
A Unified Practical Approach to Stochastic DVS
Scheduling

Ruibin Xu, Rami Melhem, Daniel Mossé
Department of Computer Science, University of Pittsburgh

Pittsburgh, Pennsylvania, U.S.A.
{xruibin,melhem,mosse}@cs.pitt.edu

ABSTRACT
This paper deals with energy-aware real-time system scheduling
using dynamic voltage scaling (DVS) for energy-constrained em-
bedded systems that execute variable and unpredictable workloads.
The goal is to design DVS schemes to minimize the expected en-
ergy consumption of the whole system while meeting the dead-
lines of the tasks. Researchers have attempted to take advantage
of stochastic information about workloads to achieve better energy
savings, and accordingly, various stochastic DVS schemes have
been proposed. However, the existing stochastic DVS schemes are
based on much simplified power models that assume unrestricted
continuous frequency, well-defined power/frequency relation, and
no speed change overhead. When these schemes are used in prac-
tice, they need to be patched in order to comply with realistic power
models. Experiments show that some of such DVS schemes per-
form even worse than certain non-stochastic DVS schemes. Fur-
thermore, even for stochastic schemes that were shown experimen-
tally to outperform non-stochastic schemes, it is not clear how well
they perform compared to the optimal solution, which is yet to be
found. In this work, we provide a unified practical approach for ob-
taining optimal (or provably close to optimal) stochastic inter-task,
intra-task, and hybrid DVS schemes under realistic power models
in which the processor only provides a set of discrete speeds, no as-
sumption is made on power/frequency relation, and speed change
overhead is considered. We also evaluate the existing DVS schemes
by comparing them with our DVS schemes.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Scheduling;
D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems

General Terms
Algorithms
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1. INTRODUCTION
Power conservation is critically important for energy-constrained

embedded systems. Dynamic voltage scaling (DVS), which in-
volves dynamically adjusting the voltage and frequency (speed) of
the processor, is a common power management mechanism for any
embedded system whose processor accounts for a significant por-
tion of the total power. Through DVS, quadratic energy savings for
the processor can be achieved at the expense of just linear perfor-
mance loss [16]. For real-time embedded systems, the execution
of tasks can be slowed down to save processor energy as long as
the deadline constraints are not violated. Thus, a key problem is
to design DVS schemes that determine execution speeds of tasks in
the system.

There are three types of DVS schemes: inter-task DVS schemes,
intra-task DVS schemes, and hybrid DVS schemes [8]. Inter-task
DVS schemes focus on allotting system time to multiple tasks and
schedule speed changes only at each task boundary (i.e., the ex-
ecution speed of a task is constant for each instance executed),
while intra-task DVS schemes focus on how to schedule speed
changes within a single task given an allotted amount of time. Hy-
brid DVS schemes combine inter-task and intra-task DVS, that is,
hybrid DVS schemes consider how to allot time to the tasks in the
system as well as how to schedule speed changes within each task.
We treat intra-task DVS schemes as special cases of hybrid DVS
schemes and will only consider designing inter-task DVS and hy-
brid DVS schemes. Each type of schemes has its advantage and
disadvantage. Inter-task DVS schemes are easier to implement than
hybrid DVS schemes because the latter require a timer-like inter-
rupt mechanism in order to change speed during the execution of
a task. However, hybrid DVS schemes have more flexibility and
potentially achieve more energy savings.

In this paper, we focus on frame-based hard real-time embedded
systems that execute variable and unpredictable workloads. Frame-
based real-time systems are special cases of periodic real-time sys-
tems. In frame-based real-time systems, all tasks share the same
period (also called the frame) and deadlines are equal to the end of
the period. In each frame, tasks are executed in a predetermined
fixed order. Many real-world real-time systems, especially embed-
ded systems, are frame-based due to its simplistic and deterministic
nature. On the other hand, periodic real-time systems that use static
table driven scheduling approaches [13] such as cyclic executive [2]
can be treated as multiple frame-based systems operating in succes-
sion because each minor schedule in a cyclic schedule corresponds
to a frame. For frame-based systems, the problem of designing a
DVS scheme can be reduced to determining the amount of time al-
lotted to a task (and accordingly, deciding the speed(s) to execute
the task) before the task is dispatched to execute in the system.
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Variable and unpredictable workloads are commonly seen in real-
time systems because (1) real-time applications usually exhibit a
large variation in actual execution times; (2) the computational re-
quirement of a task cannot be predicted based on recent history
(i.e., computational requirements are not correlated in time). The
variability and unpredictability of workloads are mainly caused
by different inputs to tasks, and possibly by randomization inside
tasks.

The variability of workloads creates the opportunity for dynamic
slack reclamation to reduce the execution speed for future tasks.
Various DVS scheme using dynamic slack reclamation with differ-
ent speed reduction aggressiveness have been proposed. For exam-
ple, a proportional scheme will distribute the slack proportionally
among all unexecuted tasks, while a greedy scheme gives all the
slack to the next ready-to-run task [11].

More recently, researchers have attempted to take advantage of
stochastic information of workloads to deal with unpredictability.
Stochastic information of workloads are represented by the prob-
ability distribution of the computational requirement of each task.
When this information is available (e.g., through profiling [9, 22]),
the design goal of DVS schemes becomes minimizing the expected
energy consumption in the system and those DVS schemesare called
stochastic DVS schemes.

Optimal stochastic schemes based on the ideal power model (or
ideal model for short) have been proposed in [19, 23]. The ideal
model assumesunrestricted continuous frequency, well-defined power
/frequency relation, and no speed change overhead. The main rea-
son for using the ideal model is its easy mathematical manipula-
tion. In the real world, however, the processor only provides a
limited set of discrete speeds, the power/frequency relation is not
well-defined, and speed change overhead may not be ignored. We
call this the realistic power model (or realistic model for short).
When the schemes based on the ideal model are used in practice,
they need to be patched (e.g. rounding continuous speed to avail-
able discrete speed) in order to comply with the realistic model. As
a result, the optimal speeds that were derived based on the ideal
model are no longer optimal for the realistic model.

Experiments show some anomaly for the patched DVS schemes
based on the ideal model. For example, the best of all DVS schemes
for the ideal model is the optimal stochastic hybrid DVS scheme
called GOPDVS [23]. In Section 6, however, we will see that the
patched GOPDVS performs even worse than certain non-stochastic
schemes (i.e., schemes that do not use any stochastic information
of workloads). This is discouraging since using more informa-
tion is supposed to lead to better results. Even for the stochas-
tic schemes that were shown experimentally to outperform non-
stochastic schemes, it is not clear how well those stochastic schemes
perform when compared to the optimal stochastic scheme under the
realistic model, which is yet to be found.

In this work, we provide a step function based approach for
obtaining the optimal stochastic DVS schemes under the realistic
model. To control the computational complexity, we use a function
approximation technique to obtain DVS schemes whose resulting
expected energy consumption is guaranteed to be within a factor of
1 + ε of the optimal solution and whose time complexity is poly-
nomial in 1

ε
where ε is a parameter of the DVS schemes. That is,

the system designer has the freedom of controlling the trade-off be-
tween the quality of the solution and the time complexity. In fact,
our approximation technique falls in the category of fully polyno-
mial time approximation schemes (FPTAS) [5]. Our approach is
unified in the sense that it can be used to obtain all three types
of DVS schemes (i.e., inter-task DVS, intra-task DVS, and hybrid

DVS). Furthermore, our approach is practical because it takes into
consideration all the practical issues when deriving DVS schemes.

Our contribution is two-fold. (1) we provide optimal (or prov-
ably close to optimal) stochastic DVS schemes under the realistic
model and thus establish tight upper bounds on the energy savings
(note that no upper bound can be estimated when a solution de-
rived under the ideal model is used to approximate the solution for
the realistic model because the ideal model is not a generalization
of the realistic model); and (2) based on our DVS schemes for the
realistic model, we identify good DVS schemes that are based on
heuristics.

The remainder of this paper is organized as follows. We first de-
scribe the related work in Section 2. The task and system models
as well as problem description are presented in Section 3. Sec-
tion 4 describe the basic idea behind our approach and Section 5
presents the details of our DVS schemes. The evaluation results are
reported in Section 6. We end the paper in Section 7 with conclud-
ing remarks and future work directions.

2. RELATED WORK
Although much work has been done on exploring DVS in real-

time environments since the seminal work by Yao et al. [21], we
will focus on the related work that deals with variable and unpre-
dictable workloads, including both stochastic schemes and non-
stochastic schemes.

2.1 Inter-task DVS
Inter-task DVS schemes differ in the way slack is allotted to

tasks in the system. Mossé et al. [11] introduced the concept
of speculative speed reduction and proposed three DVS schemes
(Greedy, Proportional, and Statistical) with different speed reduc-
tion aggressiveness for frame-based real-time systems. The Pro-
portional scheme distributes the slack proportionally among all un-
executed tasks, while the Greedy scheme is much more aggressive
and gives all the slack to the next ready-to-run task. The Statisti-
cal scheme uses the average number of execution cycles of tasks to
predict the future slack. Many existing DVS schemes proposed for
real-time systems can be classified as the Proportional or Greedy
schemes.

Pillai et al. [12] proposed the cycle-conserving scheme and the
look-ahead scheme for periodic real-time systems that execute vari-
able workloads. When used in frame-based systems, the cycle-
conserving scheme is equivalent to the Proportional scheme, while
the look-ahead scheme is equivalent to the Greedy scheme. Sae-
wong et al. [15] proposed a scheme for fixed-priority real-time sys-
tems which, when used in frame-based systems, is equivalent to the
Greedy scheme. To be able to navigate the full spectrum of specu-
lative speed reduction, Aydin et al. [1] proposed a DVS scheme in
which system designers can set a parameter to control the degree of
speed reduction aggressiveness. In fact, the optimal speed reduc-
tion aggressivenessdepends on the variability of the workloads. Xu
et al. [19] presented the optimal stochastic inter-task DVS scheme
under the ideal model and proposed patches to make it comply with
the realistic model.

2.2 Intra-Task DVS
For a single task and a given deadline, Lorch et al. [9] have

shown that if the task’s computational requirement is only known
probabilistically, then there is no constant optimal speed for the task
and the expected energy consumption is minimized by gradually
increasing the speed as the task progresses. They obtained the opti-
mal speed schedule under the ideal model and called this approach
PACE (Processor Acceleration to Conserve Energy). They also
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proposed patches to make PACE fit the realistic model. Stochastic
schemes similar to PACE have also been proposed in [22, 6]. They
differ in the way of patching the speed schedule obtained under
the ideal model to fit the realistic model. Xu et al. [20] proposed
the PPACE (Practical PACE) scheme that is derived directly un-
der the realistic model and showed its superiority over the previous
schemes for a single task. The derivation of PPACE shares some
similarity (mainly in approximating the optimal solution) with our
approach used in this paper. However, our approach in this paper
works for all types of DVS schemes while PPACE only works for
intra-task DVS. Moreover, our approach obtains all speed sched-
ules of a task for different values of allotted time while PPACE
only obtains the speed schedule of a task given an allotted amount
of time.

2.3 Hybrid DVS
To obtain a hybrid DVS scheme, Kim et al. [8] used an inter-

task DVS scheme as the basis and plugged in an intra-task DVS
scheme. A similar approach was used in [22]. However, such hy-
brid schemes are inherently suboptimal because they ignore the in-
teraction between inter-task and intra-task DVS. Zhang et al. [23]
presented the optimal stochastic hybrid DVS scheme under the ideal
model that can be regarded as an extension to PACE. However, they
did not provide any solution to patch their scheme to fit the realistic
model.

3. MODELS AND PROBLEM DESCRIPTION

3.1 Task and Power Models
We consider a frame-based task model with N periodic tasks in

the system. The task set is denoted by Γ = {T1, T2, . . . , TN }. All
tasks share the same period and deadlines are equal to the end of
the period. The length of the period (also known as frame length)
is denoted by D. The execution of the frame is repeated and thus
we only need to focus on the first frame which starts at time 0 and
ends at time D. All tasks are executed nonpreemptively during
each frame in the order of T1, T2, . . . , TN .

Each task Ti (1 ≤ i ≤ N ) is characterized by its worst-case
number of execution cycles (WCEC) Wi and the probability func-
tion of its execution cycles Pi(x), which denotes the probability
that task Ti executes for x (1 ≤ x ≤ Wi) cycles. Obviously,PWi

x=1 Pi(x) = 1 and Pi(Wi) �= 0. The corresponding cumula-
tive distribution function is cdfi(x) =

Px
j=1 Pi(j) and cdfi(0) =

0. The average-case number of execution cycles (ACEC) of Ti is
Ai =

PWi
x=1 Pi(x)x.

In practice, a histogram is used to represent the probability func-
tion considering that a task usually takes millions of cycles. In this
case, let the number of bins in the histogram that represents Pi(·)
be denoted by ri and denote the bin boundaries by Bi(x), x =
1, 2, . . . , ri. Thus, Pi(x) (1 ≤ x ≤ ri) denotes the probability that
task Ti executes for Bi(x) cycles.

The tasks are to be executed in a system equipped with a vari-
able voltage processor that has the ability to dynamically adjust its
voltage and frequency. The processor only provides M discrete op-
erating frequencies, f1 < f2 < · · · < fM . All frequencies are ef-
ficient which means that using a frequency to execute a task always
results in lower energy consumption than using higher frequencies
[10].

The system power consumption includes the power consumption
of processor, memory, and other components. When the system is
idle, the system power consumption is pidle and the processor is
executing no-op operations at the minimum frequency. The sys-
tem power consumption when executing task Ti at frequency fj is

pi(fj). Because frames are executed repeatedly, we assume that
the system is never turned off. Thus, we ignore the idle power in
deriving DVS schemes since this portion of power is always con-
sumed in the system. When describing algorithms in Section 5, we
use p̂i(fj) = pi(fj) − pidle to simplify the presentation.

The overhead of changing speeds depends on the current and
future speeds of the processor, as follows. When changing the fre-
quency of the processor from fi to fj , the time penalty is

PT (fi, fj) = ξ1|fi − fj | (1)

and the energy penalty is

PE(fi, fj) = ξ2|f2
i − f2

j |, (2)

where ξ1 and ξ2 are constants determined by the voltage switching
circuits. Equations (1) and (2) are taken from [3] and are consid-
ered to be an accurate modeling of speed change overheads [17].
It is common in the literature to simplify Equations (1) and (2) by
considering a constant penalty for the worst-case frequency swing
and assuming that PT (fi, fj) = ξ1(fM − f1) and PE(fi, fj) =
ξ2(f

2
M − f2

1 ). Our approach can deal with variable speed over-
heads modeled by Equations (1) and (2), unlike common practice
that considers constant and worst-case penalties for speed changes.

3.2 Problem Description
A DVS scheme consists of N speed schedule functions Si(·)

(i = 1, 2, . . . , N ). Si(t) denotes the speed schedule for task Ti ,
when Ti is ready to execute and there is time t remaining in the
frame. A speed schedule for a task dictates what speed(s) to be used
for executing this task. For inter-task DVS, a speed schedule is a
single speed; for intra-task and hybrid DVS, each speed schedule
contains a set of speeds and the corresponding speed scaling points.

Let e′(ς, x) and t′(ς, x) denote the energy consumption and time
for executing Ti using speed schedule ς when the actual number of
execution cycles of Ti is x. The expected energy consumption for
executing Ti, Ti+1, . . . , TN using time t can be computed as

Ei(t) =

riX

k=1

Pi(k)
`
e′i(Si(t),Bi(k)) + Ei+1(t − t′i(Si(t),Bi(k)))

´

and EN+1(t) = 0. Thus, the problem is to find DVS schemes that
minimize E1(D).

We consider three cases of the problem in the paper: (1) SIDVS,
which stands for the Simple Inter-task DVS problem that attempts
to find inter-task DVS schemes in the absence of speed change
overhead; (2) IDVS, which is a generalization of the SIDVS prob-
lem that considers speed change overhead; (3) HDVS, which at-
tempts to find hybrid DVS schemes (also considering speed change
overhead). Obviously, SIDVS is the simplest case of the problem.
The differences between SIDVS under the realistic model and that
under the ideal model are discrete speeds vs.continuous speeds, and
arbitrary power function vs.well-defined power function. We con-
sider SIDVS because its solution contains all the essential ingredi-
ents of our approach and can be easily extended to solve the other
two problems.

4. THE BASIC IDEA
In this section, we describe the basic idea behind our approach

through the discussion of the main idea of the solution to SIDVS.
The purpose of this section is to illustrate all the key elements in our
approach without delving into too much mathematical detail. We
start by describing the solution to SIDVS, followed by the proper-
ties of the solution and how to obtain such a solution.
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4.1 The Solution to SIDVS
The solution to SIDVS (simple inter-task DVS) is 2N functions,

two for each task in the system. Specifically, each task Ti cor-
responds to two functions: Ei(·) and Si(·). These two functions
denote that when task Ti is ready to execute and there is time t
remaining in the frame, if we use speed Si(t) to execute Ti, the
expected energy consumption of executing Ti, Ti+1, . . . , TN will
be Ei(t). Computing functions Ei(·) and Si(·) (i.e., finding all the
mappings in the functions) is done offline, which we will discuss
in Section 4.3. During the operation of the system, the OS sched-
uler will consult functions Si(·) to determine the speed of each
task. Specifically, at the beginning of a frame when there is time
D available, the OS scheduler will use the speed S1(D) to execute
T1. After T1 finishes and it has taken time t′, there is time D − t′

remaining in the frame and the OS scheduler will use the speed
S2(D − t′) to execute T2. The same process will be applied to the
rest of the tasks.

4.2 The Properties of the Solution
Before discussing how to obtain the solution to SIDVS, we ex-

amine the properties of functions Ei(·) and Si(·), which will de-
termine their representation. During the examination, we also con-
sider the solution under the ideal model, which will help us under-
stand the motivation behind our approach.

We first examine functions EN (·) and SN (·) because they only
involve a single task TN . For the ideal model (assuming cubic
power/frequency relationship), we have [19] EN (t) = CN

t2
and

SN (t) =
C′

N
t where neither CN nor C′

N depends on t. Thus, both
EN (·) and SN (·) (Figure 1) can be represented by just a constant
(CN for EN (·) and C′

N for SN (·)). This is due to the simplicity of
the ideal model.

2
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(b) Si(·) (1 ≤ i ≤ N )

Figure 1: Solution for the ideal model

For the realistic model, however, both EN (·) and SN (·) are step
functions (piece-wise constant functions). Figure 2(b) shows the
function of SN (·) for the realistic model, which can be obtained
by rounding its counterpart for the ideal model (Figure 1(b)) to the
available discrete speeds. We can see that there are M (M is the
number of available discrete speeds) half-open line segments in the
graph, each corresponding to an available discrete speed. Each line
segment can be represented by its left end point because its right
end point is the left end point of the line segment to its immediate
right or infinity when it is the rightmost line segment of the graph.
We call the left end point of a line segment a turning point. Thus,
SN (·) can be represented by 2M numbers because each turning
point can be represented by its two coordinates. Figure 2(a) shows
the function of EN (·), which has also M half-open line segments.

Counting from left to right, the kth (1 ≤ k ≤ M ) line segment of
EN (·) shares the same starting t coordinate and ending t coordi-
nate with the kth line segment of SN (·). Thus, EN (·) can be also
represented by 2M numbers as in SN (·). Note that EN (·) does not
include the idle energy consumption, as explained in Section 3.1.
Computing EN (t) and SN (t) can be turned into a table lookup
which takes O(log M) if binary search is used.

Now we examine functions Ei(·) and Si(·) (1 ≤ i < N ) which
involve multiple tasks. For the ideal model, Ei(·) (1 ≤ i < N ) is
of the same form as EN (·), that is, Ei(t) = Ci

t2
where Ci does not

depend on t. The same holds for Si(·) (1 ≤ i < N ). This elegant
result, which is proved in [19], is again due to the simplicity of the
ideal model. Thus, both Ei(·) and Si(·) (1 ≤ i < N , see Figure
1) can still be represented by a single constant. This means that
the complexity of the representation for the ideal model does not
depend on i. However, this is not the case for the realistic model.
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(d) Si(·), i < N

Figure 2: Solution for the realistic model

Both Ei(·) and Si(·) (1 ≤ i < N , see Figure 2(c) and 2(d))
are still step functions. But there are more turning points in Ei(·)
(1 ≤ i < N ) than in EN (·). This is because Ei(·) is the expected
energy consumption for multiple tasks and different combination
of speeds from these tasks usually results in different energy con-
sumption. In fact, the number of turning points of Ei(·) may suffer
from exponential growth as i decreases, which will be clear in Sec-
tion 5.1. As in the case for EN (·) and SN (·), each line segment of
Ei(·) can be translated into one in Si(·). However, the number of
possible values of Si(·) is only M . If two adjacent line segments
in Si(·) share the the same Si coordinate, they can be combined
into one line segment. Thus, the number of turning points of Si(·)
is usually much smaller than that of Ei(·). As for the shape of
the function, Ei(·) (Figure 2(c)) is still an non-increasing function,
while Si(t) (Figure 2(d)) may go up and down as t increases.

The latter claim is counter-intuitive, especially for the speed go-
ing up when t increases (i.e., if there is more slack, the speed in-
creases to yield lower energy consumption). This is due to the na-
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ture of discrete speeds. We describe a scenario where this will hap-
pen. Suppose that for some workload it is beneficial to use low
speed to execute the tasks following Ti. For a given available time
t, increasing the speed for Ti will not give enough room to drop
the speed for the following tasks to the next lower discrete speed.
However, as the available time t increases, increasing the speed for
Ti will eventually be rewarded.

Similar to computing EN (t) or SN (t), computing Ei(t) or Si(t)
(1 ≤ i < N ) is a table lookup, which takes O(log K) where K is
the number of turning points in the function.

4.3 Obtaining the Solution
From Section 4.2, we can see that computing Ei(·) and Si(·) is

equivalent to identifying all the turning points in Ei(·) and Si(·).
From the recursive description of the problem in Section 3.2, it is
natural to compute Ei(·) and Si(·) in reverse order, that is, first
compute EN (·) and SN (·), then EN−1(·) and SN−1(·), and so
on. The computation of Ei(·) and Si(·) only depends on Ei+1(·),
as Ei+1(·) has already “summarized” functions Ej(·) and Sj(·)
where j = i + 2, . . . , N . When the computation is done, all Ei(·)
(i = 1, 2, . . . , N ) can be discarded because they are not needed for
the operation of the system.

As mentioned in Section 4.2, the number of turning points in
the functions may suffer exponential growth. Thus, we propose
a function approximation technique to limit the number of points.
We use an example to illustrate the technique. Consider the two
turning points, (e1, t1) and (e2, t2), inside the circle in Figure 3.
Obviously, e1 > e2 and t1 < t2. If the difference between e1

and e2 is small (formally, if e1−e2
e2

< δ, where δ is a parameter to
quantify the difference), we eliminate the point (e2, t2). Through
this kind of elimination, the number of turning points is reduced
and upper bounded by a polynomial in 1

δ
. However, the result-

ing function is only an approximation of the original function (i.e.,
the elimination induces error). This is because when time t where
t2 ≤ t < t3 is available, we cannot use the speed schedule corre-
sponding to (e2, t2) since it was eliminated. We will have to use
the speed schedule corresponding to (e1, t1) and thus result in ex-
pected energy e1 which is greater than e2. Because of the way we
eliminate the points, the difference between the resulting function
and the original function is guaranteed to be no more than δ times
the original function.

minimum
allotted
time

iE

t

),( 11 te
),( 22 te

),( 33 te

),( 11 te

),( 33 te

Figure 3: Function approximation

We apply the above function approximation technique to func-
tion Ei(·) before computing Ei−1(·). Thus, the error accumulates

and increases as i decreases. Let the error of E1(·) be denoted by ε.
The expected energy consumption of the system, E1(D), is within
a factor of 1 + ε of the optimal expected energy consumption. If
we let ε be a parameter set by system designers, we can derive the
value of δ to be used for each function approximation. The techni-
cal detail can be found in Section 5.1.3.

5. THE DETAILS
Having described the basic idea behind our approach in the pre-

vious section, we provide the technical details in this section. We
first give the algorithm to solve the SIDVS problem and present its
analysis in Section 5.1. Then we will extend the algorithm to solve
other problems, IDVS and HDVS, in Section 5.2 and 5.3, respec-
tively.

5.1 The Algorithm to Solve SIDVS

5.1.1 On Step Functions
From Section 4 we can see that step functions play an important

role in our approach. Thus, being able to represent step functions
effectively and manipulate step functions efficiently are crucial for
the viability of our approach.

We first formally define step function through the following two
definitions.

DEFINITION 1. A point P is a 2-tuple (e, t), where e and t are
nonnegative reals and denote energy and time respectively. We
write the energy component as P.e and the time component as P.t.

DEFINITION 2. A step function (piece-wise constant function)
F(·) is defined as a point sequence S = [P1, P2, . . . , Pm] where
P1.t < P2.t < · · · < Pm.t. F(t) is undefined when t < P1.t,
otherwise F(t) = Pi.e and i = max

j=1,2,...,m
{j|t ≥ Pj .t}.

Having formally defined step function, we will use F to denote
a step function F(·) unless confusion arises. Let |F| denote the
number of points in F. Obviously, computing F(t) can be done in
time O(log |F|) by using binary search.

We now look at three operations between a number and a step
function.

DEFINITION 3. The operator +e is defined between a real x
and a step function F such that x +e F = [(x + P1.e, P1.t), (x +
P2.e, P2.t), . . .] (i.e., the result is still a step function). Other oper-
ators, ×e and +t can be defined similarly.

Obviously, the operators defined in Definition 3 can be performed
in time O(|F|).

Finally, we describe two operations between step functions.

DEFINITION 4. The sum operator +F is defined between 2 step
functions, F1 and F2, such that F1 +F F2 = F and F(t) = F1(t)+
F2(t). The merge operator ∪ is defined between 2 step functions,
F1 and F2 such that F1 ∪ F2 = F and F(t) = min (F1(t), F2(t)).

The resulting step function F by either the sum or the merge op-
erators over n step functions Fi (i = 1, 2, . . . , n) could have as
many as

Pn
i=1 |Fi| points. The time component of each point in F

comes from one of the Fi’s. Because the points in Fi are already
sorted, the time components of all points in F can be obtained by
a procedure similar to merge sort in time O((

Pn
i=1 |Fi|) log n).

To compute the energy component of each point in F, the sum op-
erator takes constant time and the merge operator takes O(log n)
time by using a priority queue. Thus, computing +F

n
i=1Fi takes

O((
Pn

i=1 |Fi|) log n) time and computing∪n
i=1Fi takes O((

Pn
i=1|Fi|) log2 n) time.
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5.1.2 An Optimal Algorithm
Recall form Section 4.3 that we compute functions Ei and Si

in reverse order. For succinct presentation, we do not show the
computation of functions Si because it can be easily performed as
a by-product of computing Ei.

To compute function Ei , we first consider M helper functions
Êi,j (j = 1, 2, . . . , M ), where M is the number of available dis-
crete speeds. Êi,j denotes the expected energy function when fre-
quency fj is used to execute task Ti. A single value of Êi,j can be
computed as

Êi,j(t) =

riX
k=1

Pi(k)

„
p̂i(fj)

Bi(k)

fj
+ Ei+1(t − Bi(k)

fj
)

«

= p̂i(fj)
Ai

fj
+

riX
k=1

Pi(k)Ei+1(t − Bi(k)

fj
)

In the above equations, p̂i(fj)
Bi(k)

fj
is the energy consumption of

executing the first k bins of Ti and Ei+1(t − Bi(k)
fj

) is the ex-
pected energy consumption of executing Ti+1, . . . , TN . Comput-
ing the whole function Êi,j can be expressed using our notations
about step functions described in Section 5.1.1 as Line 6 in Figure
4. Function Ei is just the result of merging M Êi,j functions. Dur-
ing the merging process, the optimal speed corresponding to each
point is also determined. The optimal algorithm to solve SIDVS
is shown at Lines 1-7 in Figure 4. Line 8 is used for the function
approximation technique mentioned in Section 4.3 and will be ex-
plained Section 5.1.3.

We now analyze the time complexity and space complexity of
computing Ei. The key operation in computing Êi,j is the sum
operation over ri step functions, each is of size |Ei+1|. Thus,
the time to compute Êi,j is O(ri|Ei+1| log ri) and the number of
points in Êi,j is O(ri|Ei+1|). The key operation in computing
Ei is the merge operation over M step functions, each is of size
O(ri|Ei+1|). Thus, the time to compute Ei is O(Mri|Ei+1| log2 M)
and the number of points in Ei is O(Mri|Ei+1|). Since the base
case is |EN+1| = 1, we can obtain the closed forms of the time
complexity and space complexity to be O((Mri)

N−i+1 log2 M)
and O((Mri)

N−i+1), respectively.

PROCEDURE SIDVS(ε)
1. EN+1 := {(0, 0)}
2. for i := N downto 1 do
3. //compute Ei

4. for j := 1 to M do
5. //the case where fj is used to execute Ti

6. Êi,j := p̂i(fj)
Ai
fj

+e +F

ri
k=1Pi(k)×e“

Bi(k)
fj

+t Ei+1

”
7. Ei := ∪M

j=1Êi,j

8. Ei := TRIM(Ei , (1 + ε)
1
N − 1)

END

Figure 4: The SIDVS scheme; Line 8 is only for the approxima-
tion algorithm

5.1.3 Applying Function Approximation
The time complexity of the optimal algorithm for the SIDVS

problem depends greatly on the size of functions Ei . As we can
see from the analysis of the optimal algorithm in Section 5.1.2, the

size of Ei may grow exponentially as i goes from N to 1. Thus,
we need to control the size of function Ei within some polynomial
bound. To do that, we trim (i.e., remove some points) function Ei

after it is computed at Line 7 in Figure 4. A trimming parameter
δ (0 < δ < 1) is used to direct the trimming. After function Ei

is trimmed, the energy components of any adjacent points (recall
from Definition 2 that the points are stored in the order of increas-
ing t component) differ by at least a factor of δ. The choice of
δ = (1 + ε)

1
N − 1 (ε is a parameter of the SIDVS scheme) at Line

8 in Figure 4 will be clear at the end of this section. Figure 5 shows
the trimming procedure.

PROCEDURE TRIM(F = [P1, P2, . . . , P|P|],δ)
1. F̂ := {P1}
2. l := P1

3. for i := 2 to |F| do
4. if l.e > (1 + δ)Pi.e then
5. append Pi onto the end of F̂

6. l := Pi

7. return F̂

END

Figure 5: The TRIM procedure

The function approximation achieved by the trimming procedure
is inspired by [5] and is similar to the label elimination technique
used in [20]. Thus, we only sketch its analysis for the sake of com-
pleteness. Interested readers can refer to [5, 20] for more in-depth
details.

Before computing the number of points in Ei after trimming, we
prove an important lemma. Let E′

i (i = 1, 2, . . . , N ) be the step
functions obtained if Line 8 in Figure 4 is omitted. That is, E′

i is
the functions returned by the optimal algorithm. By comparing E′

i

and Ei , we have the following lemma:

LEMMA 1. For every point P
′ ∈ E′

i where 1 ≤ i ≤ N +
1, there exists a point P ∈ Ei such that P

′.e ≤ P.e ≤ (1 +
δ)N+1−i

P
′.e and P

′.t ≥ P.t.

PROOF. This lemma is equivalent to Ei(t) ≤ (1+δ)N+1−iE′
i(t)

for any value of t. The proof is by induction on i and the base case
for i = N + 1 obviously holds from Line 1 in Figure 4. In the
induction step for Ei, we inspect Line 6 in Figure 4. From the hy-
pothesis, Ei+1(t) is within a factor of of (1 + δ)N−i of E′

i+1(t).
All the operations at Line 6 will preserve this property. After the
trimming operation, the factor will be only increased by (1 + δ),
which will make Ei(t) with a factor of (1+δ)N−i+1 of E′

i(t).

Using functions E′
i will lead to expected energy consumption of

E′
1(D) and using functions Ei will lead to expected energy con-

sumption of E1(D). From Lemma 1, we have E1(D) ≤ (1 +

δ)NE′
1(D). Since we choose δ to be (1 + ε)

1
N − 1, we have

E1(D) ≤ (1 + ε)E′
1(D).

To compute the upper bound of the number of points in Ei, we
note that after the trimming procedure, the energy components of
any adjacent points differ by at least a factor of δ. Let the leftmost
point in Ei be denoted by Pl (which is upper bounded by the en-
ergy consumption when all tasks use the maximum speed) and the
rightmost point in Ei be denoted by Pr ( which is lower bounded
by the energy consumption when all tasks use the minimum speed).
Thus, we have

Pl.e > (1 + δ)|Ei |−1
Pr.e
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By plugging in δ = (1+ε)
1
N −1 and some algebraic manipulations,

we will obtain |Ei| = O(N log λ
ε

) where λ = Pl.e
Pr .e

. Thus, the
number of points in Ei is upper bounded by a polynomial in 1

ε
.

5.2 The Algorithm to Solve IDVS
In the IDVS problem, speed change overhead is considered. The

solution to SIDVS can be easily extended to solve IDVS. Instead
of computing only one expected energy function Ei for each task
Ti as in SIDVS, we compute M expected energy functions Ei,s

(s = 1, 2, . . . , M ). Ei,s denotes the expected energy consumption
of executing tasks Ti, Ti+1, . . . , TN when the current speed is fs,
that is, when the speed before the execution of Ti starts is fs. Com-
puting each Ei,s in IDVS is similar to computing Ei in SIDVS. The
only difference is that computing Ei,s takes into consideration the
energy penalty and time penalty associated with the speed change.
Thus, computing each Ei,s in IDVS has the same time and space
complexity as computing Ei in SIDVS. Figure 6 shows the details
of the IDVS scheme.

PROCEDURE IDVS(ε)
1. for s := 1 to M do
2. EN+1,s := {(0, 0)}
3. for i := N downto 1 do
4. for s := 1 to M do
5. //compute Ei,s

6. for j := 1 to M do
7. //the case where fj is used to execute Ti

8. Êi,s,j := PE(fs, fj) + p̂i(fj)
Ai
fj

+e +F

ri
k=1

Pi(k) ×e

“
Bi(k)

fj
+ PT (fs, fj) +t Ei+1,j

”
9. Ei,s := ∪M

j=1Êi,s,j

10. Ei,s := TRIM(Ei,s , (1 + ε)
1
N − 1)

END

Figure 6: The IDVS scheme

In the IDVS scheme, N ×M speed schedule functions are com-
puted. During the operation of the system, when task Ti is ready to
execute and there is time t remaining in the frame, the OS sched-
uler will detect the current speed s of the processor and use speed
Si,s(t) to execute Ti.

5.3 The Algorithm to Solve HDVS
In the HDVS problem, a task is allowed to change speed dur-

ing its execution. Because of the speed change overhead, a lim-
ited number of speed scaling points at which speed may change are
predefined for a task [9]. This is similar to predefining the quan-
tum size for OS due to the context switch overhead. The speed
remains constant between any two adjacent speed scaling points of
a task. For ease of presentation, we choose the bin boundary of the
histogram representing the probability distribution of a task as the
speed scaling points for the task. By treating each bin of a task as
a subtask, the solution to IDVS can be easily extended to solve the
HDVS problem. We add one more dimension to the expected en-
ergy functions for each task Ti. That is, we compute function Ei,s,b

(s = 1, 2, . . . , M and b = 1, 2, . . . , ri) that denotes the expected
energy consumption of executing bin b, b + 1, . . . , ri of Ti, and
Ti+1, . . . , TN when the current speed is fs. There is a catch, how-
ever. Ei,s,b is not only dependent on Ei,·,b+1 , but also Ei+1,·,1 .
This is because task Ti may finish at bin b and the rest of the bins
will not be executed. Let X be the number of cycles that Ti exe-

cutes. We compute P̂i(b), the probability that bin b of task Ti will
be executed given that the previous b − 1 bins have been executed

P̂i(b) = Prob(X ≥ Bi(b)|X ≥ Bi(b − 1))

=
Prob(X ≥ Bi(b) ∧ X ≥ Bi(b − 1)

Prob(X ≥ Bi(b − 1))

=
1− cdfi(b − 1)

1− cdfi(b − 2)

where cdfi(0) = cdfi(−1) = 0. Similar to the IDVS scheme, the
helper function Êi,s,b,j denotes the expected energy consumption
of executing bin b, b+1, . . . , ri of Ti , and Ti+1, . . . , TN when the
current speed is fs and speed fj is used to execute bin b. Thus, a
single value of Êi,s,b,j can be computed as

Êi,s,b,j (t) = P̂i(b)(PE(fs, fj) + p̂(fj)
wi(b)

fj
+ Ei,j,b+1(t −

PT (fs, fj) −
wi(b)

fj
)) + (1 − P̂i(b))Ei+1,s,1

where wi(b) = Bi(b) − Bi(b − 1). Figure 7 shows the details of
the HDVS scheme.

PROCEDURE HDVS(ε)
1. for s := 1 to M do
2. EN+1,s,1 := {(0, 0)}
3. for i := N downto 1 do
4. for b := ri downto 1 do
5. for s := 1 to M do
6. //compute Ei,s,b

7. for j := 1 to M do
8. //the case where fj is used to run bin b of Ti

9. Êi,s,b,j := P̂i(b) ×e (PE(fs, fj) + p̂i(fj)
wi(b)

fj
+e (PT (fs, fj) + wi(b)

fj
+t Ei,j,b+1))

+(1− P̂i(b)) ×e Ei+1,s,1

10. Ei,s,b := ∪M
j=1Êi,s,b,j

11. Ei,s,b := TRIM(Ei,s,b , (1 + ε)
1

PN
k=1 rk − 1))

END

Figure 7: The HDVS scheme

In the HDVS scheme, the speed schedule functions for each bin
of a task is computed. That is, there are a total of M × PN

i=1 ri

speed schedule functions. However, we do not need this many
speed schedule functions for the operation of the system. This
is because for a single task, the execution speed is always non-
decreasing [9]. This indicates that the speed schedule of a task for
a given amount of time has at most M speeds and M speed scal-
ing points. Thus, we compute new speed schedule functions Ŝi,s ,
which denotes the speed schedules for the whole task Ti when the
current speed is fs, from Si,·,b (b = 1, 2, . . . , ri) and use them
during the operation of the system. Note that the number of speed
schedules in Ŝi,s is |Si,s,1|.

6. EVALUATION RESULTS
In this section, we use the IDVS and HDVS schemes as the base-

lines to experimentally evaluate the existing DVS schemes. The
existing DVS schemes can be regarded as heuristic solutions be-
cause they do not have any performance guarantee under the re-
alistic model. However, history has shown that for certain hard
problems, there exist heuristic solutions that work very well and
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even close to the optimal in practice. The purpose of the evaluation
is to identify those good heuristic schemes.

6.1 Processor Models
We used two embedded processor models in our simulations.

1. Intel XScale (Table 1) [18]. The idle power of XScale is
one half the power consumed at the minimum frequency (i.e.,
40 mW) [4]. The time and energy penalties for each speed
change are reported as 12μs and 1.2μJ, respectively, in [17].
We assume that these numbers are worst-case speed change
overheads, which are equivalent to the overheads incurred
when changing from the minimum speed to the maximum
speed in our power model described in Section 3. Accord-
ingly, we derived the values of the constants ξ1 and ξ2 in
Equation (1) - (2) to be used in our experiments.

2. IBM PowerPC 405LP (Table 2) [14]. The idle power is as-
sumed to be half the power consumed at the minimum fre-
quency. The time and energy penalties for each speed change
are reported as 1ms and 750μJ, respectively, in [14]. We also
translated these numbers into our power model as in the case
of XScale.

Table 1: XScale speed settings and power consumptions
Speed (MHz) 150 400 600 800 1000
Voltage (V) 0.75 1.0 1.3 1.6 1.8
Power (mW) 80 170 400 900 1600

Table 2: PowerPC 405LP speed settings and power consump-
tions

Speed (MHz) 33 100 266 333
Voltage (V) 1.0 1.0 1.8 1.9
Power (mW) 19 72 600 750

The power consumptions listed in Table 1 and 2 are obtained by
measuring the processor power when running certain benchmarks.
In practice, different applications have different instruction mixes,
thus resulting in different dynamic power consumptions. We asso-
ciate each task with a power scaling factor to simulate this reality.
For example, if a task’s power scaling factor is 0.9, it will consume
40 + (400 − 40) × 0.9 = 364 mW when executing at frequency
600MHz for XScale.

6.2 Simulation Setup
A frame-based real-time system is characterized by the number

of tasks, the power scaling factor for each task, the WCEC of each
task, the probability distribution of the number of execution cycles
of each task, and the frame length. We simulated systems consist-
ing of 5 and 10 tasks. We only show the results for the systems
with 5 tasks because the results for systems with 10 tasks are simi-
lar. The power scaling factor was randomly chosen uniformly from
0.8 to 1.2. The WCEC of each task is 500,000,000 and the min-
imum number of cycles is 5,000,000. The probability function of
each task’s actual execution cycles is randomly chosen from the 6
representative distributions shown in Figure 8. The bin width of
the histograms denoting the probability functions is 5,000,000 cy-
cles. We experimented with 20 frame lengths chosen evenly from
5×W CEC

fM
(no slack) to 5×W CEC

f1
. In evaluating a DVS scheme

on a simulated system, we performed a run in which we generated

(a) (b) (c)

(d) (e) (f)

Figure 8: Probability functions: uniform, unimodal1, uni-
modal2, unimodal3, bimodal1, bimodal2 (from left to right).
The Y-axis is probability and the X-axis is number of execution
cycles.

100,000 frames and computed the average energy consumption per
frame as the energy consumption for that scheme on that system.
Under the aforementioned setup, we conducted over 20,000 runs
(i.e., 20 billion frames were simulated). For each DVS scheme,
we averaged the energy consumption for all systems with the same
frame length because we consider slack to be the most influential
factor for energy consumption.

6.3 Evaluation of Inter-task DVS Schemes
We evaluated 4 inter-task DVS schemes: Proportional, Greedy,

Statistical, and MEEC. The first 3 schemes [11] are non-stochastic
schemes that do not use stochastic information of the workloads.
They are all based on the ideal model and need to be patched to fit
the realistic model. The MEEC scheme [19] is obtained by patch-
ing the optimal stochastic inter-task DVS scheme under the ideal
model. The patches for all schemes are similar, including rounding
continuous speed up to the lowest feasible discrete speed (i.e., guar-
anteed to meet deadlines) and subtracting the maximum possible
time penalty from the available system time. The energy consump-
tion of all schemes is normalized to that of the IDVS scheme with
ε = 0.05 (i.e., the energy consumption is guaranteed to be within
(1+5%) of the optimal). For all experiments, the number of points
in Si,s of the IDVS scheme is at most 97. Recall from Section 4.3
that we only need functions Si,s during the operation of the system.
Thus, the space overhead of the IDVS scheme is very small.

Figure 9 shows the evaluation results. We can see that the Statis-
tical scheme is very close to IDVS, which is guaranteed to be within
(1+5%) of the optimal and many times is in practice better than the
guarantee. Thus, we conclude that Statistical is very close to the
optimal even though it is not provably optimal for either the ideal
or realistic model. The Greedy scheme also performs relatively
well in most cases, comparing with the IDVS scheme. MEEC is
outperformed by the Statistical scheme in most cases. This is more
evident for the PowerPC 405LP model. Even the Greedy scheme
beats MEEC in some cases. This is the so-called anomaly since
using more information leads to worse results. The reason is that
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Figure 9: Evaluation of Inter-task DVS Schemes

the rounding-up effect offsets the advantage of using stochastic in-
formation.

6.4 Evaluation of Hybrid DVS Schemes
We evaluated 5 hybrid DVS schemes: Proportional2, Greedy2,

Statistical2, MEEC2, and GOPDVS. The first 4 schemes are differ-
ent from their inter-task DVS counterparts only in that up to two
speeds are used to execute a task. This is due to the fact that any
continuous speed can be emulated by using its two adjacent discrete
speeds [7]. In essence, these schemes attempt to emulate inter-task
DVS schemes under the ideal model. However, they belong to hy-
brid DVS schemes technically because the speed may change dur-
ing the execution of a task (thus they need interrupt support). The
GOPDVS scheme [23] is obtained by patching the optimal stochas-
tic hybrid DVS scheme under the ideal model (the patch is a combi-
nation of the patch used for inter-task DVS schemes and the patch
used by [9] for intra-task DVS schemes). The energy consump-
tion of all schemes is normalized to that of the HDVS scheme with
ε = 0.05. For all experiments, the number of speed schedules in
Ŝi,s of the HDVS scheme is at most 1013. Thus, the space over-
head of the HDVS scheme is reasonably small.

Figure 10 shows the evaluation results. We note several quantita-
tive differences from the results for inter-task DVS schemes. First,
GOPDVS performs poorly, which is a surprising result considering
that it is based on the best of all schemes under the ideal model.
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Figure 10: Evaluation of hybrid DVS Schemes

This is because the excessive rounding of speeds in the GOPDVS
scheme makes it drift far away from the optimal solution. Statisti-
cal2 performs much worse than its inter-task DVS counterpart. The
Greedy2 scheme is the worst of all non-stochastic DVS schemes.
The good performance of the MEEC2 scheme is also a surprising
result since its main idea is to emulate only the optimal stochastic
inter-task DVS scheme under the ideal model.

7. CONCLUSIONS
In this paper, we provide a unified practical approach for ob-

taining optimal (or provably close to optimal) stochastic inter-task,
intra-task, and hybrid DVS schemes under the realistic power model.
As a result, we establish tight upper bounds on energy savings for
stochastic DVS schemes.

Using our DVS schemes as baselines, we experimentally evalu-
ate previously existing DVS schemes. Based on our experimental
results, we conclude that the Statistical scheme [11] is a very good
heuristic inter-task DVS scheme and MEEC2 [19] is a very good
heuristic hybrid DVS scheme. However, whether this conclusion
can be generalized to all systems is still an open question since ex-
haustive testing is impossible. We will leave it as future work.
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