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Part Ilb presents some o f  the most important theorems for stable equilibrium 
states that can be deduced from tke four postulates o f  the unified theorypresented 
in Part L I t  is shown for the first time that the canonical and grand canonical 
distributions are the only distributions that are stable. Moreover, it is shown 
that reversible adiabatic processes exist which cannot be described by the 
dynamical equation o f  quantum mechanics. A number o f  conditions are discussed 
that must be satisfied by the general equation o f  motion which is yet to be 
discovered 

3. THEOREMS RELATED TO THE STABLE-EQUILIBRIUM 
POSTULATE (CONTINUED) 

Thi~ part of the paper continues the presentation of theorems related to the 
stable-equilibrium postulate with special emphasis on stable equilibrium 
states, and presents certain commonly encountered reversible processes that 
cannot be described by the equation of motion of quantum mechanics 
(Postulate 3, Part I). 

3.17. Theorem 

A state A0 of a system is a stable equilibrium state if and only if the 
value So for A 0 is larger than that of  any other state of the system having the 
same values of energy, numbers of particles, and parameters as A0 • 

1 Part I of this paper appeared in Found Phys. 6(1), 15 (1976). Part Ila appeared in Found 
Phys. 6(2), 127 (1976). The numbering of the sections, equations, and references in this 
part of the paper continues from those in Part IIa. 

2 Massachusetts Institute of Technology, Cambridge, Massachusetts. 

439 

© 1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this 
publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, microfilming~ recording~ or otherwise, without written permission of 
the publisher. 



440 Hatsopoulos and Gyftopoulos 

Proof'. For fixed values of energy, numbers of particles, and parameters, 
let us assume that state A0 of maximum S is not a stable equilibrium state. 
From the definition of a stable equilibrium state (Section 2.17, Part I) it 
follows that a process can be found beginning with state A0 and ending with 
a different state A1 for which the environment undergoes a cycle. Since initially 
S is at a maximum, the final state A1 would have a value $1 smaller than that 
of the initial state Ao • This result, because it violates Theorem 3.15, Part IIa, 
is absurd. We conclude that a state of maximum S as specified above is a 
stable equilibrium state. 

For  fixed values of energy, numbers of particles, and parameters it is 
shown in Sections 3.23 and 3.24 that the expression for S [Eq. (25), Part IIa] 
results in a unique maximum corresponding to a unique state. According to 
the conclusion just cited, this unique state must be a stable equilibrium state. 
Moreover, it must be the only stable equilibrium state. If it were not, more 
than one stable equilibrium state would correspond to the given values of 
energy, numbers of particles, and parameters, contrary to the stable-equili- 
brium postulate. 

3.18. Theorem 

For given values of energy, numbers of particles, and parameters the 
value of S for the stable equilibrium state must be the maximum value. 

This theorem is a restatement of Theorem 3.17 and constitutes a criterion 
for stable equilibrium. 

3.19. Theorem 

Given a system in a stable equilibrium state corresponding to (expecta- 
tion) values E for energy, Ell, n2 ,..., n, for the numbers of particles of the r 
species, and i l l ,  ~ ,..., fi~ for the values of the s parameters, the (expectation) 
value P of any property P is fully and uniquely determined by the given 
values E, n l ,  n2 ,..., n~, P l ,  fi~ ,..., fis. 

The proof  of this theorem follows immediately from the definition of 
state and the uniqueness of the stable equilibrium state (stable-equilibrium 
postulate). 

3.20. Theorem 

For stable equilibrium states of a system the value P of any property is 
a single-valued function of the form 

e = P ( E ,  E l l ,  fl 2 , . . . ,  n r ,  i l l ,  ]~2 , . . . ,  [is). (27) 
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This theorem is a restatement of Theorem 3.19. It is known in classical 
thermodynamics as the s tate  principle.  ~la) It applies to stable equilibrium 
states only. 

In general, a large number of values of independent properties is required 
for the specification of a state, nonequilibrium or equilibrium. The set of such 
values has been called a quorum.  (14) For a stable equilibrium state, however, 
the stable-equilibrium postulate requires that the number of properties in a 
quorum be at a minimum. This minimum is the result of the nature of the 
stable equilibrium state and not of the observer's coarse specification, in- 
adequate knowledge, or inability to carry out complicated numerical cal- 
culations. 

Several relations of the form of Eq. (27) for various properties can be 
combined to express the value of any property as a function of any desirable 
set of independent properties of stable equilibrium states. We shall call 
relations between such values of properties equations o f  s table equil ibrium 

states.  
Two equations of stable equilibrium states that are basic to subsequent 

discussion are the relations 

S = S(E ,  n l ,  n2 ..... n r ,  i l l ,  fl~ ,..., ft.) (28) 

and 
E - -  E (S ,  n l ,  n~ ..... n r ,  i l l ,  fi~ ..... f i3  (29) 

3.211. Theorem 

For two systems A and B with continuous and differentiable functions 
(28) and (29), each having fixed parameters, each being in a stable equilibrium 
state, and each being capable of exchanging only energy with the other, the 
necessary and sufficient condition for mutual stable equilibrium is that the 
partial derivative of the energy [Eq. (29)] with respect to S be the same in 
both systems. In symbols, 

-b~-s,,.~ = t-b-~-J~.~ (30) 

where the superscript denotes the system and the subscripts the quantities 
that are kept fixed during the differentiation. The partial derivative (OE/~S)n.~ 
for a system in a stable equilibrium state will be denoted by T, i.e., 

r = (eE/~S)n,~ (31) 

The proof of this theorem follows immediately from the criterion for 
stable equilibrium (Theorem 3.18) applied to combined system A B  (Ref. 15, 
p. 398). 
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By virtue of the principle of nondecrease of S (Theorem 3.16, Part IIa) 
it can be shown that T represents an "escaping tendency" for energy, namely 
when (eE/OS)~,e > (3E/aS){,e then energy can flow spontaneously from A 
into B. 

The quantity T can be uniquely defined only if a system in a stable 
equilibrium state can be identified, because then and only then is E a unique 
function of S, n l ,  n2 ,..., n~, /31,/32 ,...,/3s- 

3.22. Theorem 

For two systems A and B with continuous and differentiable functions 
(28) and (29), each having fixed parameters, each being in a stable equilibrium 
state, and each being capable of exchanging both energy and particles 
with nonzero rest mass of species i, for i = 1, 2,..., r, with the other, the 
necessary and sufficient conditions for mutual stable equilibrium are that the 
partial derivatives (OE/~S),.e and (eE/~n~)s,,,B be the same in both systems, 
where E is given by Eq. (29). In symbols 

~/s,.,~ = t-b-~-n~ ~ s , . , ~  f o r  i = l ,  2 . . . .  , r 

The partial derivative (aE/an~)s,,,~ for a system in a stable equilibrium state 
will be denoted by/,~,  i.e., 

I*~ = (aE/an~)s,,~,e for i = 1, 2 ..... r (33) 

The proof of this theorem follows immediately from the criterion for 
stable equilibrium (Theorem 3.18) applied to combined system AB. Each 
proper ty /~ ,  like property T, can be uniquely defined only if a system in a 
stable equilibrium state can be identified, because then and only then is E a 
unique function of S, n l ,  n2 ,..., n,.,/31 ,/32 ..... /3~. Each/z~ can be shown to 
represent an "escaping tendency" for species i. 

3.23. Theorem 

A petit system (Section 2.2, Part t) is in a stable equilibrium state f30 if and 
only if the eigenvectors of t3o are the energy eigenvectors of the system and 
the eigenvalues x~ ° of/3o are related to the energy eigenvalues e~ of the system 
by the relation 

exp( -EJkT)  xi ° -  - -  for i =  1,2 .... (34) 
Q~ 
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where T = (OE/OS).,~, and 

Q~ = Z exp(--eJk T) : Tr exp(--IJ/kT) (35) 
g 

The quantity Q~ is called the canonical partition function. For petit systems, 
t~o will be called the canonical operator, and the set xt °, x~°,..., x~°,.., the 
canonical distribution. 

The proof  of the theorem follows from the criterion for stable equili- 
brium, namely the maximization o f S  [Eq. (25), Part IIa, for c = --k], subject 
to the requirements 

E = Tr(t3H) = const and Tr ~ = 1 

Consistent with the stable-equilibrium postulate, the state [Eq. (34)] for 
which S is maximum at fixed values of energy and of parameters is unique. 

Substituting Eq. (34) into the expression for S [Eq. (25), Part IIa, for 
c : --k], we find the following equation of stable equilibrium states: 

S : (E/T) + k In Q~ (36) 

3.:24. Theorem 

A grand system (Section 2.2, Part I) with operators that have components 
in many Hilbert spaces ~ (Section 2.10, Part I) is in a stable equilibrium state 
t~0 if and only if the eigenvectors of t~0 are the energy eigenvectors of the 
system and the eigenvalues x°~ of t~0 are related to the energy eigenvalues E~ 
of the system by the relation 

x0 _ exp{--[e~i -- ~2~ t~tn~(a)l/kT} for all ~ and i (37) 

where the index ~ denotes the component Hilbert spaces, the index i the 
various energy eigenvalues within each Hilbert space, 

~W~(~)] 
O~ = 2 2  exp [ -  

6oH 1 

- ~ ~ k T  J (38) 

kT 

and N~ is the particle-number operator for species l. The quantity Q~ is 
called the grand canonical partition function. For grand systems, ~0 will be 

o o o the grand called the grand canonical operator, and the set x ~ ,  x~ ,..., x~ . . . . .  
canonical distribution. 
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The proof of the theorem follows from the criterion for stable equilibrium 
as for Theorem 3.23 except that here the requirements are that E = Tr(/3/t) = 
const, n, = TrQ3Nz) = const for each l, and Tr f3 = 1. 

Substituting Eq. (37) into the expression for S, we find the following 
equation of stable equilibrium states: 

r t /  
S =  E , Z~P,~ z + k l n Q g  (39) 

T r T 

3.25. Theorem 

For a petit system in a state A~ with a density operator ~1, the available 
energy, namely the maximum work WmRax that can be obtained from the 
system in combination with a reservoir R for which (~E/~S)~,~ = To, is given 
by the relation 

WRm~x = Tr[fil(/} + kTo In ~)] q- kTo In Tr[exp(--IZI/kTo)] (40) 

Proof: By virtue of Theorem 3.13, Part IIa, the available energy is 
given by the work done in a reversible adiabatic process in the combined 
system A R  in which system A starts from state A1 and ends in a state Ao in 
mutual stable equilibrium with reservoir R and with no net changes in 
parameters. In this process the quantity S for the combined system A R  is 
invariant and, therefore, the value So for state A0 is given by the relations 

So = S~ - -DSa  

= --k Tr(/31 In 81) -- DSR 
(41) 

where DSR is the change of the quantity S~ of the reservoir. Moreover, by 
virtue of Theorem 3.22 and Eqs. (35), (36), and (41) the energy E0 of state A 0 
and the change in energy DER of reservoir R are given by the relations 

Eo = ToSo -- kTo In Q~ (42) 

= --kTo Tr(/51 In t~l) -- kTo in Tr[exp(--H/kTo)] -- ToDSR 

and 

DER = ToDSR 

Finally, the energy E1 of state A1 is given by the relation 

E 1 = Tr (/~IH) 

Subtracting Eqs. (42) and (43) from Eq. (44), we get Eq. (40). 

(43) 

(44) 
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If the initial state is an energy eigenstate having an eigenvalue q ,  Eq. (40) 
reduces to 

WRmax = Ej + k To In Tr[exp(-- I2I/k To)] 
(45) 

e j -  q q- kToln Ii @ Y" exp[ (e i -  q)/kTo]{ 
d / 

' i ~ - I  
] 

Equation (45) is it simple example showing that the available energy can 
exceed the energy ej -- el of the system with respect to the ground-state 
energy e I . 

An expression similar to Eq. (40) can be readily derived for grand 
systems. 

3.26. Identification of Certain Properties with Properties Encountered in 
Classical Thermodynamics 

For a system passing through stable equilibrium states, the energy can 
be, expressed in the form of Eq. (29). By virtue of Eqs. (31) and (33), the 
differential dE can be expressed in the form 

dE = T dS q- tz~ dn~ + dfi¢ (46) 
i i S , n , B  

For a reversible adiabatic process passing through stable equilibrium states 
for fixed n~, the first and second terms of the right-hand member vanish. 
Moreover, the energy (dE)~ev becomes the negative --8 W of the work done 
in the process. It follows that 

i S ,n ,B  
(47) 

The symbol 8 is used because work is not a property of a system and 3 W 
the, refore is not a perfect differential. 

In general for a reversible process passing through stable equilibrium 
states for fixed n~, Eqs. (46) and (47) yield 

T dS = (dE + 3 W)rev (48) 

In classical thermodynamics, the nonwork part of the energy transferred to 
the system, namely [dE--(--SW)]rev,  in this reversible process is called 
heat and is denoted by 3Q. It follows from Eq. (48) that 

3Q -= T dS (49) 
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and from Eqs. (46) and (49) that heat is an interaction that alters the energy 
of a system having fixed values of parameters fi and numbers of particles ni 
as it passes through stable equilibrium states. The heat ~Q is not a perfect 
differential because Q is not a property of a system. 

It is seen from Eq. (49) that 3Q/T is a perfect differential for any rever- 
sible process passing through stable equilibrium states for fixed/3 and ni.  
In classical thermodynamics, T is called temperature. The integral f (SQ/T) 
evaluated between some reference stable equilibrium state and a second 
stable equilibrium state is called the entropy of the second state. Upon 
comparing theoretical and experimental values of entropy for a simple 
system passing through stable equilibrium states, such as a perfect gas, the 
fixed constant c in Eq. (25), Part IIa, is identified as being --k, the negative 
of the Boltzmann constant. 

We have already shown (Part IIa) that: (1) For any system in any state, 
nonequilibrium, equilibrium, or stable equilibrium, S is invariant in all 
reversible adiabatic processes; and (2) for any system in any state, S is non- 
decreasing in all adiabatic processes in general. Since these two features are 
characteristic of the entropy of stable equilibrium states of classical thermo- 
dynamics, from here on we shall call S the entropy of the system irrespective 
of whether the state is stable equilibrium or not. 

Comparing Eq. (46) with the generalized Gibbs equation (Ref. 15, 
p. 470) for stable equilibrium states in classical thermodynamics, we conclude 
that/z~ is the total potential of species i, for all i. 

3.27. Graphical Representations 

Because a state can be defined by the values of its independent properties, 
states can be represented by points in a multidimensional property space. In 
general, the graphical representation is unwieldy because the number of 
independent properties of a given state can be very large. Nevertheless, 
useful information often can be summarized by a projection of the multi- 
dimensional property space on a two-dimensional plane. One such plane is 
the Try/Q) vs. [--k Tr(/3 In/~)] plane, namely the E vs. S plane. 

Given a system having fixed numbers of particles (dispersion-free or 
not) and fixed parameters, the projection of property space on the E-S plane 
has approximately the shape of the cross-hatched area shown in Fig. 1. 
Each point in this area represents a large number of states having the same 
values E and S, except for points along the curve EgAoAo' , each of which 
represents one and only one state. 

For the given values of numbers of particles and parameters, and for 
values of energy greater than the ground-state energy Eg, the boundary 
EaE1 at S = 0 corresponds to all the pure states of the system, namely to all 
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,/Ai(E~,S~)/ / / - f lA '  

'.,=- I / i  / / / / /  

, U/I' 
V.o./.// 

I . . 

Esr ~- Entropy, S=-k Tr (p2n~') 

Fig. 1. Projection of property space on the energy 
vs. entropy plane. 

states that can be described quantum mechanically by projection operators. 
Thus, pure-state quantum mechanics is zero-entropy physics. 

For the given fixed values of numbers of particles and parameters, the 
curved boundary EgAoAo' in Fig. 1 represents the stable equilibrium state 
relation E vs. S (Theorem 3.20). Its shape is concave as shown because 
(~E/0S)~.~ is an escaping tendency (Theorem 3.21). It reflects the tbllowing 
results of our theory: (1) For each value $1 for the entropy, stable equilibrium 
state Ao is the state of minimum energy (Theorem 3.3, Part lla); (2) for each 
value E L of energy, stable equilibrium state A0' is the state of maximum 
entropy (Theorem 3.18); (3) because each stable equilibrium state is unique, 
the temperature (~E/~S)~.~ is uniquely defined at each point of E~AoAo'; and 
(4) the ground state is nondegenerate and corresponds to S = 0 and T -- 0. 
(The nondegeneracy of the ground state is a consequence of the third law of 
classical thermodynamics.) The boundary EgAoAo' represents the stable 
equilibrium states of the system, which may be treated by classical thermo- 
dynamics. Thus, stable-equilibrium-state quantum mechanics is constrained- 
maximum-entropy physics. 

Starting from a state on the boundary E~AoAo' of given energy El ,  a 
Maxwellian demon would allow the system to do work and, therefore, bring 
it to a state of energy E2 < E1. Figure 1 shows that such a process necessarily 
implies a decrease of entropy, which, according to Theorem 3.16, Part ]Ia, is 
impossible. 
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For a given state A1 (Fig. 1), the energy E1 -- E~ is the adiabatic availa- 
bility T 1 of A~ (Theorem 3.7, Part IIa). In general, it is seen from the figure 
that the adiabatic availability varies from E1 -- Eg for a pure state of energy 
Et to zero for the stable equilibrium state Ao' corresponding to E t ,  depending 
on the entropy of the state. This limitation on the amount of work that can 
be extracted from a system with no net change in parameters results from the 
stable-equilibrium postulate. Although it cannot be derived from the laws of 
quantum mechanics, it compares favorably with them in scientific 
validity. 

For a given reservoir R at temperature T, a line of slope T can be drawn 
tangent to EgAoAo' as shown in Fig. 1. The point of tangency AR is the stable 
equilibrium state of the system in question that has a temperature (~E/~S),,z 
equal to T. For a given state A~, it can be readily verified that the energy 
Et -- E4 is the available energy Dt of A t of the system in combination with 
reservoir R [Eq. (40)]. It is seen from the figure that the available energy 
varies from a maximum Ea -- E5 for a pure state of energy E~ to a minimum 
Et -- E2 for the stable equilibrium state Ao' corresponding to E~, depending 
on the entropy of the state. The available energies of all states with values Et 
and S < $2 are greater than the energy E~ -- Eg of the system above the 
ground state. Finally, it is seen from the figure that, in general, the available 
energy is greater than the adiabatic availability (Theorem 3.11, Part IIa). 

For  a state A~, no adiabatic process involving no net changes in numbers 
of particles can end in states to the left of the line A~Ao (Fig. 1) because such 
a process would result in work (decrease in E) in excess of the decrease in 
available energy (Theorem 3.13, Part IIa). 

Heat interactions are represented in Fig. 1 by paths that follow the 
stable-equilibrium-state curve EgAoAo'. For these interactions, and for these 
only, the amount dE of energy transferred is uniquely related to the amount 
dS of entropy transferred, namely dE = SQ =- T dS. For end states within 
the cross-hatched area neither is T definable nor can a unique dS be asso- 
ciated with a given amount of energy transfer dE. It follows that nonadiabatic 
interactions, in general, are not heat interactions. 

3.28. On Nonunitary, Reversible, Separable Processes 

The conventional interpretation of the dynamical postulate includes 
explicitly or implicitly the statement that all processes of a separable system 
or of a separable combination of interacting systems are unitary (reversible, 
separable). In a unified theory of mechanics and thermodynamics this 
statement is not valid because, as will be shown below, nonunitary, reversible 
separable processes must exist and irreversible, separable processes probably 
exist. 
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Isolated system 

System, A,1 
temp. T A 

,,, Heat 
engine 

X 

I! ystem, B, 
emp. TB 

_ _  Flywheel 
C 

Fig. 2. Schematic of a commonly 
encountered nonunitary, reversible, 
separable process. 

A process commonly encountered in thermodynamics is that involving 
the transfer of energy (heat) from a system A in a stable equilibrium state at 
temperature TA to a system B in a stable equilibrium state at a lower temper- 
ature T~ for fixed values of parameters of both A and B. Such a process is 
made reversible by interposing between A and B a reversible cyclic device X, 
called a heat engine, that does work. The work done by X can be used to 
increase the energy of  a fourth system C, such as a frictionless flywheel, by 
means of a unitary process for C (Fig. 2). 

The process for the combined system Z consisting of A, B, X, and C is 
separable because Z can be isolated from the environment. It is also reversible 
because aI1 systems participating in the process can be restored to their initial 
states, by running the cycle of X in the reverse direction, leaving no net effects 
on the environment of Z (Section 2,13, Part I). 

For  a given energy change AEA of  A, we wilt consider a reversible 
process for Z in which the work done on C is given by the Carnot expression 
[Appendix G, Eq. (G. 6)]. In thermodynamics, this process is corroborated 
by many experiments. We shall call it the Carnot process. 

It is shown in Appendix G that, during the reversible Carnot process, A 
and B pass through stable equilibrium states and remain statistically indepen- 
dent (uncorrelated) because, for a given AEA, if either the process is irreversi- 
ble or A and B do not pass through stable equilibrium states, or A and B are 
correlated, the work done on C is less than that of  the Carnot process 
[Eq. (G. 6)1. 
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Moreover, it is shown in Appendix G that for many systems Z the 
Carnot process is not unitary. 

A second example of a nonunitary, reversible, separable process is the 
reversible, adiabatic process of an isolated combined system AC in which A 
starts from a mixed, nonstable state A1 and does work on C untill all its 
adiabatic availability is transferred to C (Theorem 3.7, Part IIa)--namely 
until system A reaches a stable equilibrium state for which the entropy is the 
same as at A1 • The density operator for the final state is canonical, whereas 
for the initial nonstable state A1 it is not. Because the eigenvalues of these 
two density operators differ, they cannot be connected by a unitary operator. 
System C, on the other hand, can be a work element (Appendix C, Part IIa) 
that undergoes a unitary process. It follows that the combined system AC 
undergoes a nonunitary, reversible, separable process. 

Finally, a third example of a nonunitary, reversible, separable process 
is the reversible, separable process of a system A starting from a pure state A1 
and doing work in combination with reservoir R until all its available energy 
(Theorem 3.11, Part IIa) is transferred to a work element C undergoing a 
unitary process--namely until system A reaches a state in mutual stable 
equilibrium with the reservoir. The eigenvalues of the density operator of 
the initial state of the combined system AR consist of an infinite number of 
zeros plus the canonically distributed eigenvalues of the reservoir (Section 2.17 
and Theorem 2.12, Part I, and Theorem 3.23). The eigenvalues of the density 
operator of the final state of AR are canonically distributed and are all 
different from zero (Theorem 3.23). It follows that ARC undergoes a non- 
unitary, reversible, separable process. 

3.29. On Irreversible Processes 

In this section we shall discuss the following three questions: (1) Does 
Postulate 4 or any other correct statement of the second law of thermo- 
dynamics demand the existence of irreversible processes? (2) What is the 
experimental evidence that supports the existence of irreversible processes ? 
(3) What are some of the possible causes of irreversibility ? 

The stable-equilibrium postulate neither precludes nor demands the 
existence of irreversible processes; in other words, no basic arguments of the 
present theory are critically dependent on the existence of irreversibility. 
Indeed this conclusion is true for several well-known statements of the 
second law of classical thermodynamics, including that of Carath6odory/16) 
It is a commonly encountered fallacy, however, that the second law and, 
therefore, classical thermodynamics are based on the existence of irreversi- 
bility. Except for a few inequalities, classical thermodynamics and 
all its implications about physical systems would be equally valid and 
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nontrivial in the physics of  a reversible universe as in that of an irreversible 
one. 

For example, for a reversible universe Postulate 4 would still imply the 
existence of stable equilibrium states. Without irreversibility a system in a 
nonstable state can reach a stable equilibrium state only as a result of inter- 
actions with other systems in the environment that involve transfer of entropy 
to the system or work done by the system, or both. 

Ample experimental evidence exists that isolated systems starting from 
nonstable states spontaneously attain stable equilibrium states without 
transfer of energy from or to the environment. Such processes could be 
explained by postulating the existence either of irreversible processes or of 
reversible processes that involve transfer of entropy but not energy from the 
environment. 

Because perfect isolation may be difficult to achieve in practice, an 
explanation often cited for irreversibility is that weak and complicated inter- 
actions from the environment force a system to approach a stable equilibrium 
state. But this explanation avoids, rather than solves, the problem. Weak and 
complicated interactions between a system and its environment could cause 
an increase of the entropy of a system without appreciably affecting its 
energy. Such interactions, however, would have effects on the environment. 
Two cases can be distinguished: (1) The entropy of the system increases by 
the same amount that the entropy of the environment decreases. This 
process involves no irreversibility. (2) The entropy of the system increases 
but the entropy of the environment does not decrease by a corresponding 
amount. Here the irreversibility occurs in the environment. We are left with 
the problem of explaining why interactions that cause flow of entropy into a 
system do not decrease the entropy of the environment. 

In conclusion, we can recognize three possibilities, each of which requires 
further clarification: (1) The universe is reversible and its total entropy 
remains invariant while being redistributed among various systems. (2) Part 
of the universe is irreversible and part is reversible. Entropy is generated in 
the irreversible part and transferred to the other part. (3) Irreversible proces- 
ses exist for all parts of the universe. Each of these possibilities would be 
governed by an equation of motion which is yet to be discovered. 

3.30. On the General Equation of Motion 

Equation (4) is incomplete because it describe neither reversible, non- 
unitary processes nor irreversible processes. A general equation of motion 
that describes all known processes has yet to be discovered. All we can say 
about such an equation of motion is the following: (1) It must describe 
nonunitary processes in general and, in the limit of unitary processes, it must 

825/6/4-6 
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reduce to Eq. (4), Part I; (2) for an irreversible process in an isolated system it 
must result in a decrease with time of the quantity Tr(¢ In t3); and (3) for all 
processes in an isolated system it must imply the invariance of the quantity 
Tr(~fI). The first two requirements result from the four postulates of the 
present unified theory. The third is a result of the first law of classical thermo- 
dynamics (Ref. 15, p. 22). 

For completeness, some form of the first law of classical thermo- 
dynamics should have been added to the four postulates of our theory. 
Although for unitary processes it is not needed because the dynamical 
postulate implies the conservation of Tr(~ITI), for other processes the first 
law is necessary until the general equation of motion is found. It was omitted 
to avoid diversion of attention from more important aspects of the theory. 

This completes the presentation of a number of important theorems of 
the present unified theory. As already stated, the theory applies only to 
states that are defined by irreducible dispersions. Irreducible dispersions are 
discussed in Part III. 

APPENDIX G. PROOF OF NONUNITARITY OF PROCESS 
SHOWN IN FIG. 2 

For systems A and B in Fig. 2, which are initially independent, and for a 
given decrease AEA of energy of A, we will consider the Carnot process that 
does maximum work on flywheel C. 

By virtue of Theorem 3.13, Part IIa, we know that the process must be 
reversible. It follows that during this process the entropy of Z' is invariant. 
Moreover, because X and C undergo a cyclic and unitary process, respectively, 
their entropies are invariant and, therefore, the entropy of AB is invariant. 

Let the initial and final states of AB, A, and B be t30 ~B, t3o ~, and t30 B 
(t~o~B = t30 A × t30 B) and t3 AS, /3 A = TrBt3 AB, and t3 ~ - -  T r ~  AB, respectively, 
where Trx denotes partial tracing over the Hilbert space of system X. Because 
AB undergoes a reversible process, its initial and final entropies satisfy the 
relation 

S(t3o ~B) = S(f5 ~B) (G.1) 

where 

but 

~" A S(~o~ ) = S(po ) + S(~o~) (G.2) 

S(~ AB) ~ --k Tr(/6 x In/~x) _ k Tr(~ ~ In/~) (G.3) 

In relation (G.3), the equality holds if and only if A and B are independent, 
namely /3 AB = f3 A × f3 n, and entropies can be indentified for A and B, 
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E vs. --k Tr(p In p) diagrams for systems in 
Fig. 2: (a) system A, (b) system B. 

because statistical correlations result always in the entropy of AB being 
smaller than the sum --k  Tr(t~ A In fiA) _ k Tr(t3 B In I~B). In the presence of  
correlations, no entropies can be defined for A and B, and the sum --k  Tr  
t3 A In t3 A -- k Tr(t~ BIn ~B) does not represent the entropy of AB. 

The states of A and B can be shown schematically on E vs. -k  Tr(t~ In t~) 
diagrams (Fig. 3). For a given decrease AEA, the possible final states t~ A 
must be on line A1A2 (Fig. 3a). We see from the figure that stable equilibrium 
state A1 corresponds to the minimum decrease ASA of - -k  T r ~  ~ In t3A). 

By virtue of the law of conservation of energy and relations (G. 1)-(G.3), 
the possible final states t~ B must be in the cross-hatched area B~B2B a (Fig. 3b), 
where line B~B2 is determined by the minimum possible ASA transfer to B, 
and line B2B3 by the maximum possible energy transfer AEA to B. We see 
from the figure that stable equilibrium state B~ corresponds to minimum 
increases ASB(ASA + AS, = 0) and AE~ and, therefore, to maximum work 
Wc done on C[Wc = --AEA -- (AEB)min]. Moreover, since for states A1 
and B1 

As~ + AS~ = 0 ( G . 4 )  

8z5/6/4-6" 
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it follows from Eq. (G.1) that 

s(~  AB) = - - k  Xr(~A In f~)  - -  k Xr(~ B In y )  
(G.5) 

= s ( ~ )  + s (¢ , )  

namely that the final stable equilibrium states A1 and B~ of the Carnot 
process are independent (t3 aB ----- t~ a × t3~). 

It can be readily shown that the work W c  done during the Carnot 
process is given by the relation 

W c  = --ZIEA - -  (AEB)min = -- (~eA TA(EA) T,(E~) 

where T(E)  denotes the temperature vs. energy relation of each system, and 
EB depends on EA because of the condition of  reversibility. 

Next, let the eigenvalues of the canonical operators #o ~ and ~o B for the 
0 • initial states be x~ °, x2°,..., x~°,.., and y o, y2O,..., y~ ..... and let the eigenvalues 

for the states t3 ~ and t3 ~ at the end of an infinitesimal Carnot process be 
Xl ° + d x l , x z  ° 4- dxz .... , x i  ° 4- d& .... and yl  ° 4- dyl , y O4-dy~ ..... yjO 4- 

dy 5 ,..., respectively; here 

E dx~ = 0 and ~ dy, = 0 (G.7) 
i J 

Contrary to the conclusion stated in Section 3.28, let the Carnot process 
for any combined system Z in Fig. 2 be unitary. Because systems X and C 
undergo unitary processes, it follows that the combined system A B  must also 
undergo a unitary process and, therefore, that the density operators for the 
final and initial states of A and B must satisfy the relation 

Tr(/3 A X /3B) ~ = Tr(t3o a × t3oB) ~ for n = 2, 3,.. (G.8) 

Differentiating Eq. (G.8), we find that the eigenvalues of the density operators 
must satisfy the relations 

O n  y~ (yO)~ ~ (x?)~-I dx~ + Z (xi) Z (y o)~-1 dyj = 0 
9 i i j 

Using the differential relations 

and 

for n = 2, 3,... 

(G.9) 

exp(-- ep/kTB) yjO 
dyj = d ~ j  exp(--ejB/kTB) - ' k T a  2 [ejB -- EB(TB)I dTB (G.11) 

e x p ( _ e  A/kTA) &o l e a  __ EA(TA)] dTA (G.lO) 
dx i = d Z~ exp(--e~A/kTA) --  kT.4 ~ 
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and substituting into Eq. (G.9), we find in due course 

drA TA 2 EB(T~) --  [2J (yjO)~ e B/Zj (yjO),~] 
drB TB 2 EA(TA) --  [Zi  (x~°) ~ eiA/2,: (x,°) "] 

= _ TA z EB(T,) --  E~(TB/n) for n =-- 2, 3,. (G.I2) 
TB 2 EA(TA) -- EA(TA/n) "" 

where Et A and e~ B and T A and TB denote the energy eigenvalues and the 
temperatures of the initial states of  A and B, and EA(T) and EB(T) the energies 
of A and B at temperature T, respectively. Equation (G.I2) is valid if and 
only if its right-hand side is independent of the value of n. This requirement 
is satisfied if and only if 

EA(T) oc T ~ and Ee(T) oc T ~ 

namely if and only if the energies EA(T) and E~(T) depend on the same power 
a of T. Since the energy of all systems in stable equilibrium states does not 
depend on the same power of  T, it follows that, in general, the Carnot process 
of  Z is not unitary, and the conclusion stated in Section 3.28 is valid. For  
example, if A is a perfect gas and B has T-dependent specific heats, then EA is 
proportional to T b u t  E~ is not proportional to T, and Eq. (G.12) is not valid 
for all values of n. 
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