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This paper extends the theory of investment under uncertainty to

incorporate fixed costs of investment, a wedge between the purchase price and

sale price of capital, and potential irreversibility of investment. In this

extended framework, investment is a non-decreasing function of q, the shadow

price of installed capital. There are potentially three investment regimes which

depend on the value of q relative to two critical values. For values of q above

the upper critical value, investment is positive and is an increasing function of

q, as is standard in the theory branch of the adjustment cost literature. For

intermediate values of q, between two critical values, investment is zero.

Although this regime features prominently in the irreversibility literature, it is

largely ignored in the adjustment cost literature. Finally, if q is below the

lower critical value, gross investment is negative, a possibility that is ruled out

by assumption in the irreversibility of literature. In general however, the

shadow price q is not directly observable, so we present two examples relating

q to observable variables.
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I Introduction
If a firm can instantaneously and costlessly adjust its capital stock, then,
as shown by Jorgenson (1963), its decision about how much capital to use
is essentially a static decision in which the marginal product of capital is
equated to the user cost of capital. The firm's investment decision becomes
an interesting dynamic problem, in which anticipations about the future
economic environment affect current investment, when frictions prevent
instantaneous and costless adjustment of the capital stock. The investment
literature of the last three decades has focused on two types of frictions —
adjustment costs and irreversibility.

In this paper, we present a simple, more general framework that en-
compasses irreversibility as well as adjustment costs that may include a
fixed component. Within this more general framework, the optimal invest-
ment behavior of the firm is comprised of potentially three regimes: (1) a
regime of positive gross investment; (2) a regime of zero gross investment;
and (3) a regime of negative gross investment. Most of the adjustment cast
literature tends to focus, either implicitly or explicitly, on the first of these
regimes. The irreversibility literature is more explicit in its recognition of
regimes of positive gross investment and zero gross investment, and it rules
out the regime of negative gross investment by assumption. The more gen-
eral model presented here allows a simple characterization of the conditions
giving rise to each of these regimes.

In the adjustment cost literature, based on the seminal work of Eisner
and Strotz (1963), the adjustment cost function is typically assumed to
be strictly convex and to have a value of zero at zero. Although a few
studies mentioned the possibility of fixed costs,1 there was virtually no
formal analysis of these fixed costs. The model presented in this paper
incorporates fixed costs.

During the 1970s and 1980s, the adjustment cost literature began to
merge with the literature on Tobin's q. Tobin (1969) argued that the opti-
mal rate of investment is an increasing function of the ratio of the market
value of the firm to the replacement cost of the firm's capital — a ratio that
he called q, and that has come to be known as "average q." Mussa (1977)
showed in a deterministic model, and Abel (1983) showed in a stochastic
model, that the optimal rate of investment is the rate that equates the
marginal adjustment cost with the marginal value of installed capital, a
concept known as marginal q. While average q is a potentially observable
number, it is marginal q that is relevant for investment decisions. Hayashi
(1982) presented conditions under which average q and marginal q are equal.

As indicated earlier, the assumption that investment is irreversible is
another type of friction that makes the investment decision an interesting
dynamic problem. In a seminal paper on irreversibility, Arrow (1968, pp.

'See Nickell (1978) and Rothschild (1971).
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8—9) argued that "there will be many situations in which the sale of capital
goods cannot be accomplished at the same price as their purchase. For
simplicity, we will make the extreme assumption that resale of capital goods
is impossible, so that gross investment is constrained to be non-negative."
Arrow showed that in a deterministic model, optimal investment behavior
under irreversibility will be characterized by alternating intervals of time
corresponding to regimes of positive gross investment and regimes of zero
gross investment. When the shadow price of capital is smaller than the cost
of new capital, the firm will have zero investment; when the firm undertakes
positive gross investment, the shadow price of capital equals the cost of new
capital.2

We incorporate both adjustment costs and irreversibility in an extended
model of adjustment costs. We note that adjustment costs and irreversibil-
ity are examined together in a deterministic model by Lucas (1981) and in
a stochastic model by Lucas and Prescott (1971). Curiously, both of these
papers introduce the constraint that gross investment is non-negative in the
formal optimization problem, yet neither paper comments on this assump-
tion, nor does either paper use the term "irreversibility." In effect, these
papers take as a postulate that gross investment cannot be negative. In
contrast, our model incorporates Arrow's observation that the resale price
of capital may be below the price of new capital, and the model includes
the special case in which the resale price is zero.

If we were to simply postulate that gross investment cannot be nega-
tive, then it would be easy to impose irreversiblity in an adjustment cost
framework by simply assuming that infinite adjustment costs are incurred
at any negative rate of investment, as in Caballero (1991, p. 281). Our
approach avoids treating irreversibility as a postulate but rather allows for
(and characterizes) cases in which the optimal investment behavior of the
firm is never negative. We introduce an augmented adjustment cost func-
tion that includes the traditional convex adjustment costs as well as the
possibility of fixed costs and the possibility that the resale price of capital
goods is below their purchase price and may even be zero. In this augmented
adjustment cost framework, investment is a non-decreasing function of the
shadow price q, which is always positive. There are three regimes of opti-
mal investment behavior characterized by two critical values of q, qi � q.
Optimal gross investment is positive for q > q, zero for values of q be-
tween q, and q, and negative for values of q < qj.. If the lower critical

2The same relationship among gross investment, the shadow price of
capital and the price of new capital was derived in a stochastic general
equilibrium model by Sargent (1980). Similarly, Bertola and Caballero
(1991) examine the behavior of an individual firm under uncertainty and
find that the firm equates the marginal product of capital and the user cost
of capital whenever it is undertaking gross investment; when the firm is not
investing, the marginal product of capital is below the user cost.

2



value, q, is negative, then negative gross investment is never optimal and
investment would appear to be irreversible to an outside observer. It is
worth noting that irreversibility does not require infinite adjustment costs
at negative rates of gross investment, as assumed by Caballero (1991); in-
deed, as long as the augmented adjustment cost is strictly positive for all
negative rates of gross investment, optimal investment behavior will appear
to be irreversible.

In section II we introduce the augmented adjustment cost function and
relate optimal investment to the shadow price q. In section III we discuss
the relationship of q to observable variables. Section IV summarizes and
outlines future work.

II The Model of the Firm
11.1 The Operating Profit and Augmented Adjustment

Cost Functions
Consider a firm that uses capital and a vector of costlessly adjustable inputs,
such as labor, to produce a non-storable output. At each point of time,
the firm chooses the amounts of costlessly adjustable inputs to maximize
the value of its revenue minus expenditures on these inputs. Let r(K1, es)
denote the maximized value of this instantaneous operating profit at time
t, where I( is the capital stock at time t, and e is a random variable
that could represent randomness in technology, in the prices of costlessly
adjustable inputs, or in the price of output. Assume that irpc(Kt,ej) > 0,
iric,jc(Kt, ci) < 0, and that Cj evolves according to a diffusion process

dc = p(c1)dt+ u(c)dz (1)

where z is a standard Wiener process.
The intertemporal problem faced by the firm is the choice of the time

path of the capital stock. Capital is acquired by undertaking gross invest-
ment at rate I, and the capital stock depreciates at a fixed proportional
rate 6, so the capital stock evolves according to

dK1 = (I — 6K1)dt.. (2)

When the firm undertakes gross investment, it incurs costs that we can
describe in terms of three components: (1) purchase/sale costs, (2) costs of
adjustment, and (3) fixed costs.

Purchase/sale costs are the costs of buying or selling uninstalled capital.
Let p. be the price per unit at which the firm can buy any amount of
uninstalled capital, and let pj be the price per unit at which the firm can
sell any amount of uninstalled capital. We assume that pf � pi � 0.
The sale price of capital may be strictly less than the purchase price of
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capital if capital is firm-specific and/or if there is adverse selection in the
market for used capital goods.3 The purchase/sale cost function is 41
for I > 0 and pI for I C 0. It is a (weakly) convex and nondecreasing
function that takes the value zero when gross investment is zero. Note that
the purchase/sale cost function is twice differentiable everywhere except
possibly at I = 0.

Adjustment costs are nonnegative costs that attain their minimum
value of zero when I = 0. Adjustment costs are typically assumed to be
continuous and strictly convex in In some formulations, adjustment
costs also depend on the capital stock K, with the partial derivative of the
adjustment cost function with respect to K being negative.6 We assume
that the adjustment cost function is twice differentiable with respect to I
everywhere except possibly at I = 0. The assumptions made so far imply
that the partial derivative of the adjustment cost function with respect to
investment is positive for I > 0 and is negative for I < 0. If the adjust-
ment cost function is differentiable at I = 0, the partial derivative of the
adjustment cost function is zero at I = 0; otherwise, the lefthand partial
derivative is nonpositive and the right hand derivative is nonnegative at
1=0.

Fixed costs of investment are non-negative costs of investment that are
independent of the level of investment. However, a firm can avoid the fixed
cost of investment at a particular point of time by setting investment equal
to zero at that point of time.

We take account of all three of these types of costs associated with
capital investment. The total cost of investment equals the product of a
dummy variable d and an "augmented adjustment cost function" c(I, K).
The dummy variable d takes the value zero when I = 0 so that the total
investment cost is zero when I = 0. When I 0, the dummy variable d

3In addition to Arrow (1968) cited in the introduction, Nickell (1978,
p. 40), Bertola and Caballero (1991, p. 1), and Pindyck (1991, p. 1111)
recognize that p may be lower than pj. and choose to make the extreme
assumption that investment is irreversible. In the literature on consumer
durables, Eberly (1991), Grossman and Laroque (1990), and Lain (1989)
include a proportional transaction cost when consumers resell durables,
which corresponds to pj being smaller than 4.

4A notable exception is Rothschild (1971) who analyzes investment be-
havior under concave as well as convex adjustment costs.

51n addition, the partial derivative of the adjustment cost function with
respect to investment goes to infinity as investment goes to infinity, and this
partial derivative goes to negative infinity as investment goes to negative
infinity.

6For instance, Abel and Blanchard (1983), Hayashi (1982), Lucas (1967,
1981), Lucas and Prescott (1971), and Treadway (1969) all model adjust-
ment costs as a decreasing function of K for a given I.
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equals one so that the total investment cost equals the augmented adjust-
ment cost c(I, K).

The augmented adjustment cost function c(I, K) represents the sum
of purchase/sale costs, adjustment costs, and fixed costs. We assume that
limjjo c(I, K) = limito c(I, K) a'nd denote the common value of these limits
as c(O, K). Note that c(O, K) is not the total investment cost when I = 0,
because when I = 0 the dummy variable d equals 0 and total investment
cost. equals zero. Instead, c(0, K) is interpreted as the fixed cost of in-
vestment because both the purchase/sale cost function and the adjustment
cost function are continuous functions that take on the value zero when
I = 0. Because the fixed cost is non-negative, we have c(0, K) � 0. The
augmented adjustment cost function is continuous, strictly convex, and is
twice differentiable with respect to 1 everywhere except possibly at I =
Let ci(0, K) and cj(0, K) denote the left-hand and right- hand partial
derivatives, respectively, of c(I, K) with respect to I evaluated at I = 0. It
follows from the assumptions made above that cj(0, K)+ � 0, but ci(0, K)
may be positive, negative or zero. In addition, ci(0, K)+ � ci(0, K).

11.2 Maximization: The Optimal Investment Function
Assume that the firm is risk-neutral and chooses investment to maximize
the expected present value of operating profit ir(K, e) less total investment
cost dc(I,K). The value of the firm is thus

V(K, Ct) = max J E1 {ir(Kt+., et+3)—dt+,c(It+3, ICt+.)}e_rads (3)o

where r > 0 is the discount rate, and the maximization in (3) is subject to
the evolution of e1 and K1 described in (1) and (2) respectively.8

We will solve the maximization problem in (3) using the Bellman equa-
tion derived in Appendix A (where we have suppressed the time subscript

rV(K,e) = rnax{ir(K,e) — dc(I,K)+ () E(dV)}. (4)

The left hand side of equation (4) is the required return on the firm, and
the right hand side of (4) is the maximized expected return which consists
of two components: operating profits net of augmented adjustment costs,
K, e) — dc(I, K); and the expected "capital gain" represented by the
change in the value of the firm (1/dt)E(dV). To calculate the expected
capital gain, we observe that the value of the firm, V, depends on K and c,

7The properties noted in footnote 5 imply that limj.... cj-(I, K) =
and limj......,1, cj(I, K) = —oo.

5While standard, this expression rules out bubbles in the value of the
firm.
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which evolve continuously over time according to (2) and (1) respectively.
Thus, we can calculate E(dV) using Ito's Lemma, equations (1) and (2),
and the facts that (dK)2 = (dK)(de) = (cit)2 = (dz)(dt) = 0 = E(dz) to
obtain

E(dV) = [Vjç(l— 5K) + pV + o2V1] (ft (5)

Now define q Vjc, which is the marginal valuation of a unit of installed
capital. Substituting this definition and the expected capital gain from
equation (5) into equation (4) yields

rV = rnax{ir(K,c)— dc(I,K)+ q(I— 5K)+pV + 1a2V,} (6)

To solve the maximization problem on the tight hand side of (6), notice
that the only terms that involve the decision variables I and d are —dc(I, K)
and qI. Therefore, the optimal values of I and d solve

max [qI—dc(I,K)). (7)

It is convenient to solve the maximization problem in (7) in two steps.
First, assume that d = 1, and choose the value of I that maximizes the
ma.xirnand in (7) conditional on d = 1. Then choose d to be either zero or
one.

For the moment, assume that d = 1 and let i,b(q,K) denote the maxi-
mized value of the maximand in (7) given that d = 1. Specifically,

t,b(q,K)Emax[qI—c(I,K)]. (8)

Let I(q, K) denote the value of I that maximizes the maxirnand in
equation (8). Given that c(I, K) is strictly convex in I, and is differentiable
everywhere except possibly at I = 0, the first-order conditions determining
1(q,K) are

ci(r(q,K),K) = q for q .c ci(0,K) or q > cj(0,K) (9a)
1(q,K) = 0 for c,r(0,K) � q < cj(0,K) . (9b)

According to equation (9a) the firm equates the marginal cost of in-
vestment and the marginal benefit of investment, measured by q. Notice
that c; > 0 implies that 1(q, K) is a strictly increasing function ofq over
the range of q in equation (9a).

If c(I,K) is differentiable at I = 0, then cj-(0,K) = cj(O,K) and

ci(r(q,K),K) = q for all q. However, if c(I,K) is not differentiable at
I = 0, then for values of q between ci(0, K)— and cj(0, K)+ there is no cor-
responding value of the marginal cost of investment. As shown in equation
(9b) for values of q in this range, I(q,K) = 0. Looking at equations (9a)
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and (9b) together we see that 1(q, K) is a nondecreasing function over the
entire range of q, and that

1<0 forqccj(0,K)
I(q,K). =0 for ci(0,K) <q<cjr(0,K)+ (10)

(>0 forq>cr(0,K)t
Having determined the optimal value of I given that d = 1, we now

turn to the choice of the optimal value of d. If d = 0, gross investment is
also zero, and the value of the maximand in equation (7) is zero. If d = 1,
the optimal rate of investment is I(q, K) and the value of the maximand
in (8) is

i,b(q,K) = ql(q,K) — c(1(q,K),K) . (11)

The firm will therefore choose d = 1 when, and only when, sb(q, K)
is greater than zero.9 To determine the sign of &(q, K), we now charac-
terize the behavior of this function. Recall from equation (9b) that for

< q C ci(0,K)+, 1(q,K) = 0. Substituting zero investment
into the right hand side of (11) yields

b(q, K) = —c(0, K) if cj(0, K) � q C cjr(0, K) . (12)

For values of q outside the interval [cir(o, K), cjr(0, K)+], i,b(q, K) �
—c(0, K) because the firm could always choose to set I = 0 and thereby
attain a value of —c(0, K) for qI — c(I, K). Thus, the minimum value of
i,b(q,K) is attained for q in the interval [cI(o,K)mci(o,K)+]. Outside
this interval, i,b(q, K) is twice differentiable. Differentiating equation (11)
with respect to q and using equation (10) yields

' K'—1" K\j<0 ifq<cjr(0,K) 13Wflq, _ q, ''L>o ifq>cj(0,K)+
iPq,q(q,K) = I(q,I<) >0 ifq c cj(0,K) or ifq > cj(0,K) . (14)

Thus, the function &(q, K) is a convex function that attains its mini-
mum value of —c(0, K) when q is in the interval [cr(0, K)—, cjr(0, K)j. Let

q1 and q2 denote the smallest and largest roots, respectively, of '(q, K) = 0.
It follows from equation (13) that

t,b(q,K)>0 ifq<qiorq>q2. (15)

The function '(q, K) is depicted in Figure 1 for a given value of K.
The flat segment of Ø(q, K) for values of q between cj(0, K) and cr(0, K)4

9When ç&(q, K) = 0, the firm is indifferent between I = 0 and the
optimal nonzero rate of investment. We assume that at these points of
indifference, the firm chooses I = 0.
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corresponds to equation (12). Figure 1 is drawn under the assumption that
the fixed cost, c(O, K) is positive, so that the minimum value of (q, K) is
negative, and the flat segment lies below the horizontal axis. According to
equation (13), (q, K) is strictly decreasing to the left of the fiat segment,
and strictly increasing to the right of the flat segment. Thus, in the case
depicted in Figure 1, the equation '(q, K) = 0 has two distinct roots, q
and q; Ø(q,K) > 0 if q < qi or if q > q. Thus, optimal investment
behavior I(q, K) is characterized by

I(q,K)<O, ifq<qi
I(q,K)= 0, ifq1 (16)

11(q,K)>0, ifq>q2.
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11.3 Characteristics of Optimal Investment and q
(1) If there are at least two distinct roots of i,b(q, K) = 0, so that q c q,

then there is a range of inaction in which the optimal amount of
investment is zero. However, if there is a unique root of (q, K) = 0,
then q = q, and there is no (nondegenerate) range of inaction; there
is only a single value of q, equal to qj = q2, for which investment is
zero.

Under the assumptions made above, &(q, K) = 0 will have a unique
root if and only if

• c(I,K) is differentiable at I = Oso that cj(U,K) =
and hence there is no flat segment at the bottom of the t,b(q, K)
function; and

• the fixed cost c(0, K) is zero so that the minimum value of
Ø(q,K) is zero.

These assumptions are fairly standard in the adjustment cost literature,'0
and under these assumptions there is no range of inaction.

The equation (q, K) = 0 will have exactly two distinct roots and
there will be a range of inaction if the fixed cost c(0, K) is positive
so that the minimum value of i(q, K) is negative. In this case,
the range of inaction will arise regardless of the differentiability of
c(I,K) at I = 0.

The equation &(q, K) = 0 will have a continuum of roots if and only
if

• c(I,K) is not differentiable at I = 0 so that ci(0,K) C
cj(0, K)+ and hence there is a fiat segment at the bottom
of the function b(q, K); and

• there are no fixed costs, so that the flat segment at the bottom
of (q, K) lies along the horizontal axis.

In this case the equation b(q, K) = 0 has a continuum of roots ex-
tending from q, to q2, and there is a range of inaction corresponding
to these values of q. To summarize, either positive fixed costs or
non- differentiability of c(I, K) at I = 0 is sufficient to introduce a
nondegenerate range of inaction for investment.

(2) The largest and smallest roots of the equation q'(q, K) = 0, qi and
q, depend only on the specification of the augmented adjustment
cost function c(I, K). They are independent of the specification of
the operating profit function ir(K, e) and the specification of the
diffusion process for e.

'°See, for example, Abel and Blanchard (1983), Gould (1968), and Hart-
man (1972).
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(3) If there are positive fixed costs or if c(I, K) is not differentiable at
I = 0, then there is a range of inaction. At the endpoints of this
range, the function I(q, K) is discontinuous. That is, the optimal
rate of investment jumps from a negative value to zero at q =
and it jumps from zero to a positive value at q = q.

(4) Note that the Bellman equation in equation (6) holds identically in
K at a point in time so the partial derivative of the left hand side
with respect to K equals the partial derivative of the right hand side
with respect to K. Differentiating both sides of (6) with respect to
K yields

rVK = lrK(K, C) —dcK(I, K)—Sq+qK(I—ÔK)+pVe,K+ tT2Vçc,K,
(17)

where i is optimal investment from equation (16) and dis the optimal
choice of d.

Recall that q E 17K so that q = V,K and q = Now apply
Ito's Lemma and equations (1) and (2) to calculate E{dq}

E{dq} = q(I — SK)dt + IZVC,Kdt + (18)

Substituting (18) into (17) and rearranging yields

(r + 6)q = ,ry(K, c) — dejc(I, K) +
E{dq}

(19)

The left hand side of equation (19) is the required return (gross
return before subtracting depreciation) on the marginal unit of cap-
ital and the right hand side is the expected return which consists
of three components: the marginal operating profit IrK(K, e), the
marginal reduction in the augmented adjustment cost —dcjç(I, K),
and the expected capital gain E{dq}/dt. In the special case in
which there is no uncertainty, equation (19) becomes (r + 5)q =
irj(K, e) — dcK(I, K) + dq/dt which is widely used in the determin-
istic literature on the q theory of investment.

(5) The marginal valuation of installed capital, q, is the expected present
value of the stream of marginal products of capital. This result
can be shown formally using the following Lemma (proven in Ap-
pendix B).

Lemma 1 Suppose that Xt is a diffusion and that a > 0 is constant.
Then x = E1 {f°° g11e'ds} is a solution to the differential equa-
tion E1(dx)/dt — ax + gt = 0.

11



Using the fact that q is a diffusion, and applying this lemma to
equation (19) yields'1

= J Et{lrK(Kt+i,ci+a) — dt+JCK(It÷S,Kt+l)}e_(r÷8)sds > 0.

(20)
Thus, q is the present value of the expected marginal product of
capital which consists of two components: lrK(K, e) is the marginal
operating profit accruing to capital, and —dcjç(I, K) is the reduction
in the augmented adjustment cost accruing to the marginal unit
of capital. The assumptions made above that lrK(K, e) > 0 and
CK(I,K) C 0 imply that q is always positive.

(6) In order for negative investment ever to be optimal, the smallest
root of '(q,K) = 0, qi, must be positive so that it might be possible
for q (which is always positive) to be less than qi. A necessary
and sufficient condition for qi to be positive is (0, K) > 0. It
follows directly from the definition of (q, K) in (8) that (O, K) =
maxj —c(I, K) = — mini c(I, K). Thus, in order for it to be possible
for negative investment to be optimal, mini c(I, K) must be negative.
The explanation of this result is straightforward. In order for a firm
to find it optimal to give up some of its installed capital which has a
positive value, the adjustment cost that it incurs must be negative,
i.e., the net sale price of the capital after taking account of the fixed
cost and the adjustment cost must be positive. If there is no value
of gross investment for which c(I, K) is negative, then it will never
be optimal for a firm to undertake negative gross investment. The
firm's behavior would be observationally equivalent to a situation of
irreversible investment.12

11We have chosen the solution to equation (19) that does not contain
bubbles.

'2Caba.llero (1991, p. 281) specifies the augmented adjustment cost func-
tion C(I) = I + [I > O},I" + [I c o]721i1P where fi � 1, ' � 0, 72 � 0,
and (] is the indicator function. Caballero states that "the irreversible-
investment case of Pindyck (1988) and Bertola (1988) corresponds to the
case in which = 0, 72 = cc, and fi = 1." In fact, however, if fi = 1,
irreversibility will occur whenever 72 > 1. There is no need to make 72
infinite to prevent optimal investment from being negative.
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III Relating the Shadow Price q to Observ-
able Variables

We have shown that optimal investment is an increasing function of the
shadow price of capital, which we have called q. In general, we cannot
directly observe shadow prices. In this section we discuss how to measure
q when the production function is linearly homogeneous.

Consider a competitive firm that uses capital, K, and a vector of cost-
lessly adjustable inputs, L, to produce output according to the production
function F(K, L, e). Assume that the production function F(K, L, c) is lin-
early homogeneous in K and L, and note that the production function may
be subject to stochastic shocks. It is well known that if the firm is a price-
taker in output and factor markets, the operating profit function can be
written as

ir(K,c) = H(e)K , (21)

where H(e) >

Case I c(I, K) is linearly homogeneous in I and K. We can
show that if the operating profit function satisfies equation (21), and if
c(I, K) is linearly homogeneous in I and K, then

V(K, c) = q(e)K . (22)

In this case, the shadow price of capital, q(e), equals the average value of
capital, V(K, c)/K, which is observable using security market prices and
is known as Tobin's q. This result extends Hayashi's (1982) result, which
was derived in a deterministic model, to a stochastic model that admits
irreversibility.

This result is a special case of the following Lemma, proven in Ap-
pendix B.

Lemma 2 Suppose that ir(K, c) and c(I, K) are homogeneous of degree p
in I and K. Then the value function can be written as V(K, e) = A(e)K,
and q E VK(K,e) = V(K.c)

'3The operating profit in this case can be written as ir(K, c) =
max[p(e)F(K,L,e) — w()'L], where p(e) is the given price of the firm's
output and w(c) is the vector of given prices of the costlessly adjustable
inputs. Note that all of these prices may be potentially random. Let
A L/K be the vector of ratios of the costlessly adjustable inputs to the
capital stock. It follows from the linear homogeneity of F(K, L, c) that
ir(K, e) = maxA[p(e)F(1, A, c) — w(e)'A]K. The maximand in square brack-
ets is independent of K, and thus the operating profit function can be
written as in equation (21), where H(c) = maxA[p(e)F(1,A,c) — w(e)'A].
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Thus, when the operating profit function and the augmented adjust-
ment cost function are of the same degree of homogeneity, marginal q and
average q are proportional. In the special case where p = 1, equation (21)
holds, the augmented adjustment cost function is linearly homogeneous,
and Lemma 2 indicates that average and marginal q are equal, as in equa-
tion (22).

We first discuss the content of the assumption that c(I, K) is lin-
early homogeneous. Recall that c(I, K) has three components: (1) a pur-
chase/sale cost; (2) an adjustment cost; and (3) a fixed cost.

(1) As we discussed in section II, the purchase/sale cost is pj.I for I> 0
and pI for I C 0. Obviously, a doubling of I and K doubles the
purchase/sale cost, so the purchase/sale cost function is a linearly
homogeneous function of I and K.

(2) In the literature in which the adjustment cost function depends on
K as well as on I, it is commonly assumed that the adjustment cost
function is linearly homogeneous in I and K.'4

(3) The fixed cost of investment, c(0, K), is independent of the amount
of investment I. If this fixed cost reflects the cost of stopping pro-
duction while new capital is installed,5 it is proportional to the
operating profit function H(c)K which is, of course, proportional to
K. In this case, the fixed cost, c(0, K), is a linearly homogeneous
function of I and K, (even though it is independent of I).

If the purchase/sale cost, the adjustment cost, and fixed cost are all
linearly homogeneous functions of I and K, then c(I, K) is linearly homo-
geneous in I and K, and can be written as

(I '\ fI\
c(I,K) Kcyg 1) KGIy) (23)

where Go is continuous and convex, and, except possibly at zero, is twice
differentiable. In this case, cjr(I, K) = G'(I/K), so that equations (16)
yield

., G'1(q)<0, ifq<q,
ifq,<q<q2 (24)

(G''(q)>O, ifq>q2.
Notice that the optimal investment-capital ratio depends only on q, and
since q is independent of the capital stock, the optimal investment-capital

'4Abel and Blanchard (1983), Haya.shi (1982), Lucas (1967, 1981) and
Lucas and Prescott (1971) all make this assumption.

t5Nickell (1978, p. 37) and Rothschild (1971, p. 609) both suggest that the
cost of stopping production would give rise to a fixed cost of investment. In
addition Rothschild suggests that breaking in new equipment or procedures
is costly.
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ratio is independent of the scale of the firm.'6 If q < 0, then the nega-
tive investment regime is never operative, and as explained in section II,
investment would appear to be irreversible.

Case II cjc(I, K) 0. Now assume that the augmented adjust-
• ment cost function does not depend on the capital stock (formally, cjç(I, K)

0).' We continue to assume that the operating profit function is propor-
• tional to the capital stock (equation (21)). Under these two assumptions,

we show in Appendix C that the value function is a linear function of the
capital stock regardless of the specification of the diffusion for c. In partic-
ular,

V(K, c) = q(c)K + J(e) . (25)

To get an explicit expression for q(c) in terms of the underlying stochas-
tic process, we will focus on particular parametric specifications of the op-
erating profit function and the diffusion for e. It is not necessary to further
restrict c(I,K).

Consider a competitive firm that uses capital and labor to produce out-
put according to the Cobb-Douglas production function vL0K0, where
o c a < 1, and v > 0 is a productivity parameter that may be stochastic.
The firm pays a constant wage rate w per unit of labor and sells its output
at a price P that may be stochastic. Define p = Pv and observe that the
instantaneous operating profit equals the revenue from selling output minus
the cost of labor so that

ir(K,p) max [pLK'° — wL} h/K (26)

where h e (1 — a)af/fl_a)w_0/(1_0) > 0 and U 1/(1 — a) > 1.
At time t, the present value of marginal profits accruing to the unde-

preciated portion of currently installed capital is18

qt = hj . (27)

We calculate the expectations in equation (27), and the value of q, under
the assumption that p evolves according to the geometric Brownian motion

(28)

'6Lucas (1967) highlights this feature in a deterministic model with linear
homogeneous net receipts and convex costs of adjustment.

LtThis assumption is adopted by Abel (1983), Caballero (1991), Eisner
and Strotz (1963), Gould (1968), Hartman (1972), Mussa (1977), Nickell
(1978), Pindyck (1982), and Rothschild (1971).

18) in equation (20), we assume there is no bubble in the shadow price
q.
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where z is a Weiner process with mean zero and unit variance. In this case,
the distribution of lnpt÷a conditional on Pt is N(lnpg — o.2s, e2s) so that

= p9 exp [O(O — 1)e2sl (29)

Substituting equation (29) into equation (27) and simplifying yields19

1.8"Ptqt—
[r+6—9(Q—l)a2]

Now suppose that 0 C qi <q2 so that all three investment regimes are
potentially operative,20 and consider the effects of an increase in the instan-
taneous standard deviation u.21 It follows directly from equation (30) that
an increase in e increases q for a given Pt. If the initial value of q is less
than qi or higher than q, the increase in q increases investment, which is
consistent with llartman (1972), Abel (1983), and Caballero (1991). But
note that if the initial value of q is in the interval (qj, q), a small increase
in o- will not move q out of this interval, and investment will remain un-
changed and equal to zero. Thus, with the more general adjustment cost
function introduced in this paper, we have the result that investment is a
non-decreasing function of e for a given price of output Pt.

W Conclusion
In this paper we have extended the adjustment cost framework under un-
certainty to incorporate fixed costs of investment, a wedge between the
purchase price and sale price of capital, and potential irreversibility of in-
vestment. In this extended framework, investment is a non-decreasing func-
tion of q, the shadow price of installed capital, and there are potentially
three investment regimes which depend on the value of q relative to the
critical values q and q. Conveniently, these critical values depend only on
the specification of the augmented adjustment cost function. Ifq is greater
than q2, then, as is standard in the q theory branch of the adjustment cost
literature, investment is positive and is an increasing function of q. Ifq

'9We assume that r + 6— O(9 — 1)c2 > 0 so that the integral in equation
(27) converges.

20Recall that mm1 c(I, K) c 0 is necessary and sufficient for q1 > 0.
Either c(0,K) >0 or cj(O,K) c cj(0,K)+ is sufficient for Q2 > qj.

2tWhen we consider the effects of a change in a parameter such as u,
we are actually comparing the behavior of two otherwise identical firms
with different constant values of the parameter in question. This analysis
does not apply to the effect on a given firm of a change in the parameter
because the firm's optimization problem assumes that the parameters are
known with certainty to be constant over time.
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is between q and q, then investment is zero. Although this regime fea-
tures prominently in the irreversibility literature, it is largely ignored in
the adjustment cost literature. Finally, if q is less than q, gross invest-
ment is negative, a possibility that is simply ruled out by assumption in
the irreversibility literature.

The shadow price q is in general not observable so we presented two
examples relating q to observable variables. In one example, restrictions
on the production function and the augmented adjustment. cost function
guarantee that q is identically equal to the average value of the capital stock
which is observable using security prices. In the other example, we tightly
specify the production function and the diffusion process for the price of
output and derive an expression for q as a function of the contemporaneous
price of output. In this example, the price of output does not have a
stationary distribution and hence q does not have a stationary distribution.

In ongoing research we are examining the behavior of q and investment
in the presence of a mean-reverting process for the price of output so that q
will have a stationary distribution. The ultimate goal of this line of research
is to derive an econometric specification to apply these models to aggregate
and disaggregate data on investment.
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A The Bellman Equation
Define the value function as in the text, equation (3).

= maxE j [ir(K., c.) — d3c(I,, K3)] e_r(3_Ods (Al)

This can be written as the present value of profits up to a time r, plus
the present value of the value function at that moment.

V(K, et) = max Ej [r(K3, c,) — d3c(I,,K3)] e_r(3_l)ds+V(Kr, er)e_r(T_o

(A2)
Define Z V(K1, q)e_rt, and subtract the left hand side oI(A2) from

both sides. Divide through by r and take the limit as r approaches t.

o = hrn
{qiaax!Ei J[ir(Kaes)_ d3c(I.,K3)]e('0ds+

e"E(Z7 —
Zt)}

(AS)
Note that in the limit E(Z —Z1) = E(dZ), and dZ = —rZdt+etdV,

so substituting and taking the limit,

= max {ir(K e) — dc(I, K) — rV(K,e) + EQIV)
} (A4)

Equation (A4) is the Bellman equation used in the text.
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B Proofs of Lemma 1 and Lemma 2
B.1 Lemma 1
Suppose that Xt is a diffusion and that a > 0 is constant. Then Xt =
E1 {J° g+3r°'ds} is a solution to the differential equation Et(dx)/dt —
U + fit = 0.

Define h as a short interval of time. If x = Jt J'0°° gt+se_aads, then

= E1 g+,e'ds + fh°° gt+se_asds}
= gt+,e ds}+

E çíç [e_1s + —
e_tI(1_12)] ds} (Bi)

= Ettfofit÷se ds}+g' [e_" — 1] e_zO)ds} + Etxt÷h.

We now employ the following approximations, which becomes exact as
h approaches zero:

= x + hEt(dx/dt) (B2)

and,

PJ {jh gt+,e°ds + f1° fis+. —
1] e3(3_h)ds} (B3)= hg — ahx.

Substitute these expressions into equation (Bi) to produce

= hg — ahx1 + Xt + hEt(dx/dt). (B4)

Subtract Xt from both sides and divide through by h, producing the differ-
ential equation

0 = — + Et(dx/dt). (B5)

B.2 Lemma 2
Suppose that ir(K,e) and c(I,K) are homogeneous of degree p in I and
K. Then the value function can be written as V(K,e) = A(e)K, and
q VK(K,C) V(K1c)

The operating profit function and the augmented adjustment cost func-
tion are homogeneous of degree p in I and K so that

ir(K, c) = H(e)K (B6)
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and

c(I,K) =
G(k)KP. (B7)

Then the value function in equation (3) can be written as

= max / E {[H(c+,) — d1+1G(i+,)] K(.,,.3 } e''ds, (B8)
a

where It+1/Kt+1 is the (gross) growth rate of the capital stock.
Consider a firm with capital stock K1' at time t, and let d1÷3' and
denote the optimal values of the dummy variable d and the investment
capital ratio chosen by this firm at time t+s. This optimal behavior leads
to a capital stock of KL at time t. The value of the firm at time ii is
V(i4', ci). Now consider a second firm with a capital stock at time t
equal to K12 = with a> 0. This firm has the option of choosing
exactly the same values of the dummy variable d and the investment capital
ratio I/K at every point of time as chosen by the firm with capital stock

lithe second firm were to set d1+,2 = d41' and it+.2 =
for all s > 0, then K+32 would equal aK1+,1 for all s > 0. Because the
cash flow at time t+s is proportional to K(, in equation (B8), the second
firm has the option of obtaining an expected present value of cash flows
equal to aPV(K1W , cg). Therefore,

V(aKt,et) � a'V(K1,1). (B9)

Equation (B9) holds for any K and for any positive factor a. In
particular, consider a first firm that has a capital stock of aKt at time
t, and a second firm that has a capital stock of K1 = (1/a)aK1 at time t.
Therefore, the argument preceding equation (B9) implies that

V(K1, t) a (1/a)V(aK1, et) (B10)

Putting together equations (B9) and (BlO) we have
V(aK1,ct) � a"V(K1,e1) � V(aK1,q) which implies

V(aKt,et) = a'V(K1,e1). (Bli)
Because equation (Bli) holds for any positive IC and any positive a,

the value of the firm is proportional to the capital stock to the power p, and
hence the value function can be written as V(K1, ) A(c1)K/. Partially
differentiating (Bli) with respect to K1 yields q1 VK(Kt,cl) =
q.e.d.
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C The Value Function When The Augmented
Adjustment Cost Function Does Not De-
pend on the Capital Stock

The optimal program of the firm is governed by the differential equation
given in the text equation (6). Here we assume that cK(I,K) 0, so we
write the augmented adjustment cost function, c(I, K) as simply c(I).

rV(K, e) = max {ir(K e) — dc(I) + q(I — 6K) + pV1 + x2v16 } (ci)

Now suppose that the firm is a price-taker in output and factor markets
and has a production function that is linearly homogeneous in I and K so
that ir(K, c) = H(i)K (see footnote 9). We will verify that V(K, e) =
q(c)K + J(e) satisfies (Ci). Substituting V(K, c) = q(e)K + J(e) and
ir(K, c) = H(e)K into (Ci) and recalling the definition of q yields

rq(e)K + rJ(c) = max {H(e)K — dc(I) + qfr)(I — 6K)}

+pqK + /LJ + qK + Jc. (02)

Collecting terms in K,

[(r + 6)qfr) — — — Hfr)] K =
maxl,d [q(e)I — dc(I)} — rJ(e) + p.4 + ke2J (03)

In order for (C3) to hold for all K, the term in square brackets on the
left hand side must equal zero, and the right hand side of (03) must also
equal zero. Note that from equation (8) we can write

max [q(e)I — dc(I)] = max [0, b(q)]. (C4)

Setting the right hand side and the left hand side of (C3) equal to zero
yields

max[0,'(q(c))] — rJ(e) + = 0 (05)
and

H() — (r + b)q(e) + pq€ + = 0. (06)

Note that both differential equations are of the form
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g(e) — ax(e) + E(dx/dt) = 0. (C?)

According to Lemma 1, a solution to the differential equation in (C7)
is

= PJj g(c+.)e8ds. (C8)

Since equations (C5) and (C6) are both of the form in equation (C7),
we substitute from these into equation (C8) to conclude.

= PJ j max[0,Ø(q1÷.)]C''ds (C9)

= Ej H(et+,)C'''ds (Cia)

can therefore be interpreted as the present value of rents accruing
to the firm from the augmented adjustment technology, and qfr) is the
present value of marginal products of capital. Note that this solution was
derived for any diffusion process governing e.
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