
Demand for more accurate predictions of regional climate necessitates a unified  

modeling approach explicitly recognizing that many processes are common  

to predictions across time scales.

T
 he global coupled atmosphere–ocean– 

 land–cryosphere system exhibits a  

 wide range of physical and dynami-

cal phenomena with associated physical, 

biological, and chemical feedbacks that 

collectively result in a continuum of 

temporal and spatial variability. The tra-

ditional boundaries between weather and 

climate are, therefore, somewhat artificial. 

The large-scale climate, for instance, de-

termines the environment for microscale 

(1 km or less) and mesoscale (from several 

kilometers to several hundred kilometers) 

processes that govern weather and local 

climate, and these small-scale processes 

likely have significant impacts on the evo-

lution of the large-scale circulation (Fig. 1; 

derived from Meehl et al. 2001).

The accurate representation of this con-

tinuum of variability in numerical models 

is, consequently, a challenging but essential 

goal. Fundamental barriers to advancing 

weather and climate prediction on time 

scales from days to years, as well as long-

standing systematic errors in weather and 

climate models, are partly attributable to 

our limited understanding of and capabil-

ity for simulating the complex, multiscale 

interactions intrinsic to atmospheric, oce-

anic, and cryospheric fluid motions.

The purpose of this paper is to iden-

tify some of the research questions and 
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FIG. 1. Schematic illustrating interactions between various time 

and space scales in the climate system. (left) Space scales and 

(right) possible forecasts are indicated. Though “synoptic” is 

the smallest time scale, these interactions could continue to 

infinitely short time scales and small space scales.
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challenges that are raised by the movement toward 

a more unified modeling framework that provides 

for the hierarchical treatment of forecast and cli-

mate phenomena that span a wide range of space 

and time scales. This has sometimes been referred 

to as the “seamless prediction” of weather and cli-

mate (WCRP 2005; Palmer et al. 2008; Shapiro et al. 

2009, manuscript submitted to BAMS; Brunet et al. 

2009, manuscript submitted to BAMS). The central 

unifying theme is that all climate system predic-

tions, regardless of time scale, share processes and 

mechanisms that consequently could benefit from 

the initialization of coupled general circulation 

models with best estimates of the observed state of 

the climate (e.g., Smith et al. 2007; Keenlyside et al. 

2008; Pohlmann et al. 2009). However, what is the best 

method of initialization, given the biases in models 

that make observations possibly incompatible with 

the model climate state, and how can predictions best 

be performed and verified?

Hurricane prediction, for example, has tradition-

ally been regarded as a short-term weather prediction 

from an initialized atmospheric model. However, 

hurricanes generate a cold wake as they churn up the 

ocean and not only extract considerable amounts of 

heat through evaporative cooling but also mix heat 

down into the thermocline (e.g., Emanuel 2001, 2006; 

Trenberth and Fasullo 2007; Korty et al. 2008). Feed-

back from the cold wake is now thought to be impor-

tant to improving the forecast accuracy of intensity 

and track, and the heat and freshwater fluxes could 

contribute to multidecadal variability in the Atlantic 

Ocean climate system (e.g., Hu and Meehl 2009). 

Hence, hurricane forecasting is a short-term coupled 

problem as well as a longer-term climate problem 

requiring not only an initialized atmospheric model 

but also the initialization of a model of the ocean and 

its heat content.

SCALE INTERACTIONS AND CLIMATE 

SYSTEM PREDICTIONS. Scale interactions, 

both spatial and temporal, are the dominant feature 

of all aspects of atmospheric and oceanic prediction. 

The hope is that predictions will improve as models 

begin to explicitly resolve processes on ever-finer 

spatial scales. Weather and climate predictions, 

consequently, have been major drivers for higher-

resolution models requiring advanced numerical and 

physical techniques and for sophisticated computing 

systems.

State-of-the-art weather forecasting is carried 

out using atmospheric general circulation models 

(AGCMs) that have traditionally been forced with 

sea surface temperature (SST) anomalies observed at 

some initial time, but are then projected and damped 

toward climatological conditions as the integrations 

proceed out to typically 10–14 days. On these time 

scales, dynamical interactions of the atmosphere 

with other climate system components were gener-

ally thought to be unimportant and, therefore, have 

typically not been included.

For decadal-to-centennial predictions, the radia-

tive forcings and coupled interactions and feedbacks 

among the climate system components are critical. 

Usually, these coupled model integrations are ini-

tialized from an arbitrary and relatively stable cli-

mate state obtained from a several-century control 

(without external forcing) integration. Such coupled 

“atmosphere–ocean general circulation models” 

(“AOGCMs”) typically include components of the 

atmosphere, ocean, land surface, and sea ice.

These two time scales address two distinct sci-

entific problems. For a weather forecast on the scale 

of days, deterministic time evolution of individual 

synoptic systems must be forecast as an initial value 

problem, and the effects of longer-term coupled pro-

cesses, such as the meridional overturning circulation 

(MOC) in the ocean, are small. For seasonal climate 

time scales and beyond, statistics of the collections of 

weather systems are of interest and are crucial to the 

fidelity of the climate simulation and/or prediction, 

but the deterministic time evolution of the weather 

systems cannot be predicted.
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For seasonal predictions, coupled air–sea inter-

actions are especially important, but it is an open 

question whether the prediction of an El Niño event 

depends critically on aspects of the climate system that 

evolve on even longer time scales, such as the MOC 

or the state of the Pacific decadal oscillation (PDO). 

For even longer time scales, however, interactions of 

the atmosphere with not only the ocean but also the 

sea ice, land, snow cover, land ice, and freshwater 

reservoirs become very important. Biogeochemistry 

and interactive vegetation, and external effects, such 

as changes in solar activity, volcanic eruptions, and 

human influences, all influence the evolution of the 

climate system.

While the validity of the assumptions made in 

designing and conducting numerical experiments 

must be evaluated in the context of the problem being 

studied, a more unified approach explicitly recognizes 

the importance of processes and mechanisms shared 

across the time and space scales, and the potential 

benefit of the greater convergence of methods used 

in weather and climate forecasting, in particular with 

regard to the initialization of the climate system.

The El Niño–Southern Oscillation (ENSO) phe-

nomenon, for example, can now be predicted with 

some skill with an initialized state of the atmosphere 

and at least an upper-ocean model of the tropical 

Pacific but profound gaps in our prediction abilities 

remain. Large systematic errors in the coupled models 

mean that i) the coupled model mean state does not 

agree with the observed mean state with sufficient 

fidelity; and ii) the space–time evolution of the simu-

lated climate anomalies is not sufficiently realistic.

Historically, these two problems have been 

addressed from semiempirical perspectives. The first 

approach is to improve the individual physical param-

eterizations in the component models (e.g., Toniazzo 

et al. 2008), a specific example of which (Fig. 2) is 

the improvement in the simulation of ENSO by the 

Community Climate System Model (CCSM; Collins 

et al. 2006) after improvements to the parameteriza-

tion of deep convection in the atmospheric model 

component (Neale et al. 2008). The second approach 

has centered on how best to use imperfect models to 

make predictions, for example, through calibration 

analysis (Rodwell and Palmer 2007; Palmer et al. 

2008), by utilizing a multimodel ensemble, or through 

stochastic–dynamic parameterization (e.g., Palmer 

et al. 2009, manuscript submitted to J. Climate; see the 

“Single versus multiple model predictions” section).

Another relevant consideration is that current 

climate models have been limited to a relatively coarse 

resolution compared to that of numerical weather 

prediction (NWP) models. The coarse resolution 

limits the accurate simulation of atmospheric [e.g., 

the Madden–Julian oscillation (MJO) and synoptic 

weather systems] and oceanic (e.g., tropical instabil-

ity waves) dynamics and, thus, their interactions 

with climate. A way forward is to better resolve the 

weather–climate link (e.g., Palmer et al. 2008), but the 

question remains: how best to represent the important 

missing elements of the simulation of day-to-day 

weather in climate models?

The typical assumption for subgrid-scale param-

eterization is to assume that the statistics of subgrid-

scale processes can be parameterized in terms of the 

grid-scale variables. However, in many cases this 

assumption may be seriously f lawed. An alterna-

tive strategy has been to reduce the grid size of the 

model and resolve more of the motions explicitly, as in 

NWP (e.g., Shapiro and Thorpe 2004); however, this 

approach has been limited, so far, by available com-

puting power. The history of climate prediction has 

been marked by compromise between model resolu-

tion, the inclusion of additional processes, the length 

and number of simulations, and available computing 

resources. Global climate predictions would certainly 

benefit from running AOGCMs at resolutions near 

or at current NWP models (Shapiro et al. 2009, 

manuscript submitted to BAMS), but it has not yet 

been feasible to marshal the considerable computer 

resources necessary (e.g., Shukla et al. 2009).

IMPROVING CLIMATE MODELS. Upscaling 

research. The climate research community is begin-

ning to use higher-resolution (~50 km) models for 

the decadal prediction problem (e.g., Meehl et al. 

2009), but global modeling frameworks that resolve 

mesoscale processes are needed to improve our 

understanding of the multiscale interactions in the 

coupled system, identify those of greatest importance, 

and document their effects on climate. Ultimately, 

such basic research will help determine how to better 

represent small-scale processes in relatively coarse-

resolution Earth system models (ESMs). We refer to 

the impacts of small-scale processes on larger scales 

as “upscaling.”

There is a wide range of upscale interactions to be 

considered. Current parameterization schemes do 

not adequately handle the mesoscale organization of 

convection, which is a critical missing link in the scale 

interaction process (e.g., Moncrieff et al. 2007, 2009, 

manuscript submitted to BAMS). The limited repre-

sentation of convection and cloud processes is likely a 

major factor in the inadequate simulation of tropical 

oscillations (Fig. 3). Cloud and convective processes 
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also appear to play a role in the well-known double 

intertropical convergence zone (ITCZ) bias issue 

(e.g., Fig. 4, top), though coupled processes involving 

a systematically intense equatorial cold tongue in the 

ocean also likely contribute to this persistent system-

atic error (Randall et al. 2007).

Uncertainty in the representation of clouds (on 

all scales) is also a major influence in the response 

of the climate system to changes in radiative forcing. 

Improved simulation of cloud processes in the multi-

scale modeling framework (MMF; Randall et al. 2003), 

which embeds two-dimensional cloud-resolving 

physics within three-dimensional weather-scale 

physics, has shown improved MJO variability and 

reduced the bias in Kelvin wave propagation (Fig. 3; 

see Khairoutdinov et al. 2008).

Another scale interaction problem is the challenge 

in modeling the subtropical eastern boundary (STEB) 

regimes off the coasts of southwest Africa, Peru–

Ecuador–Chile, and Baja–southern California. These 

FIG. 2. Summary statistics of Niño-3.4 (5°N–5°S, 170°–120°W) monthly SST anomalies. Time series 

(K) and wavelet analysis (K2 per unit frequency) for 100 simulated years from (a) CCSM3 (Collins et al. 

2006), (b) after modifications to the CCSM3 parameterization for deep convection, and (c) the most 

recent 80 yr of the observed Hadley Centre Global Sea Ice and SST (HadISST) record, in addition to 

(d) power spectra, (e) autocorrelation, and (f) average variance for each calendar month, for all model 

runs. See Neale et al. (2008) for details.
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regimes are marked by marine stratus, equatorward 

alongshore winds, and ocean upwelling. Large and 

Danabasoglu (2006) suggest that better resolution of 

these features produce not only a better simulation 

of the regional climate but also effects that propagate 

and strongly influence the large-scale climate system, 

reducing rainfall biases across the tropical oceans 

(Fig. 4, bottom).

Other examples of “hot spots” with significant 

upscaled effects include the monsoon regions of India 

and Tibet and Central and South America, where 

steep topographical gradients and mesoscale pro-

cesses, such as low-level jets and mesoscale convective 

complexes, play an important role in the water and 

energy budgets locally and remotely (e.g., Webster 

2006). Over the Maritime Continent, Lorenz and 

Jacob (2005) presented a study of two-way coupling 

using global and regional models and demonstrated 

large and positive impacts on the tropospheric tem-

perature and large-scale circulation in the global 

climate simulation.

Clearly, addressing these errors is critical to cli-

mate prediction on all time scales. Therefore, there is 

a strong need to develop pilot projects to demonstrate 

the methodologies and impacts 

of multiscale interactions on the 

regional and global climate. While 

numerical models and techniques 

will be central to this effort, so too 

will be sophisticated theoretical and 

physical research to both understand 

and specify the critical interactions. 

Significant increases to computing 

resources to facilitate explicit simu-

lation of smaller-scale processes and 

their interactions with the larger 

scale will be essential.

Value of testing models on all time 

scales. A paradigm has long been 

that it is not essential to get all of 

the details of weather correct as 

long as their statistically averaged 

effects on the climate system are 

adequately captured. A key question 

is whether the rectification effects 

of small-scale and high-frequency 

weather events can be adequately 

captured if the details are not explic-

itly represented. Water resources are 

a case in point because they rely on 

good predictions of precipitation. 

This means not only precipitation 

amount but also precipitation inten-

sity, frequency, duration, and type 

(snow versus rain). The character 

of precipitation affects runoff and 

flooding, and thus soil moisture and 

streamflow.

The diurnal and annual cycles 

provide excellent tests for model 

evaluation. The model response to 

these well-known climate forcings 

can provide crucial insights on a host 

of important physical processes. For 

FIG. 3. Space–time spectrum of the 15°S–15°N symmetric compo-

nent of precipitation, divided by the background spectrum. (top) 

Observational estimates from an atmospheric reanalysis product and 

(bottom) results from a coupled climate model simulation.
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example, the diurnal cycle is strongest in summer over 

land and affects the timing, location, and intensity of 

precipitation events. Models typically have an onset 

of precipitation that is too early in the day and with 

insufficient intensity compared with observations, 

demonstrating the need to improve boundary layer 

and convective processes in models (e.g., Trenberth 

et al. 2003; Trenberth 2008a). The annual cycle is an 

obvious strong test for measuring the response of a 

model to a major climate forcing, albeit one that af-

fects only those parts of the climate system capable 

of responding on such a short time scale. Interan-

nual variability, such as how well models simulate 

ENSO, provides another necessary but insufficient 

test of models. These tests highlight 

the shortcomings and help identify 

steps to be taken to build confidence 

in models (WCRP 2008).

P R E D I C T I O N  A C R O S S 

SCALES. Effect of initial conditions. 

For weather prediction, detailed 

analyses of the observed state of the 

atmosphere are required, but un-

certainties in the initial state grow 

rapidly over several days. Other 

components of the climate system 

are typically fixed as observed. For 

climate predictions, the initial state 

of the atmosphere is less critical, 

and states separated by a day or 

so can be substituted. However, 

the initial states of other climate 

system components become vital. 

For predictions from a season to a 

year or so, the SSTs, sea ice extent 

and upper-ocean heat content, soil 

moisture, snow cover, and state of 

surface vegetation over land are all 

important. Such initial value pre-

dictions are already operational for 

forecasting El Niño, and extensions 

to the global oceans are under way. 

For the decadal prediction problem, 

increased information throughout 

the ocean could be essential (Smith 

et al. 2007; Trenberth 2008b; Meehl 

et al. 2009; Shukla et al. 2009). Initial 

conditions for the global ocean could 

conceivably be provided by existing 

ocean data assimilation exercises. 

However, hindcast predictions for 

the twentieth century, which are de-

sirable to test models, are severely hampered by poor 

salinity reconstructions prior to the early 2000s when 

Argo floats began to provide much better depictions 

of temperature and salinity in the upper 2000 m of 

the near-global ocean. Some challenging research 

tasks are developing optimal methods for initial-

izing climate model predictions with the current 

observational network and identifying an optimal set 

of ocean observations to use for initializing climate 

predictions (Meehl et al. 2009).

The mass, extent, thickness, and state of sea ice and 

snow cover are vital at high latitudes. The states of soil 

moisture and surface vegetation are especially impor-

tant in understanding and predicting warm-season 

FIG. 4. (top) Difference between annual mean precipitation from 

a multicentury control simulation with CCSM3 and observational 

estimates (1979–2007) from the Global Precipitation Climatology 

Project (Adler et al. 2003). (bottom) Changes in simulated CCSM3 

oceanic precipitation in a fully coupled simulation, but with ocean 

temperature and salinity restored to observed values in the STEB 

regimes off the coasts of southwest Africa, Peru–Ecuador–Chile, and 

Baja–southern California. Note the reduction in rainfall biases not 

only locally but across the tropical oceans. Adapted from Large and 

Danabasoglu (2006).
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precipitation and temperature anomalies along with 

other aspects of the land surface, but they are difficult 

to quantify. Any information on systematic changes 

to the atmosphere (especially its composition and 

influences from volcanic eruptions) as well as external 

forcings, such as from changes in the sun, are also 

needed; otherwise, these are specified as being fixed 

at climatological average values. The errors induced 

by incorrect initial conditions should become less 

apparent as the simulations evolve as systematic 

“boundary” and external influences become more 

important, but they could still be evident through 

the course of the simulations.

A good rule of thumb for prediction is that an 

upper bound on predictability corresponds ap-

proximately to one life cycle of the phenomenon being 

considered. Hence, one could hope to predict a single 

convective element, cyclone wave, MJO cycle, ENSO 

warm event, or fluctuation of the Atlantic MOC over 

its life cycle, but not the second-generation event. This 

rule of thumb is consistent with the climate system 

being a chaotic dynamical system with limited pre-

dictability. Additional predictability, however, could 

arise from the slowly evolving components of the 

climate system.

The pathways leading from high-frequency pro-

cesses to low-frequency phenomena, however, may 

progressively involve more aspects of the climate 

system. For example, convection associated with the 

MJO needs the ocean mixed layer to be accurately 

specified in the initial state. Thus, it follows that the 

MJO influence on ENSO needs an accurate depiction 

of the initial state of the Southern Oscillation and the 

thermocline slope across the equatorial Pacific. A 

unified modeling approach to climate system predic-

tion, in principle, lets all of these interactions occur 

as they do in nature. If the models fall short, one can 

track how and learn why.

Effect of systematic errors. Another significant obstacle 

is the systematic errors present in current AOGCMs. 

Some of these errors, such as the double ITCZ (Fig. 4, 

top), are very persistent and have been present in mul-

tiple generations of coupled models. One approach to 

addressing such errors is to vary the parameters in 

various physical parameterizations within the range 

of uncertainty based on observations in an effort to 

reduce the known biases and to form an ensemble 

of the uncertainty. A second approach is to improve 

the models so that they more accurately simulate 

the phenomena in question. This can occur through 

enhanced resolution, improved knowledge of the 

relevant physics from observations, improvements 

in the parameterizations of unresolved physics, and 

numerical experimentation to better understand 

existing parameterizations.

Efforts to reduce the systematic errors are crucial, 

because biases in the mean state could affect a climate 

model’s climate sensitivity (the response to altered 

radiative forcing) and, thus, its utility as a predictive 

tool. Quantifying the effects of systematic errors is 

difficult because of the highly nonlinear nature of 

the climate system. One promising approach, at least 

for the atmospheric component, is to run it in NWP 

hindcast mode and observe the biases as they develop 

(Phillips et al. 2004).

To understand the implication of systematic errors 

on forecast skill, it is important to note how coupled 

forecasts are initialized. Because of the limitations 

of both observational ocean data and computer re-

sources, one way to initialize a coupled model is to 

start with initial states determined separately for the 

atmosphere and ocean (e.g., coupling an atmospheric 

initial state to an ocean reanalysis product). However, 

the subsurface ocean thermal state associated with 

the ocean initial condition is likely significantly dif-

ferent than the climate of the free-running coupled 

model. As a consequence, at forecast initialization, the 

coupled model rapidly adjusts away from the observed 

climate estimate toward the coupled model climate 

that is itself a product of its own systematic errors. 

This adjustment in the tropics is primarily accom-

plished via Kelvin waves, which ultimately lead to an 

erroneous SST response 2–4 months into the forecast 

evolution. This is often referred to as an “initializa-

tion shock” or “coupling shock.” One approach to 

address coupling shock is through “anomaly initial-

ization” (Schneider et al. 1999; see also Smith et al. 

2007; Keenlyside et al. 2008; Pohlmann et al. 2009). 

In this approach, models are initialized with observed 

anomalies added to the model climate, rather than 

initialized with observed values, and the model cli-

mate is removed to obtain forecast anomalies.

Ultimately, the solution to this problem is to 

improve the simulation of the coupled modes of 

the climate system. For example, preliminary re-

sults with the National Oceanic and Atmospheric 

Administration (NOAA) climate forecast system 

(CFS) indicate that a higher horizontal resolution 

model has more irregularity of tropical eastern Pacific 

SST associated with ENSO, and the amplitude of the 

SST variability is in better agreement with observed 

estimates. Atmospheric model resolution experiments 

conducted with the Italian Decadal and Interdecadal 

Climate Variability: Scale Interaction Experiment 

(SINTEX) coupled model also indicate significant 
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improvements in simulated ENSO periodicity with 

increasing atmospheric model resolution (Navarra 

et al. 2008). However, as shown in Fig. 2, improve-

ments to the parameterization of deep atmospheric 

convection have also led to a better simulation of 

ENSO frequency in the CCSM (Neale et al. 2008), 

and Toniazzo et al. (2008) demonstrate the sensitivity 

of the simulation of ENSO in a version of the Hadley 

Centre coupled model to perturbed atmospheric 

parameters. Therefore, improvements in model fidel-

ity with increasing resolution are likely part of the 

solution, but not the entire answer. Active research 

efforts on how to initialize the coupled modes of the 

coupled models, given that they do not agree with 

those of nature (Zhang et al. 2007), recognize that 

the best state estimate for the individual component 

models may not be best for coupled forecasts. Much 

of the research focuses on how to identify the slow 

manifold described by the observed estimates and 

the coupled model, and how a mapping between them 

can be derived. A promising avenue is the use of fully 

coupled assimilation systems (S. Zhang et al. 2007).

Predictability. Although deterministic atmospheric 

predictability is limited to approximately two weeks 

(e.g., Kleeman 2007), on longer time scales at least 

two types of predictions may be possible. The first is 

a prediction of the internal variability of the climate 

system based on an initialized state of the ocean, 

atmosphere, land, and cryosphere system. Coupled 

ocean–atmosphere interactions, for instance, are 

likely important for understanding the temporal 

evolution of some extratropical, regional modes 

of climate variability, such as the North Atlantic 

Oscillation (Hurrell et al. 2006) and local modes of 

coupled variability in the Atlantic and Indian Ocean 

basins (e.g., Xie and Carton 2004; Webster 2006). 

Moreover, land surface processes, and the influence of 

the stratosphere on the state of the troposphere, might 

also be a significant source of predictability, at least on 

seasonal time scales (e.g., Baldwin et al. 2003).

First attempts at “decadal prediction” with an 

AOGCM showed reduced error growth in large-scale 

averaged surface temperature over 10-yr periods as 

a result of the initialized climate state (Smith et al. 

2007; Keenlyside et al. 2008; Pohlmann et al. 2009). 

Decadal-scale predictability in the ocean may occur 

from the thermal inertia of the initialized anomalies 

in ocean heat content, but additional predictability 

may also arise from fluctuations in gyre and over-

turning circulations (e.g., Delworth and Mann 2000; 

Dong and Sutton 2005), particularly in the Atlantic 

(Fig. 5). Multidecadal variations in Atlantic SSTs 

have been linked to low-frequency boreal summer 

changes in rainfall and drought in the continental 

United States (e.g., Schubert et al. 2004; Sutton and 

Hodson 2005) as well as hemispheric-scale tempera-

ture anomalies (R. Zhang et al. 2007). They may also 

have implications for North Atlantic hurricane fore-

casts (e.g., Zhang and Delworth 2006). It is possible 

that decadal-scale predictability exists in the Pacific 

Ocean as well (e.g., Meehl and Hu 2006).

In addition to the potential sources of predictabil-

ity from the initial values of the system, predictability 

may also be derived from past and future changes in 

radiative forcing (Hansen et al. 2005; Solomon et al. 

2007; Smith et al. 2007). Past emissions of greenhouse 

gases have committed the climate system to future 

FIG. 5. One example of decadal-scale predictability 

of the Atlantic MOC as computed in the Geophysical 

Fluid Dynamics Laboratory Climate Model version 2.1 

(GFDL CM2.1) global coupled climate model. A five-

member ensemble of predictability experiments is 

shown, in which each ensemble member used identical 

initial conditions for the ocean, land, and sea ice. These 

are taken from 1 Jan 1101 in a long control integration. 

The ensemble members differed in their atmospheric 

initial conditions, which come from 6, 11, 16, 21, and 26 

Jan from the same year in the control integration. The 

quantity plotted is an index of the MOC, defined as the 

maximum streamfunction value in the North Atlantic 

each year, indicating the northward mass flow in the 

upper layers of the North Atlantic (1 Sv = 106 m3 s−1). 

The relatively low spread among ensemble members 

in the first 10 yr suggests substantial decadal predict-

ability. Additional ensembles were calculated, some of 

which had similar predictability, and others of which 

had very little predictability.
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warming as the ocean comes into equilibrium with 

the altered radiative forcing. In addition, the best-

possible estimates of future emissions of radiatively 

important pollutants are needed for making predic-

tions, as well as modeling capabilities, to accurately 

simulate both how these pollutants affect the global 

energy, carbon, and sulfur cycles, and how the cli-

mate system subsequently responds to that altered 

forcing. In this regard, the phase and amplitude of 

the solar cycle and unpredictable volcanic eruptions 

can be significant “wild cards” to such predictions 

(Ammann and Naveau 2010).

Single versus multiple model predictions. The purpose 

of ensemble prediction is to quantify the uncertainty 

in the forecast from errors in the initial conditions, 

errors in the model (or multiple models), or a fun-

damental lack of predictability in the phenomenon 

itself (e.g., Hawkins and Sutton 2009). This technique 

is commonly used for NWP where many ensemble 

members are generated from the same model. It is 

also relevant for seasonal forecasting where more than 

one model can be used, because a simulation average 

across different models is presently more skillful than 

a simulation from a single model (e.g., Glecker et al. 

2008; Kirtman and Min 2009).

The rainfall variability simulated by nine-member 

ensembles of several state-of-the-art AGCMs forced 

by observed SSTs (Fig. 6) is very different in the 

rainfall (signal) variance (first column) despite the 

FIG. 6. Rainfall variability simulated by several AGCMs forced with observed sea surface temperatures. Each 

model simulation includes an ensemble of nine initial conditions, the differences in which are designed to mimic 

potential observational errors. The first column shows the rainfall variance of the ensemble mean of each model. 

This is the signal variance. The second column shows the variance about the ensemble mean or the variance 

resulting from atmospheric internal dynamics. The last column is the ratio of the ensemble mean variance 

divided by the internal dynamics variance, i.e., a signal-to-noise ratio. [Results are from WCRP/CLIVAR/WGSIP 

SMIP project and the figure is courtesy of In Sik Kang Seoul National University.]
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common SST forcing. This uncertainty reflects dif-

ferences in model formulation, and it is larger than 

the uncertainty resulting from the initial conditions 

(middle column), highlighting the utility of the mul-

timodel approach.

There are a number of different strategies currently 

employed to combine models for the purpose of pre-

diction. The simplest and most common approach is 

to have the various modeling centers make ensemble 

predictions and then devise statistical strategies (i.e., 

Bayesian, linear regression) for combining the models 

(e.g., Palmer et al. 2004). It is also possible to take a spe-

cific model and systematically probe the uncertainty 

in the model formulation by varying the parameters 

in the model (Stainforth et al. 2005). Both approaches 

have strengths and weaknesses, but neither strategy is 

completely satisfactory in terms of adequately resolving 

the uncertainty. Another recently proposed method-

ology is to use stochastic–dynamic parameterization 

techniques, which perturb parameterizations in such 

a way as to improve on the benefits of a multimodel 

ensemble by using a single model (Palmer et al. 2009, 

manuscript submitted to J. Climate).

Verif ication. A quick scan through the Journal of 

Climate reveals a dizzying array of different climate 

metrics that are both interesting and important. 

Furthermore, the attraction to use metrics to select 

the “best” model for an application is problematic 

(Gleckler et al. 2008). Metrics differ in variable, time 

scale, space scale, or functional representation. The 

same is not true in weather prediction, where some 

estimates of both prediction limits and the impact 

of different weather prediction metrics can be de-

termined. The skill of daily weather forecasts can be 

verified many times, and a quantification of model 

skill is relatively straightforward. The problem is 

more difficult for seasonal prediction because a large 

number of seasons and those forecast states must pass 

in order to build up forecast verification statistics.

For decadal and longer time scales, the problem 

of quantifying prediction skill becomes even more 

difficult, and the metrics will likely involve how the 

forecasts are used in applications. Even if we could test 

long-term climate models with all possible climate 

metrics proposed in the last decade of journal papers, 

we have no current method to prioritize or weight 

their impact in measuring uncertainty in predicting 

future climate change for temperature, precipitation, 

soil moisture, and other variables that are of critical 

interest to society.

There has been some recent progress in this di-

rection using perturbed physics ensembles (PPEs; 

Stainforth et al. 2005). PPEs are climate models that 

perturb uncertain physical parameterizations instead 

of initial conditions. The nondimensional error in 

Fig. 7 (from Murphy et al. 2004) is defined as the ratio 

of the climate model rms error versus observations to 

the interannual natural variability of the same climate 

variable metric; in essence, it is a signal-to-noise mea-

sure. A large range of a given nondimensional climate 

metric indicates sensitivity. The whisker plots in Fig. 7 

confirm the intuition that climate variables associated 

with energetics (cloud, radiation, and sea ice) appear 

more sensitive than classical weather dynamical vari-

ables (e.g., 500-hPa streamfunction). Further work 

along these lines is critically needed to discover meth-

odologies to define rigorous climate metrics that are 

capable of determining climate prediction uncertainty. 

The essential question is this: what climate metrics for 

hindcast climate prediction accuracy can be used to 

determine the uncertainty bounds on future climate 

prediction accuracy? If this question can be answered, 

a second benefit will be the ability to more rigorously 

define climate observation requirements.

CONCLUDING REMARKS. Strategies for a 

more unified approach to climate system prediction 

currently include the following: i) using Intergovern-

ment Panel on Climate Change (IPCC) class coupled 

climate models for predictions on time scales from 

days to decades; ii) using NWP class models for 

seasonal-to-decadal prediction, after modification 

to properly account for changing radiative forcing; 

and iii) developing very high-resolution models with 

mesoscale processes explicitly resolved, either glob-

ally or by nesting high-resolution regional models 

within global climate models. There are other emerg-

ing approaches as well, such as the concept of begin-

ning integrations with higher resolutions to satisfy 

weather forecast requirements, and then cascading 

down to lower-resolution versions of the model with 

consistent physical parameterization schemes for 

longer time-scale predictions. All of these approaches 

attempt to remove the distinction between weather 

and climate by taking advantage of the processes and 

mechanisms that characterize the climate system at 

all time and space scales. Quesitons are being raised 

as to whether model development efforts should be 

focused on improving AOGCMs before attempting 

ESMs, with their added complexities of coupled car-

bon and nitrogen cycles, chemistry, aerosols, dynamic 

vegetation, and other components. With a unified 

modeling approach, the common processes can be 

addressed in both classes of models and progress can 

be made on both fronts.
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There are other potential 

benefits of using similar 

models for predictions on 

different time scales; among 

them are skill improve-

ment in both weather and 

climate forecasts, stronger 

collaboration and shared 

knowledge among those 

in the weather and climate 

“communities” working on 

physical parameterization 

schemes, data assimilation 

schemes and initialization 

methods, and shared in-

frastructure and technical 

capabilities.

A significant step for-

ward is a planned set of 

coordinated climate change 

experiments ca l led the 

Coupled Model Intercom-

parison Project phase 5 

(CMIP5; K. Taylor et al. 

2009, personal commu-

nication; online at http://

cmip.llnl.gov/cmip5/docs/

Taylor_CMIP5_design.pdf). 

The strategy is to approach 

the climate change predic-

tion problem in a unified 

way with two classes of 

related climate models to 

address two time scales: 

higher-resolution (~50 km) 

AOG CMs for  dec ad a l 

predications out to about 

the year 2035 (Meehl et al. 

2009), and lower-resolution 

(~200 km) versions of the 

same models, but with a 

coupled carbon cycle and 

perhaps simple chemistry, 

dynamic vegetation, and 

prognostic aerosols for century and longer climate 

change integrations. The latter experiments would 

quantify the magnitude of important feedbacks that 

will determine the ultimate degree of climate change 

in the second half of the twenty-first century (Meehl 

and Hibbard 2007; Hibbard et al. 2007).

Computer resource and other limitations will 

likely dictate that resolving certain processes and phe-

nomena could still require alternative strategies for 

many years into the future. A case in point is the need 

to represent hurricanes in a special class of climate 

models that could include embedded regional models 

with resolutions of about 5 km in order to adequately 

depict their extreme intensity and their effects on the 

ocean and the energy and water cycles. 

Additionally, current and future efforts with ESMs 

will allow for more complete assessments of the physics 

of climate change by including additional components 

FIG. 7. Values of the climate prediction index (CPI) of Murphy et al. (2004), 

and its 32 components (black boxes and bars, representing surface and atmo-

spheric variables) from the PPE. The components are calculated as the rms 

difference between simulated and observed present-day climatological mean 

patterns divided by the rms value of the standard deviation of simulated inter-

annual variations. The plot shows averages of values calculated separately for 

each season of the year. Bars show the full range of the ensemble distribution 

of values, boxes show the range encompassed by the 5th and 95th percentiles, 

and the horizontal line within each box shows the median. The CPI is calcu-

lated as the rms value of the 32 components for a given ensemble member. 

Adapted from Murphy et al. (2004, see their article for more detail).
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and processes that are not essential to the shorter time 

scales. The computational burden of the ESMs will test 

the feasible limits of the explicit resolution of multiscale 

interactions and more regional discrimination of cli-

mate change impacts. Moreover, given relatively large 

systematic errors, the additional feedbacks from more 

interactive components of ESMs clearly increase the 

uncertainty in the magnitude and nature of the climate 

changes projected in future scenario simulations. The 

time-evolving ingredients required for future scenario 

integrations with ESMs also still must be estimated as 

a range of possible outcomes based, to a large extent, 

on the unpredictable nature of human actions. These, 

along with observational data needs, logistical issues 

related to coupling strategies and coupled initializa-

tion, and the scientific questions related to the myriad 

of unconstrained and poorly understood feedbacks, 

are significant aspects of these emerging ESMs that 

will continue to stretch both computational and hu-

man resources for the foreseeable future. However, 

activities that have already begun indicate that we are 

moving into a new and exciting era of climate system 

prediction that will, by nature of the converging in-

terests, modeling tools, and methodologies, produce 

greater interactions among previously separate com-

munities, and thereby provide better predictions of the 

climate system at all time and space scales.
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