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Modern research methods produce large amounts of scientifi-

cally valuable data. Tools to process and analyze such data have

advanced rapidly. Yet, access to large amounts of high-quality

data remains limited in many fields, including catalysis research.

Implementing the concept of FAIR data (Findable, Accessible,

Interoperable, Reusable) in the catalysis community would

improve this situation dramatically. The German NFDI initiative

(National Research Data Infrastructure) aims to create a unique

research data infrastructure covering all scientific disciplines.

One of the consortia, NFDI4Cat, proposes a concept that serves

all aspects and fields of catalysis research. We present a

perspective on the challenging path ahead. Starting out from

the current state, research needs are identified. A vision for a

integrating all research data along the catalysis value chain,

from molecule to chemical process, is developed. Respective

core development topics are discussed, including ontologies,

metadata, required infrastructure, IP, and the embedding into

research community. This Concept paper aims to inspire not

only researchers in the catalysis field, but to spark similar efforts

also in other disciplines and on an international level.

1. Introduction

Catalysis is a key technology field for solving the challenges

related to climate change and a sustainable supply of energy

and materials. To tackle the challenges in reasonable time,

improving the efficiency of developing new catalytic processes

is of great value. Catalysis is highly interdisciplinary in its

breadth of fields covering heterogeneous, homogeneous, bio-,

electro- or photo-catalysis. All sub-disciplines share some

common characteristics. Progress is driven by both experimen-

tal and computational methods which are often carried out in

isolation by different specialists. Another aspect is that catalysis

covers broad length and time scales. While ideal conditions can

be often realized on small scale, this is no longer possible at

larger scale. It is therefore vital to consider reaction and process

engineering aspects in the early state of catalyst development.

Due to the tight link between catalyst performance and optimal
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process design, innovations may result from both the catalyst

and the related process technologies.

According to a recent GeCats whitepaper a key to improve

the general understanding and the development workflows in

catalysis is building a bridge between theory and experiments.[1]

This covers the challenge of understanding which material

properties determine catalyst performance also described as

the quest for the “catalyst genome”.[2] One cornerstone of

addressing this challenge is to boost the available amount of

material, adsorption and reaction data via high throughput

computation and to apply machine learning to gather further

insights and to make predicting new materials more efficient.[3]

However, this approach still suffers from a so called materials

gap, that is that application in industry requires other data than

what is currently stored in the available materials data

platforms.[4] The lack of such data is also reflected in a recent

mini-review on open data in catalysis which concludes that

“small data” were neglected so far but are important in the big

picture. With the term “small data” the authors refer to

experimental data on the catalytic action i. e. kinetic data, which

are believed to enable new insights at active site and

mechanism levels when coupled with knowledge extraction

tools.[5]

Another challenge is to develop the catalyst taking into

account chemical engineering constraints, that is, to integrate

catalyst and process development workflows.[1] Both challenges

require better interdisciplinary collaboration between mathe-

matical and theoretical sciences as well as experimental

chemistry, chemical engineering and materials science.

Up to today, research data are hardly ever disseminated in

the catalysis disciplines.[5] Although computers have become

ubiquitous and are perfectly connected, research data are often

not computer readable, not transferable between labs and

therefore rarely re-used. Conventional means to transport

research results, such as textual publications or verbal commu-

nication still dominate. Compared to other disciplines like

astronomy,[6] oceanography[7] or climate research[8] sharing of

data is hardly established except for some sub-disciplines such

as computational material science[4] or crystallography.[9]

There are several factors that contribute to the current state.

Most important, catalysis suffers from its complexity as a

discipline that bridges chemistry, material science, chemical

engineering, and physics. In order to make data widely useful,

rather advanced, and well-coordinated approaches are needed

that are beyond what a single group or institution can develop

and sustain. Moreover, work in the catalysis lab often involves

manual steps e.g., for catalyst preparation that are difficult and

cumbersome to record in a digital format. Lab work often

implies one-off setups which also change often or use tools

that typically do not record data (heater, stirrer, oven). This

complicates digital recording of experiments further.

While solutions exist to collect lab work in digital form in

electronic lab notebooks (ELNs),[10] this is not standard in

academic research labs where work and people change often,

and short-living setups are used. Moreover, ELN are often

tailored to local environments and exchanging data between or

with ELNs is hampered by a lack of standardization. Conse-

quently, such locally deployed ELNs have not stimulated a

culture of sharing data. This may change with recent develop-

ments like the Chemotion ELN that provides a standardized

interface for sharing data.[11]

The catalysis discipline suffers from this lack of data and

tools, e.g.: Experiments are repeated unnecessarily. New results

are not compared to existing and not put into an overall

context. Information contained in the data is not extracted fully.

Micro-kinetic analysis of reaction data is rarely performed. Data

science developments cannot be applied to their full potential.

Reproducibility and quality checks are hampered due to

individual procedures and setups which are not described

sufficiently in publications.[12] This slows down progress in

catalysis but on the other hand opens a great opportunity to

improve.[3b]

We propose applying the principles of digitalization to

catalysis to enable efficient data-driven interdisciplinary devel-

opment of catalysts and catalytic processes. Key requirements

are (i) the use of open and well-defined data formats and (ii)

using sufficient metadata to provide sufficient information on

the context of the data. The latter is challenging but essential

so that e.g., data from a theoretician can be reused by

experimentalists, data from a chemist's lab experiment can be

reused by chemical engineers or data from large experimental

and computational series can be analyzed by machine-learning

experts.

The above shortcomings, which also exist in other scientific

communities, have motivated the German government to

initiate a 10-year long cross-disciplinary initiative to coordinate

research data management and stimulate data sharing and re-

use in research, called NFDI (Nationale Forschungsdaten-

infrastruktur).[13] The first consortia for funding were selected in

June 2020. This includes an initiative from the catalysis

discipline NFDI4Cat (NFDI for Catalysis-Related Sciences) which

we report upon here.

NFDI4Cat has formed in a bottom-up approach base on

community interests and needs.[1] NFDI4Cat addresses the

needs of the catalysis community and seeks to enable the

exchange of data following FAIR principles (FAIR=Findable,

Accessible, Interoperable, Reusable).[14] In addition to IT special-

ists NFDI4Cat comprises of partners from all catalysis sub-

disciplines and from chemical engineering to foster a common

coordinated approach. This integrated approach is essential to

realize the envisioned cross-disciplinary (re-)use of data (Fig-

ure 1).[15]

The essentials of the NFDI4Cat approach are based on four

core principles:
* Open and Sustainable Data

A large part of research data created today is still produced

for momentary and local use. NFDI4Cat seeks to foster a more

open and sustainable approach to data where data can be

found, understood, and re-used by other researchers.
* Cloudification

Currently, most data are hidden behind institutional

boundaries. To maximize re-use and to enable collaboration

across institutions, bringing/integrating local data to the cloud,
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i. e., making them findable and re-usable on a global scale is a

key goal for NFDI4Cat.
* Information Transparency

The FAIR principles will be followed. All standards and

conventions related to data, metadata or interfaces will be

shared with the community and community feedback will be

integrated. The measures to verify data quality will be always

transparent for users.
* Community Acceptance

The most important long-term goal is high acceptance in

the community. NFDI4Cat will therefore provide training and

tools to ease the production of sustainable data. Moreover,

reward models will be developed to motivate sharing of data.

In this context the protection of intellectual property and

confidentiality are major challenges, which have to be tackled

as part of the initiative. Hereby, the needs of academic institutes

and the chemical industry require a differentiated contempla-

tion in terms of the data sharing decision, competitiveness, and

reward models.

Withing NFDI two more consortia related to aspects of

catalysis have been starting along with NFDI4Cat: NFDI4Chem[16]

which deals with research data management in chemistry, and

NFDI4Ing,[17] which serves engineering sciences. All consortia

work closely together to realize the vision of NFDI.

In this contribution we start with examples of research data

management from a few subdisciplines and present examples

for innovative data re-use. We start with an example from

computational catalysis which is representing the most

advanced sub-discipline in catalysis regarding data handling. As

an example, for linking catalysis with chemical engineering we

present a tool that supports the researcher in the development

of kinetic and/or reactor models. It integrates management of

models, simulation and experimental data and visual model

assessment and offers a web-based user interface. Third we

show how publishing a research data set, in the selected

example one with historical data from the oxidative coupling of

methane, can stimulate creative data science work to gain

additional insights and to identify paths to improved catalysts.

Last, we present a current data management solution from

industry representing state-of-the-art as an inspiration for

similar solutions in academia. We conclude our example section

with a critical view on the shortcomings of these solutions and

identify the remaining key challenges. Finally, we present the

approach of NFDI4Cat to these challenges in detail.

2. Examples of Existing Activities

2.1. Nomad – Uniting Interfaces in Computational Material

Science

The management of data for individuals and in organizations

plays a substantial role in an environment where communica-

tion will in large parts rely on transfer of information in the

form of data. Therefore, overarching systems in which data can

be stored, accessed and collaborative scientific work is fostered

are of major importance for a digital catalysis community. Front

runners in the field of catalysis following this approach in the

context of the FAIR principles[14] are a range of initiatives driven

by the community of scientists active in the field of theoretical

chemistry and modelling. Many of the initiatives have been

funded by public agencies in Europe and the US; an example of

how politics can positively influence a culture of data sharing

and progress in the field is for sure the initiation of the

European Open Science Cloud[18] which is strongly supported

by the national initiatives in the European Union.[19] It has to be

noted that the computational scientist community in the field

of catalysis have meanwhile advanced the field with respect to

a proper storage of their respective data. Several databases

exist to store and access especially the results of DFT calculation

on solid materials.[20] The Materials Genome Initiative (MGI)[20e] is

the oldest of these publicly funded projects and has in a lot of

aspects acted as role model.[21] Central target of all of the efforts

of MGI has always been the enhancement of the development

speed of new materials and fostering of a paradigm shift in the

community via digitalization. The two repositories in the MGI

with largest relevance to catalysis are AFLOW (automatic flow

for materials discovery) and the Materials Project.[20d]

One has to keep in mind that there is only a limited variety

of DFT codes for solids available and most of the time especially

the input files of the respective codes are interchangeable if

suitable converters are at hand. This is the core of the project

NOMAD (Novel Materials Discovery Laboratory) which is the

host of the world's largest repository for input and output files

of computational materials sciences codes.[22] Funding of

NOMAD was provided on a basis of an EU-project under the

CORDIS (Community Research and Development Information

Service) framework.[23] Among the major achievements of

NOMAD are the development of routine parsers which allow

storing of input and output files leading to a reproducible

workflow in which information like the surface/molecule geo-

metries are retained, and version control tools (git, subversion)

are used. NOMAD as most other DFT databases are searchable

by a programming interface (API) making it possible to re-use/

re-purpose the data in other fields of application to seekFigure 1. Illustration of the core principles and elements of NFDI4Cat.
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correlations with tools from the field of artificial intelligence.

One important strategy that NOMAD has since its start followed

is to also host data which are publicly available in alternate

databases and to convert these calculations, which are gen-

erally only available in different computer codes into a

common, code-independent format. Following this strategy

NOMAD hosts at present several million high-quality calcula-

tions. At the core of the mission, NOMAD programmers have

developed parsers which automatically convert data sets

available from open-access databases and archive the calcula-

tions in the code-independent format in the respective NOMAD

archives. NOMAD is currently pursuing the following work-

streams: (i) The NOMAD Encyclopedia, (ii) The NOMAD Big-Data

Analytics Toolkit, (iii) a workstream for visualization tools, and

(iv) High-Performance Computing Expertise and Hardware,

available for purposes of the NOMAD project. Recent examples

of work of NOMAD researchers in the field of catalysis include

work on carbon dioxide conversion to fuels and chemicals[24]

and work on structure property relationships over vast

datasets.[25] Unfortunately, up-to date, similar data bases, tools

and interfaces do not exist yet for experimental catalysis

research – a gap which NFDI4Cat seeks to close. At a later stage,

all these databases will be linked together to generate more

insights.

2.2. CaRMeN – A Tool for Rapid Analysis and Development of

Kinetic Models

The development process from finding new catalytic materials

to their technological use is still a slow process. One tedious

task is handling the evolving reaction engineering models

along with the updated in experimental data. The recently

developed software tool CaRMeN (CAtalytic Reaction MEcha-

nisms Network) addresses the challenge of handling exper-

imental information, model assumptions, model parameters,

and equations including all metadata for the area of kinetics

and reactor simulation in catalysis.[26]

The tool is designed for the rapid analysis of physical and

chemical models against experimental data. It integrates tools

to archive and package various forms of data along with

simulation codes under a coomon graphical user interface. It

improves the manual workflow of testing various models

against experimental data by automating time-consuming and

error-prone tasks such as setting up numerical simulations and

post-processing the resulting data. Within the user interface,

experimental data can be conveniently compared with the

results of any simulation code under the matching experimental

conditions in a plug-and-play fashion (Figure 2).[26]

CaRMeN can also be used to assess the quality of physical

models such as transport models for porous media and differ-

ent flow models (laminar/plug flow). False measurements in

experimental data can be recognized more easily. Critical

computer software issues resulting from wrongly implemented

or inadequately used sub models become more obvious even

for users not-so familiar with computing. CaRMeN has also been

used in the areas of homogeneous gas-phase reactions

(combustion, pyrolysis, engines), chemical and steel industry as

well as fuel and electrolysis cells.[26a,27] Hence, the tool serves as

link between kinetics, reactor engineering and process engi-

neering and can be easily extended to work with any simulation

code. Extensions of the toolbox to establish direct links to DFT

data and catalyst characterization data from microscopy and

spectroscopy would be highly desirable.

In the CaRMeN toolbox, all raw data are accompanied by

metadata of the experimental measurements as well as the

processing chain of these data and associated results. The

metadata is needed to generate input files for the numerical

simulation of the reactors, in which kinetic data have been

measured. Drivers use these metadata to combine the experi-

ment with the specific reactor/process simulation software (e.g.

CFD simulation)[28] and to set-up the input files for the

numerical simulation. For instance, information of catalyst

material and loading, porosity of the support structure,

volumetric flow rates, temperature profiles, inlet mixtures etc.

are automatically linked to the models. The user can directly

access these metadata from the user interface to retrieve

specific information needed. The format of the original and

metadata is rather flexible; new formats, types of reactors and

processes just require a specific driver, which can be written by

the user. In combination with an accessible, intuitive user

interface and a comprehensive search function, this approach

achieves a high level of reusability. Several levels of IP rights on

data and models are supported reaching from full open-access

academic research and teaching to completely non-disclosed

commercial use on customers’ servers. Within NFDI, these

approaches will be leveraged for broader application to provide

new insights through their combination.

Figure 2. Screenshot of a comparison of experimentally measured and

numerically predicted axial profiles of syngas production over Rh catalysts in

a tubular flow reactor.
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2.3. Meta-Analysis – Progress through Re-Use of Data

A vast amount of data is available in experimental catalysis

research but hardly usable for digital processing. For some

reactions, such as the oxidative coupling of methane, the data

from several thousand literature reports were compiled and

made available in digital form.[29] This shared data set has

stipulated various groups to explore the application of data

science methods to gain further insights, such as principle-

component analysis,[30] artificial neural networks[31] and other

machine learning tools.[32] Applying such methods proves to be

promising, but faces numerous challenges including a large

heterogeneity in the way the catalysts were synthesized, tested,

and reported.

Meta-analysis is a powerful statistical tool to aggregate

individual studies and estimate effects across heterogeneous

data sets. Applied to heterogeneous catalysis, it can identify

chemically meaningful and statistically significant correlations

between physicochemical catalyst properties and their perform-

ance in a particular reaction.[33] The method combines phys-

icochemical properties inferred from catalyst composition and

well-known elemental reference data to formulate a working

hypothesis that divides the dataset into subsets. Differences in

the catalytic performance between these subsets are then

tested for statistical significance against the pooled literature

data. An iterative hypothesis refinement yields a statistical

model that represent probable property-performance relation-

ships. Figure 3 illustrates exemplarily how the method is used

to structure the data into meaningful subsets.[33] The method

was applied to the most comprehensive data sets of OCM

data.[29] In the final model four simple hypotheses suffice to sort

1802 complex multi-component catalysts into 10 groups of

distinct OCM performance.[33] Catalyst properties identified to

be relevant are the ability of the contained elements to form (1)

carbonates and (2) thermally stable oxides, (3) the carbonate‘s

thermal stability under the respective experimental conditions,

and (4) the properties (1-3) in combination with the respective

amount of oxides and / or carbonate.

The results imply general correlations between a material’s

physicochemical properties and its OCM performance. Good

catalysts comprise at least two elements, with one element

being able to form a thermodynamically stable carbonate at the

temperatures of OCM reaction, and a second element forming a

thermally stable (non-sintering) oxide under OCM conditions.

Hence, good catalysts apparently require a support that

provides a high surface area at OCM temperatures, and

carbonate(s) that either contribute directly to C2 formation

and/or prevent subsequent unselective oxidation of the C2

products. The results directly guide dedicated experiments to

understand the specific role of CO2 and carbonates in OCM, i. e.,

operando Raman under OCM conditions, experiments that

relate the thermal stability of a series of supported carbonates

and their OCM performance, as well as DFT to understand

carbonate properties.

The derived correlations and interpretations can serve as a

general guide to the design of new experiments, spectroscopic

studies, and quantum chemical calculations. However, creating

such models would immensely benefit from the availability and

accessibility of sets of data that contain large numbers of

experimental results, are measured with consistent experimen-

tal procedures and well documented with the respective

metadata.[34]

2.4. myHTE – Data Warehouse and Information Hub

The steady increase of the amount of data generated in modern

laboratory environments and the subsequent storage over long

periods of time, creates significant challenges in terms of the

data management. Up to now, in many organizations frag-

mented data storage approaches are followed resulting from a

lack of data governance. This bears significant disadvantages in

terms of data consistency and administration. In order to

enhance the overall data accessibility, consistency and short-

and long-term value, reduce the data administration costs and

enable smarter decision making, an integrated data approach is

a vital foundation (Figure 4).[35] The main part of integrated data

management approach is the central data warehouse, which

connects all data storage infrastructures (hardware and cloud)

for the user to provide all necessary information for data

analysis and decision making. This integrated data warehouse

should be administered centrally to control the process of data

acquisition, management and distribution efficiently.[36] Based

on this integrated data management philosophy, hte GmbH[37]

Figure 3. Illustration of the method output of the meta-analysis applied to

OCM data. A dataset of 1802 catalysts is divided into subsets using three

simple physicochemical criteria. The respective graphs report for each subset

the number of catalysts, the average C2 yield in OCM as well as the resulting

C2-yield density distribution. The full model and respective data are available

in the paper of Schmack and co-workers.
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developed two software platforms, namely hteControl™ and

myhte™, for the data collection and analyzes in the context of

process catalysis related applications and high throughput

experimentation.[35] hteControl™ is an advanced process con-

trol system, which allows control of experimental parameters,

fully automated experiment execution and subsequent reliable

data acquisition. With this process control system, parameters

can be controlled and adjusted using flexible experimental

sequencing in a graphical flow diagram editor. Moreover, it is

possible to gain access to fast system diagnostic in a 24/7

operation. The data sets acquired can subsequently be stored

and managed in the integrated data warehouse (myhte™). This

data management software integrates, stores, analyzes data,

and allows visualization.

It is possible to analyze large amounts of online and offline

analytical data in relation to process parameters and exper-

imental details, such as data related to catalyst synthesis,

catalyst characterization and details of reactor loading. There-

fore, a robust automatic quality control can be ensured through

programming of automated routines. An example for this, is the

automated evaluation of on- and offline analytic results from

gas chromatography which includes peak assignment and

automatic quantifications.

Through the interaction of the process control system and

the integrated data warehouse, new modes for running experi-

ment becomes possible, e.g., the so-called iso-run modes. In

these iso-run modes, complex product features are selected as

response factors, which will change dynamically over time due

to an alteration of the catalyst characteristics. The objective is

to keep the response factor constant via an automatic adjust-

ment of the process parameters. This dynamic back-coupling of

the response factor and the process parameters can be

achieved via an automated analysis of the experimental results

(Figure 5).[38] For this self-optimization process the integrated

data management is crucial. It furthermore lays the basis for

further data mining, statistical evaluation of the experimental

data and kinetic studies.

The before described tooling serves as an example for a

“high end” industrial solution for data generation and data

management. Such solutions will also be of major importance

to a broader research community since the fundamental

challenges in obtaining and storing good data are essentially

the same in an academic lab.

To sum up, the examples mentioned above demonstrate

that there are already very promising approaches to manage,

use and re-use research data in catalysis. These approaches are,

however, still addressing only specific aspects in the respective

discipline. Moreover, the data stores are rather isolated silos

without much interlinking or cross-tool functionality. For

example, CaRMeN cannot directly use DFT data from NOMAD

and experimental data from myHTE. While the problem of

linking data from different data stores is not new and has led to

the invention of the semantic web,[39] the available standards

and technologies for inter linking data, have (if at all) only been

rudimentary applied. Only, recently the application of the full

semantic web stack has been suggested.[40]

Providing user-friendly access to data science tools along

with the data, is another challenge. CADS which aims to provide

a multi-functional environment for assisting researchers in

designing catalysts using catalyst informatics is an endeavor in

this direction.[41]

Besides the above challenges, it is even more important to

increase the amount of shared data which is currently very low

in catalysis. Therefore, thinking the bigger picture is needed. In

the next sections we propose an overall concept to address this

and solve some of the mentioned problems.

3. Vision

Central to our concept for sustainable research data manage-

ment in catalysis are FAIR digital objects.[19b,42] A FAIR digital

object is a stable actionable unit that bundles sufficient

information to enable reliable interpretation and processing of

the data contained in it. It is composed of the data itself and

accompanying information that provides context to the data,

including persistent identifiers and metadata. Persistent identi-

fiers are world-wide unique identifiers that allow reliably finding

and citing such data objects. Metadata is “data about data”[43]

that describe the context of the data. The quality of metadata

determines the reusability of the digital object. It is obvious

Figure 4. Fragmented and integrated data management strategies.

Figure 5. Symbiosis of hteControl™ and myhte™ in the iso-RON operation.
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that a discipline should agree on and use standardized

metadata schemes and vocabularies. Such “agreement” can be

encoded in form of shared ontologies.[44] Moreover, both the

data and the accompanying metadata should be re-presented

in common open data formats to make them accessible and re-

useable.[45] This idea of digital objects extends beyond pure

data. Source code or other research outputs can and should be

handled applying the same principles, too. Figure 6 shows the

key elements that NFDI4Cat seeks to change in research data

production. The core change is that any ambiguity related to

data will be avoided from the beginning. This has tremendous

benefits: All data will only be present in FAIR form. Thus,

sharing is inherently possible. This replaces the data annotation

in hindsight which is time consuming and adds little value for

the researcher itself. Moreover, tools for ingesting such FAIR

data will be re-usable by others. This will stimulate joint

development of tools leading to better quality and less work for

the individual researcher.

In order to enable the re-use of FAIR digital object along the

complete catalysis value chain from molecules to chemical

processes (Figure 7),[15] the development of metadata schemes

and vocabularies should be coordinated over all catalysis sub-

disciplines and related disciplines like chemical engineering.

By integrating feedback loops at every stage of the

displayed stages of the data value chain the information and

knowledge gained can have valuable influence in further

experiments. An iterative design-of-experiments is envisioned

to be an integral part of the workflow of data-driven catalysis

research. Part of this approach will be the building of

quantitative models to predict other regions of interest and

highest potential information gain. Respective models will be

modular and will be based on statistics, machine learning,

theoretical calculation as well as combinations thereof.[3b] Since

hardly any of the involved sub-disciplines produces FAIR digital

objects right now, there is an open window for NFDI4Cat to

elaborate these and address the needs of the various sub-

communities together in order to establish universally usable

metadata schemes and vocabularies. Digital catalysis objects

using standardized catalysis metadata will form the backbone

of the digital catalysis value chain. In such a digital value chain

more efficient feed-back loops are possible because data

exchange and re-use is tremendously improved. The develop-

ment of new processes or the adaptation of improvements to

existing processes will be fostered by enabling interdisciplinar-

ity between mathematical and theoretical sciences and exper-

imental chemistry, chemical engineering, and materials science.

FAIR digital catalysis objects will boost data-driven approaches

in catalysis research.

Figure 6. Problematic elements of current data production in the research cycle and elements for boosting the production of FAIR data in the future.

Figure 7. Data value chain for catalysis sciences.
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The solution that NFDI4Cat plans for managing the digital

catalysis objects is a hierarchical system with local data

repositories and an overarching infrastructure for bringing

(selected) local data to the cloud (see Figure 10). The local parts

of the system allow keeping data private and can be tuned to

the need of the sub-community that the user works in. The

overarching infrastructure will index all local digital catalysis

objects marked for sharing and will bring these local data to

the cloud as FAIR digital catalysis objects. Moreover, the

overarching infrastructure will provide a unified view on data

across the catalysis disciplines to facilitate inter- and cross-

disciplinary data re-use.

4. Core Development Topics in NFDI4Cat

4.1. Data Collection

In catalysis labs experiment data are stored and generated on

different levels of complexity and aggregation
* raw data directly obtained from instruments or software

programs during an experiment,
* processed and aggregated synthesis, property, and perform-

ance data,
* metadata that describes experimental procedures, condi-

tions, and setups,
* metadata that describes the data processing.

For every step, data and metadata are generated and have

to be processed and stored. Many measurements also alter the

catalyst material; hence a history of the treatment of a catalyst

is often essential for profound understanding of its properties

and behavior.

While the overall workflow and fundamental concepts are

similar in heterogeneous, homogeneous, electro and bio

catalysis, each of the disciplines uses slightly different ap-

proaches, different nomenclatures, experimental methods as

well as property and performance descriptors.

In heterogeneous catalysis research data are produced in a

sequence of steps. In a typical workflow, catalysts are synthe-

sized (often from molecular compounds called precursors) and

subsequently treated (calcined, reduced, pressed, sieved…) in

order to produce a solid material suited for performance

testing. For catalytic tests, the materials are mounted in a

reactor and then exposed to the reactants (gases, liquids) in a

sequence of reaction conditions (temperature, pressure, flow

rates…). The effluent product streams are then analyzed with

respect to formed products and their quantity using e.g., GC,

MS, or other analysis methods. The obtained data is processed

to calculate or estimate aggregated numbers as a measure of

catalyst performance (conversion, yield, rate, activation energy

etc.). These numbers serve as an input for kinetic modelling and

reactor simulations. Based on such simulations catalytic reactors

and processes can be designed. To understand the respective

catalytic materials better, their physicochemical properties

(composition, structure, spectroscopic information…) are as-

sessed experimentally or via quantum chemical calculations

(bulk and surface structure, adsorption sites, transition states,

energy barriers etc.).

A hierarchical scheme can be derived to organize such data

according to the respective abstraction level. However, each of

the experimental steps can modify the catalyst material and its

properties. Thus, implementing a timeline or “biography” for

each catalyst will be one of the crucial aspects for success.

Further challenges include data collected in proprietary formats,

a lack of standardized nomenclature and ontology. Further-

more, these also enclose a lack of open software tools and

repositories, ways of linking publications, data, and potentially

other digital objects consistently and permanently as well as

paths to retrieve published data for re-use. Catalysis-specific

ontologies and metadata standards will be critical in making

the data accessible and retrievable.

4.2. Ontologies and Metadata

One of the pressing questions of the research data handling is,

how can the context of data and ultimately knowledge be

shared within and outside of a community? A core role in the

solution play ontologies. An ontology is an explicit, formal

specifications of a shared conceptualization. By using ontolo-

gies defined in a machine-readable language like OWL the

concepts behind data can be represented. The formal con-

ceptualization determines which additional information, i. e.,

which conceptual data are required to provide context to data.

In the last decades, various disciplines have been develop-

ing ontologies and metadata standards for using, sharing, and

annotating information between domain experts. In chemistry

some well-established ontologies exist like IUPAC's International

Chemical Identifier (InChI)[46] for describing chemicals or the

Crystallographic Information Framework (CIF).[47] for describing

crystals. For other parts of chemistry ontologies are still subject

to current research, e.g. for chemical reactions.[48]

In process engineering the development of ontologies and

data standards has a long tradition, particularly driven by the

process system engineering activities.[49] Data standards and

data exchange are very important in automation and control of

chemical plants. These activities include the transfer of data

from modelling to actual representation of a plant state and its

influence on the control strategy (model-predictive control). In

process engineering, data exchange is important in the

development of chemical processes, from early process design,

laboratory experiments, and equipment design to plant con-

struction and commissioning.[50] These aspects are partially

treated in the DEXPI initiative for the German chemical

industry,[51] in DIN/ISO15926, or CFIHOS[52] activities in the oil

and gas industry. The most elaborated ontology in process

engineering is probably OntoCAPE developed at RWTH

Aachen.[53]

OntoCAPE seeks to cover the description from molecules to

the whole plant. Figure 8 gives an impression of the ontologies

in OntoCAPE.[54] An example for the representation of a

molecule and its properties as a pure substance is given in

Figure 9.[56] Catalyst representation in OntoCAPE includes mainly
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the cost aspect of the precious metals which are often used.

The multitude of typical reactors applied for catalytic reactions,

particularly for the different phases and their contact mecha-

nism as well as the heat integration is not entirely covered.

Although the OntoCAPE ontology is elaborated and ready to

use, only few applications have been known to date.[55] Some of

the succeeding activities are bound to the DEXPI standardiza-

tion activities in the planning process of chemical plants.

An ontology covering all aspects of the catalysis data value

chain from Figure 7 does not exist. However, ontologies cover-

ing various parts are already available and provide a foundation

for NFDI4Cat to build upon.

While the ontologies organize metadata, guidelines have to

be developed which metadata needs to be supplied with the

data. Presently, there are few guidelines available, e.g., from

STRENDA (Standards for Reporting Enzymology Data)[57] or ESAB

(European Federation of Biotechnology Section of Applied

Biocatalysis)[58] that cover enzymology and biocatalysis data.

Whenever possible metadata should be added automati-

cally without user involvement for consistency and to achieve a

low error rate. One of the successful models of automated

metadata descriptions have recently been achieved by EngMeta

at High Performance Computing Center Stuttgart (HRLS) and

Stuttgart University Library.[59] EngMeta is developed for the use

case of computational engineering and enables the documen-

tation of the entire research process in terms of descriptive,

technical, process and domain-specific metadata. The most

powerful tool implemented in EngMeta is the automatic

extraction to collect metadata from different sources. Metadata

for laboratory processes involving manual steps come ideally

from ELNs. The development of interoperable ELNs that provide

semantically rich data will be a focus in the NFDI4Chem

consortium.[16a] NFDI4Cat will cooperate with NFDI4Chem on

ELNs but does not plan to develop a separate ELN system on its

own.

4.3. Local and Overarching Data Infrastructures

One main goal of NFDI4Cat is to set up and establish local and

overarching data infrastructures. This includes a distributed

repository infrastructure and other services that are needed by

the NFDI4Cat community, in order to put forward a national

environment for catalysis-related research data.

One challenge is to identify and serve the real needs of the

NFDI4Cat community. Therefore, we will involve different stake-

holders in the whole process, including a requirements analysis

and user acceptance tests. Another challenge is to avoid

fragmentation and data silos. Therefore, we will proceed with a

coordinated approach. Existing solutions will be integrated,

where reasonable, and new solutions will be pushed ahead,

where necessary.

To put forward an overarching data infrastructure, a layered

architecture is planned, which includes a distributed storage

layer, a repository layer, and a presentation layer, see Figure 10.

The distributed storage layer enables the local storage at

different sites. The repository layer will provide one new general

repository at HLRS and new repositories at sites with special

requirements. It will also integrate already existing repository

systems. For instance, data that is under intellectual property

regulations can be stored safely, without being published. The

presentation layer will provide a general access point to the

(meta)data that is openly available in the different repositories

and will offer other services that were identified of being useful

for the NFDI4Cat community.

To put forward local data infrastructures, pilots will be set

up in labs working in different catalysis disciplines. These data

systems will be locally administered. The local researcher and/or

institution decides about access rights and what to share. The

Figure 8. Simplified view of the OntoCAPE Core Ontology and some

Peripheral Ontologies.[54]

Figure 9. Representation of Oxygen in OntoCAPE with the physical proper-

ties of molecular weight, triple point temperature and pressure, and critical

properties of temperature, pressure, and molar volume.[56]

Figure 10. Linked extensible infrastructure for NFDI4Cat.
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idea is to enable using the same system for open as well as for

confidential research data. The aim in the beginning is to

experiment in real-world scenarios, gain experience in the daily

use, and identify challenges as early as possible. Here, the

whole research data lifecycle – collect/create, process, analyze,

preserve, access and reuse – will be considered. Other groups

will benefit from these pilots, either by reusing some of the

services established, or by learning from the setup of the pilots.

Long-term goal of this effort is to include these services in a

general toolbox. To ensure future viability, we will build on

existing standards and principles e.g. use established vocab-

ularies such as schema.org[60] or W3C DCAT,[61] and will

synchronize with other consortia and other communities. We

will favor open source solutions, will rely on modern technolo-

gies, and will develop in the spirit of Semantic Web[39] and

Linked Open Data.[45,62]

One tool that is planned being used to set up local and

overarching data infrastructures is Piveau,[63] a fully-fledged

Open Data management solution, based on Semantic Web

technologies. It forms, for instance, the technical foundation of

the European Data Portal,[3c,64] a central access point for

metadata of Open Data published by public authorities in

Europe that acquires data from more than 70 national data

providers.

4.4. Data Analysis and Quality Management

Data-driven catalytic science aims to identify relationships

between the different data of the described workflow. However,

the mentioned parameters along the whole workflow are highly

interconnected, and all measured and computed values are

subject to errors and error propagation. High quality data and

known error margins are therefore essential to enable reliable

modelling and correlation analysis. Thus, quality assurance

should be an integral part of catalysis research.

In order to assure high-quality data, two main aspects have

to be addressed – reliable and reproducible measurements, and

equally important, the quality of documentation.[65] Common

experimental pitfalls can be overcome by including in the

design-of-experiment tests for catalyst stability, the assessment

of mass and heat transport limitation, the calculation of mass

balances and error estimation via repeated measurements at

different levels (repeated analytical runs, repeated testing,

repeated synthesis,…).[66] Moreover, standardized reference

catalysts and common benchmarking procedures that assess

catalyst performance and stability could become an integral

part of the research workflow.[12a] Excellent examples from the

field of electro-catalysis can be found for the hydrogen[67] and

oxygen[68] evolution reaction.

The other essential aspect is the documentation of each

step and parameter in a catalysts life.[34] Such documentation

should be in a digital form, use open and standardized formats,

be highly automatized and – most important – community

accepted. This requires not only a change in research culture,

but also the respective technological tools and organizational

measures. These tools should facilitate quality assurance along

the whole workflow of catalysis research, including experiment

planning, synthesis, testing, data processing, visualization,

evaluation, and modelling. Easy to use tools and low entry

barriers will be key to a wide-spread adoption. Moreover,

educating catalysis researchers in quality assurance via easy

access to examples, tutorial, standard procedures, and reference

materials will be vital.

4.5. IP & Confidentiality, Licenses & Reward Models

The sharing of data for the benefit of the scientific community

and science in general is one of the central cornerstones of the

NFDI and current movements within the scientific community.

However, although the values of data sharing are self-evident,

these values must be balanced with the interests of individuals

and groups who intend to exploit the value of data generated

within publicly funded projects of any kind. A work package in

NFDI4Cat addresses the sensitive points around data sharing

procedures and the resulting consequences and tries to find a

balance through an open dialogue between academia and

industry; from the viewpoint of NFDI4Cat a very differentiated

contemplation and approach is required. The interests of all

stakeholders involved need to be balanced: the views and

needs of academic research groups and industrial companies

might differ substantially and an approach based on modus of

consensus must be found.

One of the key publications in the context of this discussion

are the Horizon 2020 guidelines for “Open access and Data

management”.[69] The European Union with their research and

innovation program is for sure one of the pacemakers in the

context of data-sharing policies. The Horizon 2020 guidelines

are fully aligned with the FAIR principles, which are, at present,

the most concise summary of guiding principles in open data-

sharing, emphasizing that data should be treated to be

findable, accessible, interoperable, and reusable.[14] The purpose

of the FAIR data governance strategy is to maximize the use

and therefore the value of research data. In context of Horizon

2020, the European Commission has also launched the Euro-

pean Open Science Cloud (EOSC) to foster exchange of

scientific data, data handling and processing and services

around data processing.[18] This service is part of the Horizon

2020 program and builds on a series of demonstrator projects

and accompanied by changes in regulation around EU's General

Data Protection Regulation. Although open access is the default

setting for Horizon 2020 and therefore within the NFDI and

NFDI4Cat, it has to be acknowledged that not all data can be

open. According to the current state of discussion in the

European Commission, an approach is suggested that follows

the view of an “as open as possible, as closed as necessary”

policy; open access is therefore not required if the following

facts apply:[70]

* The participation is incompatible with the obligation to

protect results that can reasonably be expected to be

commercially or industrially exploited.
* The participation is incompatible with the need for con-

fidentiality in connection with security issues.
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* The participation is incompatible with rules on protecting

personal data.
* The participation would mean that the project‘s main aim

might not be achieved.
* The project will not generate/collect any research data.
* There are other legitimate reasons.

From an industrial viewpoint, the obligation to protect

certain data to remain competitive is obvious. According to the

SusChem, a European technology platform for sustainable

chemistry, industrial competitiveness in domestic (EU) and

global markets is crucial to maintain an economic growth,

especially for small and medium-sized companies.[71] It has to

be acknowledged that academia is traditionally also not less

competitive than industry, and that advantages through data

realized in knowledge and know-how guarantee access to

grants and collaborators, participation in excellence initiatives,

as well as to excellent students. Specifically, for academia a

balancing of sharing data via reward models in the context of a

competitive research and grant application environment must

be considered. In this context, it is important to avoid negative

effects which outweigh the potential gains of a competitive

research environment.[72] Independent from the industrial or

academic environment, a competitive framework where the

best ideas compete for funding and attention is still a dominant

cultural paradigm for innovation policies with knowledge and

data being the most precious goods.[73]

We are therefore entering an age where data increase in

value almost in the same way in academia as well as in industry

for a number of reasons, therefore one of the major objectives

of NFDI4Cat is to create a culture of data-sharing where the

motivation and incentives to contribute catalysis data must be

fostered.

Publishing of data alongside with interpretation and

explanations is state of the art in academia, therefore in

principle data-sharing should not stand in contrast with goals

of NFDI. It is vital to establish, as above said, new reward

strategies,[74] which for example are based on the number of

citable data sets published, preferably also in combination with

annotations to data quality. An evident reward model could be

the allocation of a digital object identifier (DOI) number,

through which each deposited dataset will be a citable source

of data. By associating the digital objects with their authors via

persistent author identifiers like ORCID, credit can be given to

data providers and in analogue way to tool providers. It can be

envisaged that researchers can build their reputation in a more

diverse way in the future. Citable “digital object publications”

will become a new element for esteem in science and will

motivate sharing of data and tools in a FAIR way.

However, it must be considered that such next-generation

metrics are in theory susceptible to very similar difficulties as

traditional and often quantitative measurements, such as the

journals impact factor.[75,74c] Therefore, a qualitative assessment

of data, based on expert judgement, should be implemented to

further develop policies for rewarding open data sharing.

Rewards for open science activities could be granted in the

form of promotions. In addition, data sharing activities could be

explicitly used as criteria in recruiting processes or funding

applications. Apart from the direct rewards, the deposition of

experimental and theoretical data in a digital format will lay the

foundation for future collaborations and could be the starting

point for the development of new business models dealing

with data handling and data analyses. Obviously, an open data

research management should be considered as state of the art

in the future. However, this change in data handling and the

not self-serving data sharing culture has to be embraced by the

community. Therefore, NFDI4Cat aims to promote the open

data policy as final reward strategy with the aim of bringing

science to a next level in a digital format.

In this context, one of the NFDI4Cat’s major interests is to

develop practical measures, which ensure confidentiality, allow

for measures for securing intellectual property and a high data

quality, without the FAIR principles being passed over. These

guidelines for industrial and academic research groups are

summarized in Figure 11 and are based on a so-called “cool-off

model”, which could help to classify data according their critical

or uncritical status and lay the foundations for a sensible

process in a culture of data-sharing. The distinction of uncritical

data can be made based on the “opting-out” factors given by

the European Commission.[70] If data is worth to protect, it must

be decided whether the results will be patented or whether the

information is kept and protected internally as trade secrets

without any procedural formalities.

4.6. Integrating the Community

Beyond technical challenges also a change in research culture

and RDM literacy is important. Therefore, it will be important to

educate not only a new generation of scientists and engineers

towards an improved data awareness but also to provide

knowledge for the catalysis community and related organiza-

tions and disciplines. Collaborations (e.g. NFDI4Chem,[16a]

Figure 11. Data management for the decision process using a “cool-off”

model.
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NFDI4Ing,[17] IUPAC[76]) are therefore an important part of the

outreach within NFDI4Cat. NFDI4Cat will take several measures

to improve the Data Science education in Catalysis related

sciences.

Establishing feedback loops to gather the information from

the community is always important to establish the connection

between the developers (the NFDI4Cat consortium) and the

final users (all users in Catalysis related sciences). Therefore,

NFDI4Cat will use measures at different scales to establish a

stable feedback loop with the community and towards the

proposed best practices. The actions will reach from simple

surveys and public relations up to the organization of an annual

NFDI4Cat conference with the help of DECHEMA as organizing

organization. But NFDI4Cat is not only aiming at dissemination

of the respective outcome on own national conferences but the

consortium will also organize sessions at international confer-

ences to establish and foster the collaboration with interna-

tional stakeholders in Catalysis.

One very important measure will be the Research Data

Management School of Catalysis. The aim of the Research

School is to make the community and new generations of

scientist more aware how data should be stored to be FAIR.

Therefore, it is important that the participants get a feeling

which data is important for a reproducible study and how to

keep the data not only for themselves but how it should be

made available for the community as a whole.

The Research Data Management School of Catalysis will be

split into several parts including modules about
* Data quality and open formats,
* Data acquisition,
* Data storage and
* Publication of the respective data for a study.

Teaching Research Data Management and the related tools,

skills and techniques will gain much in importance in the future.

As a possible blueprint the “Data 8: The Foundations of Data

Science” course of UC Berkeley can be used.[77] The course spans

from basic skills to Machine Learning and covers most of the

aspects needed to work with research data.

Data intensive studies show that one important skill for

future researchers will be the evaluation of the increasing

amount of data. This often goes well beyond the possibilities of

tools like MS Excel or Origin. Therefore teaching Research Data

Management will be also about teaching new tools like

programming and evaluating data in programming languages

like Python, Julia or R, combining Machine Learning libraries

with Web techniques like JavaScript or including final algo-

rithms in languages like Go or C. Teaching Research Data

Management also means showing the next generation of

researchers how to work with version control (especially git) or

cloud-based computations as clearly many computational

studies move away from computation on a single workstation.

Therefore at least some awareness of concepts like container-

ization and related techniques are valuable.

The consortium plans to publish the outcome of the

initiative as Best Practice Guides compiling the important

outcome of the initiative how NFDI4Cat recommends working

with data generated around theoretical and experimental work

in Catalysis. To get started with the best practice concepts,

access to data generated by NFDI4Cat will be provided. This

should enable users to dive into Research Data Management

without own data but by a blueprint already available. Apart

from these dissemination spotlights, NFDI4Cat will actively

contribute to the distribution of modern tools and techniques

for Research Data Management in all its aspects for the whole

Catalysis community.

5. Outlook

Within the German NFDI initiative the consortium NFDI4Cat

embarks on the endeavor of realizing a data-oriented “digital

catalysis value chain“ supporting research along the develop-

ment chain from molecules to chemical processes. Core

motivation is a fundamentally improved understanding in

catalysis sciences, the creation of workflows in catalysis that

build a bridge between theory/simulation and experimental

studies in design, characterization and kinetics of catalysts and

the related engineering aspects. This challenge requires a

unified view on all catalysis disciplines to reveal universal

guiding principles common to homogenous, bio-, heteroge-

neous and electro-catalysis. By integrating stakeholders from all

catalysis sub-disciplines in Germany, NFDI4Cat is in a unique

position to realize this vision in the years ahead and inspire

similar efforts on an international level and in other disciplines.

The initial focus will be on enabling the German catalysis

community to exchange data following FAIR principles. To

make data (re-)usable and enable collaboration across organ-

izations and between (sub-) disciplines on a data level, catalysis

specific new open standards or extensions of existing standards

for storing data and the metadata are urgently needed.

NFDI4Cat will work on ontologies, metadata and data standards

and finally build prototypes that are built upon this foundation.

All standardization efforts will be coordinated on international

level. From the current point of view, it is also important to

emphasize that the time scale, until a full implementation and

the final goal of a fully digitalized scene in catalysis can be

reached, is expected to be on the order of a decade. It is

anticipated that ultimately the information architecture will

become an indispensable tool of the research community in

catalysis on a national and international basis.
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