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A unified axiomatic theory that embraces both mechanics and thermodynamics 
is presented in three parts. I t  is based on four postulates; three are taken from 
quantum mechanics, and the fourth is the new disclosure o f  the existence o f  
quantum states that are stable (Part I). For nonequilibrium and equilibrium 
states, the theory provides general original results, such as the relation between 
irreducible density operators and the maximum work that can be extracted 
adiabatically (Part IIa). For stable equilibrium states, it shows for the first 
time that the canonical and grand canonical distributions are the only stable 
distributions (Part l ib).  The theory discloses the incompleteness o f  the equa- 
tion of  motion o f  quantum mechanics not only Jbr irreversible processes but, 
more significantly, Jbr reversible processes (Part lib). I t  establishes the 
operational meaning o f  an irreducible density operator and irreducible dis- 
persions associated with any state, and reveals the relationship between such 
dispersions and the second law (Part III). 

1. I N T R O D U C T I O N  

T h e  p u r p o s e  o f  th i s  p a p e r  ( P a r t s  I t o  l i I )  is to  p r e s e n t  a n  a x i o m a t i c  q u a n t u m  

t h e o r y  w h i c h  e n c o m p a s s e s  w i t h i n  a s ingle  s t r u c t u r e  b o t h  m e c h a n i c s  a n d  

t h e r m o d y n a m i c s .  T h i s  p u r p o s e  is a c c o m p l i s h e d  b y  a d d i n g  to  t h r e e  f u n d a -  

m e n t a l  p o s t u l a t e s  o f  q u a n t u m  m e c h a n i c s )  n a m e l y  t he  c o r r e s p o n d e n c e  

p o s t u l a t e ,  t h e  m e a n - v a l u e  p o s t u l a t e ,  a n d  t he  d y n a m i c a l  p o s t u l a t e ,  a f o u r t h  
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2 The axioms of quantum mechanics can be expressed in a number of different ways. In 

this paper we adopt the axiomatics of Park and Margenau/1) except for some modifica- 
tions stated in Section 2. 
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postulate called the stable-equilibrium postulate, which expresses the basic 
implications of the second law of thermodynamics. 

Because the fourth postulate appears to be complementary to, consistent 
with, and independent of the first three, the second law of thermodynamics 
emerges as a fundamental law of physics which is not reflected in the three 
postulates of quantum mechanics. 

In the exposition of the theory a number of terms must be operationally 
defined so that the theory will have physical meaning. In particular, the 
terms system, preparation, observable, measurement, and measurement result 
are used here in accordance with the definitions given by Park. 12~ The terms 
reversible process and adiabatic process are used as in classical thermo- 
dynamics, ca) The term state is interpreted as encompassing the most that 
can be said about the results of all measurements that can be performed on 
identically prepared replicas of the system. The operational meaning of the 
expression identically prepared replicas of a system is given a novel definition. 
Because of its importance to the physical content of the theory, it is discussed 
in detail in Section 4, Part III. 

In contrast to statistical mechanics, the theory is not concerned with 
"states" that describe outcomes of measurements performed on an ergodic 
system over long periods of time, or with "states" that describe the subjective 
knowledge of an observer possessing only partial information about the 
"true state" of a system, or with any other type of "state" that does not 
correspond to identically prepared replicas of a system as defined in 
Section 4, Part III. These distinctions among the various definitions of the 
term state are motivated by important physical considerations which will be 
discussed in detail in Section 4, Part lII. 

Several theorems that can be derived from the three postulates of 
quantum mechanics named above have been presented in the literature. 
One of these is that to every state of a system specified by means of a given 
preparation there corresponds a Hermitian operator ~, called the density 
operator, which is an index of measurement statistics. I~) The incorporation 
of the stable-equilibrium postulate into the theory, however, gives rise to 
additional theorems which are new to quantum physics and which are 
derived in Section 3, Parts IIa and Ilb. Some of these new theorems are 
summarized below. 

1. The maximum energy that can be extracted adiabatically from any 
system in any state is solely a function of the state (Theorem 3.7, Part Ila). 
In general, it is smaller than the energy with respect to the ground state. 

2. For  any state of a system, nonequilibrium, equilibrium, or stable 
equilibrium, a property S exists which is proportional to the total energy of the 
state minus the maximum energy that can be extracted adiabatically from the 



A Unified Quantum Theory of Mechanics and Thermodynamics. Part I. Postulates 17 

system in combination with a reservoir (Theorem 3.15, Part lla). The term 
reservoir denotes a system passing through stable equilibrium states. 

3. For statistically independent systems the property S is extensive, 
it is invariant during all reversible adiabatic processes, and it increases during 
all irreversible adiabatic processes. 

4. Property S is proportional to Tr(/~ In/~), where "Tr"  denotes the 
trace of the operator that follows. 

5. The necessary and sufficient condition for stable equilibrium is that 
S should be at its maximum value for fixed expectation values of energy, 
numbers of particles of species, and external parameters (Theorem 3.18, 
Part lib). 

6. The only equilibrium states that are stable are those for which the 
density operator yields the canonical distribution if the system is a petit 
system, and the grand canonical distribution if the system is a grand system 
(Theorems 3.23 and 3.24, Part lib). 

7. Property S is defined as the entropy of any state corresponding to 
an unambiguous preparation (Section 4, Part IIl), because: (a) for stable 
equilibrium states, S is shown to be identical to the entropy of classical 
thermodynamics (Section 3.26, Part lib); and (b) for any state, theorems (2), 
(3), (5), and (7) above are also theorems of classical thermodynamics. 

8. Classical thermodynamics is an exact but special theory resulting 
from the application of the present unified theory to systems passing through 
stable equilibrium states. The present theory in general and, therefore, 
classical tbermodyn amics in particular apply regardless of whether the system 
has a small or a large number of degrees of freedom, and regardless of  
whether the system is small or large in size. 

An idea that is believed to be original with the present theory is that the 
second law, expressed here in the form of the stable equilibrium postulate, 
implies that systems may be found in mixed states characterized by irreducible 
dispersions (Section 4, Part III). These dispersions are associated with the 
particles or, more generally, the degrees of freedom of the system, and limit 
the energy that can be extracted adiabatically from the system. Conversely, 
the second law is a manifestation of irreducible dispersions associated with 
mixed states of a system, and, therefore, with the constituent particles of  
the system. 

The interrelation between irreducible quantaI dispersions and the 
maximum energy that can be extracted adiabatically from a system represents 
a significant departure of the present work from other statistical theories, 
classical or quantum. 

Finally, it is shown that certain commonly encountered reversible 
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processes in isolated systems cannot be described by the equation of motion 
of quantum mechanics (Section 3.28, Part IIb). Thus the reversible equation 
of motion that is part of the dynamical postulate proves inadequate not only 
for irreversible processes but also for some known reversible processes. 

Part I presents the four postulates of the theory. In addition, it includes 
a relatively large number of explicit definitions of various terms of  mechanics 
and thermodynamics, some of which have been used with different conno- 
tations elsewhere. Throughout  the paper a general knowledge of quantum 
mechanical ideas is assumed and only points of special relevance to our 
theory are emphasized. 

2. THE POSTULATES 

This section presents some necessary definitions and terminology 
interspersed with the statements of the four postulates. 

2.1. Systems, States, and Properties 

We shall use the term system A to mean any identifiable collection of 
degrees of freedom associated with an identifiable collection of matter of 
zero or nonzero rest mass. 

In general, matter that, though not included in A, can influence A we shall 
call system B. System A is said to be separable from system B if and only if 
the following conditions are satisfied: (1) two Hamiltonian operators HA 
and/4B,  one for each system, can be identified; (2) each Hamiltonian depends 
on the generalized coordinates associated with the degrees of freedom of the 
corresponding system only; and (3) the Hamiltonian of the combined system 
AB is the sum of the Hamiltonians HA and/4B • 

Influences on a separable system A by systems in its environment will be 
described by means of external parameters (5) or, simply, parameters ~, which 
impose limitations on the degrees of freedom of A. Although it represents 
interactions between A and systems in its environment, an external parameter 
fi can be defined only when its values do not depend explicitly on the variables 
associated with the degrees of freedom of either A or any system in the 
environment of A. Examples of parameters are the applied electric field used 
in the analysis of the Stark effect, and the volume of the container used in 
the analysis of the energy eigenstates of a gas. 

At any instant of time a separable system is in a condition called a state 
which encompasses all that can be said about the results of any measurements 
or observations that can be performed on identically prepared replicas of the 
system. The state fixes the values of all the properties of the system. A 
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property is any quantity associated with observables whose value is fixed by 
the state but not by the history of the system. Conversely, a set of independent 
properties exist which specifies the state. Two properties are called inde- 
pendent if the value of one can be altered without affecting the value of the 
other. It will be seen that the number of independent properties necessary 
to specify a state depends on the type of state in question. 

By virtue of the quantum mechanical considerations expressed in the 
postulates that follow, a single measurement of a property performed on a 
system in a given state does not usually yield a value that is uniquely related 
to the state. In general, many measurements of the same property, each 
performed on identically prepared replicas of the system, will yield a variety 
of values. Each measurement result will be called an eigenvalue of the 
property in question. 

In quantum physics, it is not possible to predict from knowledge of the 
state of the system which eigenvalue a measurement will yield. We may 
express this fact by saying that it is inherent in nature that either some or all 
measurements performed on a system in a given state yield results that are 
irreducibly dispersed. Accordingly, the value of a property for a given state 
is defined in terms of the arithmetic average or expectation value of the 
measurement results. 

2.2. Petit and Grand Systems 

We shall distinguish two types of separable systems, the petit and the 
grand. We shall call petit system any separable system for which the number 
of particles and the number of degress of freedom are dispersion-free, 
namely every measurement yields the same eigenvalues of these two quan- 
tities. For  example, a collection of a given number of particles which is 
closed to the transfer of  nonzero rest mass and is not subject to creation 
reactions or annihilation reactions is a petit system. 

We shall call grand system any separable system for which it is not 
possible to identify either a dispersion-free number of particles, or a 
dispersion-free number of degrees of  freedom, or both. Systems closed to 
the transfer of nonzero rest mass but subject to particle-creation and 
particle-annihilation reactions, such as a photon gas, are examples of grand 
systems. 

2.3. Postulate 1: Correspondence Postulate 

Some linear Hermitian operators on Hilbert space which have complete 
orthonormal sets of eigenvectors (eigenfunctions) correspond to physical 
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observables of  a system. I f  operator P corresponds to observable P, then 
operator F(P), where F is a function, corresponds to observable F(P). 

As explained by Park and Margenau (Ref. 1, p. 220), the content of this 
postulate is slightly different from that of its analogs in typical axiomatics 
inspired by the work of von Neumann. In its original form, the corre- 
spondence postulate included both of the following statements: (1) every 
Hermitian operator corresponds to a physical observable; and (2) every 
observable has a Hermitian operator representative. Superselection rules 
introduced by Wick et al. ~ exclude certain Hermitian operators from being 
observable. By replacing the word every in (1) by the word some, super- 
selection rules are satisfied. Compatibility of simultaneous measurements 
introduced by Park and Margenau (Ref. 1, p. 221) excludes certain observ- 
ables from corresponding to Hermitian operators. In addition, in a unified 
theory of mechanics and thermodynamics other observables, such as 
temperature, are excluded from corresponding to Hermitian operators. 
By replacing the word every in (2) by the word some the asymmetry between 
observables and operators is embraced. It is clear that postulate 1 as stated 
above accommodates both the asymmetry between operators and observables 
and that between observables and operators. 

The rules that specify which operator corresponds to a given observable, 
such as momentum, energy, etc., of a petit system may be found in any 
textbook on quantum mechanics and will not be discussed here. Because 
they are not as widely covered, their extensions to grand systems will be 
outlined below. 

Among the measurements that can be performed on a system is the 
measurement of the number of its particles. For a petit system such a 
measurement when repeated will always yield, by definition, the same 
number. For a grand system, however, such a measurement when repeated 
can yield a variety of integer values among a set of allowed values consistent 
with the nature of the system. 

In general, a grand system will consist of several species of particles. 
For each species there will be a corresponding set of allowed eigenvalues 
for the numbers of particles of the species. For certain grand systems, the 
set of allowed eigenvalues for the number of particles of a species is assumed 
to be the set of nonnegative integers. For others, the nature of the system 
may dictate a more limited range of eigenvalues. Hence, a petit system is a 
limiting case of a grand system. 

By virtue of the rules that apply to petit systems we can associate with 
each given observable of a grand system several operators, one for each 
combination of allowed eigenvalues for the number of particles of its species. 
Each of these operators is in a different Hilbert space denoted by index 
and can be regarded as a component of an overall operator corresponding 
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to the given observable of the grand system. The overall Hilbert space is the 
direct sum of the mutually orthogonal component Hilbert spaces c~. For 
example, the overall Hamiltonian operator /t, which corresponds to the 
observable energy of a one-species grand system with possible numbers of 
particles ranging from one to infinity, will have components / t (1) , / t (2)  ..... 
/t(a),..., each of the components being the Hamiltonian operator of a petit 
system having a number of particles n(1) = 1, n(2) = 2,..., n(a) = ~ ..... 
respectively. 

2.4. Postulate 2: Mean-Value Postulate 

To every ensemble of measurements performed on identically prepared 
replicas of a system there corresponds a real linear functional re(P) of the 
Hermitian operators 1~ of the system such that if P corresponds to an observable 
property P, m(P) is the arithmetic mean P of the results of the ensemble of 
P-measurements. 

Although the statement of postulate 2 is the same as that of postulate 2 
of Park and Margenau (Ref. 1, p. 221), its content is different from theirs 
because of the definition of identical preparation given in detail in Section 4, 
Part III. 

Several elementary quantum theorems derivable from Postulates 1 and 2 
will now be stated without proof because the proofs are available in the 
literature. We assume here that the Hermitian operators have nondegenerate 
discrete spectra. The extension to spectra that are degenerate, or continuous, 
or both is straightforward. 

2.5. Theorem 

For each of the mean-value functionals re(P) there exists a Hermitian 
operator/5 such that for each/3 the following relations holdl4~: 

P = re(P) = Tr(~P) (1) 

The operator fi is known as the density operator. 
For example, the value E of the energy of a system is given by the 

relation 

E = Tr(fi/)) 

Again, for a species l having a particle-number operator ~ ,  the value nt 
of the number of particles is given by the relation 

nz = T r ( ~ )  
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2.6. Theorem 

For any physically realizable preparation of a separable system subject 
to fixed parameters and corresponding to density operator/5, the probability 
W(~; P~,) that a P-measurement will yield the eigenvalue P ~  of the operator 
P(~) in Hilbert space ~ is given by the relation (Ref. 1, p. 224) 

W(~; P~)  = Tr(/5/3~(~)) (2) 

where P~(~) is the projection operator onto the subspace /5(~) belonging 
to eigenvalue P ~ .  

2.7. Theorem 

The trace of/5 is equal to unity (Ref. 1, p. 225) namely 

T r / 5 =  1 (3) 

2.8. Theorem 

The only possible results of P-measurements are the eigenvalues P ~  
of/~ for all ~ and m, where P is the operator corresponding to property P 
(Ref. 1, p. 225). 

2.9. Theorem 

The density operator/5 is positive semidefinite (Ref. 1, p. 225). 

2.10. Representation of State 

By virtue of Theorems 2.5-2.9, the density operator/5 is the index of the 
measurement statistics of quantum physics. It will be seen from Postulate 3 
below that/5 is also the seat of causality for certain types of changes of state. 
In addition, it will be shown in Section 4, Part IIl, that for an ensemble of 
identically prepared replicas of a system, /5 is irreducible, namely that the 
ensemble cannot be subdivided into subensembles each of which would yield 
upon measurement statistics different from the statistics of/5. Alternatively, 
for an ensemble of identically prepared replicas of a system, /3 corresponds 
to irreducible dispersions of measurement results. 

The statements and predictions of our theory apply only to ensembles 
of identically prepared systems, For such ensembles, the density operator/5 
may be used to represent the state of the system. This representation gives 
explicit recognition to the idea that the theory must be confined for the most 
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part to assertions as to the probability that a measurement on a system will 
yield a particular eigenvalue. Thus, a state will not usually specify the result 
of each measurement that can be performed on the system in that state. 

In general, for a grand system the numbers of particles of the various 
species are dispersed and the state yields the probability W(c~; P~m) that the 
result of a measurement on the system will be eigenvalues nl(~), n~(c~),..., nr(~) 
for the numbers of particles of the species 1, 2,..., r, and eigenvalue P~,,~ 
of the component P(~) of the overall operator/5, for all ~ and m. The set of 
numbers nl(c0, n2(~) ..... n~(~) defines Hilbert space c~ in which/5(c 0 can be 
represented. The density operator t~ will have components in some or all of 
the mutually orthogonal Hilbert spaces ~. 

For  a petit system the numbers of particles of the various species are 
dispersion-free and the state yields the probability W(P.~,~) that the result of 
a measurement of property P will be eigenvalue P,,,~ of the operator /5 
corresponding to P, for all m. 

2.11. Independent Systems 

A separable system A will be called independent of system B if and only 
if all probabilities associated with results of measurements of observables of 
A are statistically independent of any probabilities associated with B. In 
other words, independence of A and B implies the absence of correlations 
between the density operators of A and B. 

A system will be called an independent system at a given time if at that 
time it is independent of all systems in its environment. 

2.12. Theorem 

If  A and B are two independent systems in states t~A and fie, respectively, 
the state of the combined system AB is given by the direct product fA × ~ 
of t~A and t~B - 

The proof  of this theorem follows immediately from the definitions of 
state, separability, statistical independence, and direct product of operators. 

2.13. Certain Thermodynamic Concepts 

Prior to stating our third postulate we shall express in quantum 
mechanical language certain concepts encountered in thermodynamics. 

A change of  state of a separable system A occurs when the eigenvectors 
of t~, or the eigenvalues of t~, or the Hilbert space of A, or any combination 
of these three change. It can be brought about either directly through 
changes in t~ or indirectly by a change in value of at least one of the properties 
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of A, including the parameters, or both. By virtue of Eq. (1) the value of a 
property can change not only when the density operator t3 changes, but also 
when the property operator /5  changes. If  the nature of the system is fixed, 
a property operator /5  can change if the values of the parameters imposed 
on the system are altered. For  example, for a system with volume as a 
parameter the Hamiltonian o p e r a t o r / t  changes when the volume is altered. 

Changes of state can occur either spontaneously while the system is 
isolated, that is, without being affected by or causing any changes in the 
environment, or as a result of interactions of the system with other systems 
in its environment. An interaction between two systems A and B is described 
in terms of the sequence of states of the combined system AB during the 
interaction, namely the state path of AB. 

When a system experiences a change of state we shall say that it under- 
goes a process. A process is described in terms of the end states of the system 
and the interactions to which the system is subjected. A process can be 
defined if and only if the system is separable before and after the interaction 
because only then can the end states of the system be defined. This definition 
does not, however, require that the system be separable throughout the 
process. 

If a system is separable throughout a process, its interactions are fully 
described by the time dependence of its parameters since, by definition, 
a separable system is affected by its environment only through the values 
of the parameters. We shall call such processes separable processes. 

We shall call a process of an isolated system reversible if a physically 
realizable process exists that could restore the system to its initial state 
with no net changes in the state of the environment. This is the thermo- 
dynamic definition of reversibility. It is broader than the definition given in 
mechanics in terms of the special process of time reversal which can be 
accomplished only by reversing all momenta. 

Any process that does not satisfy the definition of a reversible process 
we shall call an irreversible process. 

2.14. Postulate 3: Dynamical Postulate 

(a) Any two states of a system that are interconnected by a physical 
process can always be interconnected by means of one or more reversible 
processes. 

(b) For every system, reversible separable processes always exist for 
which the temporal development of the density operator ~ is given by the 
relation (Ref. 1, p. 224) 

/~(t2) = T(t2, tl)/~(tl) T+(t~, ta) (4) 



A Unified Quantum Theory of Mechanics and Thermodynamics. Part I. Postulates 25 

where 2?(t2, tl) is a unitary operator in time (the evolution operator), and 
T+(t2 , h)  is the Hermitian conjugate o f  T(t2, q). 

When the Hamiltonian operator H of the system is time independent 
because the values of the parameters are fixed, then the unitary operator 
2r(t, h) is given by the relation 

2P(t, q) =: exp[--(2~ri/h) 14(t --  tO] (5) 

whereas when the Hamiltonian operator H(t) is an explicit function of time 
because the values of the parameters are variable, then ~(t, tl) conforms to 
the relation 

aT(t, fi)/at = --(2~ri/h) t:I(t) T(t, tl) (6) 

where h is Planck's constant. 
The range of validity of Postulate 3 differs substantially from that of the 

dynamical postulates encountered in axiomatic treatments of quantum 
mechanics, including the treatment of Park and Margenau (Ref. 1, p. 224). 
The conventional form of the dynamical postulate, that is essentially Eq. (4) 
regarded as universally applicable, is not adequate for a unified theory of 
mechanics and thermodynamics for two basic reasons. First, as shown in 
Section 3.28, Part lib, certain reversible separable processes of importance 
to thermodynamics cannot be described by Eq. (4) because their end states 
are not related by a unitary operator. Second, whereas thermodynamics 
does not exclude the existence of irreversible processes, Eq. (4) describes 
reversible processes only. 

Of course, Eq. (4) may also not apply to a process for which the system 
is not separable throughout the process. For a nonseparable system A 
undergoing a reversible process with system B, however, Eq. (4) may apply 
to the combined system A B  provided that the end states for A B  are related 
by a unitary operator. 

2.15.  Unitary Processes 

If  the density operators corresponding to the initial and final states of a 
process are related by a unitary operator, it will be called a unitary process. 
It follows from the dynamical postulate that a reversible separable process 
can always be found that connects the end states of a unitary process. 

2.16. Theorem 

Given a separable system in a state fi, the value of any property that is 
invariant during all unitary processes for both fixed and time-dependent 
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parameters, that is additive for independent systems, that is an arithmetic 
mean of measurement results, and that is not explicitly dependent on the 
numbers of particles of constituent species is of the form 

1 =  c T r ( f  in f) (7) 

where c is a fixed constant. 
The proof  of this important theorem is given in Appendix A, and its 

physical significance will be discussed in Section 3.15, Part ila. 

2.17. Classification of States 

We shall call a state for which, the value of at least one property of a 
system changes with time a nonsteady state. For such a state, the density 
operator t~ is an explicit function of time. We shall use the term steady state 
to designate any state for which the values of all the properties o f  a system 
are time invariant. By virtue of Eq. (1), the sufficient condition for a system 
to be in steady state is that both the density operator/3 and all the property 
operators/5 be time invariant. 

A special kind of steady state is a steady state of an isolated system. 
It will be called an equilibrium state. For an isolated system the operators 
corresponding to various properties, including the Hamiltonian, will be time 
invariant, and therefore time invariance of t3 is both necessary and sufficient 
for the system to be in an equilibrium state. If the temporal development 
of/~ follows Eq. (4), the necessary and sufficient condition for t3 to be an 
equilibrium state is that t3 and 2~ commute and therefore that t~ and 
[Eq. (5)] commute, namely 

= ( 8 )  

Equation (8) will be satisfied if and only if the eigenvectors of t3 are eigen- 
vectors of H, namely the energy eigenvectors. In other words, the necessary 
and sufficient condition for equilibrium is that the density matrix [p] be 
diagonal in the energy representation. All states, steady or nonsteady, 
that are not equilibrium are called nonequilibrium states. 

Equation (8) is neither necessary nor sufficient for equilibrium if the 
system undergoes a process that is not described by Eq. (4). A state for which 
t3 obeys Eq. (8), whether it is an equilibrium state or not, will be called a 
stationary state. 

An equilibrium state of an isolated system may always be made to 
change by means of interactions if the isolation of the system is interrupted. 

Interactions that cause the change of the state of  a system from an 
equilibrium state to some other state may not leave net effects in the envi- 
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ronment. I f  they leave no net effects in the environment, we shall say that 
while the state of the system changed, the process in the environment was 
a cyclic process or a cycle. 

If it is possible to alter an equilibrium state and leave no net effects 
in the environment, we shall say that the initial equilibrium state is not stable. 
Accordingly, we shall define a stable equilibrium state as that equilibrium state 
that will always be restored if the state of the environment undergoes a cycle. 

From the definitions just cited, it follows that: (1) Steady states 
constitute the most general category of time-invariant states; (2) a stationary 
state is a special case of a steady state; (3) an equilibrium state is a special 
case of a stationary state; and (4) a stable equilibrium state is a special case 
of an equilibrium state. 

Apart from their time dependence, states can be classified into two types, 
pure and mixed. A state ~ is pure if and only if ~ -- P~, where P~ is the 
projection operator onto the span of Hilbert vector ~b) (Ref. 4, pp. 321-323). 
By virtue of Eq. (3) it follows that all eigenvalues of the density operator of a 
pure state are equal to zero except for one which is equal to unity. 

The definition of pure states implies the following theorems~7~: (1) A 
necessary and sufficient condition for a state to be pure is that its density 
matrix be idempotent; (2) a pure state can be fully described by means of 
a vector in Hilbert space; it is the eigenvector of ~ corresponding to the 
eigenvalue that is equal to unity; (3) for a pure state that is an eigenstate 
of an operator corresponding to a property the value of that property is 
dispersion-free; and (4) for pure states only, Eq. (4) is entirely equivalent 
to the time-dependent Schr6dinger equation. 

A pure state can be an equilibrium or a nonequilibrium state. It is an 
equilibrium state (stationary state) only if it is described by a vector that is 
an eigenvector o f / t .  It will be shown later that among all the pure equi- 
librium states of a system, only the ground state, namely the state of lowest 
energy, is a stable equilibrium state. All other stable equilibrium states with 
energies greater than that of the ground state are, therefore, mixed states. 

2.18. Theorem 

I f  a system is in any pure state other than the ground state, its energy 
may always be decreased by means of a unitary process that corresponds to 
zero net changes of the values of the parameters of the system. 

Proof'. For given values of parameters, any pure state is related to the 
ground state (state of lowest energy) by a unitary operator. By virtue of  
Postulate 3b, it follows that a unitary process corresponding to zero net 
changes of the values of the parameters can be found to connect any pure 
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state to the ground state and, therefore, to a state of lower energy in accord- 
ance with Theorem 2.18. This theorem has also been shown by yon Neumann 
(Ref. 4, Chapter V) to be a theorem of the conventional form of the dynamical 
postulate. 

2.19. Postulate 4: Stable-Equilibrium Postulate 

Any independent separable system subject to fixed parameters has for each 
set of (expectation) values of energy and numbers of particles of constituent 
species a unique stable equilibrium state. 

This postulate brings into our theory the essence of the second law of 
thermodynamics. In fact it has been used by Hatsopoulos and Keenan 
(Ref. 3, p. 367) as a form of the second law in the development of classical 
thermodynamics. Its introduction along with the three postulates of quantum 
mechanics results in a theory that embraces the principles of thermodynamics 
in addition to those of quantum mechanics with a single physical meaning 
of the term state. 

The stable-equilibrium postulate does not preclude the existence of 
many equilibrium states for given values of parameters and for given 
expectation values of energy and numbers of particles. Because any state 
which satisfies Eq. (8) could be an equilibrium state, such states are numerous. 
The postulate asserts, however, that among the many equilibrium states 
that can exist for each set of values of parameters, energy, and numbers of 
particles, one and only one is stable. 

This postulate applies to all systems regardless of size or numbers of 
degrees of freedom, including systems having only one degree of freedom. 
Of course, the validity of classical thermodynamics for stable equilibrium 
states of systems with a small number of degrees of freedom was emphasized 
by Gibbs himself as well as Wilson. 18t 

It will be shown in Part III that the stable-equilibrium postulate restricts 
application of the theory to states defined by irreducible dispersions. 
Irreducible dispersions are defined in Section 4, Part III. 

This completes the presentation of the four postulates of the present 
unified theory. A number of important theorems that can be deduced from 
these postulates are discussed in Part lI. 

APPENDIX A: PROOF OF THEOREM 2.16 

We shall seek a property with a value I that is invariant in all unitary 
processes, that is additive for independent separable systems, that is an 
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arithmetic mean of measurement results, and that is not explicitly dependent 
on the numbers of particles of  constituent species. 

Given a separable system A in state A1, let the density operator/3 have 
complete sets of  eigenvalues {YT~} and orthonormal eigenvectors {vk} that 
are finite. By virtue of Eq. (4), except for the numbers of  particles, the only 
invariants in all unitary processes are the eigenvalues of/3. Consequently, 
the value I of  a property that remains invariant in these processes must be 
solely a function of all eigenvalues y l ,  Y2 ..... yk .... , and, since it is an 
arithmetic mean, it must be of  the form (Theorem 2.5) 

I = ~ y~i~(y~,  Y2 .... ) (A.1) 

where b~(Yl,Y2 .... ) is the mth diagonal element of the matrix associated 
with the operator of  the property in the v-representation. 

By means of a unitary process e~2 involving cyclic changes in parameters, 
state As can be connected to state A2 which has the same eigenvalues 
Y~, Y2 .... , y~ ,... but arbitrarily rearranged eigenvectors v~, v2 ,..., vk .... , with 
respect to the ordering of the eigenvalues Yl, Y2 .... , YT~ ..... Conversely, 
process cq2 can be regarded as resulting in an arbitrary rearrangement of the 
eigenvalues y~, Y2 ,..-, Y~ ,--., with respect to a fixed ordering of the eigen- 
vectors va, v2 ..... vk ... . .  Since it is invariant in all ~ 2 ,  the quantity I must 
be a symmetric function of the eigenvalues y~, Y2 .... , y~ .... of the form 

I = ~ ymi(y,~) = ~. f (y ,~)  (A.2) 

where i(y) and f ( y )  are functions of  y only. 
Given two independent separable systems A and B in states A1 and B1, 

respectively, let the eigenvalues of  the density operator for A~ be y~, y~ .... , 
Y .. . . . . .  YM, and those for B~ be z t ,  z2 ..... z . . . . .  ,ZN.  I f  I is an additive 
property, then Ix~ for the combined system A B  must be the sum of Ix and 
I~ ,  namely 

M N M N 

I x ,  = Z ~ f(y,,,z,~) = Z f ( Y , , )  4- Zf(z ,~)  (A.3) 
fl~ ~ m q2 

For  Y k =  1 and y m = 0  for m =/=k, and z z =  1 and z,-----0 for n =/=/, 
Eq. (A.3) yields 

- f ( 1 )  q- ( M  × N -  M -  N) f (O)  = 0 (A.4) 

Because the number M of  eigenstates of  system A is independent of  the 
number N of eigenstates of  system B, it follows from Eq. (A.4) that 

f(0)  = 0 and / (1)  = 0 (A.5) 
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Keeping all y,, and z,~ fixed except for y~ and y~ which we vary so that 

dyk 4- dyz = 0 for arbitrary k and 1 (A.6) 

we find that Eq. (A.3) yields 

df  ( y ~z,~) 
zn d(ykz,~) 

n 

df(yk) df(yzz,)  d](yt) (A.7) 
= d(y z ) 

n 

Since Yk and y~ are arbitrary, each side of Eq. (A.7) must be at most a 
function of all the z~ only, so that upon differentiating with respect to y~ 
we obtain the relation 

d2f(Y~Z~) d~f(Yk) --  0 (A.8) 
q~ 

Moreover, keeping all z,~ fixed except for zr and z~ which we vary so that 

dz,. 4- dzs = 0 for arbitrary r and s (A.9) 

we find that Eq. (A.8) yields 

d3f(ykz,O 2G d~(ykz~) d3f(YkZ~) --  2z~ d2f(YkZ'~) + z~2yk (A.10) 
d(ykz~)2 + z~2y~ d(ykzr)a d(ykzs) ~ d(y~z,) z 

or, equivalently, 

dZf(x) 2 d3f 
2 x ~  4- x ~ = c (A.11) 

where c is a fixed constant. The solution of Eq. (A.11) subject to conditions 
(A.5) is given by the relation 

f ( x )  = cx In x (A.12) 

and, consequently, 

I = Z f ( Y ~ )  = c ~ y~ in y~ = c Tr03 In t3) (A.13) 

Equation (A.13) is valid also for states t3 having an infinite number of  
eigenvalues Yl, Y2 .... , Yk ,..- • The proof  of  this statement, however, will not  
be given here. 
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