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Abstract—Injection-locked frequency dividers (ILFDs) are ver-
satile analog circuit blocks used, for example, within phase-locked
loops (PLLs). An important attribute is substantially lower power
consumption relative to their digital counterparts. The model
described in this paper unifies the treatment of injection-locked
and regenerative systems. It also provides useful design insights
by clarifying the nature and role of the nonlinearity present in
many mixer-based frequency conversion circuits. The utility of the
model is demonstrated in the calculation of both the steady-state
and dynamic properties of ILFD systems, and the subsequent
computation of the corresponding phase noise spectrum. Illustra-
tive circuit examples show close correspondence between theory
and simulation. Finally, measurement results from a 5.4-GHz
divide-by-2 ILFD fabricated in 0.24- m CMOS show close
correspondence between experiment and theory.

Index Terms—CMOS analog integrated circuits, frequency di-
viders, injection locking, locking range, loop bandwidth, oscilla-
tors, phase noise, phase-locked loops (PLLs).

I. INTRODUCTION

I NJECTION-LOCKED frequency dividers (ILFDs) are
analog circuit blocks that are useful in phase-locked loops

(PLLs), among others, because they can consume much less
power than conventional digital implementations. The ILFDs
considered here fall under the broader class of regenerative
frequency conversion circuits. Traditionally, a distinction has
been drawn between injection-locked [1]–[3] and regenerative
systems [4]–[6]. According to this tradition, injection-locked
systems are free-running oscillators which lock in phase
and frequency to an injected input signal, while regenerative
systems do not free-run; they require an injected signal to
produce an output. Previous theoretical treatments overlook the
deep link between these two types of systems. It is also often
difficult to extract circuit design insights from many models.

The model presented in this paper subsumes into a single
treatment most circuits which accomplish frequency conversion
by division. It identifies the role of the nonlinearity of most
mixer-based frequency conversion circuits. This model is then
used for calculating both the steady-state and dynamic proper-
ties of ILFD systems. The phase noise spectrum is computed
using these results, and some illustrative circuit examples are
provided at the end to provide experimental support for the the-
oretical predictions of the model. It is shown that within its
locking range, the ILFD behaves much like a PLL. One impor-
tant difference is that the loop bandwidth and the locking range
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Fig. 1. General model for a free-running oscillator.

of the ILFD are controllable by the amplitude of the injected
signal. Attention is paid throughout to the acquisition of design
insight.

II. UNIFIED MODEL FOR THEINJECTION-LOCKED OSCILLATOR

In this section, we first discuss the case of a free-running
oscillator, followed by an introduction to injection-locked os-
cillators. The attributes and weaknesses of some recently pub-
lished models are considered before introducing a new unified
model for injection-locked oscillators. As will be seen, a focus
on system behavior in the weak injection regime provides im-
portant general insights into the operation of ILFDs.

Free-Running Oscillator

A general model for an oscillator is given in Fig. 1. It con-
sists of a nonlinear gain blockand a linear filter . The
filter can be implemented any number of ways, such as with a
cascadedRC [2] or LC network [3]. Let us assume that the os-
cillator operates at a natural oscillation frequency and that
the filter suppresses frequencies far from. Let us call
the steady-state output of the oscillator.

Provided that is a memoryless function, we can express it
as a polynomial series of the form

(1)

where the coefficients of the polynomial are constant. To
analyze the steady-state solution of the free-running oscillator,
we invoke the Barkhausen criterion [12], which states that the
magnitude of the loop gain should be one, while the phase of
the loop gain should be a multiple of . Assume that is
sinusoidal of the form . Harmonics of

are generated as is operated on by. Substituting for
into (1) and expressing the result as a Fourier series, we obtain

products

(2)

The coefficients depend on the nonlinearityand are func-
tions of the output amplitude . Let the coefficient rep-
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Fig. 2. Common model for the injection-locked oscillator [3].

resent the gain of at the frequency . Assuming the filter
suppresses all frequency components other than those at

, we can write the magnitude and phase conditions around
the loop as follows:

(3)

and

(4)

where is an integer. Note that phase shift introduced by
can only be 0 or , depending on the sign of . The phase
condition expressed in (4) states that the phase contributed by

at must be zero (or ), modulo . By contrast, we
shall see later that the allowable phase shift contributed by the
nonlinearity in an injection-locked oscillator is a function of
the injected signal.

Injection-Locked Oscillator: Model 1 (Adler)

Injection-locked oscillators track the phase and frequency of
an impressed signal. The output frequencyof the oscillator
may be the input frequency itself, or a submultiple or har-
monic of . It may not necessarily be equal to , the oscil-
lator’s natural oscillation frequency in the absence of an injected
signal. The mechanism of injection-locking for a small injected
signal has been well described by Adler [1]. A simple, popular
model which has been used to describe injection-locked oscilla-
tors is shown in Fig. 2 [3]. In this model, the two inputsand

simply add before being operated on by the nonlinearity.
The nonlinearity is needed both for amplitude stability and to
enable frequency mixing. This model gives particularly useful
design insight when the model is a direct physical representa-
tion of the circuit. In such circuits, the input and output signals
are summed and the result passes through a nonlinearity. The
linear filter suppresses all frequencies far from, the
frequency of oscillation.

We are interested in the frequency range over which the os-
cillator can track the injected signal. To compute this locking
range, we again apply the Barkhausen criterion, just as in ana-
lyzing the free-running oscillator. As before, we can express
as a polynomial series, this time of the form

(5)

Let and . In this case,
the products of are given by [3]

products

(6)

Fig. 3. Two injection-locked oscillator topologies.

If, for some integers and , , then the
corresponding output terms in (6) will exist at the frequency of
oscillation . When these terms are combined, the output of
has a resulting phase shift with respect to the input signal. Un-
like the free-running oscillator, the phase shift introduced byis
not restricted to 0 or , and instead depends upon the strength of
injection and the input frequency. To compensate for the extra
phase shift due to the injection, the phase shift contributed by

must change so that the net phase around the loop re-
mains . The loop changes the frequency of oscillation to ac-
commodate the phase condition. This mechanism thus enables
the oscillator frequency to track . When the input frequency

is too large, cannot adjust and injection locking fails.
A detailed derivation of the locking range based on this model
has been provided in [3], and shows that failure to satisfy either
the loop gain or loop phase condition can prevent locking.

As alluded to earlier, the model given in Fig. 2 is most useful
for those circuits which have a one-to-one correspondence with
it, that is, those in which the output and injected signals are ac-
tually summed in the circuit, and subsequently pass through the
nonlinearity. One such circuit topology is shown in Fig. 3(a).
However, in other cases, such as Fig. 3(b), the model becomes
less physically meaningful. In fact, the latter circuit behaves
much like a single-balanced mixer, in which multiplies with

due to the action of the differential pair. In such cases, we
should change the nature of the nonlinearity in our model so
that we may get further design insight. We can then identify the
important parameters upon which the performance of the ILFD
depends and design an optimized circuit.

Injection-Locked Oscillator: Model 2 (Miller)

Miller [4] proposed regenerative frequency conversion cir-
cuits which, in the absence of an injected signal, do not oscil-
late. Nevertheless, we can model the injection-locked oscillator
shown in Fig. 3(b) with a generalized Miller-type model [2], as
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Fig. 4. Miller-type model for the injection-locked oscillator [2].

shown in Fig. 4. Assume that the linear filter filters out
all frequencies other than , the frequency of forced oscilla-
tion.

Note that we now have two memoryless nonlinear functions,
and , which could represent nonlinearities inherent in

practical approximations to pure multipliers, for example. The
output of the mixer in the figure is of the form . Here, the
function could model the transconductor in a single-balanced
Gilbert-type mixer, which produces an RF current riding on a
dc current. In the absence of an RF current, the bias current will
still allow the oscillator to free-run if there is sufficient loop
gain. Since the transconductor may not be linear, harmonics of
the injected signal may exist at the output of, modeled as

(7)

If the function models the differential pair in the Gilbert ex-
ample, its action could be represented as

(8)

Now let and . The
output of the mixer is then given by a product of Fourier series

products

(9)

In (9), the coefficients are functions of the input amplitude
only, while are functions of the output amplitude .

We can then determine which products lie at. The locking
range calculation for such a general system will be very similar
to that shown in [2]. While this model is quite general, and pre-
dicts the existence of sub- and superharmonic injection locking,
it has its limitations. Specifically, the mixing of spectral com-
ponents suggested by (9) might not be quite accurate, because
the coefficients and could be functions of both and

in practice.

Injection-Locked Oscillator: Model 3 (Unified)

To derive a more general model for the injection-locked oscil-
lator, consider the block diagram shown in Fig. 5. Let us assume
that is a memoryless nonlinear function of bothand . As
before, the linear filter rejects frequency components far

Fig. 5. General model for the injection-locked oscillator.

from . For injection-locked oscillators, a convenient function
representing is

(10)

Using a Taylor series expansion of around a dc point ,
can be written as

(11)

The expression in (11) applies specifically to functions of the
form (10). Let us assume that the magnitude of the injection is
weak compared to the static bias point, i.e.,is close . In
this case, we only consider terms with in (11)

(12)

where

is the derivative.
The first partial sum term in (12) is similar to (1) for the

free-running oscillator. The second partial sum is due to the in-
jection. For more accuracy, higher order terms can be added.
The coefficients and their derivatives can be determined ei-
ther from the analytical form of or extracted by measuring
the effect of slight perturbations on the nonlinearity about the
bias point . As we shall see in Sections V and VI, if the
nonlinearity is memoryless, these coefficients give us all the
information needed for a complete description of the behavior
of an injection-locked oscillator about a bias point. If both



1018 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 6, JUNE 2003

and are sinusoidal of the form and
, the full output of (11) can be written as

(13)

By taking advantage of the associativity of addition, we can re-
group terms to express the bracketed quantity in (13) as a sum
of harmonics of

(14)

In (14), the coefficients have been introduced. Each can
be a function of all the and . Assuming weak injection as
in (12) and simplifying ( )

(15)

where

In (15), we have an expression for the waveform at the output
of . The coefficients are functions of and , while
their derivatives are functions of and . Note that si-
nusoidal signals with coefficients are generated by passing
a solitary sinusoidal signal through the nonlinearity ,
while sinusoidal signals with coefficients are generated by
passing the same sinusoidal signal through thederivativeof the
same nonlinearity with respect to . Note that the first term
of (15) is similar to (1) for the free-running oscillator, while the
second term shows the mixer products due to the presence of the
injected signal. Notice if the first sum term in (15) is small, then
there may not be sufficient loop gain for oscillation in the ab-
sence of an injected signal ( ). This case corresponds to
that of traditional regenerative dividers. If there is a sufficiently
large gain around the loop, the oscillator can free-run even in
the absence of an injected signal. The system is then what is tra-
ditionally referred to as an injection-locked oscillator.

Using (15), we may derive the steady-state conditions neces-
sary for oscillation. We restrict ourselves to the case of super-
harmonic locking, which is important for the study of frequency
dividers. Assuming that (where is a positive
integer), we can compute the products of (15) which exist at

. Let us use the Barkhausen criterion to write the steady-state
magnitude and phase expressions at the frequency

(16)

(17)

where

and

Both of these important relationships need to be satisfied to sup-
port locking. To find the full locking range of an ILFD, we find
the frequency of the injected signal where either (16) or (17)
fails. To derive a simplified analytical expression for the locking
range, let us suppose that there is sufficient gain around the loop
such that (16) is always satisfied. In such cases, the locking
range isphase limited, and is thus determined solely by (17).
Let us also suppose that the amplitude of the oscillationdoes
not change much as changes. Therefore, and re-
main constant as well. In this special case, the locking range can
be computed directly from (17). For small frequency deviations,
the phase response of the filter can be linearized about the nat-
ural frequency of oscillation as ,
where is a constant with dimensions of time. Assuming that

, we can show that

(18)

where and both depend on and . We call this impor-
tant quantity the output-referred phase-limited locking range of
the ILFD.

III. T RANSIENT RESPONSE OF THEILFD

Aside from the steady-state locking range, it is also important
to understand the dynamics of ILFDs. The transient phase be-
havior of an ILFD reveals much about its phase-noise filtering
properties. We may evaluate the dynamics by considering how
quickly the output phase or frequency would change if we were
to suddenly step the phase or frequency injected into an ILFD.

Let us suppose that and
where we consider phase on both the input

and output signals (and , respectively). When the system is
in steady state, we can refer all the phase to the input or the
output. The output phase of the ILFD can be perturbed by two
sources: the phase noise of the input signal and internal phase
noise of the ILFD. Consider the following two observations.

1) In steady state, there is a fixed phase relationship between
and . If were to remain fixed and were to deviate

slightly from its steady-state value due to internal noise,
it would eventually return back to its steady-state value.

2) If were to step suddenly to a different value, then
would eventually stabilize to a new steady-state value in
the absence of noise.
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Fig. 6. Phase response to an injected impulse of current.

As shown in the Appendix, the transient response of the ILFD
is exponential for a weak injected signal and small frequency
or phase perturbations. If is close to the ILFDs natural fre-
quency of oscillation , the system has a first-order response
with the following time constant:

(19)

The same parameters that increase the phase-limited locking
range (18) also reduce the time constant (19) of the system. In
fact, an interesting result for all ILFDs is

(20)

That is, the phase-limited locking range of an ILFD is approxi-
mately times the 3-dB bandwidth of the first-order system
response. This intuitively appealing result says that increasing
the frequency locking range also speeds up the divider’s tran-
sient performance.

IV. NOISE CONSIDERATIONS

We now use the results of the previous section to derive the
phase-noise spectrum of the ILFD. We first consider the spec-
trum of a free-running oscillator, and then derive the spectrum
of oscillator when it is injection locked.

According to the Hajimiri phase-noise model for free-running
oscillators [7], the current-to-phase impulse response is given by

(21)

where is the impulse sensitivity function (ISF) which
captures the true time variance of the system, is a con-
stant of proportionality, and represents a time-shifted
step function [7]. In a free-running oscillator, the phase cannot
recover if it is perturbed because there is no reference which
defines the “correct” phase. However, for injection-locked sys-
tems, phase will always recover in lock (Fig. 6), because a fixed
phase relationship exists between the injected signal and the
ILFD output at any given frequency of operation.

We can compute the phase response of the ILFD starting from
(21), replacing the step function with a decaying function

, where indicates convolution and represents
the impulse response of a high-pass filtering function. Assume
that the ISF of the ILFD does not change substantially due to
the presence of an injected signal. This assumption will hold
generally if the injection is weak. So (21) then becomes

(22)

Therefore, the expression for the output phase can be written as

(23)

Here, represents the input noise current at time. Due to
the linearity of convolution, the phase can be expressed as

(24)

Therefore, the phase of a locked system behaves just as the phase
of a free-running system would behave, after passing through
a linear time-invariant system with the impulse response.
The power spectral densities (PSDs) are, therefore, related in
the following manner:

(25)

where is the Fourier transform of . Equation (25)
shows that determination of the free-running phase noise of the
ILFD permits calculation of the phase noise of the locked ILFD.
To complete this computation, we must know . For small
perturbations, we know that the transient response of the system
is a decaying exponential, with a time constantgiven by (19).
For a unit step response, the recovery waveform will be given
by

(26)

Defining , can be calculated using the Laplace
transform

(27)

Using in (27) and substituting into (25), we can com-
pute the PSD due to internal noise of the divider in the locked
state

(28)

Note that to this point, we have implicitly assumed no phase
noise from the input injection source, and considered only in-
ternal noise. We now neglect the internal phase noise and con-
sider only the phase noise from the input. We know that the
output phase of the divider tracks any small step changes in
input phase scaled by the divide ratio (see the Appendix).
The response of the system is, thus, a decaying exponential, as
shown:

(29)

Therefore, if were a time-varying signal with the Laplace
transform , the output phase of the divider in the frequency
domain will be

(30)

Therefore, if the injected signal is a noise process with PSD
, the output phase noise has the PSD

(31)
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Fig. 7. Phase-noise spectrum of an ILFD.

Since the two contributions to phase noise are generally inde-
pendent, they are uncorrelated, and we can express the total
phase noise as resulting from a superposition of individual noise
powers

(32)

Notice that, just as in a first-order PLL, the internal free-running
phase noise of the ILFD is filtered with a high-pass filter, while
the noise from the external source is filtered with a low-pass
filter. The extent of the filtering depends on the pole frequency

. Also, wherever the internal phase noise is negligible, the
phase noise of the output is dominated by the phase noise from
the input, which the output tracks with a scale factor .
At far from , the phase noise of the locked oscillator
approaches its free-running phase noise. Assuming that the in-
ternal free-running phase noise of the oscillator is of the form
given in (33) [7]

(33)

we can qualitatively see that the phase noise due to (32) will
appear as shown in Fig. 7.

It should be clear that the frequency is analogous to the
loop-bandwidth frequency of conventional PLLs. One impor-
tant difference is that this loop bandwidth can be controlled by
the strength of the injected signal. Therefore, we can get large
loop bandwidths and fast locking times for strong signals, and
low bandwidths with good source phase noise suppression with
weak signals.

V. EXAMPLE 1: DIVIDE-BY-TWO LC ILFD

To illustrate further the utility of the unified model, we now
use it to optimize the locking range of anLCoscillator operating
as a divide-by-two ILFD. The locking range calculated from this
section is compared against measurements in Section VII.

Consider the circuit shown in Fig. 8, which is a familiar dif-
ferential ILFD topology [3]. Assume that the ILFD is locked
and oscillating at the output frequency . An input voltage
signal of frequency is injected into the tail device
M3, producing a drain current which consists of a dc and an
RF component. There is typically some capacitance at the tail

Fig. 8. Schematic of the differentialLC-based ILFD.

Fig. 9. Identifying the nonlinearityf(i ; v ).

node, leading to parasitic current loss which increases with fre-
quency. If the tail transconductor behaves nonlinearly, RF cur-
rent at higher harmonics would tend to get filtered by this par-
asitic capacitance. Let us assume that otherwise, this capacitor
does not greatly affect the transient behavior of the circuit.

Let the nonlinearity of Fig. 5 be that of the cross-coupled
pair formed by M1 and M2, as shown in Fig. 9(a). This non-
linearity has two inputs, and . The output is a differential
current , which gets filtered and converted to a voltage by
the LC tank. This voltage is then fed back to the input of

. For a given instantaneous value of , the ideal transfer
characteristic of the differential pair is shown in Fig. 9(b). As

changes, this characteristic would both scale and distort.
The saturated current value would change with , and
would also change. To simplify our analysis, let us assume that
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Fig. 10. Nonlinearityf(i ; v ) and its derivative with respect toi .

Fig. 11. Normalized coefficients plotted versusV =V .

variation in is small, so that we may neglect the minute
variations of . Therefore, we may approximate the charac-
teristic of the cross-coupled pair by a piecewise linear function.

We now derive the steady-state solution for this di-
vide-by-two ILFD. Using (12), we can linearize the response
of the ILFD about . Since we have neglected the
variations in , the nonlinearity and its derivative are
related as shown in Fig. 10. In this case, it is easy to show that
we have in (15). For a divide-by-two circuit,
we are interested in the coefficients , and in (16) and
(17). These coefficients have been calculated and are plotted as
a function of in Fig. 11.

The impedance formed by, , and represents the
filter in Fig. 8. This bandpass filter response can be lin-
earized and expressed as [8]

(34)

where represent the net parallel resistance across the tank
at the resonant frequency . Note that the resonant frequency
of the tank is also the natural oscillation frequency of the
ILFD. Using impedance transformation, we can find that

. Here, is the quality factor of the tank at
resonance, approximately .

Fig. 12. Solving forV .

Using the magnitude expression (16) and noting that
, we get

(35)

where

and

To gain design insight, let us assume that bothand are
small compared with 1. In this case, the output amplitude of the
oscillator remains relatively independent of the injection current

. We can approximate the output amplitude as

or

(36)

The right-hand side (RHS) and left-hand side (LHS) of (36) have
been plotted as a function of in Fig. 12. Note that the
intercept of the two curves determines the final output ampli-
tude. If the RHS is less than 1, no solution for exists since
there is insufficient loop gain for oscillation. From this plot, we
see that to increase the final output amplitude of the ILFD, we
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Fig. 13. Calculated normalized locking range as a function ofV =V for
k = 0:1; 0:2; 0:3.

can increase the bias current, reduce the saturation voltage of
the cross-coupled pair, or increase the product of the in-
ductor at a given frequency. Note that reducing the for the
cross-coupled pair is equivalent to increasing its small-signal
negative resistance.

From (18), the phase-limited locking range for weak injection
current ( ) is approximately

(37)

In (37), we have used the fact that from Fig. 11, and
have brought the absolute value sign within the argument of the
arctangent. In Fig. 13, the relative locking range normalized by

has been plotted as a function of for equal to
0.1, 0.2, and 0.3. It is clear that the locking range increases by a
maximum of approximately 33% as the output amplitude grows,
for any injection strength.

Recall from (20) that the same parameters that maximize the
phase-limited locking range of the ILFD also minimize the time
constant and improve the phase-noise properties of the ILFD. To
obtain a large locking range for the ILFD for a given bias cur-
rent and injection amplitude , we must keep a small
for theLC tank while keeping a large output amplitude. While
this may seem contradictory, observe that to keep the output am-
plitude large, we need to maximize the product. Note that

, so we may use large inductors constructed
with thin metal lines. In this manner, we maintain a small
while achieving a large product. Ultimately, the desired in-
ductance will be limited by practical size of the resonating ca-
pacitor or by the self-resonance frequency of the inductor it-
self. Therefore, it is in our interest to keep the “footprint” of
the spiral inductor as small as possible. While we do not need a
patterned ground shield [11] for this inductor design, since we
want small and large self-resonance frequency, it does make
the inductor performance more predictable. It is also important
to note that injected current is generated through the device
M3, as shown in Fig. 8. Some of this current is lost in the ca-
pacitance in the drain node of M3 or the source-coupled node

Fig. 14. Ring oscillator ILFD.

of M1 and M2. If the devices are large, or if the frequency of
the injected signal is high, this loss may be significant. To alle-
viate this problem, we may tune out this capacitance using an
inductor, as proposed by Wu [10].

VI. EXAMPLE 2: DIVIDE-BY-FOUR RING OSCILLATOR ILFD

We next apply the new unified model to an injection-locked
ring oscillator. We again calculate important steady-state as well
as transient quantities. The theoretical results will be compared
to HSPICE simulations.

Consider the circuit shown in Fig. 14. This circuit is a
four-stage differential ring oscillator which also functions as
a divide-by-four low-power frequency divider. This circuit
topology is the same as presented in [2]. Each inverter is
differential pair with a resistive load. All stages are identical,
except that the input signal is injected into the tail current
source of the first inverter as shown. Just as in the previous
example, the input stage acts as a single-balanced mixer.

Some aspects of the analysis presented here are similar to that
in [2]. However, we focus on the transient performance of the
circuit, using a modeling approach similar to that used in the pre-
vious example. The nonlinearity is the differential pair with
inputs and outputs as shown in Fig. 9(a). Since this is a ring os-
cillator operating at lower frequencies, we can assume that its
loop gain is large for small signals and that its output amplitude
is large compared with the switching voltage of the differential
pair for this circuit. In this case, we can assume that the differen-
tial pair switches abruptly. We can then use a simplified model
of the nonlinearity as shown in Fig. 15(a). For a weak injected
current, the output of the nonlinearityfrom (12) can be written
as

(38)

Since the nonlinearity itself is approximated as a switching
function in Fig. 15(a), the first term of (38) will yield a square
wave with amplitude when a sinusoidal is incident
upon it about the static bias point . Furthermore,
since the derivative of with respect to is also a switching
function as seen from Fig. 15(b), the second term of (38) results
in a mixing of the injected signal with another square wave
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Fig. 15. Nonlinearityf(i ; v ) and its derivative.

with unit amplitude. Applying and

(39)

Expression (39) shows the output of an ideal single-balanced
mixer. The mixing function is a square wave oscillating be-
tween 1 and 1, produced by the signal
incident on the nonlinearity shown in Fig. 15(b). In this scenario,
we have for all the Fourier coefficients in (15).
Therefore, the Fourier coefficients are

for odd

otherwise.
(40)

The harmonic products generated byare filtered and ampli-
fied by , which models the low-pass filtering action of
the four amplifier stages. This low-pass behavior results from
the interaction of the output impedance of each buffer with the
input capacitance of the following stage. We assume that the
filter substantially suppresses the output products of the mixer
at frequencies higher than . The low-pass filter can
be modeled by

(41)

This approximation is valid as long as the number of stages is
small. This is because, for a small number of stages, the ring
freely runs at a frequency close to the dominant pole fre-
quency of each stage. Therefore, the higher harmonics are well
past this pole frequency. This output is fed back to the differen-
tial pair of the first inverter, thus closing the loop. Note that there
is also one net inversion needed around the loop to allow the
four-stage oscillator to free run. In (41), is the frequency of
the free-running oscillator. Each stage contributes a phase shift
of , resulting in a total phase lag of around the loop (in-
cluding the inversion).

If there is sufficient gain around the loop, the output am-
plitude is always large, even at the edge of the ILFD’s
locking range. In this case, the injection-locking dynamics are
determined primarily by the phase relationship around the loop
(phase limited) and, therefore, we can ignore the amplitude
expression. A large amplitude is also required to excite the

Fig. 16. Transient frequency response to frequency perturbation of the ring
ILFD for variousV .

Fig. 17. Transient phase response to phase perturbation of the ring ILFD for
variousV .

mixer’s local oscillator (LO) port nonlinearity, which is the
mechanism that makes possible division ratios greater than two.

Since we are assuming that the amplitude of the output is
always large enough for the mixer to switch strongly, we need to
consider only the phase-limited locking range. Assuming weak
injection, we have

(42)
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Fig. 18. Die photo of the 5.4-GHzLC divide-by-two fabricated in 0.24-�m
CMOS.

Fig. 19. Output-referred double-sided locking range as a function of input
power.

We can also calculate the characteristic time constant of this
ILFD using (19) as

(43)

SPICE simulations of a 212-MHz divide-by-four ring oscillator
ILFD are shown in Fig. 16. The device models used for simu-
lation were for a 0.24-m CMOS process. The transient output
frequency response to a 12-MHz step change in injected fre-
quency is shown for various injected voltage amplitudes. The
discrete points show the cycle-to-cycle instantaneous frequency
of the ILFD, computed at the zero crossings. The solid lines
are the theoretically predicted curves, computed using (47), the
more exact expression for the transient response. To numerically
calculate the theoretical curves, we only need to know the am-
plitude and frequency of the injected signal, the bias current and
transconductance of the nMOS into which it is injected, and the
oscillation frequency . For mV and mV,
the simulated frequency response looks exponential, and theo-
retical and simulated plots are similar. Since the input frequency

Fig. 20. Phase noise spectrum of the ILFD for various injected powers.

Fig. 21. Output power as a function of injected power.

step is 12 MHz and the ILFD is a divide-by-four, both the the-
oretical and simulated curves converge to the same frequency
step of 3 MHz. The small error is due to the pure switch ap-
proximation of the differential pair, and the small-signal injec-
tion assumption. In Fig. 16, it is interesting to note that for the
weakest injected signal with mV, the ILFD does not
track the 12-MHz step in frequency. In this case, both simula-
tion and theory [(47)] predict that the output “beats.” This oc-
curs when the phase condition cannot be satisfied and the oscil-
lator cannot lock on to the injected signal. As a result, the output
of the ILFD has signals with two different frequencies present.
One is the ILFD’s own oscillation frequency, and the other is
from the injection source. Since these two frequencies are not
the same, they heterodyne together to create output beats.

Fig. 17 shows the transient output phase response for an ILFD
operating at for various injected amplitudes and for a step
in input phase of . The output phase changes exponentially
and stabilizes at . Once again, the discrete points show the
cycle-to-cycle instantaneous phase of the ILFD, while the solid
lines are the theoretical predicted curves, computed using (47).
The two sets of curves correspond closely.
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Fig. 22. Experimental setup to test the transient performance of the ILFD.

VII. M EASUREMENTS

Measurements were performed on a 5.4-GHz divide-by-two
ILFD, shown in Fig. 18, which was fabricated in National
Semiconductor’s standard 0.24-m CMOS process. The
topology of the oscillator was the same as shown in Fig. 8.
Fig. 19 shows the change in locking range as a function of the
injected power. The 5.4-GHz injected signal was provided by
an HP 83732B signal generator. The output spectrum of the
ILFD at 2.7 GHz was observed using an HP 8563E spectrum
analyzer. The measured input reflection coefficient of the
entire experimental setup (chip, package, and board) was better
than 15 dB at around 5.4 GHz. A 50- resistor was placed
near the gate of the injection device (M3 in Fig. 8) on the chip.
Care was taken to minimize all package and board parasitics.
The theoretical (single-sided) locking range was calculated
using (18), then multiplied by a factor of two to yield the
double-sided locking range. The quality factor and inductance
of the on-chip inductor were known. The characteristics of the
differential pair were determined from simulations. It is clear
that the measured locking range corresponds closely to the
theoretical phase-limited locking range according to Fig. 19.

We know from (20) that the output-referred locking-range
quantity is closely related to the dynamic behavior of the di-
vider. Noting that is 2, we observe that the output-referred
double-sided locking range is approximately equal to (
in hertz. The quantity is the characteristic time constant of
the system defined in (19), and is identified in (32) as .
Therefore, should be approximately equal to the double-
sided locking range in hertz.

Fig. 20 shows the measured output phase noise spectrum of
the ILFD as a function of various injected powers. Note that all
the curves eventually converge at high frequencies. This is the-
oretically predicted by (32). The presence of the injected signal
tends to high-pass filter the free-running phase noise of the os-
cillator. The strength of the injected signal determines filter sup-
pression and cutoff frequency . Comparing Figs. 19 and 20,
note the similarity between and locking range for cor-
responding injected power levels. For sufficiently large power
levels, the free-running phase noise is greatly suppressed and the
close-in phase noise of the divider settles to a value
below the phase noise of the reference source.

Recall that an important assumption underlying our phase-
noise derivation is that the output oscillation amplitude of the
divider does not change substantially in the presence of an input
signal. Fig. 21 shows the change in output power as a function
of injected power for this particular circuit. Note that it does not
change greatly, implying that the unified model should provide
valid predictions here.

Fig. 23. Typical recovered FSK waveforms after noise averaging (mean
adjusted to zero).

The dynamic frequency response of the ILFD was de-
termined by injecting a frequency shift keying (FSK) signal,
centered around 5.4 GHz, from a signal generator (HP 83732B).
The sinusoidal output of the ILFD, centered around 2.7 GHz,
was downconverted to 10 MHz with a commercially available
mixer (Mini-Circuits ZFM-150) operating with a 2.69-GHz LO
signal. The downconverted IF signal was fed into a data-cap-
turing scope through a buffer, as shown in Fig. 22. From
observing the cycle-to-cycle frequency count of the recovered
sinusoidal signal, the frequency response of the divider was
determined. This response was another FSK signal, modified
by the properties of the divider. Due to substantial phase noise
in the measurement setup, the recovered FSK signal was noisy.
Therefore, a number of periods of the FSK signal had to be
folded and averaged to reduce the noise.

Fig. 23 shows the rising edge of the recovered waveform for
different injected powers. The mean frequency of waveform in
the figure was shifted to zero for convenience. The peak-to-peak
frequency variation of the reference signal was 300 kHz. As ex-
pected, the peak-to-peak variation of the output frequency of the
ILFD was 150 kHz, which is within its locking range, even at

60-dBm injection. For relatively strong injection, the divider
tracks the input signal closely. Note that the injected FSK wave-
form from the signal generator has a second-order (or higher)
response, resulting in the peak and ripple-like behavior for the

20-dBm injected signal. However, as the injection strength
is lowered, the response of the divider slows down, and the
plot looks like an exponential. By taking the Fourier transform
of such plots, and by treating the response for the20-dBm
injected signal as the clean reference, we can deconvolve the
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Fig. 24. Extracting! for �55 dBm injected power.

Fig. 25. Value of! =2� extracted from measurements versus theory.

slow response of the divider for different injected power
levels. We know that the response of a first-order low-pass filter
with unity dc gain is of the following form:

(44)

Therefore

(45)

By plotting versus , computing the best least-
squares linear fit, and calculating the slope, we can extract
for each power level. An example plot for55-dBm injected
power is shown in Fig. 24. This procedure was carried out for
several injected power levels. Fig. 25 shows the extracted and
theoretical values of plotted versus input power. Noting
that , the theoretical was calculated using (19).
Figs. 19 and 25 are expected to be nearly identical; they are, ex-
perimentally and theoretically, over the given input power range.

VIII. C ONCLUSION

This paper presented a new model which allows the accu-
rate determination of the steady-state, transient, and phase-noise

properties of a large class of practical injection-locked systems.
The expressions yield greater design insight than do previously
published models. The model has also been used to demon-
strate that injection-locked systems and regenerative systems
are essentially the same. The model also shows that within its
locking range the ILFD has many PLL-like characteristics. It
tracks the phase of the injected signal, acts as a low-pass filter
for the phase noise from the source, and suppresses its own in-
ternal phase noise within its effective loop bandwidth. This loop
bandwidth is closely related to the locking range of the ILFD.
One important difference between ILFDs and PLLs is that the
loop bandwidth of the ILFD is controllable by the amplitude of
the injected signal. This is a useful result, since for the same
ILFD, we can get a large loop bandwidth and fast locking times
for strong signals, and low bandwidths with good source phase
noise suppression with weak signals. Another major advantage
is that ILFDs potentially consume much less power than entire
PLLs, since they are just oscillators. When utilized as a prescalar
in the feedback path of a PLL working as a frequency synthe-
sizer, the ILFD can also potentially consume much less power
than its digital counterpart, particularly at higher frequencies.

APPENDIX

DERIVATION OF THE CHARACTERISTICTIME CONSTANT

Phase Step Response

Let the natural frequency of oscillation be . Assume
that at , and

. Assume also that is weak
compared to and that does not change significantly due
to small phase or frequency perturbations. For small variations
of frequency about (i.e., ), the phase response of
can be linearized as . The phase
condition around the loop yields

(46)
At , suppose that the input phase steps to a fixed value

. The output phase gradually changes in response.
Assume that the instantaneous phase at the output is .
The instantaneous frequency at the output is . With
the stated assumptions, the dynamic response of the system is
entirely governed by the phase condition. The phase condition
yields the general expression

(47)

Assuming that is always small, and using (46),
we get the following expression:

(48)
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Equation (48) is a linear first-order differential equation whose
time constant may appear complicated initially. If we assume
that , from (46) we get , where is
any integer. Substituting into (48), we get

(49)

If and are both either positive or negative, then we get a
stable solution for even. If not, then an odd value of gives us
a stable solution. Notice that the time constant could be slightly
different depending on the initial phase condition. However, if
we assume that the injection is weak, then . If we
consider only stable phase solutions, then notice that the phase
of the solution recovers with approximately the time constant

(50)

Note that the output phase recovers to in steady
state.

Frequency Step Response

Let us now consider what happens when we step the input
frequency by a small amount. Expression (47) is still applicable
here, with now a linear ramp in phase. We can differentiate
(47) with respect to time to find the output frequency response
of the system. Rather than show the full analysis here, let us
make some simplifications. Assume that the frequency step is
not large compared to the ILFD’s locking range, so that

always remains small. Let us also assume that .
In this case, we can take the derivative of (49) to find that the
frequency time constant of the system is still approximately as
given in (50).

Therefore, for small frequency and phase perturbations, the
transient response of the system is first-order exponential with
the time constant at the center of its locking range. We can now
use this result to derive the phase-noise spectrum of the ILFD.
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