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Abstract
For rare-variant association analysis, due to extreme low frequencies of these variants, it is
necessary to aggregate them by a prior set (e.g., genes and pathways) in order to achieve adequate
power. In this paper, we consider hierarchical models to relate a set of rare variants to phenotype
by modeling the effects of variants as a function of variant characteristics while allowing for
variant-specific effect (heterogeneity). We derive a set of two score statistics, testing the group
effect by variant characteristics and the heterogeneity effect. We make a novel modification to
these score statistics so that they are independent under the null hypothesis and their asymptotic
distributions can be derived. As a result, the computational burden is greatly reduced compared
with permutation-based tests. Our approach provides a general testing framework for rare variants
association, which includes many commonly used tests, such as the burden test [Li and Leal,
2008] and the sequence kernel association test [Wu et al., 2011], as special cases. Furthermore, in
contrast to these tests, our proposed test has an added capacity to identify which components of
variant characteristics and heterogeneity contribute to the association. Simulations under a wide
range of scenarios show that the proposed test is valid, robust and powerful. An application to the
Dallas Heart Study illustrates that apart from identifying genes with significant associations, the
new method also provides additional information regarding the source of the association. Such
information may be useful for generating hypothesis in future studies.

Introduction
Genome-wide association studies (GWAS) have successfully identified hundreds of variants
associated with human traits [Hindorff et al., 2012]. Typically these variants are common
with minor allele frequencies (MAF) > 5% and have small to moderate effects. However,
despite the demonstrated successes of GWAS, these novel common variants explain only a
small fraction of heritability for most complex traits. Many reasons for missing heritability
have been given. These include low power for detecting common, weakly penetrant variants
for current sample sizes, gene and gene interaction and copy number variation [Maher,
2008; Manolio et al., 2009]. It has also been hypothesized that rare mutations are more
likely than common ones to affect structures of functions of proteins [Tennessen et al., 2012;
Nelson et al., 2012] and can make significant contributions to the heritability of many traits
and diseases [Maher, 2008]. Dickson et al. [2010] further argued that rare variants might not
only explain some of missing heritability, but also that they may be the cause of a proportion
of detected associations between complex traits and common SNPs from GWAS. Advances
in high-throughput technologies have made it possible for researchers to conduct large scale
sequencing studies to study the association of rare variants with complex phenotypes. For
example, for the NHLBI GO Exome Sequencing Project about 7,000 subjects across diverse
and richly phenotyped populations are undergoing whole-exome sequencing with particular
focus on heart, lung and blood disorders [Exome variant server, December 2012 accessed].
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Despite these increasingly large scale studies, the power for detecting individual rare-variant
associations remains limited because very few individuals carry variant alleles. It is
therefore necessary to aggregate rare variants by a prior defined sets (e.g. transcripts, genes,
pathways) and assess the association of sets of variants instead of individual variants. An
added benefit for aggregating rare variants is that the number of tests that need to be
adjusted for multiple hypothesis correction is considerably reduced.

There is a growing literature on analyzing the association of a set of rare variants. A natural
approach is to create a new variable that counts the number of risk alleles an individual
carries for the set and test whether this new variable is associated with phenotypic variation.
These tests, sometimes called burden tests [Morgenthaler and Thilly, 2007; Li and Leal,
2008], are motivated by population genetics evolutionary theory that most rare missense
alleles are deleterious, and the effect is therefore generally considered one-sided [Kryukov et
al., 2007]. It is easy to see that this variable can be incorporated into a regression model to
account for potential confounders [Morris and Zeggini, 2010]. This simple count of risk
alleles can also be extended to a weighted sum, where the weight may be the frequency of
rare allele in the unaffected subjects [Madsen and Browning, 2009], or a function of the
observed marginal effects of rare variants. For example, Han and Pan [2010] proposed using
the signs of the marginal effects to account for possible protective effects of some variants.
Lin and Tang [2011] formalized the idea of weighted sum into a general regression
framework, where weights are estimated regression coefficients (EREC).

Another approach to testing the association of a set of rare variants is to use the kernel
machine regression framework. In this framework, the effects of variants are assumed to be
independently and identically distributed with a mean 0 and variance τ2. To test whether a
set of variants is associated with the phenotype, it is equivalent to test whether the variance
τ2 = 0. Such a test is called the sequence kernel association test (SKAT) [Wu et al., 2011].
They also showed that SKAT is a generalization of the classical C-alpha test [Neale et al.,
2011].

A simple burden test is more powerful when a large proportion of rare variants in the set is
causal and the effects are mainly deleterious; whereas the SKAT test is more powerful when
there is heterogeneity effect among rare variants [Neale et al., 2011]. For example there is a
large number of non-causal rare variants in the set or when both protective and deleterious
variants are present. Recently Lee et al. [2012] extended SKAT to allow the variant effects
to have an equal correlation ρ in addition to the usual assumption of mean 0 and variance τ2.
It is shown that the variance component test (SKAT-O) under this model is a weighted linear
combination of a burden test and the SKAT variance component test, with ρ being the
weight. However neither SKAT nor SKAT-O accounts for the differential effects due to
variant characteristics, which may lead to potential loss of power. Furthermore, the weight ρ
used in SKAT-O may cover only a limited set of combinations of the two tests due to the
correlation between the burden and the variance component tests. Since the underlying
genetic model is unknown and it is also possible that different mechanisms coexist in
genome-wide scans, it is important that a test be powerful in as many situations as possible
while making use of all relevant information when it is available.

In this paper, we propose a novel association test in order to enhance the robustness and
power of the existing tests in a wide variety of biological situations. When grouping a set of
variants, it is common that only a subset of variants is associated with phenotype, and
among the associated variants the effects may be different. However, the associated variants
may have some common characteristics such as nonsense, missense, insertion or deletion.
This motivates us to employ hierarchical modeling, exploiting known variant characteristics
and leveraging information across loci to enhance power for identifying associated variants.
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The idea of hierarchical modeling has been considered previously in genetic association
[Hung et al., 2004; Chen and Witte, 2007; King et al., 2010; Capanu and Begg, 2011]. In
this model, the effects of individual variants are assumed to be independently distributed
with mean modeled as a function of variant characteristics and variance τ2 to account for
residual variant-specific effects or heterogeneity. Testing the association of a set of variants
is equivalent to testing both mean=0 and variance τ2 = 0. Testing for mean = 0 is likely
more powerful when there is a strong group effect (e.g., most variants are deleterious);
however, if only a small subset of variants are associated with phenotype, testing for τ2 = 0
is more powerful. Hence, testing both mean and variance = 0 can be more powerful over a
wide range of situations than testing only one of the two, because it combines information
from both the mean and variance. Previous works for hierarchical model mainly focused on
estimation of effect sizes and the testing for association is usually based on the likelihood
ratio test (LRT). Such tests require multiple integration under the alternative model, and
therefore are computationally intensive, especially when the number of variants is large.
Instead of LRT, we propose to derive score statistics under the null, avoiding multiple
integration. Our test reduces computational burden substantially, and therefore is more
suitable for genome-wide detection of rare-variant association.

Specifically, our proposed test consists of a set of two score statistics, corresponding to
grouping effects by variant characteristics and effects of individual variants. An important
feature of our proposed method is that we make a novel modification to the two score
statistics so that they are independent under the null hypothesis. Such modification
facilitates the calculation of the joint distribution of the two statistics, which would be
intractable in the conventional score test statistic setting with complex correlation structure.
Furthermore, the induced independence enables us to combine the two score statistics by
some common approaches such as Fisher’s and Tippett’s[Koziol and Perlman, 1978], and it
yields an asymptotic distribution-based test rather than a permutation-based test.

Our proposed testing procedure based on hierarchical models provides a general framework
for assessing the association between rare variants and phenotype traits. It includes many
commonly used tests, such as the burden and the SKAT tests, as special cases. However, our
test is more appealing since, in practice, it is desirable to consider a single test that
encompasses a wide variety of settings rather than conducting separate tests of different
types. Furthermore, our test helps identify which components, variant characteristics and/or
individual variant effects contribute to the association. Such information is currently not
readily available from any existing methods. Simulations under a wide range of scenarios
and a real data analysis in this paper supports that our proposed test is valid, robust,
powerful and informative.

Methods
Notation and Model

Consider N subjects with a phenotypic trait denoted by YT = (Y1, …, YN), where Yi can be
a binary variable that indicates disease status, or a continuous variable such as body mass
index or white blood count, for the ith subject, i = 1, …, N. Let Xi denote a m × 1 vector of
potential confounding covariates (e.g., demographic variables, principal components to
account for population stratification, environmental risk factors or other known genetic
factors) for the ith subject. For simplicity in notation, we assume Xi includes the intercept.
In addition, let Gi denote a p × 1 vector of genotypes for p rare variants in the ith subject,
where the genotypes are coded as 0, 1, or 2, representing the number of minor alleles. We
assume that the (Yi, Xi, Gi), i = 1, …, N, are independent and identically distributed. The
main interest is to test the association of Gi as a set of rare variants with the trait Yi.
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Assume the relationship between trait Yi and covariates Xi and Gi is

(1)

where g(·) is a link function, and α and β are the regression coefficients for Xi and Gi,
respectively. The superscript T denotes the vector or matrix transpose. The two most
commonly used link functions are logit function, g{Pr(Yi = 1)} = log{Pr(Yi = 1)/Pr(Yi =
0)}, for binary traits; and the identity function, g{E(Yi)} = E(Yi), for continuous traits. For
right-skewed distributed traits, a log transformation may be taken before using the identity
function.

Since these variants are rare, the power for testing each variant individually is limited. It is
therefore important to leverage the information across all p variants in the set by further
modeling the variant effects βj, j = 1, …, p. Extensive knowledge has been accumulated
about variant characteristics, such as whether a variant is nonsense or missense. It is known
that different characteristics affect proteins and functions differently. One way to leverage
the information across variants is to assume that variants with similar characteristics have
the same effect on the trait, while still allowing for potential individual variant effects.
Denote the characteristics for the jth variant (j = 1, …, p) by a q × 1 vector Zj, and δj the
variant specific effect that can not be explained by the variant characteristics Zj. Then the
effect βj can be specified by the model,

(2)

where π is a vector q × 1 vector of regression coefficients. Since the variants are rare, we
assume δj, j = 1, …, p follow a distribution with mean 0 and variance τ2. Plugging model (2)
into model (1), we have

(3)

where  is a p × q matrix of q variant characteristics for the p variants and δT

= (δ1, …, δp) which denote the individual effects of p variants. This model is rather general
and includes commonly used models for assessing the association of the set of the variants.
We show below that both the burden test and the variance-component-based SKAT test are
special examples of model (3).

We first show the model that corresponds to the burden test is included in model (3). Set δ =

0 and Z to be a p×1 vector of 1/p, then model (3) reduces to  where

 is the count of minor alleles that the ith individual carries over the p variants. If
subjects have different variants genotyped, for example due to missingness, we can set Z to
be a ni × 1 vector of 1/ni, where ni is the number of genotyped variants. The model becomes

, which is proposed by Morris and Ziggini [2010]. Testing H0 : π = 0
is equivalent to testing whether there is an overall effect of the set of variants on the
phenotype. The underlying assumption for this test is that all variants have the same effect
on the trait and there is no heterogeneity.

To allow for individual variant effects, one may set Zj = wj, where wj is the weight for the
jth variant. One common choice for the weight is wj = {fj (1 − fj)}−1/2, where is the minor
allele frequency (MAF) of the jth variant[Madsen and Browning, 2009]. The idea is that
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rarer variants may have greater effects and also to reduce the influence of common variants
in the set-based association. Another choice for weights is to use estimated regression
coefficients added by a constant [Lin and Tang, 2011].

The SKAT test with linear kernel is another special case of model (3). By setting π = 0,

model (3) reduces to , where δ follows a distribution with mean 0 and
variance τ2. Testing the effect of all variants equal to 0 is equivalent to testing that the
variance of δ is equal to 0, i.e., H0 : τ2 = 0. This is essentially the model that Wu et al.[2011]
used to derive the SKAT test with a linear kernel. The variance component test is
particularly powerful if only a small subset of variants are associated with the trait, or if the
variants have the opposite effects. If the covariance matrix of (δ1, …, δp) allows for an equal
correlation, then the model (3) forms the basis from which the SKAT-O score test statistic is
derived [Lee et al., 2012].

Clearly, model (3) is more general than the models for any of the aforementioned tests. For
example, in the Dallas Heart Study, the variant characteristics for functional variants include
missense, nonsense and frameshift. For non-functional variants they include noncoding,
synonymous and intronic. If the analysis is limited to functional variants only, we may set Z
= (Z1, Z2, Z3), where Z1 is a vector of ones, Z2 is an indicator for missense, and Z3 is an
indicator for frameshift. The corresponding regression coefficients π1, π2 and π3 describe
the grouping effects of nonsense variants, and the differential effects of missense and
frameshift variants compared with nonsense variants. Similarly, for analysis of all variants,
we may set Z = (Z1, Z2, Z3, Z4), where Z1, Z2 and Z3 are same as in the functional variants
analysis, and Z4 is an indicator for nonsense variants. The corresponding regression
coefficients π1, π2, π3 and π4 here describe the grouping effect of non-functional variants,
and differential effects of missense, frameshift and nonsense variants compared with non-
functional variants, respectively. In addition, the residual variant effects that can not be
explained by Z are modeled by random effects d, which follow a distribution with mean 0
and variant τ2. To test whether the set of variants is associated with Y, it is equivalent to test
H0 : π = 0 and τ2 = 0. It is clear that from this formulation the score statistics for π’s and τ2

can provide additional information on the sources of the association, which may help further
identify subsets of variants that may be associated with phenotype.

Proposed Score Test Statistics
It is obvious that from model (3) the null hypothesis of no association between G and Y is
H0 : π = 0 and τ2 = 0. We will use score statistics to test H0 because it avoids estimating the
variance components τ2 under the alternative, as in, for example, the likelihood ratio test.
Estimating τ2 is generally very difficult due to p dimensional multiple integration. We can
obtain the respective score statistics for π and τ2 under the null. Note, however, that these
two are correlated. With the score statistic for π following a normal distribution and for τ2

following a mixture chi-square distribution as shown below, it is difficult to derive their
joint distribution when they are correlated. Consequently, it is not straightforward to find
adequate weights to combine these two score statistics to achieve satisfactory power under
different types of alternatives.

To solve this problem, we propose to modify the score statistics so that they are
independent. Specifically, we derive the score statistic for π under H0 : π = 0, τ2 = 0 as
usual, but for the variance component, we derive the score statistic for τ2 under τ2 = 0
without constraining π = 0. By doing this, we ensure that these two score statistics are
independent (see Appendix for the proof of independence). Furthermore, the independence
property in addition to each of them having a well established asymptotic distribution offers
many possibilities for combining two independent test statistics to maximize the power
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against different types of alternatives. Below, we will show the detailed derivation for two
modified score statistics and their asymptotic distributions, and discuss different
combination procedures in the next section.

Let XT = (X1, …, XN), GT = (G1, …, GN), and let GZ be the matrix product between
matrices G and Z. Following Breslow and Clayton [1993] and Lin [1997], the score statistic
for π under the null H0 : π = 0, τ2 = 0 can be derived as

(4)

by using penalized quasi-likelihood, where μ̃T = (μ̃1, …, μ̃N), , for i = 1, …, N,
g−1(·) is the inverse function of g(·), and α̃ is the estimator for the nuisance parameter α
under H0, which can be obtained by solving the estimating equations

(5)

Here θ = α. Under this situation, , and  under H0. For the logistic
regression model, we have g−1(x) = exp(x)/{1+exp(x)}, and for the linear regression model,

g−1(x) = x. For both models, the estimating equations reduce to .
By the central limit theorem and the law of large numbers, it can be shown that Σ−1/2Uπ
converges to a q-dimensional multivariate normal distribution with mean 0 and covariance

matrix I, where Σ = (GZ)T{D̃ − D̃X (XTD̃X)−1XTD̃}(GZ), , and

 for a continuous trait and  for a binary trait.

For τ2 we obtain the score statistic under τ2 = 0 without restricting π = 0. The resulting
score is Uτ2 = (Y − μ)T GGT (Y − μ) − tr(GGT). Following Zhang and Lin [2003], we use
the first part of Uτ2 as our modified score statistic. That is,

(6)

where μ̂T = (μ̂1, …, μ̂N), , i = 1, …, N, and θ̂T = (α̂T, π̂T) can be

obtained by solving equations (5) with  and  under
τ2 = 0. This proposed score statistic, Sτ2, is similar to the one in Wu et al. [2011]; however,
μ̂ is different in the sense that it also includes the grouping effects of variants. Zhang and
Lin [2003] and Liu et al.[2007,2008] showed that Sτ2 follows a mixture of chi-squared

distributions, , where  are independent  random variables, and λ1 ≥ · · · λs
> 0 are the nonzero eigenvalues of P̂1/2GGT P̂1/2. Here P = D−DM (MT DM)−1M D and M =

(X, GZ). Matrix P̂ is obtained by plugging D̂ in P, where , and

 for a continuous trait and  for a binary trait. There exist
several methods to approximate this mixture chi-square distribution, for example, both the
Davies method and the Liu method have been shown to work well in practice [Liu et al.,
2009].

The above derivations are based on assumptions in model (3), i.e. the individual variant
effects, δ1, …, δp, follow a distribution with mean zero and the same variance τ2. We can
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further generalize this assumption to allow the variance of δj to be ωjτ2, where ωj is a non-
zero weight for the jth variant, j = 1, …, p. Under this generalized assumption, the score test
statistic for testing τ2 = 0 is wSτ2 = (Y − μ̂)T GW GT (Y − μ̂), where W = diag{ω1, …, ωp}.
Usually, the weight for the jth variant, ωj, is a decreasing function of its corresponding
observed MAF, fj. For example, , where beta(·) is a beta function. If α1

= α2 = 0.5, then . Thus the weighted test statistic wSτ2

follows a mixture of chi-squared distributions with weights as nonzero eigenvalues of matrix
P̂1/2GW GT P̂1/2.

An appealing property of our proposed modified score test is that the variance component
score statistic, Sτ2 or wSτ2 for τ2 = 0, is independent of the score statistic Uπ for testing π =
0, and the proof is provided in the Appendix. The benefit of independence is that we can
combine Uπ and Sτ2 (or wSτ2) together to test H0 : π = 0, τ2 = 0 without dealing with
complex correlation. The two most popular approaches for combining independent tests will
be presented in the next section. Since our combined test is based on the mixed effects
model, we term our proposed test as the Mixed effects Score Test (MiST).

Combining Independent Score Tests Uπ and Sτ2

The literature for combining independent tests is extensive [Koziol and Perlman, 1978].
Two commonly used procedures for combining the independent tests are Fisher’s procedure
and Tippett’s procedure, both based on p values. Since our modified score statistics, Uπ and
Sτ2, are independent, we can calculate the p value for each score statistic and combine them
using either Fisher’s or Tippett’s procedures.

Specifically, let Pτ2 and Pπ denote the p values based on Sτ2 and Uπ, respectively. Fisher’s
procedure rejects H0 if the product Pτ2Pπ is small. Under the null H0, −2 log(Pτ2) and −2
log(Pπ) each follows a chi-squared distribution with 2 degrees of freedom. Fisher’s

procedure rejects H0 at an overall significance level α if .
Alternatively, one can calculate the p value for the combined test by

. For Tippett’s procedure, H0 is rejected if the minimum of Pτ2

and Pπ is small. Under the null H0, Tippett’s procedure rejects H0 at an overall significance
level α if min(Pτ2, Pπ) ≤ 1 − (1 − α)1/2. The p value for the combined test using Tippett’s
procedure is 1 − (1 − min(Pπ, Pτ2))2

The power for these two procedures is different under different alternatives. Fisher’s
procedure is more powerful when both π ≠ 0 and τ2 ≠ 0, whereas Tippett’s procedure is
more powerful when either the case of π ≠ 0 or the case of τ2 ≠ 0 is true. In the
Supplementary Materials Figures S1 and S2 show the acceptance region and power
comparison of these two procedures, respectively. It can be seen that when both π and τ2 are
nonzero, the acceptance region curve for Fisher’s procedure is closer to 0 than Tippett’s
procedure. When one of the two alternatives is true, the acceptance region curve for the
Tippett’s procedure is closer to 0 than for Fisher’s procedure. The power curves show a
similar trend. Therefore, when both alternatives are likely to be true, Fisher’s procedure may
be used as it is more powerful; however when only one of the alternatives is true, then
Tippett’s is more powerful.

Simulation Studies
List of methods for comparison

We conducted extensive simulation studies to evaluate the performance of our proposed
mixed effects test (MiST) in terms of type I error and power, and compare it with currently
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popular methods, including the burden test [Morris and Zeggini, 2010], SKAT [Wu et al.,
2011], SKAT-O [Lee et al., 2012] and EREC [Lin and Tang, 2011]. The choice of these
representative tests was in part based on the simulation results from Lin and Tang[2011],
who suggested that EREC had similar power to the better one between the burden and the
SKAT tests under a wide range of scenarios but more robust than either one. They also
showed that EREC outperformed the HP test [Han and Pan, 2010] and the C-alpha test
[Neale et al., 2011], which were not included in the comparison to save space. Like EREC,
the recently proposed SKAT-O was also shown to have comparable performance of the
better one between the burden and SKAT tests. For MiST, we used both Fisher’s and
Tippett’s procedures to combine the score statistics for π = 0 and τ2= 0. The respective
combinations are denoted by MiSTF and MiSTT.

In addition, we considered a weighted version for each of the tests, and they are denoted by
wBurden, wSKAT, wSKAT-O, wMiSTF and wMiSTT. For wSKAT, we adopted the default
weight as suggested in the SKAT software, i.e.,  where fj is the MAF for
the jth variant. To ensure a fair comparison, we used the same weight for MiST and the
burden test. For MiST, we let Z in model (3) be a vector of ones or a vector of weights for
wMiST, unless otherwise mentioned.

Simulation configurations
We conducted four simulation experiments to evaluate type I error and power of all
methods. In the first three experiments, we mimicked the simulation set up used in Lin and
Tang [2011] instead of the more natural population genetic models, because it is easy to
control the number of variants and their MAFs and can give us a clear understanding of how
various tests perform under different scenarios. The fourth experiment was based on the
sequencing data from the Dallas Heart Study [Victor et al., 2004] to preserve the linkage
disequilibrium pattern within a gene. Due to the computational intensiveness of the EREC
test, we only included it in the fourth experiment. Since we used the same simulation set up
in the first three experiments as in Lin and Tang [2011], readers can deduce the performance
of the EREC test compared with the burden and SKAT tests from their paper.

For the first three experiments, we generated 10 variants in a region under the Hardy-
Weinberg equilibrium with MAFs, fj = 0.005j for j = 1, …, 10. In addition, we generated
two covariates, one continuous covariate from Normal(0, 1) and one binary covariate from
Bernoulli(0.5). For each individual we generated a continuous phenotype from model

(7)

where α0 = 0.1, α1 = 0.5 and α2 = 0.5 are the regression coefficients for covariates X1 and
X2, βj, j = 1, …, 10, are the regression coefficients for the genetic variants, and ε is assumed
to follow Normal(0, 1). Different values for the genetic effects βj, j = 1, …, 10, were
considered to evaluate the type I error and power, and they will be provided in the following
subsections on type I error and power. Unless otherwise specified, for each scenario, we
considered two sample sizes: N=500 and N=1000, and we evaluated the type I error and
power when the significance level was controlled at α = 10−2 and 10−3. A total of 10, 000
simulated data sets were generated for each scenario.

Type I error
To evaluate the type I error of these methods, we generated the phenotype by letting βj = 0,
for j = 1, …, 10. The results are summarized in Table ??. Each entry is the estimated type I
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error divided by the corresponding significance level α. Hence, if the value is close to 1, the
estimated type I error is close to the desired level. It can be seen that all tests have nearly
correct type I error. We also examined the type I error of MiST when MAFs are 0.001j
where j = 1, 2, …, 10. It is slightly conservative when N = 500; however when N increases
to 1000, the type I error is well maintained (results not shown).

Power comparison when all variants are deleterious and when both positive and negative
effects are present

We considered two rather extreme scenarios for variant effects, with one favoring the
burden test and the other favoring SKAT. The purpose of this simulation setup is to evaluate
the robustness of the proposed MiSTs. Specifically, in the first scenario, we set genetic
effect βj to be Hα1 : βj = c/{fj (1 − fj)}1/2, j = 1, …, 10, for some c > 0, where fj was the
MAF for the jth variant. This was to assume that all 10 variants had deleterious effects and
rarer variants had stronger effects. This scenario was in favor of the (weighted) burden test.
For the second one, we assumed βj to be Hα2: β3 = 1.5c, β4 = −1.5c, β5 = c, β6 = −c, for
some c > 0, and zeros for the other βs. Under this scenario, four out of ten variants were
associated with the trait, and the associated variants had opposite effects on the trait. This
setting was in favor of the variance components test such as SKAT. Here, in both scenarios,
the constant c was selected such that the power was reasonably high at different α levels.

Table ?? shows power comparison among different tests under alternatives Hα1 and Hα2. As
expected, the burden test, even though performing well under Hα1, performs poorly under
Hα2; whereas SKAT performs well under Hα2 but poorly under Hα1. MiST, which
combines both the burden type and the variance component tests, are very robust under these
two extreme alternatives. It is somewhat less powerful than the best test that the alternative
favors, but generally much more powerful than the worst test when the alternative is not in
favor of. Between the two combinations for MiST, Tippett’s is modestly more powerful than
Fisher’s because the alternative is in favor of either the Burden test or SKAT. Being a linear
combination of the burden test and SKAT, SKAT-O shows similar robustness to MiST.
Since in this simulation rarer causal loci have greater effects, all weighted tests are more
powerful than their respective unweighted ones. The relative performance of the weighted
tests are similar to that of their unweighted counterparts.

Power comparison when a small subset of the variants are deleterious and the rest are
neutral

To show that MiST is not only robust but also more powerful than either the burden or
SKAT tests, we conducted another set of simulation experiments. In this set, we again
considered two scenarios: Hα3 : β1 = β4 = β7 = c, and zeros for the other βs; and Hα4: β1 =
c, β4 = 0.5c, β7 = 0.25c, and zeros for the other βs. Under these scenarios, both neutral and
causal variants coexisted in the set of variants with three out of 10 loci causal. The
difference between the two scenarios were that the effect sizes were the same under Hα3, but
inversely associated with MAFs under Hα4.

Table ?? summarizes the results of all tests for this experiment. Under Hα3, for the
unweighted tests, our proposed test with Fisher’s procedure MiSTF is the most powerful.
Compared with the second most powerful test, SKAT, the power of MiSTF increases
ranging from 13% to 63% for different sample sizes and significance levels. Similarly,
among weighted tests, wMiSTF remains the most powerful, and the power gain compared to
wSKAT ranges from 4% to 15%. The power of the SKAT-O (or wSKAT-O) test is slightly
less than the SKAT (or wSKAT) test. The burden (or wburden) test has the least power. It is
worth noting that even though all causal variants have the same effect, the weighted tests are
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still more powerful than their unweighted counterparts, because the MAFs of causal variants
are on average smaller than those of neutral variants.

Under the heterogeneous effect size model Hα4, both unweighted and weighted MiSTs with
Fisher’s procedure, (w)MiSTF, remain to be most powerful (Table ??). For unweighted
tests, MiSTF gains power 37% ~ 98% compared to the second most powerful test, SKAT-O.
For the weighted tests, the power gain of wMiSTF compared to the second most powerful
test, wSKAT, ranges from 7% to 26%.

The MiSTs (weighted or unweighted) with Tippett’s procedure MiSTT is less powerful than
Fisher’s. Under these alternatives, only a small proportion of variants are causal, which is
generally in favor of the variant components test; meanwhile, all causal variants are
deleterious (same direction), which is in favor of the burden test. Therefore, Fisher’s
procedure, which combines the information from both the heterogeneity (a mixture of causal
and neutral variants) and the grouping effect of causal loci, gains power over Tippett’s
procedure, which tends to be more powerful when only one of the situations is true. To save
space, the following simulation is only focused on Fisher’s procedure.

Power comparison under a real data situation
This set of simulation for power comparison mimicked a real data situation. We used the
sequencing data from the Dallas Heart Study [Vector et al., 2004]. The study included 3409
subjects who were sequenced for three candidate genes: ANGPTL3, ANGPTL4 and
ANGPTL5. We used the gene ANGPTL5 as our template to generate the data, and will
analyze the Dallas Heart Study data as a real data example in the following section.

There are a total of 93 variants in ANGPTL5 with MAF < 3%, of which 27 are functional
(missense, nonsense and frameshift) and 66 are non-functional (noncoding, synonymous and
intronic). According to Sunyaev et. al.[2001] and Ng et. al. [2008], about 15%-20% of
functional variants are causal. Hence in this simulation, we randomly selected 10%, 25%,
and 50% of functional variants to be causal, respectively. Note that due to linkage
disequilibrium (LD) among variants, it is likely that more variants are weakly associated
with the phenotype. We generated the phenotype Y using the same model (7), with the effect
sizes βj = c| log10 fj |, where c is a constant as used in Wu et al.[2011]. We chose c = 0.5,
0.25, and 0.1 when 10%, 25% and 50% functional variants were causal, respectively, so that
there was adequate power to discern the performance of various tests. Under this model, the
effect of a causal variant with MAF 10−4 was twice as large as that of a causal variant with
MAF 10−2. A total of 1000 data sets were generated, and the power was compared for all
tests at a significant level of 0.05. For this set of experiments, we included the EREC test for
comparison in addition to Burden, SKAT and SKAT-O. For the weight in EREC, we used
the recommended estimated variant regression coefficients with an added constant, 1, for
standardized continuous trait.

We performed the analysis restricted to the functional variants only and both MiST and
wMiST performed better than other tests (see Table S1 in the Supplementary Materials).
Here, we only show the results of analysis using all variants (both functional and
nonfunctional) to demonstrate that the MiSTs can easily accommodate possible differential
effects for different types of variants. This was achieved by adding an indicator variable in
the matrix Z of model (3) when applying the MiST or wMiST. The indicator variable was 1
if the variant was functional and 0 otherwise. The results for including all variants are shown
in Table ??. The proposed MiST and wMiST are considerably more powerful than all other
tests. For the unweighted tests, the power gain for MiSTF, compared to the second most
powerful test, ranges from 44% to 187%. Similarly, for the weighted tests, compared with
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the second most powerful test, wMiSTF increases power from 20% to 81%. The Tippett’s
procedure has less power than the Fisher’s and the results are therefore omitted in the table.

To examine the impact of misspecifying variant characteristics on power, we randomly
reassigned 10% of functional variants (3 out of 27) to non-functional status and 10% of
nonfunctional variants (6 out of 66) to functional. In addition, we specifically chose a causal
variant and assigned its functional status to non-functional, which results in 1 out 3, 1 out of
7 and 1 out of 15 causal variants misspecified for 10%, 25% and 50% causal cases,
respectively. Under this misspecification scheme, the power for MiSTF decreases from
0.600 to 0.465, losing 22.5% for 10% causal loci; from 0.765 to 0.597 (-21.9%) for 25%
causal loci; and from 0.615 to 0.576 (-6.3%) for 50% causal loci. Even though
misspecifying variant characteristics results in some power loss particularly when the
fraction of misspecified causal variants is high, MiSTF is still more powerful than all other
unweighted methods.

In addition to simulations for the continuous trait, we also evaluated the performance of the
MiST and wMiST in comparison with other tests for binary trait under this simulation
experiment by dichotomizing the continuous trait into a binary variable. The relative
performance of various methods is very similar to that of the continuous trait. The results for
the binary trait are in the Supplementary Materials Table S2.

The Dallas Heart Study
To further explore the performance of MiST and illustrate how to incorporate variant
characteristics in the analysis, we applied our test method to a real data set from the Dallas
Heart Study [Victor et al., 2004].

Dallas Heart Study is a population based study aimed to investigate biological and social
variables that contribute to differences of cardiovascular health situation among different
ethnic groups. Information collected includes gender, ethnic group, age, and triglyceride
level. In addition, three candidate genes, ANGPTL3, ANGPTL4, and ANGPTL5, were
sequenced. In our analysis we included 3409 individuals, which involve two gender groups
(male=1500 and female=1909) and four ethnic groups (black=1762, white=988,
hispanic=586, other=73). We focused on rare or less frequent variants, i.e variants with
observed MAF<0.05, in the sequencing data. Specifically, in gene ANGPTL3, ANGPTL4,
and ANGPTL5, there are 85 (functional=36, nonfunctional=49), 89 (functional=31, non-
functional=58), and 96 (functional=27, nonfunctional=69) rare variants, respectively. A
variant is functional if it is missense, nonsense, or frameshift, and non-functional if it is
noncoding, synonymous, or intronic.

We assessed the association between the log-transformed triglyceride level and each
candidate gene, adjusted for gender, ethnic group, and age. We analyzed the data using
functional variants only, and all variants including both functional and nonfunctional
variants. Both weighted and unweighted tests were conducted. Here we only present the
results from the weighted tests (Table ??), because the results for the unweighted tests are
similar. To save space, the unweighted results are provided in the Supplementary Material
without further dicussion. In the following, we use α = 0.05 as the significant level.

For MiST, there are different ways to specify the variant characteristic matrix Z. We
considered two specifications: (1) Z is a vector of beta(fj, 1, 25) denoted by wMiSTF and
wMiSTT for Fishers’ and Tippett’s procedures; (2) in addition to the vector in (1), for
functional variants only analysis Z includes two indicators for missense and frameshift,
respectively; and for all variants analysis Z includes three indicators for missense, frameshift
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and nonsense. For the second specification, we denote the test by wMiSTF (Z) and wMiSTT
(Z), respectively. The results are presented in Table ??.

When including functional variants only, gene ANGPTL5 is significant based on the
weighted MiSTF(Z) (p=5.17e-05) and MiSTT (Z) (p=6.31e-5). Comparing with p values
obtained from wMiST without incorporating variant characteristics, we find that wMiSTF
(Z) and wMiSTT (Z) yield smaller p values, indicating a potential power gain for
incorporating such information. The p value for the variance component for wMiST(Z) is
0.53 and for π is 4.95e-06, indicating that after adjusting for variant characteristics there is
no evidence for the residual individual variant effect. Further examination of individual p
values for Z variables shows that the missense variants have the same effect as the nonsense
variants (p=0.24), and the frameshift variants have a significant different association with
log triglyceride from the the nonsense variants (p=0.004) (see Table S5 in the
Supplementary Materials).

When using all variants, we detected an additional significant association with gene
ANGPTL3. The p values for wMiSTF (Z) and wMiSTT (Z) are 0.0035 and 0.0052,
respectively. We further examined the individual component p values for MiST. The p value
for testing π = 0 is 0.15 and for testing the heterogeneity is 0.0026 (see Table S5 in the
Supplementary Material), indicating that the association is largely driven by individual
variant effects. We examined the distribution of log-triglyceride level for carriers of each
individual variant and found that a few variants are particularly associated with low log-
triglyceride level, while majority variants are scattered around the overall mean trait value
(see Figure S3 in the Supplementary Materials). For gene ANGPTL5, the p values for
wMiSTF (Z) and wMiSTT (Z) are 0.000061 and 0.00011, respectively. The results are
consistent with the functional variant analysis. Moreover, individual component p values
also show a similar trend compared with the functional variant analysis (Table S5 in the
Supplementary Materials).

For all other tests, only the weighted burden test shows a significant association between
gene ANGPTL5 and log triglyceride (Table ??) (p = 0.00011 for including functional
variants only; p = 0.0073 for including all variants). Taken together, our proposed tests,
MiSTF and MiSTT, are powerful and provide additional information regarding the source of
the association.

Discussion
We proposed a mixed effects score test (MiST) based on hierarchical models for testing
whether a set of variants is associated with phenotypes accounting for potential
heterogeneous variant effects. There are several advantages to hierarchical regression
modeling. It includes the usual appealing features for regression models such as adjusting
for confounders and being able to accommodate different types of outcomes (e.g.,
continuous and binary) by using appropriate link functions. It also models the variant effects
as a function of (known) variant characteristics to leverage information across loci while still
allowing for individual variant effects.

The score statistic that we developed for hierarchical model provides a general framework
for testing the set-based association. When the hierarchical model (3) includes only

, the score statistic reduces to the burden test. When (3) includes only

, the score statistic reduces to the SKAT test with linear kernel. We can further

extend model (3) to replace  by h(Gi), where h(·) is defined by a positive, semidefinite

kernel function K(·, ·) such that  for some γ1, …, γN. Assume a
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subject specific random effect for γ’s with mean 0 and variance τ2, then h(G) = (h(G1), …,
h(GN))T follows a distribution with mean 0 and variance τ2 , where  is the kernel matrix
with (i, i′)th element being K(Gi, Gi′). Some commonly used kernel functions include the
linear kernel, Gaussian kernel, and the identity by state kernel [Wu et al., 2011]. Our score
statistics in this extended model are still the same as the ones for model (3), where the score
statistic for π = 0 is derived under null (π = 0 and τ2 = 0) and the score statistic for τ2 is
derived under τ2 without constraining p = 0. Simply put, the variance component test is
same as SKAT except the covariates in our variance component test include not only the
confounders X but also the variant characteristics GZ. Since our proposed score statistic is a
combination of the burden and kernel-based tests, it is more robust than either one.
Moreover our score test can be more powerful as it makes use of variant characteristic
information when available. Furthermore, since our test statistic has a well-defined and
easily calculated asymptotic distribution, the computational burden is substantially reduced
compared to permutation-based tests.

The proposed combined score statistic tests both π = 0 and τ2 = 0. Since it is generally
unknown what type of alternatives are likely to be true particularly in a genome-wide
association analysis, it is useful to have a global test that is powerful under a wide range of
scenarios. However, when a combined test is statistically significant, it is not necessarily
clear what may contribute to the statistical significance. Based on our score statistics, we can
also test association of specific components, i.e. any parameter in π is 0 or τ2 = 0, as
demonstrated in the analysis of the Dallas Heart Study. We provide p values for component
association tests. A small p value may suggest that a specific component is associated with
phenotype. We note that these p values are not adjusted for multiple testing and they should
be interpreted with caution. Nevertheless these component tests are informative and can
provide useful leads for generating hypothesis in future studies.

In rare variant analysis, it is important that common variants do not have a large impact on
the group signal such that the effects of rare variants are difficult to detect [Madsen and
Browning, 2009]. In the weighted MiST, the variants are weighed differently according to
their allele frequencies. This weighting accentuates mutations that are rare in the subjects, so
that the test is not completely dominated by common variants. By doing this, we can include
variants of all frequencies. However, even though our test is motivated by rare variants
association, this set-based association test can also be applied to other situations, for
example, gene or pathway analysis of GWAS SNPs. Since most GWAS SNPs are common,
the concern of rare variants is not relevant; in this case, unweighted MiST test may be used.

We used Fisher’s and Tippett’s procedures to combine the independent tests. Generally
speaking, Fisher’s procedure is more powerful than Tippett’s procedure when both group
effect and individual variant effect exist, but less powerful when only one is true. From the
simulation study, we can see that Fisher’s and Tippett’s procedures may perform differently
under different situations. A useful extension of our current work is to find an optimal
weight to combine the two tests under different types of alternatives, accounting for unique
features in the data. Research along this line will be presented in future work.

The computation speed for running the proposed test is fast. For example, for the Dallas
Heart study, we analyzed three genes, ANGPTL3, ANGPTL4 and ANGPTL5, which
included 85, 89, and 96 variants, respectively on a total of 3409 subjects. The runtimes for
analyzing these genes are 5.08, 6.47, and 5.29 seconds, respectively, using a personal laptop
with 2.2 GHz CPU. Based on our experience, the number of variants in a set generally does
not affect computational speed unless the number is very large. The software for the
proposed tests, MiST, is available upon request.
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Supplemental Materials Description
The supplemental materials include two figures (Figure S1 and Figure S2) that show
acceptance region and power comparison between Fisher’s and Tippett’s procedures, Table
S1 and S2 for the power comparison for functional variants only analysis and binary trait,
Table S3 for the analysis of Dallas Heart Study using unweighted test methods, Table S4 –
S5 for component p values for testing π = 0 and τ2 = 0 when applying MiST or wMiST to
the Dallas Heart Study with or without variant characteristics indicators, and Figure S3 to
help visually examine the distribution of each individual variant when there exists
significant heterogeneity.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix: Independence of Sτ2 and Uπ
To prove that the score statistics Uπ = (GZ)T (Y − μ̃) and Sτ2 = (Y − μ̂)T GGT (Y − μ̂),
where μ̃ and μ̂ are defined as in equation (4) and equation (6), are independent, we first note

that Sτ2 can be written as , where Uτ2 = GT (Y − μ̂). In addition, if we apply the
identity link for continuous traits, or logit link for binary traits, by using the Taylor
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expansion we can show the following two approximation Y − μ̃ ≈ (I − DX(XT DX)−1XT (Y
− μ) and Y − μ̂ ≈ (I − DM (MT DM)−1MT (Y − μ), where M = (X, GZ) and D is the
variance-covariance matrix of Y given τ2 = 0. Denote P1 = I − DX (XT DX)−1XT and P2 = I
− DM (MT DM)−1MT, we have Uπ = (GZ)T P1(Y − μ) and Uτ2 = GT P2(Y − μ).

Define a (q + p) × 1 random vector . By the central limit theorem and the law
of large numbers, V converges to a multivariate normal distribution with mean vector 0 and

covariance matrix Σ with diagonal matrices  and

, and the off-diagonal matrices .

Since Uπ and Uτ2 have asymptotically a joint normal distribution, to prove that they are
asymptotically independent, we only need to prove that Cov(Uπ, Uτ2) = 0. This equation is
true because if we denote P02 = P2D = D − DM (MT DM)−1MT D, then we have MT P02 = 0,
which implies XT P02 = 0 and (GZ)T P02 = 0 since M = (X, GZ). Hence
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