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762 L. Han et al.

1. Introduction

Optimal control is a classical subject in applied mathematics and occupies a central place in
many engineering applications. The literature is vast; recent monographs and selected papers
include [7,8,10,11,13,14,16,24,31,32,37,38,42,46,68–70,72]. As expected, the constrained opti-
mal control problem is much more challenging than the unconstrained case, with the case of
mixed algebraic state–control constraints being the most challenging to solve. In this paper,
we offer a fresh look at this classical problem from the perspective of the recently introduced
paradigm of DVIs [56], focusing on the convex linear-quadratic (LQ) optimal control problem
with mixed polyhedral state and control constraints. Extending a differential-algebraic equation
[12] that provides a concise framework for treating optimal control problems with algebraic
equality constraints, the DVI provides a mathematical model that enables the treatment of opti-
mal control problems with algebraic inequality constraints, among many differential inequality
systems. Via a constructive discretization scheme that unifies discretization schemes as often
applied in model predictive control (MPC), which forms a substantial area in the control lit-
erature, and standard time-stepping approaches in the ordinary differential equations (ODEs)
literature, we establish some strong results for this important class of LQ optimal control
problems, including a constructive proof of the existence of an optimal solution with certain
favourable regularity properties without coercivity of the objective function and boundedness of
the constraints.

MPC is a well-known control strategy that can handle hard constraints on the control and state
variables in a systematic manner. Basically, the control action in MPC is determined by solving,
at each sampling instant, an (often finite horizon) open-loop optimal control problem, using the
current state of the plant as the initial state in a discrete-time model of the system. The solution
to the optimization problem provides an optimal control sequence and only the first control move
in this sequence is applied to the plant. In the literature, many issues have been studied over the
years such as stability, optimality, robustness and numerical complexity of the MPC strategy, see
for instance the survey papers [29,33,54,55,63]. The discrete-time MPC problem is often used for
control of continuous-time systems and as such could be perceived as discretizations of optimal
control problems formulated for continuous-time systems. Unfortunately, the convergence of the
sequence of optimal control to the true optimal continuous-time control signal when the sampling
interval approaches zero is hardly studied in the MPC literature, although it is widely believed that
such convergence results hold. One of the few available results in this context is presented in [46],
which applies to a specific setting (with only nonnegativity constraint on the control) and a weak
notion of convergence. A different convergence problem in MPC that did receive considerable
attention though is the study of the relationship between finite-horizon control problems and the
corresponding infinite-horizon problems, see, e.g. [15,39,54,62].

In contrast to the discretizations as used in MPC (referred to MPC schemes for short), different
discretization schemes of the continuous-time optimal control problem can be based on the DVI,
which is a natural extension of the finite-dimensional variational inequality (VI) [28] coupled with
dynamical systems. As suggested in [67], this framework provides a platform to treat constrained
optimal control problems by a contemporary optimization methodology. In the case of LQ prob-
lems, the differential affine variational inequality (DAVI) becomes the key formulation due to
the affine structures. This approach offers a distinctive advantage since it enables the extensive
use of finite-dimensional quadratic programming theory and algorithms. While a basic theory
of the DVI and numerical methods for its solution have appeared in several papers [44,56,57],
applications of the DAVI to the LQ control problem with polyhedral constraints deserve a sepa-
rate treatment as many of the general results can be sharpened significantly; most importantly, as
explained in Section 8, the direct application of these existing results to the LQ control problem is
not possible. The goal of the present paper is to extend such a convergence theory to this optimal
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Optimization Methods & Software 763

control problem, thereby unifying the two seemingly distinct approaches based on the DVI and
discretizations used in MPC.

The organization of the rest of the paper is as follows. In the next section, we present a liter-
ature review of the numerical methods for solving optimal control methods and summarize the
contributions of our work. This is followed by a brief review of results from the finite-dimensional
optimization theory, which form the basis for our work. We then focus on the convex LQ case
where the objective function is not necessarily strictly convex and the mixed stated-control con-
straints are not necessarily bounded. Based on the Pontryagin principle we write down a set of
optimality conditions for the LQ control problem which we cast as a DAVI, with the defining set
of the AVI being a moving polyhedron that varies with the state variable. This DAVI formulation is
the key of our development. We next describe two time-stepping schemes based on the DAVI refor-
mulation and on a discretization scheme often used in MPC. After this, we propose a scheme that
unifies both the DAVI and MPC schemes. In this unified scheme, each discrete-time subproblem
is a finite-dimensional (not necessarily strictly) convex quadratic program (QP) whose feasibility
depends on a relaxation of the discretized mixed state–control constraint. From the optimal solu-
tions of the discrete-time subproblems, we construct numerical trajectories by simple piecewise
linear/constant interpolation; the convergence of such numerical trajectories to a continuous-time
optimal solution of the LQ control problem is then established. Besides the constraint relaxation,
another key idea is the choice of a particular solution employed in the numerical scheme; this idea
originated from our recent paper [44] for a passive linear complementarity system and is applied
herein to the constraint multipliers in the discretized quadratic subprograms.

2. Literature review and summary of contributions

The approach presented in this paper belongs to the class of discretization methods for constrained
optimal control problems, whose study began in the 1960s; see [59] for a historical review on
different classes of numerical methods for these problems. The question of whether refining the
discretization can lead to a better and better approximation and eventually converge in a certain
sense to a solution of the original problem, i.e. the consistency issue of the approximation, has
also been considered in the literature. In the existing literature, some papers have studied direct
approximations of the primal problem [18,19,21–23,60], while others focus on the approximations
of the dual problem [40,43,58]. In [73], a primal–dual representation for approximation in optimal
control is discussed based on a penalty approach due to Rockafellar [65,66]. The method presented
in this paper can be regarded as a primal method. However, distinct from most of the existing work
on primal methods, we also investigate the convergence of the costate trajectory. This approach
allows us to deal with unbounded constraint set and avoids a priori assumptions on the convergence
of the optimal values of the discretizations.

Starting with the early papers [18,22], boundedness of the constraint sets (cf. for example
[18, assumption (c) in Theorem 3.1] and [22, Assumption 3.1]) has played an important role in
the convergence analysis of discretization methods. In addition, these two papers also assume
various other conditions to ensure that the optimal value of the discretizations converges to the
optimal value of the original control problem. For example, in [22] the existence of an optimal
solution along with other conditions regarding the optimal solution needs to be assumed; see
Assumptions 3.2–3.4 therein. The problems studied in [19,60] contain only end-point constraints
on the state variable rather than instantaneous constraints. In [20], the problem studied is of a
very specific form with the objective function being the value of the first component of the state
variable. In [21,23], the approximation for the minimization of more general functionals is studied.
The boundedness assumption is crucial in all these papers. In contrast, our treatment in this paper
does not require the boundedness of the constraint sets.
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764 L. Han et al.

Besides the boundedness assumption, another important issue that requires attention is that of
practical implementation. In particular, it is well known that when state constraints are present,
the discretized subproblems might be infeasible even when the original problem is; therefore, it
is often suggested to relax the constraints to ensure the feasibility of the discretized subproblems.
However, the design of an implementable method for the relaxations with feasibility guarantee is
minimally treated in the literature. This issue is considered in [22] where it is assumed that the
optimal control is smooth enough (piecewise continuous with only finitely many discontinuous
points) in order to apply the method therein. This is a restrictive assumption for two reasons.
First, it is very difficult to know a priori whether an optimal solution exists or not. Second, in
the constrained case, the optimal control trajectory is typically only integrable and presumably
may have infinitely many discontinuity points. In this paper, by introducing a linear program,
we are able to construct a relaxation under the assumption of existence of a smooth feasible (not
necessarily optimal) solution to the original optimal control problem. A further assumption that
is often made in the literature for the dual and the primal–dual methods is that the cost integrand
is either strictly convex or at least convex and coercive; see [40,43,73]. In this paper, we focus on
the case of a convex quadratic objective function that is not necessarily coercive (thus not strictly
convex).

In addition to relaxing the assumptions needed for the consistency, another major contribution
of this paper is to establish, via a provably convergent constructive scheme, the existence of an
absolutely continuous optimal solution and costate trajectory under the same set of conditions. The
regularity issue of the optimal control problem has received much attention for several decades.
When state constraints are present, it is well known that the costate trajectory may not be con-
tinuous. Therefore, there has been constant effort in seeking conditions under which the costate
trajectories possess certain nice regularity properties. A seminal work along this line appeared
in [41], which focuses on the case when the dynamics are affine with respective to the state and
control variables. It was shown that when the data are of class C2, the cost integrand is convex and
uniformly coercive in the control variable, and a linear independence of active state constraints
holds, then the costate trajectory is Lipschitz continuous. In [50], this result was refined to allow
the dynamics to be nonlinear in the state variable and the cost integrand to be possibly nonconvex
with respect to the state variable. In [32], the linear independence assumption in [41] is relaxed to a
less restrictive positive linear independence assumption. Other improvements including allowing
the control constraint to be a general fixed convex set and relaxing the differentiability assump-
tion on the data are also presented in [32]. In a follow-up paper [69], the authors further refined
the result to allow the control constraint to be time varying. In a series of recent papers [7,8,31]
(see also [37]), the authors established several regularity results, such as Lipschitz continuity,
Hölder continuity, and continuous differentiability, for general optimal control problems with
nonlinear dynamics and convex cost integrand. A major assumption made in these papers is that
the maximized Hamiltonian is differentiable in the costate variable. However, this assumption is
invalid for the problem we deal with in this paper. In particular, in the LQ case with a polyhe-
dral control constraint, the maximized Hamiltonian is piecewise quadratic and hence in general
not differentiable in the costate variable. Research regarding other related issues including the
normality and sensitivity have been discussed in the recent papers [9,10] and many references
cited therein. All the studies mentioned above focus on the case when the control constraint and
the state constraint are separable; in contrast, we focus on the case with joint control and state
constraint. We identify a set of conditions under which we are able to establish the absolute con-
tinuity of both the state trajectory and the costate trajectory. Our result does not require coercivity
of the cost integrand or linear independence of the active constraints, although we do need a
certain dual assumption, see condition (E) in Section 3.1. Moreover, the approach we take is
also significantly different from the existing approaches used to establish regularity results. Par-
ticularly, the existing approaches rely heavily on convex analysis and functional analysis, while
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Optimization Methods & Software 765

our approach is constructive based on a practically implementable numerical approach that starts
from the discretization of the problem and then returns to the original continuous-time problem
via convergence results. Our approach relies heavily on results in convex quadratic programming
and takes advantage of the linear structure that facilities the employment of the theory of linear
inequalities.

In summary, the contributions of the present paper are as follows.

• We propose a numerical scheme for a LQ optimal control problem with a convex cost integrand
and joint polyhedral state and control constraints. The convergence of this numerical scheme is
proved under certain conditions. Compared with the existing results, our result, which pertains
only to the LQ case, requires much less restrictive assumptions. In particular, our result does not
require boundedness of the constraint set, which is a crucial assumption in most of the existing
research. In addition, our assumptions are imposed on the data and not on the properties of the
optimal trajectory or the convergence of the optimal value of the discretizations.

• Along with the convergence of the state trajectory and control, the convergence to an absolutely
continuous costate trajectory is also proved under the same set of conditions. Compared with
[41] and the follow-up papers, this result is different in several aspects. First, our result deals
with the case of joint state and control constraints while the results in the references pertain to the
case with separate state and control constraints. Second, our result does not require coercivity or
strong convexity. Third, our assumptions contain in particular a dual condition (E); in contrast,
in [41] and the follow-up papers, a (positive) linear independence condition is imposed. These
two conditions are very different. For example, condition (E) is imposed on the problem data
while the linear independence conditions involve the optimal state trajectories and therefore
can only be verified with an optimal solution on hand. Moreover, the dynamics appears in our
condition (E), whereas the linear independence conditions involve only the state constraints.
Last, in the same references, the Lipschitz continuity of all dual variables is established while
in our study the absolute continuity is only proven for the costate variable, i.e. the dual variable
corresponding to the ODE, but not the dual variable corresponding to the algebraic constraints.
We believe that our theoretical result and numerical approach offer a new perspective into the
study of solution regularity of optimal control problems.

• By introducing a linear program, our numerical scheme provides a relaxation method that
guarantees the feasibility of the discretized subproblems, assuming the existence of a smooth
feasible solution to the constraint LQ control problem. This is in contrast to the surveyed results
in the literature that require smoothness of an optimal trajectory of the constraint optimal control
problem.

3. The LQ optimal control problem

The main topic of this paper is the following continuous-time, finite-horizon, LQ optimal control
problem with mixed state and control constraints: find an absolutely continuous function x :
[0, T ] → R

n and an integrable function u : [0, T ] → R
m, where T > 0 is a given time horizon, to

minimize
x,u

V(x, u) ≡ cTx(T) + 1

2
x(T)TSx(T)

+
∫ T

0

[
x(t)Tp(t) + u(t)Tq(t) + 1

2
x(t)TPx(t) + x(t)TQu(t) + 1

2
u(t)TRu(t)

]
dt

subject to x(0) = ξ and for almost all t ∈ [0, T ] :

ẋ(t) = Ax(t) + Bu(t) + r(t) and Cx(t) + Du(t) + f ≥ 0, (1)
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766 L. Han et al.

where ẋ(t) � dx(t)/dt denotes the differentiation with respect to the time t, S and � �
[

P Q
QT R

]
are symmetric positive-semidefinite matrices (which for simplicity have been taken to be constant
matrices), (A, B, C, D) is a tuple of constant matrices with A ∈ R

n×n, B ∈ R
n×m, C ∈ R

�×n and
D ∈ R

�×m, and (p, q, r) is a triple of properly dimensioned Lipschitz continuous vector functions,
and (c, f ) is a pair of constant vectors. We note the regularity that is imposed on an optimal solution
of (1) to be sought; namely, the state trajectory x is absolutely continuous, and the control trajectory
u is integrable. We say that a pair of trajectories (x, u) is feasible to (1) if x is absolutely continuous
and u is integrable and (x, u) satisfies the constraints as stated in (1).

With � being positive semidefinite, it follows that both P and R are positive semidefinite, albeit
not necessarily definite. As shown in [46], the singularity of R can lead to unboundedness of the
cost function. Therefore, this situation needs to be treated carefully. Another important feature of
the above general formulation is the presence of the linear terms pTx and qTu and the cross term
xTQu in the objective function; these linear and bilinear terms cannot be completely removed
unless additional algebraic constraints are introduced. Throughout the paper, we leave (1) as the
basic formulation of the general LQ optimal control problem. The analysis of this problem is
complicated by several issues: (a) the positive semidefiniteness of R, (b) the presence of the state
variable in the algebraic constraint: Cx + Du + f ≥ 0 and (c) the possible unboundedness of the
feasible state–control pairs. For simplicity, we have not included algebraic equality constraints as
they can be dealt with easily as long as they remain linear. Let

U(x) � {u | Cx + Du + f ≥ 0}

denote the (possibly unbounded) polyhedron of admissible controls given the state x. The poly-
hedrality of the latter set is consistent with the LQ structures of the problem and facilitates the
treatment of the problem by the DAVI methodology. By a fundamental upper pseudo-Lipschitzian
property of polyhedral multifunctions [64], it follows that if {xν} is a convergent sequence with
limit x∞ such that U(xν) �= ∅ for every ν, then U(x∞) �= ∅. In particular, if x(t) is continuous on
[0, T ] and U(x(t)) �= ∅ for almost all t ∈ [0, T ], then U(x(t)) �= ∅ for all t ∈ [0, T ].

3.1 Model assumptions

We first introduce some notation used throughout the paper. We let ‖ • ‖ be the 2-norm of vectors
and matrices and write AJ• for the submatrix consisting of the rows of A indexed by the set J and
AJJ for the principal submatrix of A indexed by J . Given a set Z and a vector z, the distance from z
to Z is denoted by dist(z, Z) � min{‖z − z̄‖ | z̄ ∈ Z}; finally, we let z− � max(0, −z) denote the
nonpositive part of the vector z.

There are two primary motivations for this paper. One is the interest to obtain an analogous result
to a finite-dimensional convex QP; cf. Proposition 4.1, which suggests that all one needs for much
of the theory and solution of this static problem is the weak coercivity of the objective function
and a recession condition (cf. conditions (a) and (b) in the Proposition). This interest motivates the
treatment of the LQ problem (1) with the objective function being convex in (x, u), but not strictly.
The second motivation is that we wish to accomplish this goal by a constructive scheme that can
serve as a common platform on which the convergence of both the MPC scheme and a standard
time-stepping can be analysed.This dual objective is challenged by the weak coercivity assumption
of the objective function, along with the mixed state–control constraint Cx + Du + f ≥ 0, and the
absence of a boundedness assumption on the overall constraints. To compensate for the generality
of such a setting, we are led to the introduction of several technical assumptions that we list
as (A)–(E) below; we will briefly explain the respective roles of assumptions (C), (D), and (E)
momentarily.
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Optimization Methods & Software 767

(A) the matrices S and � are symmetric positive semidefinite [it follows that a constant γ > 0
exists such that ‖Qu‖ ≤ γ ‖Ru‖ for all u];

(B) the functions p, q and r are Lipschitz continuous on [0, T ] with Lipschitz constants Lp, Lq

and Lr , respectively; let

ψp � max
t∈[0,T ] p(t), ψq � max

t∈[0,T ] q(t) and ψr � max
t∈[0,T ] r(t);

(C) a continuously differentiable function x̂fs with x̂fs(0) = ξ and a continuous function ûfs

exist such that for all t ∈ [0, T ]: d̂xfs(t)/dt = Âxfs(t) + B̂ufs(t) + r(t) and ûfs(t) ∈ U (̂xfs(t));
(D) [Ru = 0, Du ≥ 0] implies u = 0 (a primal condition);
(E) [DTμ = 0, μ ≥ 0] implies (CAiB)Tμ = 0 for all integers i = 0, . . . , n − 1, or equivalently,

for all nonnegative integers i (a dual condition).

Condition (C) has to do with the feasibility of (1); it is easily satisfied in the case of pure control
constraints (C = 0) when an admissible control exists. The continuity requirement of the feasible
control ûfs is the notable feature of condition (C), which as already mentioned, is an important
distinguished feature of our work from the existing literature of numerical methods where it
is often assumed that the optimal control problem possesses an optimal solution with certain
nice smoothness properties, e.g. [22,25,26]. Instead, in (C), we assume the existence of a feasible
solution with some desirable smoothness property rather than a ‘nice optimal solution’. Obviously,
satisfied when R is positive definite, condition (D) is employed to ensure the boundedness, albeit
not uniqueness, of the optimal solutions to the following finite-dimensional QP for arbitrary
vectors e and b:

minimize
u

eTu + 1
2 uTRu subject to Du ≥ b. (2)

See part (b) of Proposition 4.1. Condition (D) does not imply that the problem (1) has bounded
feasible state–control pairs.

3.2 On condition (E)

Trivially satisfied for pure control constraints, condition (E) yields several important consequences
that are key to the main convergence analysis. Here, we make some preliminary observations about
this condition. First, we note the following implications:

D has full row rank ⇒ (F′) ⇒ [DTμ = 0 implies (CAiB)Tμ = 0 for all i ]
⇓ ⇓ ⇓

[(DTμ = 0, μ ≥ 0) implies μ = 0] ⇒ (E′) ⇒ (E),

where

(F′) a constant δ > 0 exists such that ‖C Tμ‖ ≤ δ‖DTμ‖ for all μ ∈ R
m, and

(E′) a constant δ > 0 exists such that ‖C Tμ‖ ≤ δ‖DTμ‖ for all μ ∈ R
m+.

The nonnegativity restriction of the vectorμ in the lower 2 implications is quite natural in view of
the sign restriction of the multipliers μ associated with the inequality constraint Cx + Du + f ≥ 0.
The role of conditions (E′) and (F′) will be clear from parts (E) and (F), respectively, in Propo-
sition 4.1. Interestingly under condition (F′), the mixed algebraic state–control constraint can be
converted to an equivalent pure control constraint. To see this, note that (F′) implies that the kernel
of DT is contained in the kernel of CT; thus there exists a matrix K such that C = DK . It suf-
fices to define the new (algebraic) variable v � u − Kx and replace u throughout by Kx + v. The
mixed constraint Cx + Du + f ≥ 0 becomes the Dv + f ≥ 0. Let A(h) and B(h) be two families
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768 L. Han et al.

of matrices parameterized by the scalar h ≥ 0 and having the series expansions:

B(h) � hB +
∞∑

i=1

bih
i+1AiB and A(h) � I + hA +

∞∑
i=2

aih
iAi (3)

for some constant scalars {bi}∞i=1 and {ai}∞i=2. If (E) holds, then clearly, [DTμ = 0, μ ≥ 0] implies
(CB(h))Tμ = (CA(h)jB)Tμ = 0 for all integers j ≥ 0. Note that any such matrices A(h) and B(h)

satisfy limh↓0(A(h) − I)/h = A and limh↓0 h−1B(h) = B; in particular, limh↓0 B(h) = 0. Based
on these observations, we can establish the following important consequence of condition (E).

Proposition 3.1. Let (E) hold. For any two parameterized families of matrices {B(h) | h ≥ 0} and
{A(h) | h ≥ 0} given by (3), positive constants h̄E and σE exist such that for all scalars h ∈ (0, h̄E]
and all index sets α ⊆ {1, . . . , �},

�α(h) �

⎡⎢⎢⎢⎣
[(D + CB(h))α•]T

[(CA(h)B(h))α•]T

...
[(CA(h)kB(h))α•]T

⎤⎥⎥⎥⎦ has linearly independent columns for some nonnegative

integer k

=⇒ ‖[(D + CB(h))α•]Tμα‖ ≥ σ−1
E ‖μα‖ for all μα ≥ 0.

Proof Assume that no such scalars h̄E and σE exist. There exists a sequence of positive scalars
{hν} ↓ 0, a sequence of nonnegative vectors {μν}, a sequence of index sets {αν} and a sequence
of nonnegative integers {kν} such that for each ν, �αν (hν) has linearly independent columns and

‖[(D + CB(hν))αν•]Tμν
αν

‖ < ν−1‖μν
αν

‖.

By working with a proper subsequence if necessary, we may assume without loss of generality that
the index sets αν are all equal to a common set α and that the normalized sequence {μν

α/‖μν
α‖}

converges to a limit μ∞
α , which must be nonnegative and nonzero. We have (Dα•)Tμ∞

α = 0,
which implies, by condition (E), that [(CAiB)α•]Tμ∞

α = 0 for all nonnegative integer i. Thus
�α(hν)μ

∞
α = 0, which is a contradiction. �

A key point in the conclusion of Proposition 3.1 is the validity of the same constant σE for all
h > 0 sufficiently small. An immediate corollary of this proposition is the following result that is
the key to the proof of the extended Hoffman bound for linear inequalities to be established later;
see Proposition 4.2.

Corollary 3.1. Let (E) hold. For any family of matrices {B(h) : h ≥ 0} given by (3), positive
constants h̄d and σd exist such that for all scalars h ∈ (0, h̄d], all index sets α ⊆ {1, . . . , �}, and
all vectors g ∈ R

m, if the system

[(D + CB(h))α•]Tμα = g, μα ≥ 0 (4)

has a solution, then it has a solution μα(g) such that ‖μα(g)‖ ≤ σd‖g‖.

Proof By the fundamental theory of linear inequalities, it holds that if the system (4) has a
solution, then it has one μα such that the columns of the matrix [(D + CB(h))α•]T corresponding
to the positive components of μα are linearly independent. The desired conclusion now follows
readily from Proposition 3.1 with k = 0. �
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Note that Corollary 3.1 establishes the (uniform) bound only for a particular solution of the
system (4), as opposed to all solutions. This idea of employing a particular solution is borrowed
from the recent paper [44] and will remain a central tool throughout the present paper. In this case,
the distinguished solution μα(g) is an extreme-point solution of (4) and can be obtained starting
from any feasible solution of (4) by simple linear algebraic manipulation, as in elementary linear
programming.

Under the set of assumptions (A–E), we shall prove that our unified numerical scheme presented
in Section 6 produces numerical trajectories that converge to an optimal1 solution of (1) in which
both the state and costate trajectories are absolutely continuous and the control trajectory is
integrable. It should be noted that while we are able to obtain new results for the problem (1)
under the stated assumptions, condition (E) is admittedly not ideal as it rules out interesting cases
when D = 0, i.e. in the pure state-constrained problem. The recent paper [14] treats the pure
state-constrained problem extensively; in this reference, measure-theoretic tools and the higher-
order Moreau sweeping process [1] are employed to deal with the distributional properties of the
constraint multipliers.

While it may be possible to relax some of the assumptions, particularly (D) and (E), we can
expect that much extra effort, and most importantly, a measure-theoretic framework and distribu-
tion theory would be needed. The present paper bypasses this advanced theory and stays within
the class of absolutely continuous state and costate trajectories. As it presently stands, the paper is
already quite lengthy and the analysis is quite complicated; further relaxation of the conditions is
best left for future work. It should be noted that while there are abstract existence results for opti-
mal control problems with nonlinear mixed state–control constraints (see, e.g. [45, Theorems 3.1
and 3.2]), it is not clear how the known conditions for solution existence are related to conditions
(C), (D) and (E), especially the matrix-theoretic assumptions that are very much tailored to the
LQ problem.

4. Preliminaries

This section is divided into two subsections. In the first subsection, we review some fundamental
results of a finite-dimensional convex QP; in the second subsection, we present a basic error bound
result for a system of linear inequalities under perturbation of the defining matrix.

4.1 Convex QPs: a review

We begin by introducing the affine variational inequality (AVI) as a lead to the definition of
the DAVI. Given a polyhedral set Z ⊆ R

m, the AVI defined by a vector e ∈ R
m and a matrix

M ∈ R
m×m, denoted by AVI(Z , e, M), is to find a vector z ∈ Z so that

(z′ − z)T(e + Mz) ≥ 0 ∀ z′ ∈ Z .

The set of solutions of the AVI(Z , e, M) is denoted by SOL(Z , e, M). If Z has the linear inequality
representation: Z � {z ∈ R

m | Ez ≥ b} for some matrix E ∈ R
�×m and vector b ∈ R

�, then a vector
z ∈ SOL(Z , e, M) if and only if there exists a multiplier vector μ ∈ R

� such that the following
Karush–Kuhn–Tucker (KKT) conditions hold:

0 = e + Mz − ETμ,

0 ≤ μ ⊥ Ez − b ≥ 0, (5)

where v ⊥ w means that the two vectors v and w are perpendicular, i.e. vTw = 0. We will write
Z(b) for the polyhedron Z if we want to emphasize the dependence of Z on the right-hand vector b.
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770 L. Han et al.

In the definition of the AVI, the matrix M is not required to be symmetric. When M is symmetric
positive semidefinite, the AVI is equivalent to the convex QP, which we denote QP(Z , e, M):

minimize
z∈Z

eTz + 1
2 zTMz.

We use the same notation SOL(Z , e, M) to denote the optimal solution set of the QP. Denoted
M(Z , e, M), the set of optimal multipliers of this QP consists of all the vectors μ satisfying the
KKT conditions (5). Note that M(Z , e, M) ⊆ R

�+.
We summarize several basic properties of the QP(Z , e, M) in Proposition 4.1, which consists

of several parts. Part (a) of the proposition provides a necessary and sufficient condition for the
existence of an optimal solution to the QP(Z , e, M); this result, which makes use of the kernel of M,
denoted ker(M), and the recession cone of Z , denoted Z∞ = {d ∈ R

m : Ed ≥ 0}, is an immediate
consequence of the classical Frank–Wolfe Theorem for quadratic programming [27,30] phrased
in terms of Z∞ and ker(M). Note that Z∞ is equal to Z(b)∞ for all b for which Z(b) �= ∅. Part (b)
of Proposition 4.1 provides a sufficient condition for SOL(Z(b), e, M) �= ∅ for all (e, b) such that
Z(b) �= ∅; this sufficient condition also yields the boundedness of the solutions to such QPs. Part
(c) identifies a polyhedral representation of the optimal solution set of the QP [53], which yields
in particular the constancy of the gradients of the objective function on the optimal solution set
(also known as the w-uniqueness property in the linear complementarity literature [17]) and an
important Lipschitz property of the solutions to the QP(Z(b), e, M) as a function of (e, b). Parts
(d) and (e) establish an important Lipschitz property of the solutions and multipliers, respectively,
of the QP(Z(b), e, M) in terms of the pair (e, b); whereas (d) is valid in general, (e) requires a
technical assumption that also yields a boundedness property of the multipliers.

Proposition 4.1. Let M be symmetric positive semidefinite and let E be given. The following six
statements hold.

(a) For any vector b for which Z(b) �= ∅, a necessary and sufficient condition for the
QP(Z(b), e, M) to have an optimal solution is that eTd ≥ 0 for all d in Z∞ ∩ ker(M).

(b) If Z∞ ∩ ker(M) = {0}, then SOL(Z(b), e, M) �= ∅ for all (e, b) for which Z(b) �= ∅. In this
case, a constant σ(M,E) > 0 exists such that for any vector b for which Z(b) �= ∅,

sup{‖z‖ | z ∈ SOL(Z(b), e, M)} ≤ σ(M,E)(‖e‖ + ‖b‖) ∀ e.

(c) If SOL(Z(b), e, M) �= ∅, then SOL(Z(b), e, M) = {z ∈ Z(b) | Mz = Mẑ, eT̂z = eT̂z} for any
optimal solution ẑ; thus MSOL(Z(b), e, M) is a singleton whenever it is nonempty. Moreover,

M(Z(b), e, M)

= {μ ∈ R
�
+ | e + MSOL(Z(b), e, M) + ETμ = 0 and μi = 0 ∀ i �∈ I(Z(b), e, M)},

where I(Z(b), e, M) � {i | (Ez − b)i = 0, ∀z ∈ SOL(Z(b), e, M)}.
(d) The map �(M,E) : (e, b) �→ MSOL(Z(b), e, M) is single-valued and Lipschitz continuous on

its domain; i.e. a constant L(M,E) > 0 such that for any two pairs (ei, bi), for i = 1, 2, for
which SOL(Z(bi), ei, M) �= ∅,

‖�(M,E)(e
1, b1) − �(M,E)(e

2, b2)‖ ≤ L(M,E)‖(e1, b1) − (e2, b2)‖.

(e) Suppose Z∞ ∩ ker(M) = {0}. For any matrix F for which there exists a constant δ > 0 such
that ‖FTμ‖ ≤ δ‖ETμ‖ for all μ ∈ R

m+, a constant σ ′
(M,E,F) > 0 exists such that for any vector

b for which Z(b) �= ∅,

‖FTμ‖ ≤ σ(M,E,F)(‖e‖ + ‖b‖)
for all vectors e and all optimal multipliers μ of the QP(Z(b), e, M).
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(f) For any matrix F for which there exists a constant δ > 0 such that ‖FTμ‖ ≤ δ‖ETμ‖ for
all μ ∈ R

m, the map �(M,E,F) : (e, b) �→ FTM(Z(b), e, M) is single-valued and Lipschitz
continuous on its domain.

Proof Part (a) is well known as mentioned above; so is part (c). The assumption that
Z∞ ∩ ker(M) = {0} implies that (Z(b), M) is a R0-pair for all b for which Z(b) �= ∅, a prop-
erty that is well known in affine variational theory [28]. As such, part (b) follows from the
latter theory; for a proof see [57, Proposition 6.4]. The Lipschitz property of the solutions of the
QP(Z(b), e, M) as a function of (b, e) in part (d) is proved in the cited proposition. Part (e) follows
readily from part (b). Finally, noticing that ETM(Z(b), e, M) = e + MSOL(Z(b), e, M) is single-
valued and Lipschitz continuous on its domain, part (f) follows easily from the assumption on
F and part (d). �

4.2 Perturbed Hoffman bounds for linear inequalities

In the main convergence analysis, we need to bound the distance of a feasible trajectory of the
continuous-time optimal control problem (1) to the feasible sets of certain time-discretized QPs.
The key to deriving such bounds is an extended version of the renowned Hoffman error bound for
a system of linear inequalities [47] with the defining matrix being perturbed. An in-depth study of
such a perturbation bound can be found in [49]; nevertheless, the results derived therein pertain
to fairly general perturbations. For our purpose here, the proposition below suffices.

Proposition 4.2. Let (E) hold. For any family of matrices {B(h) : h ≥ 0} given by (3), positive
constants h̄d and σd exist such that for all scalars h ∈ [0, h̄d], all vectors b for which the polyhedron
Zh(b) � {z ∈ R

m | E(h)z ≥ b} is nonempty, where E(h) � D + CB(h), and all vectors z ∈ R
m,

dist(z, Zh(b)) ≤ σd‖[E(h)z − b]−‖.

Proof Consider the closest-point (i.e. Euclidean projection) problem on a nonempty Zh(b) :

minimize
z′∈Zh(b)

1
2‖z′ − z‖2,

which has a unique optimal solution z̄. A multiplier μ exists such that the KKT conditions hold:

0 = z̄ − z − E(h)Tμ, 0 ≤ μJ and μJ̄ = 0, (6)

where J � {i | (E(h)z̄ − b)i = 0} and J̄ is the complement of J in {1, . . . , �}. By Corollary 3.1,
positive constants h̄d and σd , both independent of J , exist such that for all h ∈ (0, h̄d], we may
choose the μ in (6) to satisfy:

‖μ‖ ≤ σd‖z̄ − z‖ = σd‖(E(h)J•)TμJ‖.

We have

‖z̄ − z‖2 = μT
J [E(h)J•(E(h)J•)T]μJ = μT

J E(h)J•(z̄ − z)

= μT
J [bJ − E(h)J•z] ≤ ‖μJ‖‖[E(h)z − b]−‖.

Thus ‖z̄ − z‖ ≤ σd‖[E(h)z − b]−‖. �
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5. Optimality in terms of a differential AVI

In general, the DAVI, which represents a special case of the more general DVIs [56], is a dynamic
extension of the AVI that incorporates an ODE to describe the time evolution of a state variable.
For our purpose in this work, we define a two-point boundary DAVI as a differential-algebraic
system of finding trajectories x : [0, T ] → R

n and u : [0, T ] → R
m, for a given T > 0, such that

ẋ(t) = Ax(t) + Bu(t) + r(t), 0 = �(x(0), x(T)),

u(t) ∈ SOL(
(x(t)), q(t) + Nx(t), M), (7)

where A, B, N and M are constant matrices of order n × n, n × m, m × n and m × m, respectively;

(x) is a (possibly empty) polyhedral set in R

m that moves with the state variable x, q is a m-
dimensional vector function, and � : R

2n → R
n is a given vector function of two arguments. In

[56], the set 
(x) is independent of the state x; we need the extended formulation in order to deal
with the state-dependent constraint Cx(t) + Du(t) + f ≥ 0 in (1).A pair of trajectories (x(t), u(t))
is said to be a weak solution of (7) in the sense of Carathéodory if the conditions (i)–(iv) hold:

(i) x(t) is an absolutely continuous function on [0, T ] and u(t) is an integrable function on [0, T ];
(ii) the ODE holds for almost all t on [0, T ], or equivalently, the integral equation below holds

for all 0 ≤ s ≤ t ≤ T :

x(t) = x(s) +
∫ t

s
[Ax(τ ) + Bu(τ ) + r(τ )] dτ

(iii) the variational condition u ∈ SOL(
(x), q + Nx, M) holds in the sense that u(t) ∈ 
(x(t))
for almost all t ∈ [0, T ] and for any continuous ũ : [0, T ] → R

m such that ũ(t) ∈ 
(x(t)) for
all t ∈ [0, T ], ∫ T

0
(ũ(τ ) − u(τ ))T(q(τ ) + Nx(τ ) + Mu(τ )) dτ ≥ 0;

(iv) the boundary condition is satisfied.

We note the regularity (i) that is imposed on a weak solution of the DAVI; namely, the differential
variable x is absolutely continuous and the algebraic variable u is integrable. This is consistent
with the regularity imposed on an optimal pair of the control problem (1). A constructive way to
show the existence of a weak solution to the DAVI is by a time-stepping method. Unlike the case
of a constant defining set of the variational condition in the DAVI as analysed in [56], the state-
dependent case of 
(x) presents a technical challenge that requires some care; for one thing, the
feasibility of the discretized subproblems could be in jeopardy without proper safeguard. In fact,
a major contribution of this work is the introduction of a constructive procedure to ensure such
feasibility and the convergence proof of the resulting time-stepping method. Instead of presenting
the overall method in its generality, we restrict the discussion to the DAVI formulation of the LQ
optimal control problem (1).

To derive a DAVI formulation for the LQ optimal control problem (1) we start with defining
the Hamiltonian function:

H(x, u, λ) � xTp + uTq + 1
2 xTPx + xTQu + 1

2 uTRu + λT(Ax + Bu + r),

where λ is the costate (also called adjoint) variable of the ODE ẋ(t) = Ax(t) + Bu(t) + r(t), and
the Lagrangian function:

L(x, u, λ, μ) � H(x, u, λ) − μT(Cx + Du + f ),
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where μ is the Lagrange multiplier of the algebraic constraint: Cx + Du + f ≥ 0. Inspired by the
Pontryagin principle [45,68,72, Section 6.2], we study the following DAVI:(

λ̇(t)
ẋ(t)

)
=
(−p(t)

r(t)

)
+
[−AT −P

0 A

](
λ(t)
x(t)

)
+
[−Q

B

]
u(t) +

[
CT

0

]
μ(t),

0 = q(t) + QTx(t) + Ru(t) + BTλ(t) − DTμ(t)
0 ≤ μ(t) ⊥ Cx(t) + Du(t) + f ≥ 0

}
=⇒ u(t) ∈ argmin

u∈U(x(t))
H(x(t), u, λ(t)),

x(0) = ξ and λ(T) = c + Sx(T). (8)

While the membership u(t) ∈ argminu∈U(x(t))H(x(t), u, λ(t)) implies the existence of a multi-
plier μ̂(t) such that

0 = q(t) + QTx(t) + Ru(t) + BTλ(t) − DTμ̂(t),

0 ≤ μ̂(t) ⊥ Cx(t) + Du(t) + f ≥ 0,

we seek in (8) a particular multiplier μ(t) that also satisfies the ODE. So far, we have only formally
written down the formulation (8) without connecting it to the optimal control problem (1). As a
DAVI with (x, λ) as the pair of differential variables and (u, μ) as the pair of algebraic variables,
the tuple (x, u, λ, μ) is a weak solution of (8) if (i) (x, λ) is absolutely continuous and (u, μ) is
integrable on [0, T ], (ii) the differential equation and the two algebraic conditions hold for almost
all t ∈ (0, T) and (iii) the initial and boundary conditions are satisfied.

Here is a roadmap of the main Theorem 5.1. It starts with the postulates (A–E), under which
part (I) asserts the existence of a weak solution of the DAVI (8) in the sense of Carathéodory.
Based on a constructive numerical method, the proof of part (I) is postponed until later; see part
(d) in Theorem 8.1. Part (II) of Theorem 5.1 asserts that any weak solution of the DAVI yields
an optimal solution of (1); this establishes the sufficiency of the Pontryagin optimality principle.
A direct proof of part (II) is given, based on which we can immediately obtain several properties
characterizing an optimal solution of (1); this part is analogous to part (c) of Proposition 4.1 for a
finite-dimensional convex QP. These properties are summarized in part (III) of the theorem. From
these properties, part (IV) shows that any optimal solution of (1) must be a weak solution of the
DAVI (8), thereby establishing the necessity of the Pontryagin optimality principle. Finally, part
(V) asserts the uniqueness of the solution obtained from part (I) under the positive definiteness of
the matrix R.

Theorem 5.1. Under conditions (A–E), the following statements (I–V) hold.

(I : Solvability of the DAVI) The DAVI (8) has a weak solution (x∗, λ∗, u∗, μ∗).
(II: Sufficiency of Pontryagin) If (x∗, λ∗, u∗, μ∗) is any weak solution of (8), then the pair (x∗, u∗)

is an optimal solution of the problem (1).
(III: Gradient characterization of optimal solutions) If (̂x, û) and (x̃, ũ) are any two optimal

solutions of (1), then the following three properties hold:
(a) for almost all t ∈ [0, T ], [

P Q
QT R

] (̂
x(t) − x̃(t)
û(t) − ũ(t)

)
= 0,

(b) Ŝx(T) = Sx̃(T), and
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(c)

cT (̂x(T) − x̃(T)) +
∫ T

0

(
p(t)
q(t)

)T (̂
x(t) − x̃(t)
û(t) − ũ(t)

)
dt = 0.

Thus, given any optimal solution (̂x, û) of (1), a feasible tuple (x̃, ũ) of (1) is optimal if
and only if conditions (a), (b), and (c) hold.

(IV: Necessity of Pontryagin) Let (x∗, λ∗, u∗, μ∗) be the tuple obtained from part (I). A feasible
tuple (x̃, ũ) of (1) is optimal if and only if (x̃, λ∗, ũ, μ∗) is a weak solution of (8).

(V: Uniqueness under positive definiteness) If R is positive definite, then for any two opti-
mal solutions (̂x, û) and (x̃, ũ) of (1), x̂ = x̃ everywhere on [0, T ] and û = ũ almost
everywhere on [0, T ]. In this case (1) has a unique optimal solution (̂x, û) such that
x̂ is continuously differentiable and û is continuous on [0, T ], and for any optimal λ̂,
û(t) ∈ argminu∈U (̂x(t))H (̂x(t), u, λ̂(t)) for all t ∈ [0, T ].

Proof Assertion (I) will be proved constructively by the unified numerical scheme presented in
Section 7; see part (d) of Theorem 8.1 in Section 8. Here, we give the proof of the remaining four
assertions. To prove the sufficiency assertion (II), let (x∗, u∗, λ∗, μ∗) be any weak solution of the
DAVI (8) and (x, u) be an arbitrary feasible solution of (1). We have

V(x, u) − V(x∗, u∗)

= cT(x(T) − x∗(T)) + 1

2
[x(T)TSx(T) − x∗(T)TSx∗(T)]

+
∫ T

0

{(
p(t)
q(t)

)T (
x(t) − x∗(t)
u(t) − u∗(t)

)
+ 1

2

(
x(t) − x∗(t)
u(t) − u∗(t)

)T [
P Q

QT R

](
x(t) + x∗(t)
u(t) + u∗(t)

)}
dt.

We evaluate the right-hand terms as follows. First,

cT(x(T) − x∗(T)) + 1
2 [x(T)TSx(T) − x∗(T)TSx∗(T)]

= (x(T) − x∗(T))T[c + Sx∗(T) + 1
2 S(x(T) − x∗(T))]

= (x(T) − x∗(T))Tλ∗(T) + 1
2 (x(T) − x∗(T))TS(x(T) − x∗(T))

≥ (x(T) − x∗(T))Tλ∗(T). (9)

Furthermore, by (8),

∫ T

0

{(
p(t)
q(t)

)T (
x(t) − x∗(t)
u(t) − u∗(t)

)
+ 1

2

(
x(t) − x∗(t)
u(t) − u∗(t)

)T [
P Q

QT R

](
x(t) + x∗(t)
u(t) + u∗(t)

)}
dt

=
∫ T

0

{(
p(t)
q(t)

)T (
x(t) − x∗(t)
u(t) − u∗(t)

)
+ 1

2

(
x(t) − x∗(t)
u(t) − u∗(t)

)T [
P Q

QT R

](
x(t) − x∗(t)
u(t) − u∗(t)

)}
dt

+
∫ T

0

(
x(t) − x∗(t)
u(t) − u∗(t)

)T [
P Q

QT R

](
x∗(t)
u∗(t)

)
dt

≥
∫ T

0

(
x(t) − x∗(t)
u(t) − u∗(t)

)T [(
p(t)
q(t)

)
+
[

P Q
QT R

](
x∗(t)
u∗(t)

)]
dt
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=
∫ T

0

(
x(t) − x∗(t)
u(t) − u∗(t)

)T
(

−dλ∗(t)
dt

− ATλ∗(t) + CTμ∗(t)
−BTλ∗(t) + DTμ∗(t)

)
dt

=
∫ T

0

[
− d

dt

{
(x(t) − x∗(t))Tλ∗(t)

}+ μ∗(t)T(Cx(t) + Du(t) + f )

]
dt

≥ −(x(T) − x∗(T))Tλ∗(T).

Adding (9) to the latter inequality, we deduce V(x, u) ≥ V(x∗, u∗). Thus (II) holds. To prove (III),
we first show that (a), (b) and (c) hold with (̂x, û) = (x∗, u∗), where (x∗, λ∗, u∗, μ∗) is the tuple
from part (I). By part (II), we know that this particular pair (̂x, û) is optimal to (1). Let (x̃, ũ) be
an arbitrary optimal solution of (1). We then have V (̂x, û) = V(x̃, ũ); thus the inequalities in the
proof of part (II) all become equalities. We therefore have, first of all,∫ T

0

(̂
x(t) − x̃(t)
û(t) − ũ(t)

)T [
P Q

QT R

] (̂
x(t) − x̃(t)
û(t) − ũ(t)

)
dt = 0,

which implies, for almost all t ∈ [0, T ],[
P Q

QT R

] (̂
x(t) − x̃(t)
û(t) − ũ(t)

)
= 0.

Moreover, (9) yields Ŝx(T) = Sx̃(T). The equation in (c) follows from the expression of V (̂x, û) −
V(x̃, ũ). Having proved (a), (b) and (c) in (III) for a particular (̂x, û) and an arbitrary (x̃, ũ), we
easily deduce that these properties hold for any two optimal solutions of (1). The last claim in
part (III) follows easily from these properties.

The ‘if’ claim in part (IV) follows from part (II). The proof of the ‘only if’ part is actually
contained in the proof of (III); for clarity, we provide the details. Let (x̃, ũ) be an arbitrary optimal
solution of (1). By (III), we have properties (a), (b) and (c) holding with (̂x, û) = (x∗, u∗), where
(x∗, λ∗, u∗, μ∗) is the tuple from part (I). By (a) in part (III), we have, for almost all t ∈ [0, T ],

dλ∗(t)
dt

= −p(t) − ATλ∗(t) − Px∗(t) − Qu∗(t) − CTμ∗(t)

= −p(t) − ATλ∗(t) − Px̃(t) − Qũ(t) − CTμ∗(t)

and

0 = q(t) + QTx∗(t) + Ru∗(t) + BTλ∗(t) − DTμ∗(t)

= q(t) + QTx̃(t) + Rũ(t) + BTλ∗(t) − DTμ∗(t).

Furthermore, λ∗(T) = c + Sx∗(T) = c + Sx̃(T) by condition (b) of part (III). Moreover, we have∫ T

0
μ∗(t)T[Cx̃(t) + Dũ(t) + f ] dt −

∫ T

0
μ∗(t)T[Cx∗(t) + Du∗(t) + f ] dt

=
∫ T

0

(
x̃(t) − x∗(t)
ũ(t) − u∗(t)

)T (
C Tμ∗(t)
DTμ∗(t)

)
dt

=
∫ T

0

{(
x̃(t) − x∗(t)
ũ(t) − u∗(t)

)T [(
p(t)
q(t)

)
+
[

P Q
QT R

](
x∗(t)
u∗(t)

)]}
dt

+
∫ T

0

{
(x̃(t) − x∗(t))T dλ∗(t)

dt
+ λ∗(t)T[A(x̃(t) − x∗(t)) + B(ũ(t) − u∗(t))]

}
dt
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=
∫ T

0

{
(x̃(t) − x∗(t))T dλ∗(t)

dt
+ λ∗(t)T d

dt
(x̃(t) − x∗(t))

}
dt − cT[x̃(T) − x∗(T)]

= λ∗(T)T[x̃(T) − x∗(T)] − λ∗(0)T[x̃(0) − x∗(0)] − cT[x̃(T) − x∗(T)]
= x∗(T)TS[x̃(T) − x∗(T)] = 0,

completing the proof of part (IV). Lastly, to prove (V), we first show that x̂ = x̃ everywhere on
[0, T ] if R is positive definite. In this case, property (a) in part (III) yields

û(t) − ũ(t) = −R−1QT (̂x(t) − x̃(t))

for almost all t ∈ [0, T ]. Hence, for all such t,

d

dt
[̂x(t) − x̃(t)] = [A − BR−1QT](̂x(t) − x̃(t)).

Since x̂(0) − x̃(0) = 0, it follows that x̂(t) = x̃(t) for all t ∈ [0, T ]. Thus, û(t) = ũ(t) for almost
all t ∈ [0, T ]. To complete the proof of the theorem, let (x∗, λ∗, u∗, μ∗) be a weak solution of the
DAVI (8). It follows that (x∗, u∗) is an optimal solution of (1) with x∗ being unique. Since R is
positive definite, for every x for which U(x) �= ∅ and for every λ, the QP minu∈U(x) H(x, u, λ)

has a unique optimal solution û(x, λ) that is a Lipschitz continuous function of (x, λ), by part (d)
of Proposition 4.1; see also [17, Exercise 7.6.10]. Since u∗(t) ∈ argminu∈U(x∗(t))H(x∗(t), u, λ∗(t))
for almost all t ∈ [0, T ] and x∗ is continuous, it follows that U(x∗(t)) �= ∅ for all t ∈ [0, T ].
Thus, û(t) � û(x∗(t), λ∗(t)) is well defined for all such t; moreover, û is continuous on [0, T ].
By what has just been proved, û(t) = u∗(t) for almost all t ∈ [0, T ]. It follows that (x∗, û)

remains an optimal solution of (1). Since û is continuous, it must be unique. Finally, since
x∗(t) = ξ + eAt

∫ t
0 e−AsB̂u(s) ds for all t ∈ [0, T ], the continuous differentiability of x∗ follows

from the continuity of û. �

6. Two numerical schemes with exact feasibility

A general time-stepping method for solving the LQ problem (1) is as follows. Let h > 0 be an
arbitrary step size such that Nh � T/h − 1 is a positive integer (the latter integrality condition on
h will not be mentioned from here on). We partition the interval [0, T ] into Nh + 1 subintervals
each of equal length h:

0 � th,0 < th,1 < th,2 < · · · < th,Nh < th,Nh+1 � T .

Thus th,i+1 = th,i + h for all i = 0, 1, . . . , Nh. We write ph,i � p(th,i), qh,i � q(th,i) and rh,i � r(th,i).
In the two methods described in Sections 6.1 and 6.2, we step forward in time and calculate
the iterates xh � {xh,i}Nh+1

i=0 and uh � {uh,i}Nh+1
i=1 by solving Nh + 1 finite-dimensional convex

quadratic subprograms, provided that the latter are feasible. From these discrete-time iterates,
continuous-time numerical trajectories are constructed by piecewise linear and piecewise con-
stant interpolation, respectively. Specifically, define the functions x̂h and ûh on the interval [0, T ]:
for all i = 0, . . . , Nh:

x̂h(t) � xh,i + t − th,i

h
(xh,i+1 − xh,i) ∀t ∈ [th,i, th,i+1],

ûh(t) � uh,i+1 ∀t ∈ (th,i, th,i+1]. (10)

The convergence of these trajectories as the step size h ↓ 0 to an optimal solution of the LQ
control problem (1) is a main concern in the subsequent analysis.
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The DAVI-based schemes and the discretization schemes often used in MPC differ in how
the integral in the objective function and the ODE in the constraint are being approximated. We
describe the exact form of the resulting discrete-time problems in the next two subsections, respec-
tively. Before doing so, we discuss briefly different discretizations schemes such as those based
on the collocation theory [4, Section 5.4], [5,6,71] and the more recent family of pseudospectral
methods for optimal control problems [34,35,48] that solve nonlinear programming subproblems
in finite dimensions. In general, solving an optimal control problem requires the approximation of
the integration in the cost function and the differential equation in the constraint. Presumably, the
pseudospectral methods are designed to handle these approximations well; nevertheless, so far
the applications of these methods as described in the last three references all pertain to equality-
constrained optimal control problems. The extent to which the collocation idea can be applied
when mixed state–control inequality constraints are present in the optimal control problem, such
as the LQ problem (1), remains to be investigated. Such an investigation is regrettably beyond the
scope of this study. A related question is whether convergence rates of the discretization scheme
studied in this paper could be derived. Although this is an interesting question for future research,
presently the answers are not available. The reason for a lack of answers to these advanced issues
is due to the presence of the mixed state–control constraint: Cx + Du + f ≥ 0, the weak coercivity
assumption (A) imposed on the objective function, and the absence of an obvious boundedness
assumption on the overall constraints of the problem. These features of the problem (1) are a
major departure from much of the convergence analysis of discretization methods in the optimal
control theory; they make convergence questions like these not straightforward to answer and
necessitate further research.

6.1 The DAVI-based method

Based on the DAVI (8), we generate additional iterates λh � {λh,i}Nh
i=0 and μh � {μh,i}Nh+1

i=1
by solving the following discrete-time system obtained from the backward Euler scheme
applied to (8):

λh,i+1 − λh,i = −h[ph,i+1 + ATλh,i + Pxh,i+1 + Quh,i+1] + CTμh,i+1, i = 0, . . . , Nh,

xh,i+1 − xh,i = h[Axh,i+1 + Buh,i+1 + rh,i+1], i = 0, . . . , Nh,

0 = qh,i+1 + QTxh,i+1 + Ruh,i+1 + BTλh,i − DTμh,i+1, i = 0, . . . , Nh,

0 ≤ μh,i+1 ⊥ Cxh,i+1 + Duh,i+1 + f ≥ 0, i = 0, . . . , Nh,

xh,0 = ξ , λh,Nh+1 � c + Sxh,Nh+1. (11)

The discrete-time system (11) is related to the following QP, obtained as a discretization of the
original optimal control problem (1) where the ODE is replaced by a difference equation and the
integral in the objective function is replaced by a finite sum:

(QPh
1) : minimize

{xh,i ,uh,i}Nh+1
i=1

(xh,Nh+1)T

(
c + 1

2
Sxh,Nh+1

)

+ h

2

Nh∑
i=0

{(xh,i+1)T[2ph,i+1 + Pxh,i+1 + Quh,i+1]

+ (uh,i+1)T[2qh,i+1 + QTxh,i+1 + Ruh,i+1]}
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subject to xh,0 = ξ ,

xh,i+1 − xh,i = h(Axh,i+1 + Buh,i+1 + rh,i+1) ∀ i = 0, 1, . . . , Nh,

and uh,i+1 ∈ U(xh,i+1) � {u : Cxh,i+1 + Du + f ≥ 0} ∀i = 0, 1, . . . , Nh.

In fact, let ζ h, λh,i and μh,i+1 be the multiplier of the constraint xh,0 = ξ , xh,i+1 − xh,i = h(Axh,i+1 +
Buh,i+1 + rh,i+1) and Cxh,i+1 + Duh,i+1 + f ≥ 0, respectively. By writing down the optimality
condition for the quadratic program (QPh

1) and defining, λh,Nh+1 � c + Sxh,Nh+1, we can easily
see that the system (11) is equivalent to the KKT conditions of the convex (QPh

1). Note that the
solution of (QPh

1) can be decomposed into Nh + 1 subproblems in the following way: for i = 0,
we solve for xh,1 and uh,1 in

minimize
xh,1,uh,1

h

2
{(xh,1)T[2ph,1 + Pxh,1 + Quh,1] + (uh,1)T[2qh,1 + QTxh,1 + Ruh,1]}

subject to xh,1 − ξ = h(Axh,1 + Buh,1 + rh,1)

and uh,1 ∈ U(xh,1) � {u : Cxh,1 + Du + f ≥ 0},
provided that this problem is feasible; we can then march forward to the next QP in the variables
(xh,2, uh,2) until we reach i = Nh; at this last step, we solve for xh,Nh+1 and uh,Nh+1 in

minimize
xh,Nh+1,uh,Nh+1

(xh,Nh+1)T

(
c + 1

2
Sxh,Nh+1

)
+ h

2
(xh,Nh+1)T[2ph,Nh+1 + Pxh,Nh+1 + Quh,Nh+1]

+ h

2
(uh,Nh+1)T[2qh,Nh+1 + QTxh,Nh+1 + Ruh,Nh+1]

subject to xh,Nh+1 − xh,Nh = h(Axh,Nh+1 + Buh,Nh+1 + rh,Nh+1)

and uh,Nh+1 ∈ U(xh,Nh+1) � {u : Cxh,Nh+1 + Du + f ≥ 0}.
Throughout, the feasibility of each of the quadratic programming subproblems is a concern that
needs to be addressed; see Section 7.

6.2 Discretizations as used in MPC

Discretizations as often used in MPC are obtained directly from the LQ control problem. We again
partition the interval [0, T ] into Nh + 1 subintervals each of equal length h. We consider piecewise
constant controls, i.e. controls that are constant on each subinterval, to solve the following QP:

(QPh
2) : minimize

{xh,i ,uh,i}Nh
i=1

(xh,Nh+1)T

(
c + 1

2
Sxh,Nh+1

)

+ h

2

Nh∑
i=0

{(xh,i)T[2ph,i+1 + Pxh,i + Quh,i+1]

+ (uh,i+1)T[2qh,i+1 + QTxh,i + Ruh,i+1]}
subject to: xh,0 = ξ ,

xh,i+1 = eAhxh,i +
∫ h

0
eAs[Buh,i+1 + rh,i] ds ∀i = 0, . . . , Nh,

and uh,i+1 ∈ U(xh,i+1) ∀i = 0, . . . , Nh.
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In the above program exact discretization of the dynamics ẋ(t) = r(t) + Ax(t) + Bu(t) at times
th,i, i = 1, . . . , Nh + 1 is used, given piecewise constant versions of r and u. Furthermore, note
that the cost functional V(x, u) is discretized using a simple integration routine based on forward
Euler, although various other ways exist to discretize V(x, u) for which similar convergence results
can be derived.

Evidentally, the two (QPh
1) and (QPh

2) are quite similar in form; their main difference lies in
the discretization of the dynamics ẋ(t) = r(t) + Ax(t) + Bu(t). Similar to (QPh

1), the solution of
(QPh

2) also decomposes into Nh + 1 subprograms whose feasibility remains a concern in general.

6.3 A unified QP

Consider the following QP containing a parameter θ ∈ [0, 1]:

(QPh) : minimize
{xh,i ,uh,i}Nh+1

i=1

(xh,Nh+1)T

(
c + 1

2
Sxh,Nh+1

)

+ h

2

Nh∑
i=0

{
2

(
θxh,i + (1 − θ)xh,i+1

uh,i+1

)T (
ph,i+1

qh,i+1

)

+
(

θxh,i + (1 − θ)xh,i+1

uh,i+1

)T [
P Q

QT R

](
θxh,i + (1 − θ)xh,i+1

uh,i+1

)}

subject to xh,0 = ξ , and for i = 0, 1, . . . , Nh :{
xh,i+1 = [θE(h)rh,i + (1 − θ)Ê(h)rh,i+1

]+ A(h)xh,i + B(h)uh,i+1

uh,i+1 ∈ U(xh,i+1)

}
,

where the matrices A(h) and B(h) are given by (3) and E(h) and Ê(h) satisfy the following
conditions:

lim
h↓0

h−1E(h) = lim
h↓0

h−1Ê(h) = I . (12)

When θ = 0, by letting Ê(h) � hA(h), A(h) � (I − hA)−1 and B(h) � hA(h)B, (QPh) becomes
(QPh

1). When θ = 1, by letting E(h) �
∫ h

0 eAs ds, A(h) � eAh and B(h) �
∫ h

0 eAs dsB, (QPh)
becomes (QPh

2). Thus, by introducing the scalar θ and the matrices E(h), Ê(h), A(h) and B(h),
we can include both the DAVI-based time-stepping method and the discretization scheme as
used in MPC in one unified formulation, which provides the basis for a provably convergent
method for solving the LQ optimal control problem (1). In the rest of the paper, we fix the scalar
θ ∈ [0, 1].

7. The relaxed unified QP

There is in general no guarantee that the (QPh) is even feasible, let alone solvable. The cul-
prit is the state-dependent constraint Cxh,i+1 + Duh,i+1 + f ≥ 0. In order to ensure a feasible
QP, we consider the minimum residual of the constraints in (QPh) and relax them accordingly.
Specifically, for an initial vector ξ and a scalar h > 0, define the optimum objective value of the
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linear program (LP):

ρh(ξ) � minimum
ρ;{xh,i ,uh,i}Nh

i=1
ρ

subject to xh,0 = ξ , ρ ≥ 0

and for i = 0, 1, . . . , Nh :⎧⎨⎩xh,i+1 = [θE(h)rh,i + (1 − θ)Ê(h)rh,i+1]
+A(h)xh,i + B(h)uh,i+1

Cxh,i+1 + Duh,i+1 + f + ρ1 ≥ 0

⎫⎬⎭ , (13)

where 1 is the vector of all ones. It is not difficult to see that the above linear program must
have a finite optimal solution; thus ρh(ξ) is well defined. For the convergence analysis of the
relaxed, unified time-stepping method, we need to establish a limiting property of the minimum
residual ρh(ξ) as h ↓ 0; this is accomplished by invoking the assumptions (B) and (C) introduced
in Section 3.

Proposition 7.1. If assumptions (B) and (C) and condition (12) hold, then ρh(ξ) → 0 as h ↓ 0.

Proof Let h > 0 be such that I − hA is invertible. Let x̂h,0 � ξ and ûh,0 � ûfs(0). Let, for all
i = 0, . . . , Nh, ûh,i+1 � ûfs((i + 1)h), and inductively,

x̂h,i+1 � [θE(h)rh,i + (1 − θ)Ê(h)rh,i+1] + A(h)̂xh,i + B(h)̂uh,i+1.

We claim that there exists a nonnegative function o(h) satisfying o(h)/h → 0 as h ↓ 0 [in what
follows, the little o(h) functions always have this property], such that the so-defined tuples ûh �
{̂uh,i}Nh+1

i=1 and x̂h � {̂xh,i}Nh+1
i=0 is feasible to (13) with ρ � o(h)/h. To prove the claim, we first

notice that since ûfs(t) is continuous and x̂fs(t) is continuously differentiable, positive constants
ψu and ψx exist such that ‖̂ufs(t)‖ ≤ ψu and ‖̂xfs(t)‖ ≤ ψx for all t ∈ [0, T ]. We have, for all
i = 0, . . . , Nh,

‖̂xh,i+1 − x̂fs((i + 1)h)‖ =
∥∥∥∥[θE(h)rh,i + (1 − θ)Ê(h)rh,i+1] + A(h)̂xh,i + B(h)̂uh,i+1

−eAhx̂fs(ih) −
∫ (i+1)h

ih
eA((i+1)h−s)[B̂ufs(s) + r(s)] ds

∥∥∥∥
≤ ‖A(h)‖‖̂xh,i − x̂fs(ih)‖ + ‖A(h) − eAh‖‖̂xfs(ih)‖ + T1 + T2 + T3

where

T1 �
∥∥∥∥B(h)̂uh,i+1 −

∫ (i+1)h

ih
eA((i+1)h−s)B̂ufs((i + 1)h) ds

∥∥∥∥
T2 �

∥∥∥∥∫ (i+1)h

ih
eA((i+1)h−s)B[̂ufs((i + 1)h) − ûfs(s)] ds

∥∥∥∥
T3 �

∥∥∥∥[θE(h)rh,i + (1 − θ)Ê(h)rh,i+1] −
∫ (i+1)h

ih
eA((i+1)h−s)r(s) ds

∥∥∥∥ .

We bound each term individually. By (12), we have ‖A(h)‖ ≤ 1 + h‖A‖ + o1(h), ‖A(h) − eAh‖ =
o2(h), and

T1 ≤ (1 + ‖B‖)ψu

∥∥∥∥∥hI −
∞∑

�=0

A�h�+1

(� + 1)!

∥∥∥∥∥ ≤ (1 + ‖B‖)ψu

∥∥∥∥∥
∞∑

�=1

A�h�+1

(� + 1)!

∥∥∥∥∥ � o3(h).
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The continuity of ûfs on the compact interval [0, T ] implies that it is uniformly continuous there.
Thus,

T2 ≤
∫ (i+1)h

ih
e‖A‖T‖B‖‖̂ufs((i + 1)h) − ûfs(s)‖ ds � o4(h).

Finally, since both E(h) = hI + o5(h) and Ê(h) = hI + ô5(h), we can deduce, also using the
Lipschitz continuity of r, T3 ≤ o6(h). Therefore, adding up the above bounds, we obtain

‖̂xh,i+1 − x̂fs((i + 1)h)‖ ≤ [1 + h‖A‖ + o1(h)]‖̂xh,i − x̂fs(ih)‖ + o(h).

Since x̂h,0 = x̂fs(0) = ξ , we can deduce inductively that for all i = 0, . . . , Nh,

‖̂xh,i+1 − x̂fs((i + 1)h)‖ ≤ o(h)

i∑
k=0

[1 + h‖A‖ + o1(h)]k

= o(h)
[1 + h‖A‖ + o1(h)]i+1 − 1

h‖A‖ + o1(h)

≤ o(h)/h

‖A‖ + o1(h)/h
[exp{(h‖A‖ + o1(h))(i + 1)} − 1]

≤ o(h)/h

‖A‖ + o1(h)/h

[
exp

{
T ,

(
‖A‖ + o1(h)

h

)}
− 1

]
� ô(h)

h
.

Note that the function ô(h)/h depends only on the various limits in (12). Since Cx̂fs((i +
1)h) + D̂ufs((i + 1)h) + f ≥ 0, it follows that Cx̂h,i+1 + D̂uh,i+1 + f + 1̂o(h)/h ≥ 0 for all
i = 0, . . . , Nh �

Employing the minimum residual ρh(ξ), the relaxed, unified time-stepping method solves the
following (feasible) convex QP at time th,i+1:

(Q̂P
h
) : minimize

{xh,i ,uh,i}Nh+1
i=1

Vh(xh, uh) � (xh,Nh+1)T

(
c + 1

2
Sxh,Nh+1

)

+ h

2

Nh∑
i=0

{
2

(
θxh,i + (1 − θ)xh,i+1

uh,i+1

)T (
ph,i+1

qh,i+1

)

+
(

θxh,i + (1 − θ)xh,i+1

uh,i+1

)T [
P Q

Q T R

](
θxh,i + (1 − θ)xh,i+1

uh,i+1

)}
subject to xh,0 = ξ , and for i = 0, 1, . . . , Nh :{

xh,i+1 = [θE(h)rh,i + (1 − θ)Ê(h)rh,i+1] + A(h)xh,i + B(h)uh,i+1

f + Cxh,i+1 + Duh,i+1 + ρh(ξ)1 ≥ 0

}
.

7.1 Solvability of the (̂QP
h
)

The (Q̂P
h
) is guaranteed feasible, but the existence of an optimal solution is not straightforward

in the case where the objective function is only convex but not strictly. This solvability issue is the
topic treated in this subsection. By part (a) of Proposition 4.1, we readily obtain the following pre-

liminary result showing that the solvability of (Q̂P
h
) is equivalent to the validity of an implication

labelled (IPh).
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782 L. Han et al.

Lemma 7.1. Let assumption (A) hold. For an h > 0, the feasible QP (Q̂P
h
) has an optimal

solution if and only if the following implication holds:

(IPh)

[
P Q
QT R

](
θxh,i + (1 − θ)xh,i+1

uh,i+1

)
= 0 ∀i = 0, . . . , Nh

xh,0 = 0, Sxh,Nh+1 = 0
xh,i+1 − A(h)xh,i − B(h)uh,i+1 = 0 ∀i = 0, . . . , Nh

Cxh,i+1 + Duh,i+1 ≥ 0 ∀i = 0, . . . , Nh

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⇒ cTxh,Nh+1 + h

Nh∑
i=0

[(ph,i+1)T(θxh,i + (1 − θ)xh,i+1) + (qh,i+1)Tuh,i+1] ≥ 0.

Proof This follows readily by writing (Q̂P
h
) compactly in a standard form and applying part (a)

of Proposition 4.1. �

We need the following technical lemma to prove the solvability of the (Q̂P
h
).

Lemma 7.2. Let assumptions (A) and (D) and condition (12) hold. For all h > 0 sufficiently
small, the following implication holds:

(1 − θ)Px + Qu = 0
(1 − θ)QTx + Ru = 0

x − B(h)u = 0
Cx + Du ≥ 0

⎫⎪⎪⎬⎪⎪⎭⇒ u = 0. (14)

Proof Suppose that (14) does not hold. Then there exist a sequence of positive scalars {hν}∞ν=1 ↓ 0
and two sequences of vectors {xν}∞ν=1 and {uν}∞ν=1 such that for all ν,

(1 − θ)Pxν + Quν = 0,

(1 − θ)QTxν + Ruν = 0,

xν − B(hν)u
ν = 0,

Cxν + Duν ≥ 0 and uν �= 0.

Without loss of generality, we may assume that ‖uν‖ = 1 for all ν = 1, 2, . . . and that {uν}∞ν=1
converges to a limit u∞, which must be nonzero. Since xν = B(hν)uν we deduce

[R + (1 − θ)QTB(hν)]uν = 0,

yielding in the limit Ru∞ = 0. Similarly, since [D + CB(hν)]uν ≥ 0, we also deduce Du∞ ≥ 0.
This contradicts assumption (D). �

Now we are ready to prove the following solvability result.

Lemma 7.3. Let assumptions (A) and (D) and condition (12) hold. For all h > 0 sufficiently

small, (Q̂P
h
) has an optimal solution. Moreover, if R is positive definite, the optimal solution is

unique.

Proof Let h > 0 be sufficiently small so that Lemma 7.2 holds. For the existence of an optimal
solution, it suffices to verify the implication (IPh). Let (xh, uh) satisfy the left-hand side of this
implication. Notice that xh,0 = 0, therefore, (xh,1, uh,1) satisfies the left-hand side of implication
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(14). By Lemma 7.2 we have uh,1 = 0 and hence xh,1 = 0. This in turn implies that uh,2 = xh,2 = 0.
Inductively, we can show that xh,i = uh,i = 0 for all i = 1, . . . , Nh + 1. Therefore, the implication
(IPh) holds.

To show the uniqueness of the optimal solution when R is positive definite, we let (̂xh, ûh) and

(x̃h, ũh) be two optimal solutions to (Q̂P
h
). Letting yh,i � x̃h,i − x̂h,i for all and vh,i � ũh,i − ûh,i

for all i = 1, . . . , Nh, we deduce, by part (b) of Proposition 4.1, we deduce:[
P Q

QT R

](
θyh,i + (1 − θ)yh,i+1

vh,i+1

)
= 0 ∀i = 0, . . . , Nh,

and Syh,Nh+1 = 0. (15)

By the feasibility of (̂xh, ûh) and (x̃h, ũh), we also have

yh,0 = 0 and yh,i+1 − A(h)yh,i − B(h)vh,i+1 = 0 ∀i = 0, . . . , Nh.

Hence, from (15), we have vh,1 = R−1(1 − θ)QTyh,1. Thus,

yh,1 − B(h)R−1(1 − θ)QTyh,1 = [I − B(h)R−1(1 − θ)QT]yh,1 = 0.

It is clearly that I − B(h)R−1(1 − θ)QT is invertible for all h > 0 sufficiently small, so yh,1 =
vh,1 = 0. Inductively, we may deduce that yh,i = vh,i = 0 for all i = 1, . . . , Nh + 1. �

7.2 Some comments on implementation

While the focus of our work is not in the computer implementation of the discretization schemes,
it would be useful to provide some brief comments on the solution effort required of the LP (13)

and the (Q̂P
h
) for a given step size h > 0. We first address the LP. Since the constraints of this

LP couple all the variables {ρ; {xh,i, uh,i}Nh
i=1}, one cannot simply march forward in time and has to

deal with the entire LP in one shot involving all discrete-time variables; thus care is needed in the
solution of this LP because of its potentially large size. One possible way to handle this issue of
scale and memory is to employ an iterative approach by first regularizing, either by the Tikonov
or the proximal scheme, the objective to obtain a strictly convex program in the same variables
and then use a row-action method – i.e. a cyclic coordinate dual ascent method – on the resulting
regularized QP. This is essentially the iterative approach proposed by Mangasarian [51,52] for
solving large-scale, sparse linear programs. After the minimum residual ρξ (h) is computed, the

same iterative approach can be applied to the (Q̂P
h
) for θ ∈ (0, 1), which is the case where the

variables are coupled to the objective function. When θ = 0 or 1, this QP decomposes into Nh + 1
sub-QPs each involving only the variables {xh,i, uh,i} corresponding to time th,i. In this regard, the
introduction of the scalar θ is less for computational advantage than for a unified convergence
analysis. The issue of successively solving these finite-dimensional subproblems – the LP (13)

and the (Q̂P
h
) – in an efficient manner when the step size h is refined is regrettably beyond the

scope of the paper.

8. Convergence analysis

As a DAVI, it is natural to ask why the convergence results of time-stepping methods obtained
previously in [44,57] cannot be applied here. The reason is twofold: one is that the methods in
these references do not include the MPC scheme; the second, and more important reason is that
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784 L. Han et al.

all the existing results for boundary-value problems require the terminal time T to satisfy certain
conditions, whereas no such conditions are imposed herein. For these reasons, a separate analysis
is needed. Nevertheless, the proof steps are similar; first, we need to derive some bounds for the

solutions of the (Q̂P
h
), from which we can then invoke two results in [57] – Lemma 7.2 and

Theorem 7.1 – to complete the convergence proof. The technical challenge lies in the derivation
of the bounds which is the main topic of the following subsections.

8.1 Key bounds for solutions of (̂QP
h
)

The first step in the convergence analysis of the relaxed, unified time-stepping method is to show

that the (Q̂P
h
) has a feasible solution that is uniformly bounded in norm for all h > 0 sufficiently

small. In order to accomplish this, we employ Proposition 4.2 to establish the following result.

Proposition 8.1. Let assumptions (C) and (E) and condition (12) hold. A positive constant σ

exists such that for all h > 0 sufficiently small, the (Q̂P
h
) has a feasible pair xh

dfs � {xh,i+1
dfs }Nh

i=0

and uh
dfs � {uh,i+1

dfs }Nh
i=0 such that ‖xh,i+1

dfs ‖ ≤ σ and ‖uh,i+1
dfs ‖ ≤ σ for all i = 0, 1, . . . , Nh.

Proof Let (̂xh, ûh) be as defined in the proof of Proposition 7.1 so that for all i = 0, 1, . . . , Nh,

x̂h,i+1 = [θE(h)rh,i + (1 − θ)Ê(h)rh,i+1] + A(h)̂xh,i + B(h)̂uh,i+1,

Cx̂h,i+1 + D̂uh,i+1 + f + ρx(h)1 ≥ 0,

where limh↓0 ρx(h) = 0. Substituting x̂h,i+1 from the first equation into the second inequality, we
can write the above equivalently as

C{[θE(h)rh,i + (1 − θ)Ê(h)rh,i+1] + A(h)̂xh,i} + [D + CB(h)]̂uh,i+1 + ρx(h)1 ≥ 0.

Let h̄d and σd be the positive scalars given by Proposition 4.2 associated with the family of
matrices {D + CB(h) | h ≥ 0}. In what follows, the step h is restricted in the interval (0, h̄d].
Since the inequality

C{[θE(h)rh,0 + (1 − θ)Ê(h)rh,1] + A(h)ξ} + [D + CB(h)]u + ρh(ξ)1 ≥ 0 (16)

is satisfied by uh,1 among a feasible tuple of (Q̂P
h
), it follows from Proposition 4.2 that a vector

uh,1
dfs satisfying (16) exists such that

‖̂uh,1 − uh,1
dfs‖ ≤ σd |ρh(ξ) − ρx(h)|.

Note that |ρh(ξ) − ρx(h)| tends to zero as h ↓ 0. Defining xh,0
dfs � ξ and

xh,1
dfs � [θE(h)rh,0 + (1 − θ)Ê(h)rh,1] + A(h)xh,0

dfs + B(h)uh,1
dfs ,

we deduce

‖̂xh,1 − xh,1
dfs‖ ≤ ‖B(h)‖‖̂uh,1 − uh,1

dfs‖.

Proceeding inductively, we can obtain tuples uh
dfs � {uh,i+1

dfs }Nh
i=0 and xh

dfs � {xh,i+1
dfs }Nh

i=0 such that for
all i = 0, . . . , Nh,

xh,i+1
dfs = [θE(h)rh,i + (1 − θ)Ê(h)rh,i+1] + A(h)xh,i

dfs + B(h)uh,i+1
dfs ,

Cxh,i+1
dfs + Duh,i+1

dfs + f + ρh(ξ)1 ≥ 0,
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and the following bounds hold:

‖̂xh,i+1 − xh,i+1
dfs ‖ ≤ ‖A(h)‖‖̂xh,i − xh,i

dfs‖ + ‖B(h)‖‖̂uh,i+1 − uh,i+1
dfs ‖

and

‖̂uh,i+1 − uh,i+1
dfs ‖ ≤ σd[‖C‖‖A(h)‖‖̂xh,i − xh,i

dfs‖ + |ρh(ξ) − ρx(h)|]. (17)

Thus, (xh
dfs, uh

dfs) is feasible to (Q̂P
h
). It remains to show that these tuples are uniformly bounded

in norm for all h > 0 sufficiently small. From the above bounds, we deduce

‖̂xh,i+1 − xh,i+1
dfs ‖ ≤ ‖A(h)‖[1 + σd‖C‖‖B(h)‖]‖̂xh,i − xh,i

dfs‖ + σd‖B(h)‖|ρh(ξ) − ρx(h)|

By (12), we have ‖A(h)‖ ≤ 1 + h‖A‖ + o(h) and ‖B(h)‖ ≤ h‖B‖ + o(h); consequently, for some
constant σ ′

d > 0, we deduce

‖̂xh,i+1 − xh,i+1
dfs ‖ ≤ [1 + σ ′

dh + o(h)]‖̂xh,i − xh,i
dfs‖ + o(h).

As in the proof of Proposition 7.1, the above yields ‖̂xh,i+1 − xh,i+1
dfs ‖ ≤ o(h)/h. Thus, the tuple

xh
dfs is bounded in norm uniformly for all h > 0 sufficiently small. The bound for uh

dfs follows
from (17). �

An immediate consequence of Proposition 8.1 is that the optimal objective values of the (Q̂P
h
),

which we denote ϑh, are bounded above for all h > 0 sufficiently small.

Corollary 8.1. Let assumptions (A), (C), (D) and (E), and condition (12) hold. A constant ϑ̄

exists such that for all h > 0 sufficiently small, ϑh ≤ ϑ̄ .

Proof This follows easily from the inequality below and the fact that h(Nh + 1) = T :

ϑh ≤ (xh,Nh+1
dfs )T

(
c + 1

2
Sxh,Nh+1

)
+ h

2

Nh∑
i=0

{
2

(
θxh,i

dfs + (1 − θ)xh,i+1
dfs

uh,i+1
dfs

)T (
ph,i+1

qh,i+1

)

+
(

θxh,i
dfs + (1 − θ)xh,i+1

dfs

uh,i+1
dfs

)T [
P Q

QT R

](
θxh,i

dfs + (1 − θ)xh,i+1
dfs

uh,i+1
dfs

)}
.

Indeed, each term within the bracket {•} is bounded, thus so is the sum (h/2)
∑Nh

i=0{•}. The first
product in the right-hand side of the above inequality is also bounded; therefore, so is ϑh. �
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786 L. Han et al.

Our next task is to use the objective bound to derive bounds (summarized in Proposition 8.3)

for the optimal solutions of the (Q̂P
h
). This is accomplished via the KKT conditions of the (Q̂P

h
):

0 = c + Sxh,Nh+1 − λh,Nh

+ h(1 − θ){ph,Nh+1 + P[θxh,Nh + (1 − θ)xh,Nh+1] + Quh,Nh+1} − CTμh,Nh+1,

0 = hθ{ph,i+2 + P[θxh,i+1 + (1 − θ)xh,i+2] + Quh,i+2} + A(h)Tλh,i+1 − λh,i

+ h(1 − θ){ph,i+1 + P[θxh,i + (1 − θ)xh,i+1] + Quh,i+1} − CTμh,i+1,

i = 0, . . . , Nh − 1,

0 = hqh,i+1 + hQT[θxh,i + (1 − θ)xh,i+1] + hRuh,i+1 + B(h)Tλh,i − DTμh,i+1,

i = 0, . . . , Nh,

xh,0 = ξ ,

xh,i+1 = [θE(h)rh,i + (1 − θ)Ê(h)rh,i+1] + A(h)xh,i + B(h)uh,i+1, i = 0, . . . , Nh,

0 ≤ μh,i+1 ⊥ Cxh,i+1 + Duh,i+1 + f + ρh(ξ)1 ≥ 0, i = 0, . . . , Nh. (18)

Note the simultaneous presence of both Quh,i+2 and Quh,i+1 in the second equation of the above
KKT conditions; this is the result of the θ -scheme and is in contrast to the individual DAVI and
MPC schemes where only one of the two terms appear in each scheme. This joint presence of
two consecutive u-iterates is another distinguishing feature of the new scheme that invalidates the
direct application of the results in [44,57].

The key to deriving the desired bounds is a polyhedral characterization of the set of the multiplier
tuples λh � {λh,i}Nh

i=0 and μh � {μh,i+1}Nh
i=0 satisfying the KKT system (18) that is independent of

any optimal solution of the (Q̂P
h
). The resulting characterization is in essence the specialization

of part (c) of Proposition 4.1 to the (Q̂P
h
). To present the characterization in this case, we first

introduce two constant tuples wh and dh of the (Q̂P
h
). For any optimal solution (xh, uh) of the

(Q̂P
h
), define the tuple wh � {wh,i}Nh

i=0 as follows:

wh,Nh � ∇xh,Nh+1 Vh(xh, uh)

= c + Sxh,Nh+1 + h(1 − θ){ph,Nh+1 + P[θxh,Nh + (1 − θ)xh,Nh+1] + Quh,Nh+1} (19)

and inductively, for i = 0, . . . , Nh − 1,

wh,i � ∇xh,i+1 Vh(xh, uh) + A(h)Twh,i+1

= hθ{ph,i+2 + P[θxh,i+1 + (1 − θ)xh,i+2] + Quh,i+2} + A(h)Twh,i+1

+ h(1 − θ){ph,i+1 + P[θxh,i + (1 − θ)xh,i+1] + Quh,i+1}. (20)

Also define the tuple dh � {dh,i}Nh
i=0 as follows: for i = 0, . . . , Nh,

dh,i � ∇uh,i+1 Vh(xh, uh) + B(h)Twh,i

= h{qh,i+1 + QT[θxh,i + (1 − θ)xh,i+1] + Ruh,i+1} + B(h)Twh,i. (21)

Note that while there may be multiple optimal solutions of the (Q̂P
h
), the tuples wh and dh are

uniquely defined independently of which optimal solution (xh, uh) is used in the expressions (19)–
(21); this is because the gradient of the objective function Vh(xh, uh) of the QP is constant on its
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set of optimal solutions. The next lemma shows that we can bound ‖xh,i+1‖, ‖wh,i‖ and ‖dh,i‖ in
terms of the scaled sum: ϒh � h

∑Nh
i=0 ‖uh,i+1‖.

Lemma 8.1. Let condition (12) hold. Positive scalars ηx and ηd exist such that for all h > 0
sufficiently small and all i = 0, . . . , Nh, any optimal solution (xh, uh) of the (Q̂P

h
) satisfies the

following bounds:

max(‖xh,i+1‖, ‖wh,i‖) ≤ ηx(1 + ϒh) (22)

and

‖dh,i‖ ≤ h[ηd(1 + ϒh) + ‖uh,i+1‖]. (23)

Proof Since

xh,i+1 = θE(h)rh,i + (1 − θ)Ê(h)rh,i+1 + A(h)xh,i + B(h)uh,i+1,

we can deduce, by inductively substituting xh,i from the previous equation,

xh,i+1 = A(h)i+1ξ +
i+1∑
j=1

A(h)i+1−j[θE(h)rh,j−1 + (1 − θ)Ê(h)rh,j + B(h)uh,j]. (24)

By (12), we have ‖A(h) − I‖ ≤ 2‖A‖h for all h > 0 sufficiently small. Thus

‖A(h)‖i ≤ (1 + 2‖A‖h)i ≤ (1 + 2‖A‖h)Nh ≤ e2‖A‖T

for all i = 0, . . . , Nh and all h > 0 sufficiently small. Moreover, ‖B(h)‖ ≤ 2‖B‖h, ‖E(h)‖ ≤ 2h
and ‖Ê(h)‖ ≤ 2h for the same h. Hence, some constant ηx > 0,

‖xh,i+1‖ ≤ e2‖A‖T‖ξ‖ + 2h e2‖A‖T(i + 1)ψr + h
i+1∑
j=1

e2‖A‖T‖B‖‖uh,j‖

≤ e2‖A‖T(‖ξ‖ + 2Tψr + T‖B‖ϒh) ≤ ηx(1 + ϒh),

for all i = 0, . . . , Nh and all h > 0 sufficiently small. This establishes the desired bound for ‖xh,i+1‖
for all i = 0, . . . , Nh. For some constant η1

w > 0, we have

‖wh,Nh‖ ≤ ‖c + Sxh,Nh+1‖ + h(1 − θ)[ψp + ‖P‖ηx(1 + ϒh) + ‖Q‖‖uh,Nh+1‖] ≤ η1
w(1 + ϒh).

Similar to the successive substitution to obtain the expression (24) for xh,i+1, starting backward
from the expression for wh,Nh , we can obtain the following expression for wh,i for i = Nh −
1, . . . , 0:

wh,i = [A(h)T]Nh−iwh,Nh + h
Nh∑

j=i+1

[A(h)T]j−i−1{θ [ph,j+1 + P(θxh,j + (1 − θ)xh,j+1) + Quh,j+1]

+ (1 − θ)[ph,j + P(θxh,j−1 + (1 − θ)xh,j) + Quh,j]}.

Similar to A(h), we have ‖A(h)T‖i ≤ e2‖AT‖T for all i = 1, . . . , Nh + 1 and all h > 0 sufficiently
small. Hence, for some constant η2

w > 0, we can deduce, for all i = 0, . . . , Nh − 1, ‖wh,i‖ ≤
η2

w(1 + ϒh), establishing (22). The bound (23) for ‖d h,i‖ follows readily from (21) and (22). �
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788 L. Han et al.

Define the index sets for i = 0, . . . , Nh,

αh,i � {j | [Cxh,i+1 + Duh,i+1 + f + ρh(ξ)1]j = 0 ∀ opt. sols. (xh, uh) of the (Q̂P
h
) }.

By Proposition 4.1, any multiplier {μh,i}Nh+1
i=1 of the KKT system (1) must satisfy μ

h,i+1
j = 0 for all

j �∈ αh,i and all i = 0, . . . , Nh. Recognizing this fact, the proposition below presents the promised
characterization of the multipliers λh and μh satisfying (18) in terms of the index sets {αh,i}Nh

i=0
and the tuples wh and dh.

Proposition 8.2. Suppose that the (Q̂P
h
) has an optimal solution. Let wh and dh be the associated

constant tuples defined by (19)−(21). A pair ({λh,i}Nh
i=0, {μh,i+1}Nh

i=0) satisfies the KKT system (18)

if and only if {μh,i+1}Nh
i=0 satisfies the system:

Nh−i−1∑
j=0

[CA(h)Nh−i−jB(h)]Tμh,Nh−j+1 + [D + CB(h)]Tμh,i+1 = dh,i

μh,i+1 ≥ 0, and μ
h,i+1
j = 0 ∀j �∈ αh,i

⎫⎪⎬⎪⎭ , i = 0, . . . , Nh (25)

and for i = Nh, . . . , 0,

λh,i = wh,i −
Nh−i∑
j=0

[A(h)Nh−i−j]TCTμh,Nh−j+1. (26)

Proof This follows from a linear-algebraic manipulation of the first three equations in (18), by
means of which we solve for the λh tuple in terms of the μh tuple, noticing that the other terms
can all be expressed in terms of the wh and dh defined above. We illustrate a few steps in the ‘only
if’ part and omit the ‘if’ part. Let ({xh,i+1}Nh

i=0, {uh,i+1}Nh
i=0, {λh,i}Nh

i=0, {μh,i+1}Nh
i=0) be any KKT tuple

satisfying (18). From the first equation in the KKT system (18), we can solve for λh,Nh , obtaining,

λh,Nh = wh,Nh − CTμh,Nh+1,

which can be substituted into the third equation of (18) for i = Nh, yielding:

[D + CB(h)]Tμh,Nh+1 = dh,Nh .

Similarly, from the second equation in (18) with i = Nh − 1, we have

λh,Nh−1 = wh,Nh−1 − A(h)TCTμh,Nh+1 − CTμh,Nh ,

which we can substitute into the third equation in (18) with i = Nh − 1, obtaining,

[CA(h)B(h)]Tμh,Nh+1 + [D + CB(h)]Tμh,Nh = dh,Nh−1.

Continuing in this fashion, we can see that both (26) and (25) hold. �
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Introducing the block lower triangular matrix

�(h) �

⎡⎢⎢⎢⎣
D + CB(h)

CA(h)B(h) D + CB(h)
...

. . .
. . .

CA(h)Nh B(h) · · · CA(h)B(h) D + CB(h)

⎤⎥⎥⎥⎦ ,

we can write the system (25) as:

�(h)

⎛⎜⎜⎜⎝
μh,Nh+1

μh,Nh

...
μh,1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
dh,Nh

dh,Nh−1

...
dh,0

⎞⎟⎟⎟⎠ ,

{
μh,i+1 ≥ 0 ∀i = 0, . . . , Nh,
μ

h,i+1
j = 0 ∀j �∈ αh,i ∀i = 0, . . . , Nh.

(27)

The next lemma employs Proposition 3.1 to show that special multipliers {λh,i}Nh
i=0 and {μh,i+1}Nh

i=0

can be chosen so that an optimal solution uh of the (Q̂P
h
) can be bounded by ϒh.

Lemma 8.2. Let assumptions (A)–(E) and condition (12) hold. Positive scalars h̄ and η′ exist
such that for all h ∈ (0, h̄], multipliers ({λh,i}Nh

i=0, {μh,i+1}Nh
i=0) satisfying (18) can be chosen so that

the following bounds hold for all i = 0, . . . , Nh,

max(‖uh,i+1‖, ‖λh,i‖, h−1‖μh,i+1‖) ≤ η′(1 + ϒh).

Proof Let h̄E and σE be the constants given by Proposition 3.1. Let h ∈ (0, h̄E] be sufficiently

small so that the (Q̂P
h
) has an optimal solution (xh, uh). Since (27) has a feasible solution, it has

one, say {μh,i+1}Nh
i=0, such that the columns of �(h) corresponding to the positive components of

this solution are linearly independent. By Proposition 3.1, we have, for all i = 0, . . . , Nh,

‖μh,i+1‖ ≤ σE‖[(D + CB(h))αh,i•]Tμh,i+1
αh,i

‖

≤ σE

⎡⎣‖dh,i‖ +
∥∥∥∥∥∥

Nh−i−1∑
j=0

[CA(h)Nh−i−jB(h)]Tμh,Nh−j+1

∥∥∥∥∥∥
⎤⎦

≤ σE‖dh,i‖ + hσ ′
E

Nh−i−1∑
j=0

‖μh,Nh−j+1‖ for some constant σ ′
E > 0,

which we can write in the following matrix form:⎡⎢⎢⎢⎢⎢⎣
1

−hσ ′
E 1

−hσ ′
E −hσ ′

E 1
...

...
. . .

. . .
−hσ ′

E −hσ ′
E · · · −hσ ′

E 1

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝
‖μh,Nh+1‖
‖μh,Nh‖

‖μh,Nh−1‖
...

‖μh,1‖

⎞⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

�h

≤ σE

⎛⎜⎜⎜⎜⎜⎝
‖dh,Nh‖

‖dh,Nh−1‖
‖dh,Nh−2‖

...
‖dh,0‖

⎞⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

�h

.

The matrix on the left-hand side is invertible with an explicit inverse

M(h) �

⎡⎢⎢⎢⎢⎢⎣
1
h′ 1

h′(1 + h′) h′ 1
...

...
. . .

h′(1 + h′)Nh−1 h′(1 + h′)Nh−2 · · · h′ 1

⎤⎥⎥⎥⎥⎥⎦ ,
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where h′ � hσ ′
E . Since M(h) is nonnegative, we deduce �h ≤ σEM(h)�h. Thus, for i = Nh, . . . , 0,

‖μh,i+1‖ ≤ σE

⎧⎨⎩‖dh,i‖ + h′
Nh−i−1∑

j=0

(1 + h′)j‖dh,i+j+1‖
⎫⎬⎭

≤ σE

⎧⎨⎩h[ηd(1 + ϒh) + ‖uh,i+1‖] + h′
Nh−i−1∑

j=0

(1 + h′)jh[ηd(1 + ϒh) + ‖uh,i+j+2‖]
⎫⎬⎭

≤ hσE‖uh,i+1‖ + hη′
d(1 + ϒh) for some constant η′

d > 0. (28)

With λh,i given by (26) in the proof of Proposition 8.2, we have, by (22),

‖λh,i‖ ≤ ‖wh,i‖ +
Nh−i∑
j=0

‖[A(h)Nh−i−j]TCT‖‖μh,Nh−j+1‖

≤ ηx(1 + ϒh) + η̂

Nh−i∑
j=0

‖μh,Nh−j+1‖ for some constant η̂ > 0

≤ η(1 + ϒh) + η̂

Nh∑
j=i

[hσE‖uh,Nh−j+1‖ + hη′
d(1 + ϒh)]

≤ ηλ(1 + ϒh) for some constant ηλ > 0.

Since uh,i+1 is an optimal solution of the QP:

minimize
u

uT{qh,i+1 + QT[θxh,i + (1 − θ)xh,i+1] + h−1B(h)Tλh,i} + 1
2 uTRu

subject to Cxh,i+1 + Du + f + ρh(ξ)1 ≥ 0 (29)

by (12), Proposition 7.1 and part (b) of Proposition 4.1, it follows that a constant σ1 > 0 exists
such that for all h > 0 sufficiently small, all i = 0, . . . , Nh,

‖uh,i+1‖ ≤ σ1[1 + ‖θxh,i + (1 − θ)xh,i+1‖ + ‖λh,i‖]
≤ σ1[ηx(1 + ϒh) + ηλ(1 + ϒh)] ≤ ηu(1 + ϒh) for some constant ηu > 0.

Substituting the above bound into (28), we complete the three bounds claimed by this lemma. �

Employing only assumption (D), the next lemma is a technical result that will be used
subsequently in the main Lemma 8.4 to bound the ϒh.

Lemma 8.3. Let assumption (D) hold. Let y(t) be an absolutely continuous function and v(t) be
an integrable function satisfying

y(t) =
∫ t

0
[Ay(τ ) + Bv(τ )] dτ for all t ∈ [0, T ], y(0) = 0,[

P Q
QT R

](
y(t)
v(t)

)
= 0 for almost all t ∈ [0, T ],

Cy(t) + Dv(t) ≥ 0 for almost all t ∈ [0, T ].
Then y(t) = 0 for all t ∈ [0, T ] and v(t) = 0 for almost all t ∈ [0, T ].
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Proof It suffices to show y = 0 on [0, T ]. It is not hard to show that under condition (D) there
exists a constant η > 0 such that for all pairs (y, v) satisfying QTy + Rv = 0 and Cy + Dv ≥ 0,
we have ‖v‖ ≤ η‖y‖. Thus, for some constant η′ > 0, any pair of functions (y(t), v(t)) as stated
in the lemma must satisfy ‖ẏ(t)‖ ≤ η‖y(t)‖ for almost all t ∈ [0, T ]. This is enough to show that
y must vanish identically on [0, T ]. �

We are ready to state and prove the final bound.

Lemma 8.4. Let assumptions (A)–(E) and condition (12) hold. There exists a positive number
�u such that for all h > 0 sufficiently small, ϒh ≤ �u.

Proof By way of contradiction, assume that a sequence of positive scalars {hν}∞ν=1 ↓ 0 exists so
that ϒhν

→ ∞ as ν → ∞. We claim that there exists a scalar α > 0 such that

Nhν∑
i=0

(
θxhν ,i + (1 − θ)xhν ,i+1

uhν ,i+1

)T [
P Q

QT R

](
θxhν ,i + (1 − θ)xhν ,i+1

uhν ,i+1

)
≥ α

Nhν +1∑
i=1

‖uhν ,i‖2,

for all ν sufficiently large. Suppose the claim is not true; then by working with a suitable
subsequence if necessary, we may assume that

Nhν∑
i=0

(
θxhν ,i + (1 − θ)xhν ,i+1

uhν ,i+1

)T [
P Q

QT R

](
θxhν ,i + (1 − θ)xhν ,i+1

uhν ,i+1

)
≤ 1

ν

Nhν +1∑
i=1

‖uhν ,i‖2, (30)

for all ν large enough. Write ζhν
�
√

hν

∑Nhν +1
j=1 ‖uhν ,j‖2. For each ν and for all i = 0, . . . , Nhν

+ 1,
define:

ξν � ξ

ζhν

and (vhν ,i, yhν ,ishν ,i) � (uhν ,i, xhν ,i, rhν ,i)

ζhν

.

Clearly, we have

yhν ,0 = ξν

yhν ,i+1 = [θE(h)shν ,i + (1 − θ)Ê(h)shν ,i+1] + A(hν)y
h,i + B(hν)v

hν ,i+1 ∀i = 0, . . . , Nhν
.

Noticing that

hν

Nhν +1∑
j=1

‖uhν ,j‖2 ≥ hν

Nhν
+ 1

⎛⎝Nhν +1∑
j=1

‖uhν ,j‖
⎞⎠2

= h2
ν

T

⎛⎝Nhν +1∑
j=1

‖uhν ,j‖
⎞⎠2

,

we deduce limν→∞ζhν
= ∞. Moreover, by Lemma 8.2, it follows that for all ν and all i =

1, . . . , Nhν
+ 1,

‖vhν ,i‖ = ‖uhν ,i‖
ζhν

≤ η(1 + ϒhν
)

ϒhν
/
√

T
.

Therefore, there exists �v > 0 such that ‖vhν ,i‖ ≤ �v for all ν sufficiently large and all
i = 1, . . . , Nhν

+ 1. Similarly, there exist �y > 0 and �s > 0 such that for all ν and all
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792 L. Han et al.

i = 0, . . . , Nhν
+ 1, ‖yhν ,i‖ ≤ �y and ‖shν ,i‖ ≤ �s. Thus,

‖yhν ,i+1 − yhν ,i‖
hν

= ‖[θE(hν)shν ,i + (1 − θ)Ê(hν)shν ,i+1] + (A(hν) − I)yh,i + B(hν)vhν ,i+1‖
hν

≤ 2�s + 2‖A‖‖yhν ,i‖ + 2‖B‖vhν ,i+1‖ ≤ 2�s + 2‖A‖�y + 2‖B‖�v � R′
y.
(31)

Now define the functions on [0, T ]: for i = 0, . . . , Nh,

ŷν(t) � yhν ,i + t − thν ,i

hν

(yhν ,i+1 − yhν ,i) ∀t ∈ [thν ,i, thν ,i+1],

v̂ν(t) � vhν ,i+1 ∀t ∈ (thν ,i, thν ,i+1].

For t ∈ [thν ,i, thν ,i+1], we have

ŷν(t) = [xhν ,i + ((t − thν ,i)/hν)(x
hν ,i+1 − xhν ,i)]

ζhν

= [θxhν ,i + (1 − θ)(xhν ,i+1 − xhν ,i)]
ζhν

+ (t − thν ,i+1 + θhν)
yhν ,i+1 − yhν ,i

hν

,

which yields,∫ thν ,i+1

thν ,i

(̂
yν(t)
v̂ν(t)

)T [
P Q

QT R

] (̂
yν(t)
v̂ν(t)

)
dt

=

∫ thν ,i+1

thν ,i

(
θxhν ,i + (1 − θ)(xhν ,i+1 − xhν ,i)

uhν ,i+1

)[
P Q

QT R

](
θxhν ,i + (1 − θ)(xhν ,i+1 − xhν ,i)

uhν ,i+1

)
hν

∑Nhν +1
j=1 ‖uhν ,j‖2

+
∫ thν ,i+1

thν ,i

[
(t − thν ,i+1 + θhν)

yhν ,i+1 − yhν ,i

hν

]T

P

[
(t − thν ,i+1 + θhν)

yhν ,i+1 − yhν ,i

hν

]
.

Thus, by (30),

∫ T

0

(̂
yν(t)
v̂ν(t)

)T [
P Q

QT R

] (̂
yν(t)
v̂ν(t)

)
dt = hν

Nhν∑
i=0

∫ thν ,i+1

thν ,i

(̂
yν(t)
v̂ν(t)

)T [
P Q

QT R

] (̂
yν(t)
v̂ν(t)

)
dt

≤ 1

ν
+ (� ′

y)
2‖P‖hν

Nhν∑
i=0

∫ thν ,i+1

thν ,i

(t − thν ,i+1 + θhν)
2 dt

= 1

ν
+ 1

3
(� ′

y)
2‖P‖(1 − θ)3h3

ν → 0 as ν → ∞. (32)

From (31), the family of functions {̂yν} for all ν sufficiently large form an equicontinuous family
of functions. By the well-known Arzela–Ascoli theorem, we conclude that, by restricting to a
subsequence of {hν} if necessary, ŷν converges in the supremum norm to an absolutely continuous
function ŷ∞ on [0, T ]. Moreover, from the uniform boundedness of vhν ,i for all ν sufficiently
large, we conclude that the functions v̂ν are uniformly bounded in the L∞ norm. Following the
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arguments in [56, Theorem 7.1], we may conclude without loss of generality that the sequence
{̂vν} converges weakly to v̂∞ ∈ L2([0, T ]). Notice that we have

yhν ,i+1 − yhν ,i = [θE(hν)s
hν ,i + (1 − θ)Ê(hν)s

hν ,i+1] + (A(hν) − I)yh,i + B(hν)v
hν ,i+1

=
∫ thν ,i+1

thν ,i

[Âyν(τ ) + Bvhν ,i+1] dτ + ς i
ν ,

where ς i
ν satisfies limν→∞(ς i

ν/hν) = 0. Following the arguments in [56, Theorem 7.1], we can
deduce that

ŷ∞(t) =
∫ t

0
[Ây∞(t) + B̂v∞(t)] dτ . (33)

Moreover, ŷ∞(0) = limν→∞ŷν(0) = limν→∞ξν = 0. For any nonnegative, continuous vector-
value functions φ ∈ L2([0, T ]), we have∫ T

0
φ(t)T[Cŷ∞(t) + D̂v∞(t)] dt

= lim
ν→∞

∫ T

0
φ(t)T[Cŷν(t) + D̂vν(t)] dt

= lim
ν→∞h

Nh∑
i=0

∫ th,i+1

th,i

φ(t)T

{
C

[
yhν ,i + t − thν ,i

hν

(yhν ,i+1 − yhν ,i)

]
+ Dvhν ,i+1

}
dt

= lim
ν→∞h

Nh∑
i=0

∫ th,i+1

th,i

φ(t)T

{
Cyhν ,i+1 + Dvhν ,i+1 + t − thν ,i − hν

hν

C(yhν ,i+1 − yhν ,i)

}
dt

≥ lim
ν→∞h

Nh∑
i=0

∫ th,i+1

th,i

φ(t)T t − thν ,i+1

hν

C(yhν ,i+1 − yhν ,i) dt = 0.

Hence Cŷ∞(t) + D̂v∞(t) ≥ 0 for almost all t ∈ [0, T ]. By [57, expression (7.9)], we have

lim inf
ν→∞

∫ T

0

(̂
yν(t)
v̂ν(t)

)T [
P Q

QT R

] (̂
yν(t)
v̂ν(t)

)
dt ≥

∫ T

0

(̂
y∞(t)
v̂∞(t)

)T [
P Q

QT R

] (̂
y∞(t)
v̂∞(t)

)
dt ≥ 0.

Since the left-hand liminf is equal to zero by (32), it follows that
[

P Q
QT R

] (
ŷ∞(t)
v̂∞(t)

)
= 0 for almost

all t ∈ [0, T ]. Hence by Lemma 8.3, v̂∞(t) = 0 for almost all t ∈ [0, T ]. However, this contradicts

∫ T

0
‖̂v∞(t)‖2 dt = lim

ν→∞hν

Nhν +1∑
i=1

‖vhν ,i‖2 = 1.

Therefore, the claim about the existence of the scalar α holds. Since ({xhν ,i}Nhν +1
i=0 , {uhν ,i}Nhν +1

i=1 ) is

an optimal tuple to (Q̂P
hν

), we have

ϑ̄ ≥ ϑhν
= (xhν ,Nhν +1)T

(
c + 1

2
Sxhν ,Nhν +1

)
+ hν

2

Nhν∑
i=0

{
2

(
θxhν ,i + (1 + θ)xhν ,i+1

uhν ,i+1

)T (
phν ,i+1

qhν ,i+1

)

+
(

θxhν ,i + (1 + θ)xhν ,i+1

uhν ,i+1

)T [
P Q

QT R

](
θxhν ,i + (1 + θ)xhν ,i+1

uhν ,i+1

)}
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794 L. Han et al.

≥ −‖c‖ηx(1 + ϒhν
) − Lqϒhν

− TLpηx(1 + ϒhν
) + hν

2

Nhν +1∑
i=1

α‖uhν ,i‖2

≥ −(‖c‖ηx + TLpηx) − (‖c‖ηx + ψq + Tψpηx)ϒhν + α

2T
ϒ2

hν
(34)

contradicting the unboundedness of {ϒhν
}. �

Summarizing the derivations in this subsection, we present the following result that contains
all the required bounds to complete the convergence proof to be given in the next subsection.

Proposition 8.3. Let assumptions (A)–(E) and condition (12) hold. Positive scalars h̄, η and L
exist such that for all h ∈ (0, h̄], KKT multipliers (λh, μh) exist such that for all optimal solutions

(xh, uh) of the (Q̂P
h
),

max(‖xh,i+1‖, ‖uh,i+1‖, ‖λh,i‖, h−1‖μh,i+1‖) ≤ η(1 + �u) ∀i = 0, . . . , Nh, (35)

and for all i = 0, . . . , Nh − 1,

max

{∥∥∥∥[Q
R

]
(uh,i+2 − uh,i+1)

∥∥∥∥ , h−1‖DT(μh,i+2 − μh,i+1)‖
}

≤ L[‖qh,i+2 − qh,i+1‖ + ‖xh,i+2 − xh,i+1‖ + ‖xh,i+1 − xh,i‖ + ‖λh,i+1 − λh,i‖]. (36)

Proof The bound (35) follows easily by combining Lemmas 8.1, 8.2, and 8.4. Since uh,i+1 is an
optimal solution of the QP, (29), and since

0 = qh,i+1 + QT[θxh,i + (1 − θ)xh,i+1] + Ruh,i+1 + h−1B(h)Tλh,i − h−1DTμh,i+1,

(36) follows readily from part (d) of Proposition 4.1. �

8.2 The main convergence theorem

The convergence of the numerical trajectories is formally stated in Theorem 8.1 whose proof
follows the same outline as that of [56, Theorem 7.1] but differs in some minor details (thanks
to Proposition 8.3). For this purpose, we recall the trajectories (̂xh, ûh) introduced in the opening
paragraph of Section 6; see (10). In addition, we define the λ-trajectory similarly to the x-trajectory;
namely, for i = 0, . . . , Nh,

λ̂h(t) � λh,i + t − th,i

h
(λh,i+1 − λh,i) ∀t ∈ [th,i, th,i+1],

with λh,Nh+1 � c + Sxh,Nh+1, and the μ-trajectory similarly to the u-trajectory; namely, for i =
0, . . . , Nh,

μ̂h(t) � h−1μh,i+1 ∀t ∈ (th,i, th,i+1].
Besides the convergence, an immediate consequence of the theorem below is the existence of an
optimal solution to the DAVI (8), and thus to the QP (1), under assumptions (A)–(E).

This formally establishes Part (I) of Theorem 5.1.

Theorem 8.1. Let assumptions (A)–(E) and condition (12) hold. Let x̂h(t) and ûh(t) be as defined
by (10) and λ̂h(t) and μ̂h(t) as above. The following four statements hold.
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(a) There exists a sequence of step sizes {hν} ↓ 0 such that the two limits exist: (̂xhν , λ̂hν ) → (̂x, λ̂)

uniformly on [0, T ] and (̂uhν , μ̂hν ) → (̂u, μ̂) weakly in L2([0, T ]).
(b) The sequences

{[
P Q

QT R

] (
x̂h

ûh

)}
and {DTμ̂h} converge respectively to

[
P Q

QT R

] (
ĉx
û

)
and DTμ̂

uniformly on [0, T ].
(c) Any limit tuple (̂x, û, λ̂, μ̂) from (a) is a weak solution of (8); thus (̂x, û) is an optimal solution

of (1).
(d) Part (I) of Theorem 5.1 holds.

Proof For the convergence of the sequences, we first show that

{h−1‖xh,i+1 − xh,i‖}Nh
i=0 and {h−1‖λh,i+1 − λh,i‖}Nh

i=0 (37)

are both bounded uniformly for all h > 0 sufficiently small. By (35), we have for all h > 0
sufficiently small and all i = 1, . . . , Nh,

‖λh,i−1 − λh,i‖ = ‖[(A(h))T − I]λh,i + θh[ph,i+1 + P(θxh,i + (1 − θ)xh,i+1) + Quh,i+1]
+ (1 − θ)h[ph,i + P(θxh,i−1 + (1 − θ)xh,i) + Quh,i] − CTμh,i‖

≤ h[2‖A‖η(1 + �u) + ψp + ‖P‖η(1 + �u) + ‖P‖η(1 + �u) + ‖C‖η(1 + �u)]
� hLλ for some constant Lλ > 0, (38)

which implies

h−1‖λh,i−1 − λh,i‖ ≤ Lλ

for all i = 1, . . . , Nh and all h > 0 sufficiently small. The same holds for i = Nh + 1 also. Similarly,
we can establish the same bound for the x-variable: for some constant Lx > 0,

h−1‖xh,i+1 − xh,i‖ ≤ Lx,

for i = 0, . . . , Nh and all h > 0 sufficiently small. By (36), this implies the existence of a scalar
L′ > 0 such that

max

{∥∥∥∥[Q
R

]
(uh,i+2 − uh,i+1)

∥∥∥∥ , h−1‖DT(μh,i+2 − μh,i+2)‖
}

≤ hL′,

for all i = 0, . . . , Nh − 1 and all h > 0 sufficiently small. From the above uniform bounds, we may
conclude that the families of functions {̂xh}, {̂λh}, {[ Q

R

]
ûh
}

and {DTμ̂h} for all h > 0 sufficiently
small are equicontinuous families of functions. By the Arzela–Ascoli theorem, there is a sequence
{hν} ↓ 0 such that {̂xhν } and {̂λhν } converge in the supremum norm to absolutely continuous
functions x̂ and λ̂, respectively, on [0, T ]. Similar to [56, Theorem 7.1], by the uniform boundedness
of (uh,i+1, h−1μh,i+1) and by looking at a proper subsequence of {hν} if necessary, we may conclude
that {(̂uhν , μ̂hν )} converges weakly to a pair of functions (̂u, μ̂) in L2([0, T ]) with

{[
Q
R

]
ûhν
}

and
{DTμ̂hν } converging to

[
Q
R

]
û and DTμ̂ uniformly. To show that (̂x, λ̂, û, μ̂) is a weak solution to

(8), we first notice that

x̂(0) = ξ and λ̂(T) = lim
ν→∞[c + Ŝxhν (T)] = c + Ŝx(T).

Therefore, the boundary conditions are satisfied. The rest of the proof to show that any such limit
tuple (̂x, û, λ̂, μ̂) is a weak solution of (8) is similar to that of [56, Theorem 7.1] and is omitted.
Finally, assertion (b) follows from part (b) of Proposition 4.1 and the fact any equicontinuous
family of Lipschitz functions in a Hilbert space with a unique accumulation function must converge
to that function. �
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8.3 The case of a positive-definite R

When R is positive definite, we can establish the uniform convergence of the u-variable by redefin-
ing the discrete-time trajectory ûh using piecewise linear interpolation instead of the piecewise

constant interpolation in the semidefinite case. First, notice that uh,0 is not included in the (Q̂P
h
).

By letting uh,0 be the unique solution of the QP(U(ξ), qh,0 + h−1B(h)Tλh,0 + QTξ , R), we redefine

ûh(t) � uh,i + t − th,i

h
(uh,i+1 − uh,i) ∀t ∈ [th,i, th,i+1]. (39)

Theorem 8.2 sharpens the convergence conclusions of Theorem 8.1 in this case and also establishes
that the sequences of state and control trajectories {̂xh} and {̂uh} converge, respectively, to the
unique optimal solution (̂x, û) of the problem (1) with x̂ being continuously differentiable and û
continuous on [0, T ].
Theorem 8.2. Assume in addition to the setting of Theorem 8.1 that R is positive definite. Let
x̂h(t), λ̂h(t) and μ̂h(t) be as before, and ûh(t) be defined by (39). The sequence {(̂xh, ûh)} converges
uniformly to the unique optimal solution pair (x∗, u∗) of (1) where x∗ is continuously differentiable
and u∗ is continuous on [0, T ].

Proof Since uh,i+1 is the unique optimal solution of the QP (29) :

minimize
u

uT{qh,i+1 + QT[θxh,i + (1 − θ)xh,i+1] + h−1B(h)Tλh,i} + 1
2 uTRu

subject to Cxh,i+1 + Du + f + ρh(ξ)1 ≥ 0,

by the positive definiteness of R and the uniform boundedness of the vectors in (37), it follows
that a constant ηu > 0 exists such that for i = 0, . . . , Nh and all h > 0 sufficiently small,

‖uh,i+1 − uh,i‖ ≤ hηu.

This bound is sufficient to establish the subsequential uniform convergence of the sequence {̂uh}
to a continuous function û on [0, T ]. Since

x̂(t) = ξ + eAt
∫ t

0
e−Aτ B̂u(τ ) dτ

and û(t) is continuous, it follows that x̂(t) is continuously differentiable. Thus by part (IV) of
Theorem 5.1, the limiting pair (̂x, û) is the unique optimal solution of (1) with x̂ being continuous
differentiable and û continuous. To show that the entire sequence {(̂xh, ûh)} converges uniformly
to this optimal pair, it suffices to note that the error

εh � max
t∈[0,T ]‖(̂x

h(t), ûh(t)) − (̂x(t), û(t))‖

converges to zero as h ↓ 0, by the uniqueness of the pair (̂x, û) and the fact that any limit point of
the sequence {(̂xh, ûh)} is an optimal solution of (1). �

9. Concluding remarks

In this paper, we have identified five assumptions under which we have established the convergence
of a unified time-stepping method for approximating an optimal solution of the convex (but not
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strictly convex) LQ optimal control problem with mixed linear state–control constraints. The
resulting solution has both the state x and costate λ variables absolutely continuous, a property
due largely to the last condition (E). Whether weaker conditions could yield the same regularity
property and ensure similar convergence of the time-stepping methods remains to be investigated.
The case of pure state constraints failing condition (E) is another topic that requires further study.
For such problems, the costate variable is very likely not even continuous [45]. These and other
related open issues will be considered as we continue our research in this area.
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