unified

methodology to determine which models provide the best

results or are themost suitable for an energy-efficient wireless

network management system.

In order to conduct our experimental analysis, we built a

dataset using real user data collected from a subset of the

APs of the Fluminense Federal University (UFF) wireless

network located in a specific building of the Engineering

campus, which has 5 floors of classrooms, over a period

of 6 months, from April to September 2018. We used both

single-lable machine learning algorithms and multi-label

machine learning methods (Binary Relevance (BR) and

Classifier/Regressor Chain (CC/RC)). We built multiple

models for various output modeling, i.e., individual and col-

lective APs prediction; single and multi-label models for
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TABLE 1. Related work comparison.

predicting occupancy in multiple time slots; and multiple

features for input configurations. We evaluated these clas-

sification and regression models based on many classifi-

cation and regression metrics using our dataset. We show

how our proposed unified methodology can help to select

prediction models using machine learning for occupancy pre-

diction based on performance metrics evaluation for distinct

scenarios.

This paper is organized as follows: Section II discusses

related work. Section III presents the multi-label classifi-

cation and regression methods and performance metrics.

Section IV presents UFF’s Wi-Fi network characteristics,

the data collection process and the data analysis. Section V

explains our proposed methodology. Section VI presents our

experimental analysis. Section VII discusses the results based

on distinct usage scenarios. Finally, Section VIII presents

conclusions and future work.

II. RELATED WORK

The information collected fromWi-Fi networks, used to build

a dataset and create a prediction system, is not always the

same, as can be observed in [1], [3]–[5], [8], [10]–[13],

[22]–[24]. However, the key concept behind those studies is

collecting data about the Wi-Fi network to create a detection

or counting system usingmachine learning algorithms. Those

decision support systems provide information for an energy

saving management mechanism that controls building infras-

tructure based on its demand, such as theWi-Fi network itself

or HVAC systems.

Both classifier and regression model are used on Wi-Fi

Resource On Demand (ROD) management systems. Those

ROD systems are capable of controlling the energy state of

Access Points (APs) and turn off the unnecessary APs during

day periods based on the predicted occupation [15], [16],

[22], [25]. Some studies used classification models to address

the Wi-Fi occupancy detection problem and developed ROD

mechanisms [3], [6], [12]. Some other studies use single-label

machine learning classification methods and ANNs using

Wi-Fi data to control building lights [1], [5]. The work pre-

sented in [9] used algorithm adaptation multi-label methods

to deal with the classification problem for HVAC systems.

Regression models using Wi-Fi data to give an estimated

users count are mostly used in HVAC scheduling systems

[10], [11], [18], but some studies have also used regression

models to develop ROD strategy mechanisms [23], [24].

Table 1 compares related work about how they build occu-

pancy prediction models. We can see in the table that most

of the occupancy detection studies use single-label classifiers

and that none of the occupancy count studies use multi-label

regressors, but only single-label ones. Also, those studies

did not compare and evaluate single-label and multi-label

methods to determine which would give the best predictions,

as our work does. It is worth mentioning that while the study

of Vallero et al. [24] use and compare both individual and

collective models, it does not compare them using the same

machine learning algorithms, but it rather compares collective

and individual models using several machine learning algo-

rithms. Moreover, Table 1 shows that there was no consensus

on whether to use collective or individual models to give

predictions and that no other study compares them, as our

work does.

Finally, there are also some studies where pieces of infor-

mation related to weather and season of the year were added

to the occupancy information, in order to help on decision

support systems for smart buildings [7], [9], [18], [26]. None

of these studies have developed a methodology where the

significance of this information is evaluated though.

Our work presents a unified experimental methodology

to evaluate classification models used for occupancy detec-

tion and regression models used for occupancy count where
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several machine learning methods, input configurations,

types of model construction and machine learning algorithms

are assessed. The main goal of the assessment is to determine

which of these parameter combinations is the most suitable

and precise to give occupancy predictions. Our methodology

evaluates and compares multi-label and single-label methods

using several machine learning algorithms, collective and

individual model construction schemes and the significance

of input parameters. Another major contribution of our exper-

imental methodology and analysis is that it does not require

real-time data acquisition for forecasts.

III. MULTI-LABEL AND SINGLE-LABEL LEARNING

METHODS

In a general supervised learning scenario, a dataset S =

{(x1,Y1), . . . , (xN ,YN )} is given to the learning method,

with fixed and unknown distribution D. Each instance xi

is a vector of the form xi = (x1i , . . . , x
M
i ). Each value

(x1i , . . . , x
M
i ) is relative to each feature (X1, . . . ,XM ). Y is

a special feature called class. Yi, i = 1, . . . ,N , represents

a set of labels associated to each instance xi. If all sets

Yi, i = 1, . . . ,N , have only one value, the problem is called

single-label. So, in single-label problems, machine learning

algorithms have only one possible output prediction. How-

ever, some machine learning problems cannot be treated as

a single-label problem [27]. There are cases, such as movie

classification, where a movie can be classified as action and

fiction simultaneously [28]. Multi-label machine learning

algorithms and methods are those capable of dealing with

more than one exclusive output. In other words, if the sets Yi
contain one or more values, the problem is called multi-label.

In a multi-label problem, a set L = {l1, . . . , lq} is given, such

that all Yi ∈ L.

There aremany distinct methods to tacklemulti-label prob-

lems. Problem transformation is the simplest and the most

often used, converting the multi-label problem with L labels

into L single-label problems, i.e., each label lq ∈ L is turned

into a feature, composing a set of features lq, q = 1, . . . ,Q.

The cardinality of L is denoted by |L|. Thus, each feature lq
is a class associated with the set of instances xi to be given to

a single-label classification algorithm [29]. In our scenario,

for modeling occupancy prediction as a multi-label problem,

L represents the time slots for predicting occupancy during

a day. For instance, considering a set of time slots t =

{t1, .., tmax}, if each time slot has 10 min, then tmax = 144

and |L| = 144. Therefore, to each instance xi and label (or

time slot) lq, we can associate a value Y
tj
i that represents:

(i) a value of the set {0, 1}, indicating absence or presence

of people in an AP for time slot tj, defining a classification

problem; or (ii) the number of people associated to an AP for

time slot tj, defining a regression problem.

Classifier or Regressor Chain (CC or RC) methods can be

used, as they benefit from label correlations. It is expected

that CC or RC achieve more accurate results than Binary

Relevance (BR) when there are dependencies among

labels [29]. Like BR, CC or RC also build a unique model

for each label, but the models are sorted in a chain order.

Each model input is composed by the domain features and

the labels that precede the label being predicted by the model,

forming a chain structure.

Artificial Neural Network (ANN) models have proven to

be successful in a number of prediction applications [26].

According to Gardner andDorling [30], aMultiLayer Percep-

tron (MLP) is an ANN where the neurons are interconnected

and grouped into layers. Neuron connections are weighted

and their output signal is an activation function of the sum of

its weighted inputs [30]. MLP allows a single ANN to have a

single or multiple output targets easily turning the MLP into

a multi-label prediction model.

Several metrics can be used for evaluating the classifica-

tion results. In this work, we use specific label-based micro

averaged metrics [28] for both single-label and multi-label

models. So, we evaluate occupancy predictions for each time

slot and then average those results to get an overall view.

Considering a training set Stj = {(x1,Y1
tj ), . . . , (xN ,YN

tj )}

collected in an interval of N days; a test set S ′
tj

=

{(x′
1,Y

′
1
tj ), . . . , (x′

N ′ ,Y
′
N ′
tj )} collected in an interval of N ′

days after N days; time slots in a day tj ∈ t (if each time slot

has 10 min then tmax = 144); and h(x, tj) a model constructed

using S labeled using time stamp tj, tj ∈ t , and to be evaluated

with S ′ also labeled using time stamp tj, tj ∈t , we can define

time slot accuracy Atj for each time slot tj ∈ t as shown in

Eq. 1, which calculates the accuracy of correctly predicting

presence or absence detection in each time slot in a day,

averaged by the number of N ′ days.

Atj =
1

N ′

N ′∑

i=1

h(x, tj) = Y ′
i
tj
, tj ∈ t (1)

Considering the true positive value TPi
tj of an instance i

for a time slot tj as 1 if h(x, tj) = Y ′
i
tj and h(x, tj) = 1,

or 0 otherwise; the false positive value FPi
tj of an instance i

for a time slot tj as 1 if h(x, tj) 6= Y ′
i
tj and h(x, tj) = 1,

or 0 otherwise; true negative value TNi
tj of a instance i for

a time slot tj as 1 if h(x, tj) = Y ′
i
tj and h(x, tj) = 0,

or 0 otherwise; and the false negative value FNi
tj of a instance

i for a time slot tj as 1 if h(x, tj) 6= Y ′
i
tj and h(x, tj) = 0,

or 0 otherwise, we can define Precision Ptj , Recall Rtj and

F1-score F1tj metrics. Those metrics are calculated for each

time slot tj and defined respectively by Eqs. 2, 3 and 4.

Ptj =

∑N ′

i=1 TP
tj
i∑N ′

i=1 TP
tj
i + FP

tj
i

, tj ∈ t (2)

Rtj =

∑N ′

i=1 TP
tj
i∑N ′

i=1 TP
tj
i + FN

tj
i

, tj ∈ t (3)

F1tj =
2 × Ptj × Rtj

Ptj + Rtj
, tj ∈ t (4)

We also calculate an overall metric for each of these met-

rics (Eq. 5), which is the mean of the corresponding metric

considering all the set t of time slots. This allows an overview

11458 VOLUME 9, 2021



G. H. Apostolo et al.: Unified Methodology to Predict Wi-Fi Network Usage in Smart Buildings

of h prediction performance for the classification problem.

Thus, M in Eq. 5 can be either A, P, R or F1 metric.

M =
1

tmax

tmax∑

j=1

Mtj (5)

Several metrics can be used for evaluating regressors.

Consider the same definitions described before, except that

Y ′
i′
tj
, i′ = 1, . . . ,N ′ now represents the number of people

associated to an AP in a time slot tj. So, we can use RMSEtj
(Root Mean Square Error), RMSPEtj (Root Mean Squared

Percentage Error) and MAPEtj (Mean Absolute Percentage

Error) metrics, defined respectively by Eqs. 6, 7 and 8, calcu-

lated for each time slot tj, where Y ′
tj = 1

N ′

∑N ′

i′=1 Y
′
i′
tj .

RMSEtj =

N ′∑

i=1

(Y ′
i
tj − h(x ′

i , tj))
2 (6)

RMSPEtj =

∑N ′

i=1(Y
′
i
tj − h(x ′

i , tj))
2

∑N ′

i=1(Y
′
i
tj − Y ′

tj
)2

(7)

MAPEtj =

∑N ′

i=1 |Y ′
i
tj − h(x ′

i , tj)|∑N ′

i=1 |Y ′
i
tj − Y ′

tj
|2

(8)

RMSE (Eq. 9) is an overall metric, calculated by the mean

of RMSEtj using the entire set t . The overall metric forMAPE

or RMSPE can also be calculated by Eq. 5, where M can be

MAPE or RMSPE .

RMSE =

N ′∑

i=1

tmax∑

j=1

(Y ′
i
tj − h(x ′

i , tj))
2 (9)

IV. UFF’s WI-FI NETWORK DATA COLLECTION AND

ANALYSIS

UFF’s Wi-Fi network is based on the SCIFI system [31].

The SCIFI system is composed of a smart management and

monitoring central controller unit, called SCIFI controller,

and low-cost off-the-shelf APs, operating under a custom

made open source OpenWRT firmware [32]. The SCIFI con-

troller coordinates data acquisition from system logs, and

sets channel and transmission power for each AP in order to

minimize interference. SCIFI is used at UFF, UFOP (Ouro

Preto Federal University) and Brazilian Navy laboratories.

In this work, we used 28 APs spread over 5 floors of

the H building at UFF’s Engineering Campus. We chose the

H building because it is fully composed by classrooms and

follows a strict occupation schedule. We collected data from

6 months, between April and September 2018.

Each AP sends management and control events to the

SCIFI controller. Thus, we filtered log files to collect associ-

ation and disassociation or deauthentication events informa-

tion for the target APs. Association events mark the beginning

of an active connection between the AP and a user station,

while disassociation events mark its end. We observed that

disassociation events did not always appear in the log data,

however we also observed that whenever disassociation and

deauthentication of mobile stations message appeared in the

event logs, both occurred approximately in less than 1 second

difference between them. Hence, we used deauthentication

messages as the end of a connection between a mobile sta-

tion and an AP, when there was no registered disassociation

messages.

A. OCCUPANCY ANALYSIS

Figures 1 and 2 show the average SCIFI network behavior in

the H building from April to September 2018. It is possible

to observe the daily and weekly average occupancy. Figure 1

shows that APs are mostly idle between 0 and 6AM. It also

shows a slowly increasing occupation for time slots between

6 and 9AM. That slow build can be explained by the lecture

time schedules for the H building, which start at 7AM, but

most of them start at 9AM, and the last lectures end at 10PM.

Morning classes start at odd hours, and afternoon classes

at even times, with an hour interval between 1 and 2PM.

Figure 1 shows that AP’s occupation during university week-

days is higher than the occupation at holidays and weekends.

The occupation for holidays are slightly higher than those

for weekends. These results were unforeseen, but can be

explained by the H building usage during student vacations

for summer/winter courses and special activities.

FIGURE 1. Average day occupancy comparing working days, weekends
and holidays.

Figure 2 shows that the AP demand is higher during week-

days than during weekends. The average occupancy reaches

its highest on Tuesdays, Wednesdays and Thursdays. Whilst

smaller than the other weekdays, Saturday’s average demand

is relatively high when compared to Sunday. One explanation

can be that the building is used on some Saturdays for exams

and other special activities. For a classroom building such as

theH building, these results were expected. Even thoughmost

APs in the H building remain unoccupied for long periods

of time, we noticed that some APs remain with a residual

number of devices connected to it during closing hours. One

possible explanation is that theH building still has appliances,

such as computers, and university staff members, such as the
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FIGURE 2. Average week occupancy.

campus security, that are still present in the building during

off hours and days. That explains why we can not simply

assume that all APs are unused during those hours.

V. PROPOSED METHODOLOGY

Figure 3 shows a schema of our proposed unified method-

ology and its major steps, which are i) data acquisition and

dataset construction; ii) input configuration; iii) regression

and classification model configuration; iv) model selection.

The first step, shown in the upper part of the figure,

is to prepare four datasets to be used for the evaluation

of classification and regression prediction models. Then,

in the second step, we use several input feature configura-

tions, training set constructions and distinct single-label and

multi-label machine learning methods to build our classifiers

and regressors, in order to evaluate the significance of these

characteristics for prediction models.

In the third step, we build single and multi-label clas-

sifiers capable of predicting the occupancy states for net-

work APs and/or the construction of single and multi-label

regressors capable of predicting the occupancy count for

networkAPs. Formulti-label classification, we propose using

BR and CC problem transformation methods and Multilayer

Perceptron ANN to produce forecasts. For multi-label regres-

sion, we propose using BR and RC problem transformation

methods and Multilayer Perceptron ANN for multi-label to

produce those predictions.

Finally, in the last step shown in Figure 3, an evaluation

using multi-label and single-label metrics helps the selection

of a model that provides the best performance results and that

can be used in smart building energy-efficient systems for

several purposes.

Our methodology is validated throughout experimental

tests with UFF’s SCIFI network data. Our tests demon-

strate how it helps deciding the most suitable method to be

used for energy-efficient smart buildings. In our experiments,

dataset transformations, classification and regression model

construction andmeasurements were developed using Python

scikit-learn API [33] and Pandas [34].

A. DATASET CONSTRUCTION

We have filtered and processed event logs to select informa-

tion about the connection status between mobile stations and

APs. Our datasets follow the work of Sangogboye, Imamovic

and Kjærgaard [9] and Balaji et al [5]. We divided a day into

144 (10 minutes) time slots, and computed the number of

devices associated to an AP in each time slot by increasing the

number for each station association event and decreasing it

for each disassociation event. The datasets1 show occupancy

count and detection for each AP over a period of 6 months,

from April to September 2018.

In the single-label datasets, each instance has only one

output feature representing a specific date and time inter-

val occupation count. The single-label dataset contains the

following input features: Month, Day, Day of the Week,

Holiday, APid, Hour, Minute. The multi-label datasets have

each instance representing one specific date and 144 output

features representing the time intervals of a day occupation

count. The multi-label dataset contains the following input

features: Month, Day, Day of the Week, Holiday, APid.

Month and Day are numeric and show the instance date.

Day of the week is categorical and indicates one of the

7 week days. Holiday is boolean and indicates if the day

is a normal semester day with lectures (False) or a public

holiday or university vacation day (True). AP Identification

(APid) carries the access point identification number and it

informs to which specific AP the occupancy history belongs.

Hour and Minutes are also numerical and are only present in

the single-label datasets. The Hour input feature ranges from

0 to 23 representing day hours. The Minute feature ranges

from 0 to 50 in 10 minute steps. Although we could have

combined Hour and Minute features to create a time interval

feature ranging from 0 to 144, we decided to keep semantic

information given by the hour/minute tuple.

On occupancy detection datasets, we are only interested in

binary classification (whether the AP has someone associated

or not), so we applied a label binarization filter to our dataset

outputs, in order to transform each numeric occupation count

into a boolean output feature. To be classified as occupied

(value 1) for a 10 minute time interval, the AP needs to have

at least onemobile station associated to it. If nomobile station

tries to associate to that AP during the whole duration of that

time slot, the AP is considered unoccupied (value 0). The

single and multi-label occupancy detection datasets have the

same input features.

B. SINGLE-LABEL AND MULTI-LABEL CLASSIFICATION

ANALYSIS

We evaluated multiple types of classification model con-

structions, with varying training and testing sets. We trained

collective models where only one classifier was trained with

information regarding all APs and responsible for predicting

the occupancy detection of all APs.We also trained individual

1 The datasets are available at https://github.com/midiacom/UFF-SCIFI-
Datasets
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FIGURE 3. Our proposed methodology.

classification models where multiple classifiers were trained

only using information regarding one specific AP and respon-

sible for that AP occupancy detection prediction. We built

collective MLP ANN multi-label (ML) and single-label (SL)

classifiers for our tests. Our goal with these distinct single and

multi-label model construction was to evaluate if the occu-

pancy detection of one AP could benefit from information

from other APs, to determine if an AP individual information

is capable of giving satisfactory detection predictions and

which method has the best performance among those tested.

These collective and individual multi and single-label clas-

sifiers were also tested using multiple input feature configu-

rations. We decided to evaluate if Month and Day features

were significant to our model predictions. Month and Day

features give date information to the classification models,

which could benefit their predictions giving seasonal insights.

On the other hand, more features can also represent more

noise and increase the size of the classification data, which

can consequently turn into waste of space and insignificant

accuracy enhancement. Therefore, all classifiers were trained

with and without Month and Day features.

Our label features are used respecting the time interval

order for constructing the chain in the CCmethod. Therefore,

our feature chain goes in crescent order from T0 to T143. Our

time sequenced output features helped chain selection order

in CC, because finding label order can be challenging [29].

We used Decision Tree (DT), K-NN and Random Forest (RF)

machine learning algorithms for our SL classification mod-

els, as they present the best single-label Wi-Fi occupancy

detection results according to Fang et al [6]. Sangogboye,

Imamovic and Kjærgaard [9] also stated that these algorithms

were among the best algorithms in their MLmethod.We used

default parameters values for DT and RF and we used K = 5

for K-NN.

We also built ANN MLPs. Table 2 shows the MLP

hyper parameters selected for both SL and ML classification
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TABLE 2. MLP ANN parameter values.

models after a search over a list of possible values for hyper

parameters.We used the grid search algorithmGridSearchCV

present in scikit-learn API [33]. Other non-listed parameters

kept their default values.

To evaluate the performance of these models, we apply a

train/test split on our datasets. The order of the collected data

must be respected both for training and testing. So, dataset

instances from April to August were used for training, and

September dataset instances were used for testing the models.

We used 4 metrics to evaluate our classification models: Atj ,

Ptj , Rtj and F1tj , as well as their overall versions.

C. SINGLE-LABEL AND MULTI-LABEL REGRESSION

ANALYSIS

For occupancy count, we also tested multiple types of regres-

sion model construction, with various training and testing

sets. We trained collective and individual regressors using

distinct training sets. These collective and individual multi

and single-label regressors also were tested having several

input feature configurations. Consequently those multi-label

(ML) and single-label (SL) collective and individual regres-

sors were trained with and without the Month and Day

features. Those regression model constructions evaluate if

the occupancy count system could benefit from information

from other APs, determine if an AP individual information is

capable of giving satisfactory results and evaluate if Month

and Day features were significant for predictions.

The output label chain in RC methods is the same used

in CC. We used DT, K-NN, RF and the XG optimized

gradient boosting SL learning regression algorithms. Later

on, we decided to construct collective MLP ANN, support

vectormachine (SVM) and stochastic gradient descent (SGD)

SL and ML regressors. But since the occupancy count data

presents a high variance, these regressors had their input and

output data normalized. We also decided to test the K-NN

algorithm with normalized input and output data. The MLP

hyper parameters selected after an extensive search for both

SL and ML regression models are the ones shown in Table 2.

Analogously to the classifier evaluation, we also applied

a train/test split on our datasets. Dataset instances from

April to August were used for training, and September dataset

instances were used for testing the models. We used three

metrics to evaluate our regression models: RMSEtj , RMSPEtj
and MAPEtj , as well as their overall versions.

VI. EXPERIMENTAL ANALYSIS

This section shows the results of our experimental analysis.

We analyze which machine learning method, algorithm,

model construction type and input combinations are more

suitable to scenarios where Wi-Fi data can be used for smart

building systems.

A. CLASSIFIER ANALYSIS

In what follows, we show the experimental analysis for the

occupancy detection problem. The models were constructed

using a combination of four distinct parameters: the SL

method and 2 distinct ML (BR and CC) machine learning

methods; 2 distinct types of model construction, which can

be collective (Col) or individual (Ind); 2 distinct input con-

figurations, one composed by APid, holiday and weekday

features (APHDWD) and other by all features (ALL), includ-

ing AP Id, holiday, weekday, day and month features; and

3 distinct machine learning algorithms (RF, DT and K-NN)

for constructing both SL models and the base classifiers of

the ML methods. We also constructed 2 collective SL and

2 collective ML MLP ANNs, one using APHDWD features

and other using ALL features. These combinations result in

40 distinct models. In order to guide our analysis, we firstly

compare BR and CCMLmethods. Then, we compare the best

MLmethod against the SLmethod. We then evaluate types of

model construction, algorithms and inputs. Finally, we eval-

uate if there is any observable advantage of one combination

of parameters over the others.

1) MULTI-LABEL METHODS

We selected the best results from the 40 evaluated models.

Figure 4 depicts the accuracy Atj of the best machine learning

algorithm for each possible BR and CC ML classification

model parameter combinations. We can see that BR models

have better accuracy results than CC, as well as they drasti-

cally decrease from 6 to 8AM for both methods.

CC performance can be explained by the unpredictable

AP occupancy from 6 to 8AM as seen in Figure 1. As the

occupancy and idleness occurrence in those time slots are

very alike and the states occur almost randomly, it is harder

for classifiers to give a correct occupancy prediction for them,

which leads to worse accuracy. That accuracy loss introduces

a greater error on the label feature prediction and conse-

quently affects the rest of the chain since the next time slots

take the previous results into consideration. Because BR does

not take the previous prediction into account, those prediction

errors do not propagate.

Table 3 shows the overall metrics A, P, R and F1 for the

best assessed models. From Table 3, it is clear that the BR

method got better overall results than the CC method. Metric

evaluation also shows that models using only APHDWD as

input features present better results than using ALL features.

Thus, this result indicates that, for our data, seasonal infor-

mation is not a significant feature for ML classification mod-

els. Metric evaluation also shows that there is no significant
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FIGURE 4. Accuracy Atj for several BR and CC ML methods and parameter
configurations.

TABLE 3. Classification performance results for BR and CC ML methods.

difference between the types of model constructions (Col vs

Ind), which indicates that both collective and individual mod-

els are equally valid model construction types for occupancy

detection.

2) MULTI-LABEL AND SINGLE-LABEL EVALUATION

From the multiple combinations of parameters for construct-

ing the SL and ML models, we chose at least one of the

best results of 8 combinations for a deeper analysis. Figure 5

shows the Atj accuracy of these 8 models, where we can

notice that there is no significant difference between the ML

and SL correspondent models. For instance, the Atj curve

of models Col/DT/BR/ADHDWD, Col/DT/SL/ADHDWD,

FIGURE 5. Accuracy Atj of ML and SL methods for several parameter
configurations.

Ind/RF/BR/ADHDWD and Ind/DT/SL/ADHDWD are quite

similar. Also, we could observe that models using only

APHDWD features had better results than models using all

features (ALL).

Table 4 shows the overall metrics A, P, R and F1 for

the best ML and SL models. It also shows the results for

MLP ANN models. Table 4 demonstrates that the seasonal

information do not improve the model predictions. Models

using only the APHDWD features had better overall results,

which suggest that day and month features carry no sig-

nificant information about our occupancy data. Our results

and the results in [10] comprise the same seasons and yet

they showed distinct conclusions about seasonal information.

Results reported in [10] showed that seasonal information

carries relevant information about the occupancy data. One

explanation for that difference can be the low influence of

tropical climate at latitude -22.9, where UFF is located.

Table 4 shows that there is no significant difference

between ML and SL methods. From Table 4, we can also

notice that there is no significant difference between col-

lective and individual models. These conclusions make both

machine learning methods and both model construction types

equally valid. It is also possible to observe from Table 4

that DT and RF algorithms were the most suited for the

occupancy detection problem. Finally Table 4 shows that the

MLMLP ANN fails to have comparable results, however the

Col/MLP/SL/APHDWD ANN got comparable results to the

Col/DT/SL/APHDWD model.

We found that DT and RF machine learning algorithms

were the most suited for occupancy detection. Since there

was no noticeable difference on the evaluation metrics for

ML and SL individual and collective models using the RF

and DT algorithms, we decided to evaluate their model sizes

in order to compare them. Smaller models are not only

simpler to understand, but they also require less memory
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TABLE 4. Classification performance results for BR ML and SL methods.

space to be stored and are also faster to traverse, which

leads to a faster result and smaller CPU requirements to run

them. Table 5 shows the mean number of leaves (Numb.

of Leaves), depth and their respective standard deviation

(Std. Dev.) for all model possible combinations using only

APHDWD input features. In this table, we can observe that

SLmodels have a smaller size when compared toMLmodels.

This was expected because the ML BR method consists of a

group of individual SL models, each for one specific label.

The second conclusion is that DT algorithms are significantly

smaller when compared to RF algorithms. This result was

also expected since random forests are a collection of decision

trees. Finally, we can notice that collective models are larger

than individual models. Since individual models train over

TABLE 5. DT and RF classifier’s mean number of leaves and depth size
evaluation.

a smaller part of the dataset they also present smaller sizes.

SL and DT algorithms form the best combination to be used

in scenarios using our data, because they are simpler and

smaller. However, the same cannot be said about individual

models over collective models. Individual models are smaller

but they only give information about one AP. Depending on

the scenario characteristics, the collective model can actually

be a better option, such as in our motivation scenario where

a central unit is responsible for the management of the whole

AP network.

B. REGRESSION ANALYSIS

This section shows the experimental analysis for the occu-

pancy count problem.We evaluated several regressionmodels

using SL and ML machine learning methods. 48 models

were built using a combination of four distinct parameters:

the SL method and 2 distinct ML (BR and RC) methods;

2 distinct types of model construction, which can be col-

lective (Col) or individual (Ind); 2 distinct input configura-

tions, one composed by APHDWD features and other by all

features (ALL); and 4 distinct machine learning algorithms

(RF, DT, K-NN, XG) for constructing both SL models and

the base classifiers of the ML methods. We also constructed

2 collective SL MLP ANNs and 2 collective ML MLP

ANNs, using APHDWD features and using ALL features.

Additionally, we constructed 12 more collective regression

models using a combination of three distinct parameters: 3

distinct machine learning algorithms (SVM, SGD, K-NN); 2

distinct normalized input configurations, one composed by

APHDWD normalized features and other by all normalized

features (ALL); and 2 machine learning methods (SL and

BR). These combinations result in 64 distinct models.

We firstly evaluate BR and RC ML methods. Then,

we compare the best ML method against SL methods.

We evaluate which model construction type, algorithms and

inputs give the best results. Lastly, we evaluate if there is any

observable advantage of one method over the others.

1) MULTI-LABEL METHODS

As we tested 64 distinct models, the results shown here are

the compilation of the best results found. Figure 6 shows the

RMSEtj of the best machine learning algorithm for each pos-

sible BR and RC ML regression model parameter combina-

tions. Figure 6 shows that the BR method models have lower

RMSEtj values than the RCmodels and that theRMSEtj results

start to significantly increase after 6AM for both methods.

Another interesting observation when comparing Figures 6

and 1 is that RMSEtj increasing behavior is very similar to the

occupancy behavior. This means that heavily occupied hours

have higher RMSEtj errors. Therefore, RMSEtj is a numerical

error metric that alone cannot be enough to evaluate how good

the occupancy count predictions are for each time slot indi-

vidually. Figure 7 shows RMSPEtj. We can observe that the

BR method got better results than the RC method. BR better

performance over RC can be explained by the same reasons

we have discussed in Section VI-A1.
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FIGURE 6. RMSEtj for several BR and CC ML methods and parameter
configurations.

FIGURE 7. RMSPEtj for several BR and CC ML methods and parameter
configurations.

Comparing Figures 6 and 7, we can also notice that, even

though the RMSEtj values are higher for predictions after

9AM, their RMSPEtj values are smaller. Even though the

absolute occupancy count error of these time intervals are

higher, they are comparatively smaller than the data variance

and therefore we can conclude that model predictions are

acceptable. The RMSPEtj values presented before 9AM are

relatively higher, being almost equal or superior to the vari-

ance itself. This happens because these hours real occupancy

is low and presents a small variance. Therefore for late-night

and early-morning hours, RMSEtj values are comparatively

higher than the data variance. However since these hours

correspond mostly to closing hours, we can not say that an

occupancy count model would not be applicable. Even if

we might being doubling the occupancy count values due

to prediction errors, the total occupancy count would still be

low. So, depending on the scenario and systems, these errors

can be easily overcome.

Table 6 shows the overall metrics RMSE , RMSPE and

MAPE for the best models. Metric evaluation for the regres-

sion problem shows that models using only APHDWD input

features had better results than the models that used ALL

features, which indicates that seasonal information is also

not a significant feature for ML regression models. Metric

evaluation also shows that there is no significant difference

between the model construction types, indicating that both

models are equally valid for occupancy count prediction.

TABLE 6. Regression performance results for BR and RC ML methods.

2) MULTI-LABEL AND SINGLE-LABEL EVALUATION

Figure 8 comparesRMSPEtj among the best machine learning

algorithms for ML and SL regression model construction

combinations. It shows that there is no significant difference

between ML and SL correspondent models. However it is

possible to notice that models using only the APHDWD

features had better results than the models that used ALL

features.

Table 7 shows the overall metrics RMSE , RMSPE and

MAPE for the best assessed models. It also shows the results

for the MLP ANN models. Table 7 shows that regression

models using only the APHDWD features had better overall

results, which suggest that day and month features carry

no significant information about our occupancy data for

the regression problem too. Table 7 overall metric evalua-

tion shows that there is no significant difference between

ML and SL methods and that there is no significant differ-

ence between collective and individual models, which make

both machine learning methods and both model construction
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FIGURE 8. RMSPEtj of ML and SL methods for several parameter
configurations.

TABLE 7. Regression performance results for BR ML and SL methods.

equally possible considering performance. It is also possi-

ble to observe in Table 7 that DT and RF algorithms were

the best machine learning algorithms for occupancy count

prediction. Table 7 shows that MLP ANN fails to have

comparable results. However it is worth mentioning that the

Ind/XG/BR/APHDWD model got comparable results to the

DT collective SL model using APHDWD features.

DT and RF machine learning algorithms had better results

for occupancy count than the others. Since there was no

noticeable difference on the evaluation metrics for ML and

SL individual and collective models using these algorithms

we also decided to evaluate their model sizes. The model size

impacts on memory space and CPU requirements. Table 8

shows the mean number of leaves (Numb. of Leaves), depth

and the standard deviation (Std. Dev.) for all model combi-

nations using APHDWD features. This table shows that SL

models are smaller when compared to ML models and that

the DT algorithm is significantly smaller when compared to

the RF algorithm. We can also notice that collective models

are bigger than individual models. The reason why these

results are expected are the same ones we have discussed

in Section VI-A2. SL method and DT algorithm are a better

combination to be used in our scenario once they are sim-

pler and smaller than ML methods and the RF algorithm.

However, the same cannot be said about individual

models over collective models. As we have discussed in

Section VI-A2, the collective model can actually be a better

option depending on the scenario characteristics.

TABLE 8. DT and RF regressor’s mean number of leaves and depth size
evaluation.

VII. FURTHER DISCUSSION ON OUR METHODOLOGY

AND RESULTS

While other authors have analyzed how multiple machine

learning algorithms may change the model prediction results,

all studies we have seen in literature did that using only a

specificML or SL method with a specific model construction

type and input configuration. Therefore, they were able to

evaluate whichmachine learning algorithm they should chose

for their model. However, our experimental analysis showed

that the model construction type, machine learning method

and input configuration shall also be taken into consider-

ation depending on the scenario. As we have seen in our

experimental analysis, our proposed methodology allowed

us to draw numerous conclusions about the types of model

constructions, input configurations, machine learning meth-

ods and algorithms and helped on the decision of a best

combination choice for our experimental scenario.

However, this analysis also shows that not always the best

combination will remain the same for all possible scenarios.
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In this section we discuss how distinct scenarios may affect

the model best combination choice.

We also present an analysis of potential energy-saving

results where our model would be used to develop an

energy-efficient management system that controls the power

state of AP wireless interfaces.

A. SEASONAL INFORMATION

In our scenario, where we usedWi-Fi association information

to build a wireless network energy efficient management

system without real time data acquisition, month and day

input features should not be used once these features showed

no enhancement on the prediction model results. On the other

hand, although data used in [9] and [10] present the same

seasons of our experimental analysis, they showed seasonal

information as a relevant input feature. Those studies were

made in northern hemisphere countries in temperate regions,

such as the ones found in Europe and North America, while

our data were collected in a tropical country in South Amer-

ica. Therefore, we can conclude that seasonal information

must be analyzed in these types of systems since is not

always significant and depending on your building’s location

it should or should not be used as an input.

B. INDIVIDUAL AND COLLECTIVE COMPARISON

Another important question to answer is which type of

model construction, individual or collective, should be used.

Individual and collective models can have distinct results

as they are trained with distinct dataset information. Our

experimental analysis showed that there was no difference

between the individual and collective models except for their

sizes, where individual models were much smaller than the

collective ones. However, it is not always true that infor-

mation regarding various sensors can benefit other sensor’s

predictions. Also, further examination based on the scenario

is required sincemodel sizes can be relative. In ourmotivation

scenario, for example, individual models would be actually

bigger, once the collection of individual models stored at the

central unit would be bigger than one single collective model

capable of giving predictions for all APs. In scenarios where

each individual model is deployed in its respective sensor or

actuator, they would be smaller than the collective model.

C. ENERGY-SAVING ANALYSIS

Fromour scenario, it is possible to develop an energy-efficient

management system that controls the power state of AP

wireless interfaces. The developed system would use the ML

model predictions to detect unoccupied APs and turn off their

wireless interfaces for unoccupied periods.

We can estimate the energy saving factor of our proposed

scenario using Eq. 10, presented in [35], where: Pext_on and

Pext_off represent an AP external power source measured

power in Watts (W) for cases where the wireless network

interface is switched on and off respectively; and ton and ttotal
represent the period of time that the APs stayed with their

wireless interface switched on and total period of time that is

taken into analysis respectively.

F =
Pext_on − Pext_off

Pext_on
(1 −

ton

ttotal
) (10)

The result given by Eq. 10 gives the percentage of energy

that can be saved from the total energy used, by switching

off the AP wireless interfaces during idle time slots. Through

the formula and the classifier results, it is feasible to estimate

the power saving factor for the baseline proposed scenario

for the month of September 2018, as follows.

From our experimental analysis using the proposed unified

methodology, we selected the Col/DT/SL/APHDWD as our

prediction model. Using the selected prediction model, it is

possible to determine that the H building APs would stay

unoccupied during 43.20% of the time for the month of

September.

Through practical experiments, we measured that the con-

sumed power values for our AP model wireless interface

switched on and off states are 1,111W and 0,845W respec-

tively. Therefore we could have saved 10.34% of the total

energy consumption, if we used a mechanism as proposed

in this paper for the SCIFI network in the H building during

September 2018.

However, it is important to mention that the results

achieved with this analysis are merely a baseline estimation.

The mechanism proposed for this evaluation scenario is sim-

ple and does not take several aspects of the Wi-Fi network

into consideration as others do [5], [6], [15], [16], [23], [24].

Even though, it is fair enough to assume that it gives a good

baseline estimation of how much energy could have been

saved using such principles with more complex and complete

mechanisms, which we are going to address as future work.

VIII. CONCLUSION

In this paper, we presented a unified experimental method-

ology to evaluate and compare classification and regression

models on their capacity to accurately predict access point

demands for smart building scenarios. We conducted an

experimental analysis using our proposed methodology and

data collected from the UFF’s SCIFI network APs, belonging

to a classroom building, over a period of 6 months, from

April to September 2018.

Our results show that the Col/DT/SL/APHDMLmodel not

only achieved the best A accuracy results for the classification

problem (with an A of 86.69%) but also achieved the best

RMSPE results for the regression problem (with an RMPSE

value of 0.29). It is also worth to notice that the mechanism

proposed in this workwould have saved around 10.34% of the

total energy used by the SCIFI wireless network for the whole

month of September 2018. Our experimental analysis showed

that the proposed methodology could broadly and extensively

evaluate the machine learning (ML) models. It also showed

that other model parameters besides ML algorithms need to

be taken into consideration when deciding the best MLmodel

prediction to be used for smart buildingmanagement systems.

During our experimental analysis, we also concluded that the
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smart building scenario is a crucial determinant to evaluate

which model parameters to choose and that, depending on

the scenario, those choices might change.

Future work involves the development of a smart

energy-saving mechanism for large-scale wireless networks

that uses classification and regression models. Those models

will use the results obtained in our experimental analysis to

understand both idleness and demands of UFF’s SCIFI access

points. That energy-saving mechanism will operate in the

SCIFI controller without requiring real-time data acquisition

or high CPU power.

REFERENCES

[1] H. Zou, Y. Zhou, H. Jiang, S.-C. Chien, L. Xie, and C. J. Spanos, ‘‘Win-

Light: A WiFi-based occupancy-driven lighting control system for smart

building,’’ Energy Buildings, vol. 158, pp. 924–938, Jan. 2018.

[2] D. H. Stolfi and E. Alba, ‘‘Green swarm: Greener routes with bio-inspired

techniques,’’ Appl. Soft Comput., vol. 71, pp. 952–963, Oct. 2018.

[3] H. Zou, H. Jiang, J. Yang, L. Xie, and C. Spanos, ‘‘Non-intrusive occu-

pancy sensing in commercial buildings,’’ Energy Buildings, vol. 154,

pp. 633–643, Nov. 2017.

[4] S. K. Ghai, L. V. Thanayankizil, D. P. Seetharam, and D. Chakraborty,

‘‘Occupancy detection in commercial buildings using opportunistic context

sources,’’ in Proc. IEEE Int. Conf. Pervas. Comput. Commun. Workshops,

Mar. 2012, pp. 463–466.

[5] B. Balaji, J. Xu, A. Nwokafor, R. Gupta, and Y. Agarwal, ‘‘Sentinel: Occu-

pancy based HVAC actuation using existing WiFi infrastructure within

commercial buildings,’’ in Proc. 11th ACM Conf. Embedded Netw. Sensor

Syst. - SenSys, 2013, pp. 1–14.

[6] L. Fang, G. Xue, F. Lyu, H. Sheng, F. Zou, and M. Li, ‘‘Intelligent large-

scale AP control with remarkable energy saving in campus WiFi system,’’

in Proc. IEEE 24th Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2018,

pp. 69–76.

[7] K. Christensen, R. Melfi, B. Nordman, B. Rosenblum, and R. Viera,

‘‘Using existing network infrastructure to estimate building occupancy and

control plugged-in devices in user workspaces,’’ Int. J. Commun. Netw.

Distrib. Syst., vol. 12, no. 1, pp. 4–29, Nov. 2014.

[8] W. Wang, J. Chen, T. Hong, and N. Zhu, ‘‘Occupancy prediction through

Markov based feedback recurrent neural network (M-FRNN) algorithm

with WiFi probe technology,’’ Building Environ., vol. 138, pp. 160–170,

Jun. 2018.

[9] F. C. Sangogboye, K. Imamovic, and M. B. Kjargaard, ‘‘Improving occu-

pancy presence prediction via multi-label classification,’’ in Proc. IEEE

Int. Conf. Pervas. Comput. Commun. Workshops (PerCom Workshops),

Mar. 2016, pp. 1–6.

[10] A. Trivedi, J. Gummeson, D. Irwin, D. Ganesan, and P. Shenoy, ‘‘ISched-

ule: Campus-scale HVAC scheduling via mobile WiFi monitoring,’’ in

Proc. 8th Int. Conf. Future Energy Syst., May 2017, pp. 132–142.

[11] B. W. Hobson, D. Lowcay, H. B. Gunay, A. Ashouri, and G. R. Newsham,

‘‘Opportunistic occupancy-count estimation using sensor fusion: A case

study,’’ Building Environ., vol. 159, Jul. 2019, Art. no. 106154.

[12] F. Lyu, L. Fang, G. Xue, H. Xue, and M. Li, ‘‘Large-scale full WiFi

coverage: Deployment and management strategy based on user spatio-

temporal association analytics,’’ IEEE Internet Things J., vol. 6, no. 6,

pp. 9386–9398, Dec. 2019.

[13] H. Zou, Y. Zhou, J. Yang, and C. J. Spanos, ‘‘Towards occupant activity

driven smart buildings via WiFi-enabled IoT devices and deep learning,’’

Energy Buildings, vol. 177, pp. 12–22, Oct. 2018.

[14] F. G. Debele, N. Li, M. Meo, M. Ricca, and Y. Zhang, ‘‘Experimenting

ResourceonDemand strategies for green WLANs,’’ ACM SIGMETRICS

Perform. Eval. Rev., vol. 42, no. 3, pp. 61–66, Dec. 2014.

[15] K. Gomez, C. Sengul, N. Bayer, R. Riggio, T. Rasheed, and D. Miorandi,

‘‘MORFEO: Saving energy in wireless access infrastructures,’’ in Proc.

IEEE 14th Int. Symp. World Wireless, Mobile Multimedia Netw. (WoW-

MoM), Jun. 2013, pp. 1–6.

[16] A. P. Jardosh, K. Papagiannaki, E. M. Belding, K. C. Almeroth,

G. Iannaccone, and B. Vinnakota, ‘‘Green WLANs: On-demand WLAN

infrastructures,’’ Mobile Netw. Appl., vol. 14, no. 6, pp. 798–814,

Dec. 2009.

[17] J. Lorincz, A. Capone, and M. Bogarelli, ‘‘Energy savings in wireless

access networks through optimized network management,’’ in Proc. IEEE

5th Int. Symp. Wireless Pervas. Comput., May 2010, pp. 449–454.

[18] W. Wang, J. Chen, and T. Hong, ‘‘Occupancy prediction through machine

learning and data fusion of environmental sensing and Wi-Fi sensing in

buildings,’’ Autom. Construct., vol. 94, pp. 233–243, Oct. 2018.

[19] Y. Cui, X. Ma, H. Wang, I. Stojmenovic, and J. Liu, ‘‘A survey of energy

efficient wireless transmission and modeling in mobile cloud computing,’’

Mobile Netw. Appl., vol. 18, no. 1, pp. 148–155, Feb. 2013.

[20] S. Tang, H. Yomo, Y. Kondo, and S. Obana, ‘‘Wake-up receiver for

radio-on-demand wireless LANs,’’ EURASIP J. Wireless Commun. Netw.,

vol. 2012, no. 1, p. 42, Dec. 2012.

[21] F. Ganji, L. Budzisz, and A. Wolisz, ‘‘Assessment of the power sav-

ing potential in dense enterprise WLANs,’’ in Proc. IEEE 24th Annu.

Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), Sep. 2013,

pp. 2835–2840.

[22] M. Dalmasso, M. Meo, and D. Renga, ‘‘Radio resource management

for improving energy self-sufficiency of green mobile networks,’’ ACM

SIGMETRICS Perform. Eval. Rev., vol. 44, no. 2, pp. 82–87, Sep. 2016.

[23] I. Donevski, G. Vallero, and M. A. Marsan, ‘‘Neural networks for cellular

base station switching,’’ in Proc. IEEE INFOCOM Conf. Comput. Com-

mun. Workshops (INFOCOM WKSHPS), Apr. 2019, pp. 738–743.

[24] G. Vallero, D. Renga, M. Meo, and M. A. Marsan, ‘‘Greener RAN oper-

ation through machine learning,’’ IEEE Trans. Netw. Service Manage.,

vol. 16, no. 3, pp. 896–908, Sep. 2019.

[25] Y. Kondo, H. Yomo, S. Tang, M. Iwai, T. Tanaka, H. Tsutsui, and

S. Obana, ‘‘Energy-efficient WLAN with on-demand AP wake-up using

IEEE 802.11 frame length modulation,’’ Comput. Commun., vol. 35,

no. 14, pp. 1725–1735, Aug. 2012.

[26] S. Pandey, D. A. Hindoliya, and R. Mod, ‘‘Artificial neural networks for

predicting indoor temperature using roof passive cooling techniques in

buildings in different climatic conditions,’’ Appl. Soft Comput., vol. 12,

no. 3, pp. 1214–1226, Mar. 2012.

[27] E. C. Goncalves, A. A. Freitas, and A. Plastino, ‘‘A survey of genetic

algorithms for multi-label classification,’’ in Proc. IEEE Congr. Evol.

Comput. (CEC), Jul. 2018, pp. 1–8.

[28] F. Herrera, F. Charte, A. J. Rivera, and M. J. Jesus, ‘‘Multilabel classifi-

cation,’’ in Multilabel Classification. Cham, Switzerland: Springer, 2016,

pp. 17–31.

[29] E. C. Gonçalves, A. Plastino, and A. A. Freitas, ‘‘Simpler is better: A novel

genetic algorithm to induce compact multi-label chain classifiers,’’ inProc.

Annu. Conf. Genetic Evol. Comput., Jul. 2015, pp. 559–566.

[30] M. W. Gardner and S. R. Dorling, ‘‘Artificial neural networks (the multi-

layer perceptron)—A review of applications in the atmospheric sciences,’’

Atmos. Environ., vol. 32, nos. 14–15, pp. 2627–2636, Aug. 1998.

[31] L. C. S. Magalhães, H. D. Balbi, C. Corrêa, R. D. T. D. Valle, and

M. Stanton, ‘‘Scifi—A software-based controller for efficient wireless net-

works,’’ in UbuntuNet-Connect. Lilongwe, Malawi: UbuntuNet Alliance,

2013.

[32] F. Fainelli, ‘‘The openwrt embedded development framework,’’ in Proc.

Free Open Source Softw. Developers Eur. Meeting, 2008, p. 106.

[33] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller,

O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton,

J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, ‘‘API design for

machine learning software: Experiences from the scikit-learn project,’’ in

Proc. ECML PKDD Workshop, Lang. Data Mining Mach. Learn., 2013,

pp. 1–15.

[34] W. McKinney, ‘‘pandas: A foundational Python library for data analysis

and statistics,’’ Python High Perform. Sci. Comput., vol. 14, no. 9, pp. 1–9,

2011.

[35] I. Haratcherev, M. Fiorito, and C. Balageas, ‘‘Low-power sleep mode and

out-of-band wake-up for indoor access points,’’ in Proc. IEEE Globecom

Workshops, Nov. 2009, pp. 1–6.

GUILHERME HENRIQUE APOSTOLO was born

in Rio de Janeiro, Brazil, in 1993. He received

the B.S. degree in telecommunication engineering

from Universidade Federal Fluminense, Niterói,

Brazil, where he is currently pursuing the M.Sc.

degree in computing with the Institute of Comput-

ing. His current research interests include green

networking, wireless communications, machine

learning, and biomedical engineering.

11468 VOLUME 9, 2021



G. H. Apostolo et al.: Unified Methodology to Predict Wi-Fi Network Usage in Smart Buildings

FLAVIA BERNARDINI received the bachelor’s

degree in computer science from São Paulo State

University (UNESP), the master’s degree in com-

puter science from the Institute of Mathematics

and Computer Science, University of São Paulo

(USP), and the Ph.D. degree from the Institute

of Mathematics and Computer Science. She is

currently an Associate Professor with the Insti-

tute of Computing, Fluminense Federal University

(IC/UFF). She coordinates the Data Analysis Cen-

ter for Citizenship (D4Ctz). She is also an Associate Researcher with the

Active Design and Documentation Laboratory (ADDLabs), UFF. She has

been experience in coordinating and executing research and development

projects since 2007, mainly involving the development of systems that

uses Artificial Intelligence, emphasizing on Machine Learning, for several

problems in different application domains. In the last decade, she has turned

her interests to Smart Cities theme. In this entire context, she has published

several articles, with many undergraduate, master’s, and doctoral degrees

completed and in progress. She is also an Associate Researcher with the

Brazilian Network of Intelligent and Human Cities.

LUIZ C. SCHARA MAGALHÃES received the

M.Sc. degree from the Pontifícia Universidade

Católica do Rio de Janeiro, in 1993, and the Ph.D.

degree in computer science from the University

of Illinois at Urbana Champaign, in 2002. He is

currently a Professor with Universidade Federal

Fluminense. His research interests include com-

puter networks, mobility, transport protocols, loss

discrimination, congestion control, and wireless

networks.

DÉBORA CHRISTINA MUCHALUAT-SAADE
received the bachelor’s degree in computer engi-

neering and the M.Sc. degree in computer sci-

ence in 1992 and 1996, respectively, and the

Ph.D. degree in computer science from the

Pontifícia Universidade Católica do Rio de Janeiro

(PUC-Rio), in 2003. She is currently a Full Pro-

fessor with the Computer Science Department,

Fluminense Federal University (UFF). In 2003,

she founded the MídiaCom Research Lab, UFF.

She received several research grants from the Brazilian National Council

for Scientific and Technological Development (CNPq), the Rio de Janeiro

State’s Research Support Foundation (FAPERJ), the Coordination for the

Improvement of Higher Education Personnel (CAPES), and other funding

agencies. Her research interests include computer networks, wireless net-

works, multimedia systems, and digital healthcare.

VOLUME 9, 2021 11469


