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bstract

First the cohesive enthalpy of pure liquid metals is modeled, based on experimental critical temperatures of alkali metals. The cohesive enthalpies
re scaled to the melting points of pure metals. The temperature coefficient of cohesive enthalpy is the heat capacity of the liquid metal. The surface
ension and its temperature coefficient for pure liquid metals are modeled through the excess surface enthalpy, excess surface entropy and molar
urface area supposing that the outer two surface layers of liquid metals are similar to the {1 1 1} plane of fcc crystals. The volumetric thermal
xpansion coefficient of liquid metals is scaled to the ratio of the heat capacity and cohesion enthalpy. From known values of melting point, heat
apacity and molar volume the following calculated properties of liquid metals are tabulated: (i) cohesive enthalpy at melting point, (ii) cohesive

nergy of the solid metal at 0 K, (iii) critical temperature, (iv) surface tension at melting point, (v) volume thermal expansion coefficient, and (vi)
emperature coefficient of surface tension. The present models are valid only for liquid metals of bcc, fcc or hcp crystals as only their structure and
ature of bonding are similar enough to be treated together.

2008 Elsevier B.V. All rights reserved.
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. Introduction

The cohesive enthalpy and surface tension of pure liquid met-
ls were first modeled in a combined way by Skapski [1,2]. Since
hen, the same subject was considered in a number of papers
3–13] (see also monographs [14,15]). However, the main fea-
ures of the model remained the same: the cohesive enthalpy and
urface tension of pure liquid metals are modeled through the
nthalpy of vaporization, while the obvious temperature depen-
ency of the cohesive enthalpy is ignored. In the present paper
he original model of Skapski is re-visited and improved. Some
elated properties of liquid metals are also modeled.

. Cohesive enthalpy of liquid metals
Thermophysical properties of liquid metals are mostly influ-
nced by the value of the cohesive enthalpy, bonding the atoms
ions) of the liquid metal. Classical thermodynamics works with

∗ Tel.: +36 30 4150002; fax: +36 46 362916.
E-mail address: kaptay@hotmail.com.

H

E
b
c
i

921-5093/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.msea.2007.10.112
ion; Volumetric thermal expansion coefficient

elative enthalpy values, setting to zero the formation enthalpies
f liquid Hg and all solid metals in their most stable crystal
attices under standard conditions. Thus, the absolute value of
he cohesive enthalpies in liquid metals can be calculated only
rom first principles or by some model considerations. The cohe-
ive enthalpy in liquids can be modeled by comparison of their
ehavior with that of a vapor, or a solid phase. In this paper,
hese two approaches will be applied and compared.

.1. Estimation of cohesive enthalpy from the heat of
vaporation

The simplest, and commonly used way to estimate standard
ohesive enthalpy (H◦

c,i) in liquid i is to take it equal to the heat
f vaporization (�vH

◦
i ) with an opposite sign:

◦
c,i

∼= −�vH
◦
i (1)
q. (1) is perfect only when the size, inner structure and inner
onds of the evaporating units (molecules or atoms) are not
hanged during evaporation. These conditions are mostly sat-
sfied for non-ionic and non-metallic liquids, i.e. for organic

mailto:kaptay@hotmail.com
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Fig. 1. Cohesive enthalpies of liquid alkali metals and Hg at their melting points
as function of RT ◦

m,i, calculated from the critical points [14,18–21] by Eq. (4)
(circles) and from evaporation enthalpies [22] by Eq. (1) (triangles). The lines
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iquids and water. However, the above conditions are not satis-
ed for metallic liquids, as during their evaporation a cation and
ne (or more) free electron(s) of the liquid metal are combined to
orm a neutral metallic atom. Moreover, for elements with high
elative stability of their outer electron shells (such as s2 for IIA
etals) the vaporization enthalpy seriously underestimates the

eal cohesive enthalpy [6]. Nevertheless, the enthalpy of evapo-
ation is taken as a direct measure of cohesive enthalpy of liquid
etals [1,3–10,12,14,15]. Similarly, the cohesive energy in solid
etals at 0 K is taken equal to the sublimation enthalpy of the
etal in solid-state physics [16].
Finally, Eq. (1) can be considered only as first estimation

or the cohesive enthalpy of liquid metals. The real cohesive
nthalpy will be probably closer to that, calculated by Eq. (1)
or large atoms (such as Cs) with weakly bonded outer electrons
n the vapor phase, compared to small atoms (such as Li) with
trongly bonded outer electrons.

.2. The temperature dependence of cohesive enthalpy

The most negative consequence of the widespread use of
q. (1) was that the temperature (T)-dependence of the cohe-
ive enthalpy has been neglected in the literature, as the
-dependence of heat of evaporation appears to be not signifi-
ant.

In reality, the heat capacity of any liquid i (C◦
p,i) should be

aken as the T-coefficient of its cohesive enthalpy. Indeed, when
liquid is heated, thermal vibrations of its atoms work against

he cohesive enthalpy. Thus, the cohesive enthalpy becomes
eaker, i.e. more positive with temperature. Thus, the tempera-

ure dependence of the cohesive enthalpy of a liquid metal can
e written as

◦
c,i = H◦

c,i,m +
∫ T

Tm,i

C◦
p,i dT (2)

ith H◦
c,i,m the cohesive enthalpy of the liquid metal at its melt-

ng point.

.3. Estimation of cohesion enthalpy from critical
emperature

Above the critical point the gas cannot be converted into a
iquid at any high pressure. This is mostly because at the criti-
al point the cohesive enthalpy between the atoms of the liquid
ecomes approximately zero

◦
c,i,Tcr,i

∼= 0 (3)

Combining Eqs. (2) and (3), the following equation is found

◦ ∼
∫ Tcr,i ◦
c,i,m = −
Tm,i

Cp,i dT (4)

eliable experimental data to apply Eq. (4) exist only for alkali
etals and Hg.

s
w

H

re drawn by Eq. (5). The solid line is drawn with q1 = 25.4, q2 = 0. The dashed
ine is drawn with q1 = 26.3 and q2 = −2.62 × 10−4 mol kJ (the two lines are
ardly distinguishable).

.4. The melting point, as a measure of cohesive enthalpy

The melting points of pure metals are usually accepted as
eing roughly related to cohesive enthalpy of liquid metals
11,13,14,17]. Indeed, if similar solid crystals are heated they
ill be stable against melting, if the cohesive enthalpy will keep

he atoms together in the lattice against thermal vibrations. Thus,
he melting point of similar metals will indeed characterize the
ohesive enthalpy at the melting point. Due to restrictions of
similar crystals’ the validity of our model is limited to ‘simple’
iquid metals originated from bcc, fcc or hcp crystals. This is
emonstrated in Fig. 1, showing the dependence of estimated
ohesive enthalpies as function of RT ◦

m,i (with R being the gas
onstant) for alkali metals and mercury.

The following conclusions can be drawn from Fig. 1:

(i) the cohesive enthalpy values calculated from vaporization
enthalpies deviate from those calculated using the criti-
cal points much more for Li compared to Cs, being in
accordance with our theoretical expectations (see above),

(ii) As the crystal structure of Hg is very much different from
that of alkali metals, the point for Hg falls out from the trend
for alkali metals, as expected (i.e. Hg is not a ‘simple’ liquid
metal).

iii) The cohesive enthalpy of alkali metals can be described by
the following semi-empirical equation:

◦
c,i,m

∼= −q1(RT ◦
m,i) − q2(RT ◦

m,i)
2 (5)

ith q1 and q2 being semi-empirical parameters. For the limited
ange of melting temperatures of alkali metals the first term
f Eq. (5) is sufficient: q1 = 25.4 ± 1.2 (with q2 = 0). The two-
arameter version of Eq. (5) will be discussed later.

Summarizing Eqs. (2) and (5) the T-dependence of the cohe-
ive enthalpy of ‘simple’ liquid metals can be approximately

ritten as

◦
c,i,m

∼= −q1(RT ◦
m,i) − q2(RT ◦

m,i)
2 + Co

p,i(T − T ◦
m,i) (6)
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y substituting Eq. (6) into Eq. (3), a new equation (see [14,23])
o estimate critical temperatures of ‘simple’ metals follows:

◦
cr,i

∼= (0.90 ± 0.05)
(q1R + C◦

p,i)T
◦
m,i + q2(RT ◦

m,i)
2

C◦
p,i

(6.a)

he coefficient (0.90 ± 0.05) takes into account the deviation
rom linearity in the proximity of the critical point.

. Surface tension of liquid metals

The surface tension of liquids is defined as the ratio of the
xcess surface Gibbs energy (expressed through excess surface
nthalpy (�H◦

i/g) and excess surface entropy (�S◦
i/g) divided by

he molar surface area (ω◦
i ) [1]:

◦
i ≡ �H◦

i/g − T �S◦
i/g

ω◦
i

(7)

ll three quantities of Eq. (7) will be modeled from the same
ssumption that the two outer surface layers of liquid metals are
rdered (to minimize their surface tension) and are similar to the
tructure of the most closely packed crystal plane, namely the
1 1 1} plane of the fcc crystal [1].

.1. The molar surface area of liquid metals

The molar surface area of a liquid metal i is usually modeled
s [1]

◦
i = f (V ◦

i )2/3(NAv)1/3 (8)

ith NAv is the Avogadro number (6.022 × 1023 mol−1), V ◦
i the

olar volume of metal i, and f is the geometrical constant [13]:

=
(

3fb

4

)2/3
π1/3

fi

(9)

ith fb and fi is the volume and surface packing fractions.
The surface packing fraction of the {1 1 1} plane of the fcc

rystal: fi = 0.906 [1]. For fcc crystals (fb = 0.740) f = 1.09 fol-
ows from Eq. (9). This value is used in the majority of models
1,3–10,12]. However, it is obviously overestimated, as the vol-
me packing of liquid metals is surely below that of the solid
cc crystal.

The bulk packing fraction of a melted bcc crystal is obtained
y lowering its crystal bulk packing fraction (0.68) by 9.6%
ue to volume expansion from 0 K till the melting point in
iquid state (see Appendix A): fb,bbc = 0.68/(1.096) = 0.62. The
ame values for liquid metals, resulting from fcc and hcp crys-
als: fb,fcc = 0.74/(1.12) = 0.66 and fb,hcp = 0.74/(1.086) = 0.68
see Appendix A). For an average ‘simple’ liquid metal:

b = 0.65 ± 0.02. A similar value of 0.646 was obtained
xperimentally for random dense packing of macroscopic
qual spheres [24]. The resulting value from fi = 0.906 and
b = 0.65 ± 0.02 and Eq. (9) is: f ≈ 1.00 ± 0.02.

t
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.2. The excess surface enthalpy of liquid metals

The excess surface enthalpy is the difference in the cohesive
nthalpy values of bulk and surface atoms. If bulk and surface
onds are taken identical, the following equation can be obtained
1]

H◦
i/g = H◦

c,i

Zb
(Zi − Zb) = −�Zi

Zb
H◦

c,i = −αH◦
c,i (10)

here Zb and Zi are the coordination numbers in the bulk and
t the surface of liquid metals, while �Zi and α are the number
nd ratio of broken bonds at the surface.

The average experimental bulk coordination number of 27
simple’ liquid metals: Zb ∼= 10.9 ± 0.3 [25]. The surface coor-
ination number of the {1 1 1} plane of fcc crystal: Zi = 9. Then:
Zi = 1.9 ± 0.3 and α ∼= 0.174 ± 0.023. Oriani [3] was the first

o apply a similar value of α ∼= 1/6 ∼= 0.167, while Skapski [1]
sed parameters for a quasi-fcc bulk liquid: Zb ∼= 12, α ∼= 0.25.

.3. The excess surface entropy of liquid metals

The excess surface entropy is the difference of the entropies of
ulk and surface atoms. Skapski described it through the differ-
nce in oscillation frequencies of bulk and surface atoms [2] and
btained theoretically the vibrational excess surface entropy:
vibS

◦
i/g

∼= 5.4 ± 1.3 J/(mol K). A similar value was supposed
y Eustathopoulos et al: �vibS

◦
i/g

∼= 5.3 J/(mol K) [4,8], from a
odel made for Ni [26]. In this paper experimental values for

urface Debye temperatures for 11 bcc and fcc metals [27] are
sed, resulting to: �vibS

◦
i/g

∼= 5.8 ± 1.3 J/(mol K). This value is
n agreement with the previous estimations.

However, there is a second term of �S◦
i/g neglected in pre-

ious literature, probably because this term is absent for solid
etals. This term is connected with the transfer of an atom from

he disordered bulk liquid to the ordered surface and it is called
ere the ‘ordering’ excess surface entropy (�ordS

◦
i/g < 0). It

pproximately equals the negative of the melting entropy of an
verage bcc metal. The bcc metal is chosen as it has the clos-
st entropy to that of liquid metals [22]. The average numerical
alue: �ordS

◦
i/g

∼= −7 ± 1 J/(mol K) [22].
The total excess surface entropy of liquid metals is obtained

s the sum of the two previous terms: �S◦
i/g

∼= �vibS
◦
i/g +

ordS
◦
i/g

∼= −1.2 ± 2.3 J/(mol K). In the first approximation this
alue will be used for all ‘simple’ liquid metals at any tempera-
ure.

.4. Surface tension of ‘simple’ liquid metals at their
elting points

Substituting Eqs. (8) and (10) into Eq. (7) with the estimated
bove parameter values the following equation is obtained for

he surface tension of pure liquid metals at their melting points

◦
i,m

∼= −(0.174 ± 0.023)H◦
c,i,m + (1.2 ± 2.3)T ◦

m,i

(1.00 ± 0.02)(V ◦
i,m)2/3(NAv)1/3 (11)
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Table 1
Comparison of calculated by Eqs. (1,11) and Eqs. (4,11) and experimental values for surface tension of alkali metals [28]

Me σ◦
i,m

exp/(mJ/m2)

−H◦
c,i,r,m (kJ/mol)

Eq. (1)
σ◦

i,m calc (mJ/m2) Eqs.
(1) and (11)

Eq. (1) OK? −H◦
c,i,m (kJ/mol)

Eq. (4)
σ◦

i,m calc (mJ/m2)
Eqs. (4) and (11)

Eq. (4) OK?

Li 398 ± 3 156.7 ± 1.0 581 ± 111 − 94.3 ± 7.1 354 ± 106 +
Na 198 ± 7 104.5 ± 0.7 259 ± 53 − 76.0 ± 2.6 190 ± 49 +
K 112 ± 11 96.3 ± 0.4 155 ± 33 + 72.0 ± 2.1 117 ± 29 +
R +
C +
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the liquid metals

σ◦
i

∼=
α[q1RT ◦

m,i + q2(RT ◦
m,i)

2 − C◦
p,i(T − T ◦

m,i)] − �S◦
i/gT

f (V ◦
i,m)2/3[1 + β◦

i (T − T ◦
m,i)]

2/3(NAv)1/3
(13)
b 94 ± 11 79.3 ± 0.4 112 ± 24
s 77 ± 9 72.1 ± 0.4 88 ± 19

n Table 1 the values calculated by Eq. (11) for the surface tension
f alkali metals are compared with experimental results for the
ase when the cohesive enthalpy is calculated from Eq. (1) or
q. (4). All reviewed experimental points [28] are taken into
ccount for the possible range of surface tension. Melting point
nd enthalpy of vaporization data are from [22], molar volumes
re from [14]. The evaluation of Eqs. (1) and (4) is marked by
+’ and ‘−’ signs in Table 1. If the intervals of calculated and
xperimental results overlap, the evaluation is ‘+’, in the opposite
ase ‘−’. As follows from Table 1, Eq. (1) should be excluded for
isagreement with Na and especially for Li. Thus, the method
o calculate cohesive enthalpy from the evaporation enthalpy is
xcluded in this paper. As one can see from Table 1, acceptable
alues are obtained for all alkali metals if the cohesive enthalpy
s calculated from the critical points and approximated through
he melting temperature of metals, Eqs. (4) and (5).

Substituting Eq. (5) into Eq. (11) the following equation is
btained for the surface tension of pure liquid metals at their
elting points:

◦
i,m

∼=
(0.174 ± 0.023)[q1(RT ◦

m,i) + q2(RT ◦
m,i)

2] + (1.2 ± 2.3)T ◦
m,i

(1.00 ± 0.02)(V ◦
i,m)2/3(NAv)1/3

(12)

articularly, if q1 = 25.4 ± 1.2 and q2 = 0 (obtained from Fig. 1)
re substituted into Eq. (12), the following simple equation is
btained

◦
i

∼= (38 ± 10)
T ◦

m,i

(V ◦
i,m)2/3(NAv)1/3 (12.a)

A similar semi-empirical equation was predicted first by
chytil [29]. Eq. (12.a) is tested against experimental data in
ig. 2. Only liquid metals classified as ‘class A’ metals [9] are
hown, with ±5% of accuracy of all measured values [28]. Molar
olume and melting point data are taken from [14,22].

As follows from Fig. 2, ‘simple’ liquid metals are quite well
escribed by Eq. (12.a), while other liquid metals are not (see
nserted figure). Upon a closer examination one can see that
xperimental data even for ‘simple’ liquid metals deviate from
he calculated values to the negative direction as the melting
oint increases. One might explain this feature by the increasing
ifficulty to measure correct surface tension values for liquid
efractory metals. However, if that was the only explanation for
ll the deviations in Fig. 2, the data points at high temperature

ould be expected to scatter increasingly around the thin line.
s the scatter of data points around the thin line does not seem to
epend on melting point, one should conclude that the deviation
s mostly due to the oversimplified way in which the cohesive

F
v
‘
m

65.3 ± 2.9 93 ± 24 +
63.0 ± 4.1 77 ± 23 +

nthalpy is expressed as a function of temperature using the
ingle parameter q1.

The two semi-empirical parameters of Eq. (5) were there-
ore optimized using the experimental surface tension data for
simple’ liquid metals shown in Fig. 2. During this optimization
t was assumed that about 25% of high-temperature deviations
n Fig. 2 are caused by experimental difficulties, while 75% of
he deviations are caused by the oversimplified linearization of
q. (5). The optimized parameters are as follows: q1 = 26.3 and
2 = −2.62 × 10−4 mol kJ with a slight change in parameter α

rom α ∼= 0.174 ± 0.023 to α ∼= 0.182 ± 0.023 (corresponding to
he average coordination number of Zb = 11 in bulk liquid met-
ls). In this way both the cohesive enthalpies of alkali metals
see dotted line in Fig. 1) and surface tension of refractory metals
re reasonably reproduced. Substituting the above new param-
ters into Eq. (12), the following final semi-empirical equation
s obtained

◦
i,m

∼= (41 ± 10)T ◦
m,i − (3.3 ± 0.7) × 10−3(T ◦

m,i)
2

(V ◦
i,m)2/3(NAv)1/3 (12.b)

.5. Temperature coefficient of surface tension of ‘simple’
iquid metals

Let us re-write Eq. (12) by taking into account the temperature
ependence of the cohesive enthalpy and the molar volume of
ig. 2. Comparison of calculated by Eq. (12.a) and experimental surface tension
alues of liquid metals at their melting points for ‘class A’ metals [9]. Full circles:
simple’ liquid metals. Empty squares in the inserted figure: not ‘simple’ liquid
etals.
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e
some semi-empirical coefficients is able to reproduce different
thermophysical properties of ‘simple’ liquid metals of bcc, fcc
and hcp crystals. Encouraged by this, the following properties of
some ‘simple’ liquid metals have been calculated and tabulated

Fig. 4. Checking Eq. (18) against experimental data. Points on graph correspond
ig. 3. Comparison of calculated from Eq. (14) and experimental [9] values of
he temperature coefficient of surface tension of some pure liquid metals. Full
ircles: ‘simple’ liquid metals. Empty squares in the insert: other liquid metals.

ith β◦
i the volume thermal expansion coefficient of pure liquid

etal i. Although from Eq. (13) it is obvious that the surface
ension of liquid metals is not a linear function of temperature,
lose to the melting point it can be taken as linear: σ◦

i = σ◦
i,m +

◦,T
i (T − T ◦

m,i). Taking the derivative of Eq. (13) with respect to
and substituting the above parameter values, the temperature

oefficient of surface tension is expressed as

◦,T
i

∼= − (0.182 ± 0.026)C◦
p,i,m − (1.2 ± 2.3)

(V ◦
i,m)2/3(NAv)1/3 − 2

3
β◦

i σ
◦
i,m (14)

q. (14) is tested in Fig. 3 against the same ‘class A’ metals as in
ig. 2 [9]. Heat capacity values are from [30], volume thermal
xpansion coefficients are from [14], surface tension values at
elting point are calculated by Eq. (12.b). From Fig. 3 one

an see that the calculated and experimental values are in good
greement for ‘simple’ liquid metals of bcc, fcc and hcp crystals,
hile for other liquid metals the agreement is not acceptable. It

hould be noted that the good agreement for ‘simple’ liquid
etals is mainly due to the heat capacity term and is much less

ue to the excess surface entropy term, contrary to what was
laimed in previous publications [2–6,8–10].

. Volumetric thermal expansion coefficients of liquid
etals

According to Eq. (14), the value of β◦
i is needed to calculate

o,T
i . Although there are hundreds of papers with original data
n β◦

i of liquid metals (see compilations [14,31]), the databank
f β◦

i is far from being complete, or free of contradictions.
β◦

i for liquid metals has been correlated to the inverse of
elting points [32], boiling points [33] and cohesive enthalpies

estimated from the velocity of sound) [14]. The idea behind
hese models is that the liquid metal is able to expand more if its
toms are bonded by weaker cohesive enthalpy. This idea will
e improved further in what follows.

The relative molar volume and relative cohesive enthalpy of

simple’ liquid metals can be described by unique curves, as
unctions of T. The relative quantities are defined as the ratio
f their value at any T to that at the melting point. These rel-
tive quantities can be normalized by subtracting unity from

t
[
A
c
a
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he relative values. The relative, normalized molar volume and
ohesive enthalpy of pure liquid metal i will be denoted as V ◦

i,r,n
nd H◦

c,i,r,n, respectively, and can be written from the definition
f β◦

i and from Eqs. (5) and (6):

◦
i,r,n ≡ V ◦

i

V ◦
i,m

− 1 = β◦
i (T − Tm,i) (15)

◦
c,i,r,n ≡ H◦

c,i

H◦
c,i,m

− 1 = C◦
p,i,m

H◦
c,i,m

(T − Tm,i) (16)

One can expect a unique functional relationship between
◦
i,r,n and H◦

c,i,r,n for all ‘simple’ liquid metals. In the vicin-
ty of the melting point this functional relationship is supposed
o be linear, and so the following equation follows:

◦
i,r,n

∼= −kβH◦
c,i,r,n (17)

here kβ is a dimensionless semi-empirical parameter. Substi-
uting Eqs. (15) and (16) into Eq. (17), β◦

i of ‘simple’ liquid
etals is expressed as

◦
i,m

∼= −kβ

C◦
p,i,m

H◦
c,i,m

(18)

The new Eq. (20) is similar to the model of [14], but it takes
lso into account the heat capacity of liquid metals. Heat capac-
ty was recently used to scale volume expansion coefficient of
olid metals by Garai [34]. Eq. (18) is checked against experi-
ental data in Fig. 4. One can see a good linear correlation, with
2 = 0.91 and kβ = 0.62 ± 0.23.

. Discussion and calculation for refractory metals

As one can see from Figs. 1–4, the same set of cohesive
nthalpies coupled with appropriate theoretical equations and
o all ‘simple’ liquid metals given in the compilation of Ref. [14]. β◦
i values of

14] are replaced for Al, Cu, Fe [35], Co [36], Ni [37], Pd [38] and Pt [39].
dditional β◦

i values are given for Mo [40], W [41], Ru [42] and Rh [43]. Heat
apacity is from [30], cohesive enthalpy is calculated by Eq. (5) with q1 = 26.3
nd q2 = −2.62 × 10−4 mol kJ.
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Table 2
Calculated properties for some ‘simple” liquid transitional metals

Group i T ◦
m,i (K) [30]

±0.1%
C◦

p,i (J/mol K)
[30] ±2%

V ◦
i,m (cm3/mol)

Appendix ±2%
−H◦

c,i,m (kJ/mol)
Eq. (5) ±15%

−H◦
c,i,0 (kJ/mol)*

±18%
T ◦

cr,i (K) Eq.
(6.a) ±20%

σ◦
i,m(mN/m) Eq.

(12.b) ±20%
β◦

i,m (×104/K) Eq.
(18) ±25%

−σ
o,T
i (mN/mK)

Eq. (14) ±30%

IIIB Sc 1814 44.2 16.1 337 411 8,500 1180 0.81 0.191
Y 1795 43.1 21.0 334 404 8,600 980 0.80 0.156

IVB Ti 1939 46.3 11.6 356 431 8,700 1550 0.81 0.25
Zr 2125 42.1 15.1 383 470 10,100 1400 0.68 0.19
Hf 2500 44.0 14.5 433 545 11,100 1630 0.63 0.20

VB V 2190 47.4 9.3 392 480 9,400 1980 0.75 0.30
Nb 2750 41.8 11.8 464 577 12,500 2010 0.56 0.22
Ta 3258 41.8 11.8 520 657 14,100 2250 0.50 0.22

VIB Cr 2130 50.0 8.27 384 480 8,800 2100 0.81 0.34
Mo 2896 42.6 10.2 481 613 12,800 2290 0.55 0.25
W 3680 54.0 10.4 559 733 12,600 2640 0.60 0.32

VIIB Re 3453 50.0 9.6 539 712 12,800 2680 0.58 0.31

VIIIB Fe 1809 46.0 7.94 336 413 8,200 1890 0.85 0.32
Ru 2523 51.9 8.8 436 559 9,800 2290 0.74 0.34
Os 3300 50.0 9.1 524 679 12,400 2700 0.59 0.32
Co 1768 40.5 7.6 330 405 8,900 1900 0.76 0.29
Rh 2233 50.6 9.2 398 498 9,100 2030 0.79 0.32
Ir 2716 59.4 9.5 460 589 9,400 2300 0.80 0.38
Ni 1728 43.1 7.43 324 393 8,300 1900 0.83 0.31
Pd 1825 41.2 10.2 339 407 9,000 1610 0.75 0.24
Pt 2045 36.5 10.3 371 453 11,000 1750 0.61 0.21

(*) value of H◦
c,i,0 was calculated from the estimated value of H◦

c,i,m, by subtracting the enthalpy change of the pure metals between the liquid (melting point) and solid (0 K) states [30]
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n Table 2, based on the known values of their melting points
30], heat capacities [30] and molar volumes (see Appendix A):

(i) cohesive enthalpy at melting point H◦
c,i,m by Eq. (5),

q1 = 26.3, q2 = −2.62 × 10−4 mol kJ,
(ii) cohesive energy of solid metals at 0 K (H◦

c,i,0) by subtract-
ing from H◦

c,i,m the enthalpy change from solid metal at 0 K
to liquid metal at melting point [30],

iii) critical temperature T ◦
cr,i by Eq. (6.a),

iv) surface tension at melting point σ◦
i,m by Eq. (12.b),

(v) volume thermal expansion coefficient β◦
i,m by Eq. (18),

kβ = 0.62,
vi) temperature coefficient of surface tension σ

o,T
i by Eq. (14)

using the calculated values of β◦
i,m and σ◦

i,m.

The weakest agreement between calculated and experimental
ata appears for IIA metals (see Figs. 2 and 4). Thus, the rel-
tively stable s2 configuration of outer electron shells seems to
isturb the cohesive enthalpy models for IIA metals calculated
ot only from enthalpy of vaporization but also from melting
oint values. That is why calculated values for IIA metals are
ot given in Table 2. Thermophysical properties of the transi-
ional metals of IIIB–VIIIB groups are calculated in Table 2, as
acancies in databanks exist for these metals.

. Conclusions

(i) The temperature coefficient of the cohesive enthalpy
of liquid metals equals their heat capacity. The cohe-
sive enthalpies of liquid alkali metals and Hg at
their melting points are estimated through their critical
temperature. The cohesive enthalpy of ‘simple’ liquid
metals at their melting points is scaled to the melt-
ing point of the metals through two, semi-empirical
parameters.

ii) A theoretical model is developed for the surface tension
of pure liquid metals. Using the best available experi-
mental values, the above two semi-empirical parameters
were deduced. The same theoretical model is devel-
oped further to derive the equation for the temperature
coefficient of surface tension of liquid metals. The
model describes experimental values with a reasonable
accuracy.

ii) The volume thermal expansion coefficient of pure liq-
uid metals is shown to be proportional to the ratio
of heat capacity and cohesive enthalpy of the liquid
metal.

iv) An approximate equation is derived for the critical tem-
perature of metals using their melting points and heat
capacities. The cohesive enthalpies of pure liquid metals
are re-calculated to the cohesive energy at 0 K for solid
metals.

v) The above mentioned equations and parameters apply only

to ‘simple’ liquid metals resulting from bcc, fcc or hcp
crystals as the bulk and surface structure and type of bond-
ing for these liquid metals are similar enough to be treated
together.

[

[
[

gineering A 495 (2008) 19–26 25

ppendix A. Molar volume of liquid metals at their
elting points

Original experimental data on the density of liquid metals
re published in several hundreds of papers (see compilations
14,31]). However, there are missing or contradictory data for
ome refractory metals.

The most reliable data for solid metals are for their cell size
t room temperature. Solid metals expand by about 6% [14]
etween 0 K and their melting points. Supposing that any given
rystal lattice expands to the same ratio from 0 K to melting
oint in liquid state, the following equations is obtained:

◦
i,m = kV,h k l

NAva
3
i

nh k l(1 + 0.06 × (298/T ◦
m,i))

(A1)

here kV,h k l is the average expansion ratio for the h k l crys-
al from T = 0 K and melting point in liquid state, ai is the cell
imension of metal i at 298 K [44], nh k l is the number of atoms
n a unit cell of the h k l crystal (2 for bcc, 4 for fcc and hcp
rystals). For hcp crystals a3

i of Eq. (A1) should be replaced by
3a2

i ci.
The semi-empirical coefficients kV,h k l have been found from

nown experimental values [14,31] for 9 bcc metals, 12 fcc met-
ls and 15 hcp metals, resulting to: kV,bcc = 1.096 (R2 = 0.9999),
V,fcc = 1.12 (R2 = 0.999) and kV,hcp = 1.086 (R2 = 0.996). From
hese parameters the molar volumes for Nb, Ta, Mo, and W
bcc), Rh and Ir (fcc), Ru, Os, Zr, Hf, and Re (hcp) were esti-
ated and included in Table 2, being in reasonable agreement
ith the known experimental values [38,40,42,43,45].
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