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Abstract—A unified optimization framework is presented for 
simultaneous gate sizing and placement. These processes are 
unified using Lagrangian multipliers, which synchronize the 
efforts of the gate sizing and placement subproblems. As far 
as we know, this is the first work that formulates and solves 
the simultaneous gate sizing and placement under area density 
constraints, which are handled by the quadratic penalty 
method. We show that this rigorous framework results in an 
algorithm that is faster than separate iterations of gate sizing 
and placement steps, and leads to more robust results for a set 
of benchmarks. 

I. INTRODUCTION 
The success of Moore’s Law in the past four decades has 

resulted in designs with many millions of transistors, if not 
billions. This increase in the density of the transistors has also 
resulted in a tremendous increase in the power of each design. 
While the number of transistors increases by a factor of 2x every 
18 months, the power that each transistor consumes decreases at a 
much slower pace. 

From a design standpoint, this presents a problem. The 
increased power drives the need for increasingly effective 
algorithms, while the increased size makes these problems more 
complex. Nonetheless, there has been good progress in physical 
design over the past decade, with multilevel paradigms in circuit 
placement [3] and with Lagrangian relaxation methods in circuit 
sizing [5]. These algorithms scale well with the size of the 
problem and are algorithms that facilitate design at a large-scale. 

This leads to a natural question – can circuit sizing and circuit 
placement be unified? There are heuristic techniques that can be 
used, but the problem may be too difficult to obtain an exact 
solution. It is well-known that the general placement problem is 
NP-hard [12]. In addition, the gate-level delay function, with 
placement and gate sizes as variables, is nonconvex [6]. These 
difficulties create challenges for simultaneous sizing and 
placement. 

Delay minimization using simultaneous sizing and placement 
has been shown to be effective. In [6] the authors begin with the 
simultaneous optimization problem, and reduce the problem into 
smaller iterations of placement and sizing for the worst paths in 
the circuit. They show that this results in an improvement of 15% 
over sizing alone for a 0.35-µm process. In [7] the authors 
formulate an exact algorithm for the delay optimal mapping of 

trees, and extend the results to general circuit topologies using 
Lagrangian multipliers. Their results show that this performs 
better than an ad hoc net-weighting methodology, but overlap or 
area density constraints are not considered. 

The authors of [8] consider the power minimization problem. 
The algorithm first uses iterations of placement and sizing to 
improve the slack vs. power tradeoff. The slacks are then used by 
a Vth assignment algorithm to minimize the leakage power of the 
design. They show significant improvement for a 65nm process. 

In this paper we present a new unified optimization method for 
simultaneous sizing and placement. This algorithm is interesting 
from both an algorithmic and mathematical point of view for 
several reasons: Lagrangian multipliers are used to join the 
placement and sizing problems, acting as both net weights in the 
placement, and delay weightings in the sizing. The overlap 
constraints are handled using a single penalty factor. In practice, 
our algorithm is not slower than a single round of sizing and 
placement, thus allowing the solution of large-scale problems.  

Our algorithm is distinct from previously referenced algorithms 
because it features all of the following: 

• Area density constraints 
• Power minimization 
• Unified framework for sizing and placement 

The contributions of this paper are: 

• Area-density-aware simultaneous placement and sizing 
• Scalable methodology for handling area density, timing, 

and power 
• Results that compare separate iterations of sizing and 

Lagrangian multiplier-based, timing-driven placement 
with our unified optimization method 

The remainder of this paper is organized as follows. In Section 
II we provide an example of the unified sizing and placement 
optimization, which motivates us to design a different approach. 
In Section III we describe the notations and mathematical 
formulation of the simultaneous optimization problem. In Section 
IV we present our unified optimization framework, which uses 
Lagrangian multipliers to provide a consistent objective for the 
placement and sizing subproblems. In Section V experimental 
results are presented to show the runtime and solution quality of 
our algorithm. 
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II. A MOTIVATING EXAMPLE 
A typical physical synthesis flow includes iterations of separate 

placement and gate sizing steps. Based on a wirelength-driven 
placement, iterations of density-aware gate sizing and timing-
driven placement are performed to meet the timing constraints and 
minimize power consumption. 

In Figure 1 we show the optimization results of iterations of 
gate sizing and placement on the circuit c1355 from the ISCAS-85 
benchmarks [13]. The sum of wire and gate capacitances is used 
as an indirect measure of power consumption. The actual power 
value can be viewed as a weighed sum of the capacitances, and 
does not affect the following analysis in terms of optimization. In 
Figure 1 we can see that the total capacitance continues to 
decrease after several iterations. However, the iterations of full 
sizing and placement are time-consuming, and furthermore, each 
step of the separate sizing and placement ignores the objective of 
the other and slows down the convergence. Therefore, we develop 
a unified optimization for the simultaneous sizing and placement 
problem, which is faster and has a stronger mathematical 
foundation. 

 
Figure 1 – Plots of power minimization results for c1355 

 

III. MATHEMATICAL FORMULATION 
The power-driven simultaneous gate sizing and placement 

optimization problem can be written as 

 
minimize ( ) ( )
subject to ( , )

( , )

wire gatec x c s
A x s C
D x s T

+
≤
≤

 (1) 

where x  is the vector of placement variables, and s  is the vector 
of gate sizing variables. The box constraints, i.e., the fixed-outline 
placement constraints on x  and upper and lower bounds on ,s  
are omitted for simplicity. 

The objective 
1

( ) ( )m
wire i ii

c x l xα
=

=∑  and 
1

( ) n
gate i ii

c s sβ
=

=∑  
are the weighted capacitances of wires and gates. This is a good 
proxy for the total power, as total capacitance is related to the 
power dissipation of the design. In the above, iα  is set as the per 
unit-length capacitance of net ,ie  and set iβ  as the capacitance of 
gate iv for a minimum-sized gate. Improved models can also be 
considered by adding information about the switching activity and 
the leakage power. In this paper we shall assume that these 
parameters are given and focus on solving problem (1). The non-

overlapping constraints are usually formulated as area density 
constraints ( , )A x s C≤  in analytical placers [9]. 

The constraint ( , )D x s T≤  is a shorthand notation for the delay 
constraints. Given a circuit where the set of primary inputs is 

,PI the set of primary outputs is ,PO and the set of fan-ins of 
node j is FI(j), the delay constraints can be written using the 
dynamic-programming formulation: 

 
( , () )i ij j

i

j

t D x s t i
t AT i PI
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⎪ ≡ ∈

≤

∈

⎨
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 (2) 

The minimum values of t that satisfy the conditions in (2) are the 
arrival times at each node. 

Posynomial models are used to model the size vs. delay 
relations, and the Elmore delays are used for wire delay [11]. In 
other words, we assume that the gate delay is given as a function: 

 ( ) 2

( )
( ) (, ) ) )( (i k

ij i i r j k k c j r c j
k FO j

D x s a x l c x lx xx lα βρ ρ ρ ρ
∈
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⎝ ⎠
∑
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where the coefficients iα , kβ  are fitted from the data. For 
simplicity, we use the half-perimeter wirelength for ( ) :l x  

 { } { }
net ne, t,

1 1( ) max max
2 2i i

i k jl kjk l k
l x x yx y

∈ ∈
− −= +  (4) 

The problem (1) does not have a convex formulation – it is not 
jointly convex in x  and .s  However, the delay function is convex 
in s  for a fixed x  and is convex in x  for a fixed .s  

IV. OPTIMIZATION FRAMEWORK 
There are three levels to the optimization process. At the 

highest level, the density penalty μ  is adjusted to find a density-
feasible solution. The next level down updates Lagrangian 
multipliers λ  to find a power-minimized solution that meets the 
delay constraints. At the lowest level, placement and sizing 
subproblems are solved efficiently for a given set of Lagrangian 
multipliers .λ  

A. Quadratic Penalty for Density Constraints 
Density and overflow are major considerations in problem (1) 

and have been an active research topic in the past decade [9]. In 
our work the density and overflow constraints are handled using 
an analytical framework [3] with an area penalty.  

The first step is to convert the area density inequality 
constraints in problem (1) to equality constraints by adding filler 
cells [4]: 

 
minimize ( ) ( )
subject to ( , )

( , )

wire gatec x c s
A x s C
D x s T

+
=
≤

 (5) 

The area density equality constraint is achieved by penalizing 
the objective function with a quadratic penalty term [10], where 
the penalized objective function is defined as 
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 ( )2

{ , | ( , ) }
( ) min ( ) ( ) ( , )

2wire gatex s D x s T
Q c x c s A x s Cμμ

≤

⎧ ⎫= + + −⎨ ⎬
⎩ ⎭

 (6) 

)(Q μ is computed for different values of μ . In theory, the area 
equality constraint will be satisfied as μ increases. This process is 
outlined in Algorithm 1, which solves problem (5). It is required 
that 1 ,k kμ μ+ >  and we set the penalty update factor γ  to 1.1  in 
the implementation. 

 
B. Lagrangian Method for Delay Constraints 

Algorithm 1 requires the computation of ( ),Q μ  which solves 
the following delay constrained problem: 

 
( )2minimize ( ) ( ) ( , )

2
subject to ( , ) ( , )

wire gate

i ij j i j T

c x c s A x s C

t D x s t p p E

μ+ + −

+ ≤ ∀ ∈
 (7) 

We can handle the delay constraints by using the Lagrangian 
method [2], where the Lagrangian function with dual multipliers 

ijλ  is defined as: 

 
( )

( )
, fi( )

2( , , ; ) ( ) ( ) ( , )
2

( , )

wire gate

ij i ij
j

j
j i

L x s t c x c s A x s C
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λ
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= + + −

+ + −∑
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It was pointed out in [5] that λ  should satisfy the flow (dual 
feasible) condition as in equation (9); otherwise the function 

( , , ; )L x s t λ  is unbounded below. 

 
fi( ) fo( )

 ij jk
i j jk

λ λ λ λ
∈ ∈
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∑ ∑  (9) 

The auxiliary variables for delay constraints are eliminated 
when .λ ∈ Ω  The Lagrangian function is simplified as in equation 
(10), and the Lagrangian method is listed in Algorithm 2. We use 
a sequence of step sizes { }( )kδ  for the dual multiplier update that 
satisfies ( )lim 0k

k δ→∞ =  and ( )
0

.k
k

δ∞

=
= ∞∑  We set 1 ( 1)k kδ = +  

in implementation. 

( )
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2

)
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2
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μ

λ λ λ
∈

∈Ω
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≡
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(10) 

 
Algorithm 2 requires the minimization of ( , ; )L x s λ  over x  

and s for a given dual multiplier .λ  We use the block coordinate 
descent method [2] for this purpose, as shown in Algorithm 3. 
Since all the constraints are converted to either the quadratic 
penalty terms or the Lagrangian terms, the unconstrained 
placement subproblem ( )min ( , ; )k

x
L x s λ  and the unconstrained 

sizing subproblem ( 1)min ( , ; )k

s
L x s λ+  can be solved efficiently. 

Algorithm 3 stops when the reduction of the Lagrangian function 
is smaller than ,ε  which is a user-defined stopping criterion. In 
the implementation we set ε  to 0.001.  

 
V. EXPERIMENTAL RESULTS 

Our unified optimization method was tested on the ISCAS-85 
benchmarks [13]. They are synthesized to a 45 nm library [1], and 
gate delay and power for the continuous sizes are modeled in a 
least-square fit. The placement region is set to be a square with 
20% whitespace, and the timing constraint is set to be 0.90X of 
the delay after one iteration of wirelength-driven placement and a 
subsequent gate sizing for delay minimization. The sizes of the 
benchmarks range from hundreds of gates to thousands of gates, 
and are run on a Quad Core Xeon 2GHz machine with 2GB 
memory. The statistics of the synthesized netlist are shown in the 
first three columns of Table 1. 

For comparison, the separate Lagrangian multiplier-based gate 
sizing and timing-driven placement algorithms are implemented 
in a way that is similar to the unified optimization algorithm, i.e., 
by solving only the sizing problem (Problem (1) with x  fixed), or 
the placement problem (Problem (1) with s  fixed). Separate 
iterations of the gate-sizing algorithm, followed by timing-driven 
placement, were performed. In other words, a sizing is run to 
minimize power with timing constraints, and then a placement is 
run to minimize power with timing constraints. The power is 

(0) (0)

( ) ( 1) ( )

( 1) ( )

( 1) ( 1)

( ) ( )

Given a starting point ( , );

For ( 0; ;  )
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Algorithm 3 – Block descent method to minimize the Lagrangian 
function 
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Algorithm 2 – Lagrangian method for delay constraints 
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( 1) ( 1) ( )

( ) ( )

Given 0, and a starting point ( , );
For ( 0; Area( , ) ;  )

   Find a minimizer ( , ) to obtain ( ),
      starting at ( , );  (using Algorithm 2)
   Choose new p
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k k k

k k

x s
k x s C k

x s Q
x s

μ
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>
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k k

k kx s
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Algorithm 1 – Quadratic penalty method for density constraints 
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measured by the total gate capacitances and wire capacitances. 
This is used to compare the benefits of using a unified formulation 
to those of a separate formulation. 

Experimental results are shown in Table 2 for the unified 
optimization and iterations of separate optimizations. The total 
capacitance, which is the sum of the gate capacitance and wire 
capacitance, is listed as well as the final slack. The runtime 
comparison of the unified optimization and the separate iterations 
is shown in Table 1. 

Our unified optimization method can meet almost all timing 
constraints (9 out of 10) with 2% lower power than the separate 
iterations. Moreover, the runtime of the unified optimization is 
shorter than a single iteration of the sizing and placement (40% 
shorter on average), which demonstrates a clear advantage of 
using the unified optimization method. The runtime benefit comes 
from the shared Lagrangian multipliers that enable a global view 
of the joint sizing and placement problem, such that the sizing and 
the placement subproblems are optimizing a consistent objective 
function during the timing satisfaction process. 

VI. CONCLUSIONS AND FUTURE WORK 
We presented an algorithm that joins the gate sizing and cell 

placement methodologies into a unified framework. This method 
uses a penalty to manage the density and overlap constraints, and 
uses Lagrangian multipliers to manage the timing constraints. The 
algorithm performs well, with large runtime benefits. 

Future work will include applying the unified optimization 
methodology to the simultaneous detailed placement and discrete 
sizing problem. Studies will be done to apply hierarchical 
methods to update the multipliers for large-scale designs. 
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Circuit #inst #net Unified 
runtime (s) 

Separate (5 iter)
runtime (s) 

Separate/Iter 
runtime (s) 

Circuit432 118 158 35.35 147.42 29.48 
c880 346 406 42.87 318.62 63.72 

c1355 572 613 42.61 367.07 73.41 
c499 586 627 40.63 495.75 99.15 

c1908 696 729 48.03 602.97 120.59 
c2670g 1041 1365 54.81 266.88 53.38 
c3540g 1615 1665 131.05 1024.78 204.96 
c5315g 2019 2214 127.23 1894.46 378.89 
c7552g 2895 3151 192.45 3184.56 636.91 

Circuit6288 3089 3121 309.42 1425.43 285.09 
geomean 76.49 643.21 128.64

Table 1 – Runtime comparison between the unified optimization and 
separate iterations 

 

Circuit 
Unified Separate (1st iter) Separate (2nd iter) Separate (3th iter) Separate (4th iter) Separate (5th iter) 

Total 
(pF) 

Gate 
(pF) 

Wire 
(pF) 

Slack 
(ns) 

Total 
(pF) 

Gate 
(pF) 

Wire 
(pF) 

Slack 
(ns) 

Total
(pF) 

Gate
(pF) 

Wire
(pF) 

Slack
(ns) 

Total
(pF) 

Gate
(pF) 

Wire
(pF) 

Slack
(ns) 

Total
(pF) 

Gate 
(pF) 

Wire 
(pF) 

Slack 
(ns) 

Total
(pF) 

Gate
(pF) 

Wire
(pF) 

Slack
(ns)

Circuit432 1.61 0.98 0.63 -0.07 1.63 1.00 0.63 -0.08 1.65 1.01 0.64 -0.08 1.64 1.01 0.63 -0.08 1.62 1.00 0.62 -0.08 1.61 1.00 0.61 -0.08
c880 4.79 2.52 2.27 0.00 5.15 2.75 2.40 -0.33 4.93 2.63 2.30 0.00 4.89 2.57 2.32 -0.04 4.92 2.54 2.38 -0.22 4.91 2.52 2.38 -0.27

c1355 8.09 5.21 2.88 0.00 9.11 6.25 2.86 0.00 8.70 5.89 2.81 0.00 8.53 5.74 2.80 0.00 8.43 5.64 2.79 0.00 8.39 5.60 2.79 0.00
c499 7.93 5.28 2.64 0.00 8.73 6.15 2.58 -0.06 8.92 6.33 2.59 -0.03 8.72 6.15 2.57 -0.06 8.83 6.25 2.58 -0.05 8.80 6.19 2.61 0.00

c1908 6.03 3.07 2.96 0.02 6.51 3.61 2.90 -0.02 6.26 3.40 2.87 -0.06 6.25 3.38 2.87 0.00 6.22 3.35 2.87 0.00 6.24 3.37 2.87 0.01
c2670g 8.91 3.09 5.82 0.04 8.99 3.17 5.82 0.03 8.92 3.14 5.78 0.01 8.91 3.13 5.78 0.03 8.91 3.13 5.78 0.03 8.95 3.12 5.83 0.03
c3540g 11.03 4.31 6.72 0.00 12.54 4.50 8.04 -0.12 11.50 4.04 7.46 -0.04 11.05 3.93 7.12 -0.05 12.29 4.05 8.24 -0.40 12.32 4.08 8.25 -0.45
c5315g 22.57 7.69 14.88 0.02 23.45 8.83 14.62 0.00 22.70 8.08 14.61 -0.03 22.58 7.97 14.61 0.00 22.57 7.96 14.61 -0.03 22.61 7.99 14.62 -0.05
c7552g 26.95 9.23 17.72 0.01 27.89 10.50 17.40 -0.09 27.46 10.09 17.37 -0.10 27.38 10.02 17.36 -0.07 27.31 9.97 17.34 -0.05 27.30 9.96 17.34 -0.07

Circuit6288 23.32 13.39 9.93 0.01 23.07 10.61 12.46 -0.96 23.18 9.99 13.19 -1.12 23.53 10.03 13.50 -1.08 23.78 10.06 13.73 -1.04 23.80 10.04 13.76 -1.06
geomean 9.16 4.39 4.49 - 9.70 4.71 4.66 - 9.48 4.51 4.62 - 9.39 4.45 4.60 - 9.49 4.45 4.68 - 9.48 4.44 4.68 - 

Table 2 – Experimental results of the unified optimization and separate iterations 
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