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 
Abstract— Series Elastic Actuators (SEAs) have several 

mechanical superiorities over conventional stiff and non-back-
drivable actuators, e.g., lower reflected inertia at output, greater 
shock tolerance, low cost force measurement, energy storage, 
safety, and so on. However, their applications generally suffer 
from performance limitations, particularly in position control, due 
to insufficient controller designs. This paper proposes a unified 
Active Disturbance Rejection (ADR) motion controller for the 
robust position and force control problems of SEAs by using 
Differential Flatness (DF) and Disturbance Observer (DOb). It can 
suppress not only matched but also mismatched disturbances. 
Robust state and control input references are systematically 
generated in terms of a fictitious design variable, namely 
differentially flat output, estimations of disturbances and their 
successive time derivatives. The proposed robust motion 
controller improves the performance of SEAs when they suffer 
from internal and external disturbances, such as friction, inertia 
variation and external load, in real implementations. 
Experimental results are given to validate the proposal. 
 

Index Terms—Disturbance Rejection, Differential Flatness, 
Disturbance Observer, Motion Control, Series Elastic Actuator. 

I. INTRODUCTION 
IGH precision position control and repeatability are the top 
priorities of many conventional robot applications [1-3]. 

In order to improve the robustness, stability and performance of 
position control, robots are designed by using stiff and non-
back-drivable mechanical components [4]. However, several 
studies have showed that accurate position control is not 
sufficient to perform fine motion tasks in which robots interact 
with environments, e.g., grinding and polishing [5-7]. Although 
explicit and implicit force control methods have been proposed 
to perform fine motion tasks by actively adjusting the 
compliance of stiff robots, they suffer from low performance, 
stability and safety problems in practice [8-11]. For example, 
industrial robots cannot work alongside humans and are often 
kept in human-free cages in a manufacturing plant due to safety 
problems [12, 13].   

In the new era of robotics, physical interaction with 
unstructured and dynamic environments becomes a more 
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dominant requirement for many advanced robot applications, 
e.g., rehabilitation, humanoids and human-robot collaboration 
[5-7]. Against traditional robotics “stiffer is better” rule of 
thumb, passive compliance control, in which robots have 
intrinsic compliant elements, has been proposed to overcome 
the fundamental performance, stability and safety problems of 
conventional stiff robots [14-16]. Series Elastic Actuators 
(SEAs) are the most famous inherently compliant actuation 
systems which consist of a spring in series with a stiff actuator 
[15]. They have several mechanical superiorities over 
conventional stiff actuators in force control, e.g., lower 
mechanical output impedance, greater tolerance to impact load, 
higher force fidelity, and so on [15, 16]. However, the motion 
control problem of compliant robots is more complicated than 
that of conventional stiff robots, particularly in position control. 
For example, the vibration at link-side may degrade the 
performance or even damage the robot as the speed of tasks is 
increased; and external disturbances may directly degrade the 
position accuracy at link-side due to the sensitivity problem [17, 
18]. In order to utilize the mechanical superiorities of SEAs in 
advanced robot applications, their position and force control 
performances should be improved.  

Several studies have been conducted to improve the position 
control performance of compliant robots. However, they have 
limitations in real implementations of SEAs. Singular 
perturbation method separately controls slow and fast states of 
compliant robots, but it is only applicable if the stiffness is 
relatively large, the dynamic model is precisely known, and the 
external disturbances are negligible [19, 20]. μ-synthesis-based 
adaptive robust control is applied to a linear motor when it 
suffers from relatively high stiffness of ball bearings in high 
frequencies [21]. In general, PID controllers are designed at 
motor-side, and the link-side’s position accuracy is improved 
by using feed-forward control. It is sensitive to disturbances at 
link-side such as load and is applicable for only regulation [22-
24]. Intelligent and advanced robust controllers have been 
implemented to improve the position control performance of 
compliant robots, but, in general, they are computationally 
demanding and very complex for real-time implementations 
[25-27]. Time-Delay Estimation (TDE) scheme was applied to 
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improve the robustness and link-side position accuracy of SEAs 
in [18]. Simulation results of “COMAN” were given by 
neglecting practical design constraints such as noise-sensitivity 
[18, 28]. Resonance Ratio Control was applied to the robust 
position control problem of SEAs in [17]. It suppresses the 
vibration at link-side by degrading the robustness at motor-side. 
Arm-DOb is proposed to improve the robustness, but it 
increases the analysis and design complexity and can suppress 
only constant external disturbances in practice.  

Force/impedance control of SEAs has been widely studied in 
the last two decades. Conventionally, it is performed by using a 
single-loop PID force controller that is combined with a feed-
forward controller [4, 16]. It is sensitive to internal 
disturbances; the stability and performance of force control may 
deteriorate if nonlinear disturbances, such as friction, are not 
negligible [29]. A cascade motion controller, which has inner 
velocity and outer force control loops, was proposed to improve 
the force control stability of SEAs [29, 30]. Its performance is 
limited by control gains and may deteriorate by internal 
disturbances in practice. The robustness of the cascade motion 
controller is improved by using a DOb that is designed for the 
velocity control inner-loop [31-33]. The well-known causality 
constraint of the observer design is satisfied by using a high 
order low-pass filter (LPF) [28, 31]. The analysis and design of 
a high order LPF of DOb are not straightforward in classical 
control approach. The robust stability and performance of the 
force controller should be further investigated by considering 
conservatism due to high order LPF [28]. For example, 
unexpected stability problem of the robust force controller was 
reported in [34]. Resonance Ratio Control was similarly applied 
to the robust force control problem of SEAs in [17]. 

In this paper, a unified ADR motion controller is proposed 
for SEAs in state space. This controller can be tuned to perform 
either position or force control applications. Modern control 
theory can provide many convenience methods to adjust the 
stability and performance of SEAs; e.g., the vibration at link-
side can be simply suppressed by placing all poles of the system 
on the real axis via state feed-back control. However, it requires 
precise dynamic model of the system and is sensitive to external 
disturbances. Moreover, trajectory tracking controller design is 
not straightforward in modern control; i.e., not only control 
input but also state references should be adequately generated. 
To utilize modern control methods in the real motion control 
implementations of SEAs, the robust state and control input 
references of a state feed-back controller are systematically 
generated by combining DF and DOb in state space. 

In the first step, the dynamic model of an SEA is derived by 
using the analogy of a two-mass-spring-damper system in state 
space. This system suffers from not only matched but also 
mismatched disturbances. Then, a state feed-back controller is 
designed for the nominal plant model by neglecting the 
disturbances so that the nominal stability and performance of 
the motion control system are adjusted. Lastly, the robust state 
and control input references of the state feed-back controller are 
systematically generated in terms of differentially flat output 
variable, estimations of disturbances and their successive time 
derivatives by using DF and DOb. The former is used to 

perform trajectory tracking control in state space. The latter is 
used to achieve nominal performance by suppressing/ 
cancelling disturbances of SEAs in practice.  

The proposed unified motion controller has a two-degrees-
of-freedom (2-DOF) control structure, thus its performance and 
robustness can be independently adjusted by tuning the state 
feed-back controller and DOb, respectively. It significantly 
improves the stability and performance by suppressing the 
internal and external disturbances of SEAs such as friction, 
inertia variation, load and un-modeled dynamics. The validity 
of the proposed robust motion controller is verified by giving 
position and force control experimental results of an SEA. 

The rest of the paper is organized as follows. In section II, the 
dynamic model of an SEA is derived. In section III, a second 
order DOb is proposed to estimate disturbances and their 
successive time derivatives. In section IV, a new theorem is 
proposed to design a robust trajectory tracking controller in 
state space. In section V, it is applied to the robust position and 
force control problems of an SEA. In section VI, experimental 
results are given. The paper ends with conclusion given in the 
last section.  

II. MODEL OF A SERIES ELASTIC ACTUATOR 
A simple yet accurate lumped parameter dynamic model of 

an SEA can be derived by using the analogy of a two-mass-
spring-damper system that is shown in Fig. 1. In this figure, 1m
and 2m represent the first and second masses, respectively, e.g., 
the former represents the masses of motor and gear box, and the 
latter represents the masses of link and load; ib  represents the 
ith viscous friction coefficient; ,i iq q  and iq represent the 
position, velocity and acceleration of the ith mass, respectively; 

envq  and envq  represent the position and velocity of environment, 
respectively; 12k  represents the stiffness of the spring between 
the first and second masses; inF  and extF represent the input and 
external forces, i.e., motor torque and external load, 
respectively; and envD  and envK  represent environmental 
damping and stiffness, respectively.  

The position and force control systems are illustrated as free 
and contact motions in Fig. 1a and Fig. 1b, respectively. The 
former’s goal is defined as tracking the desired position 

 
a) Free motion. 

 
b) Contact motion. 
Fig.1: Model of a Series Elastic Actuator. 
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trajectory of the actuator’s link, i.e., 2
desq . However, the latter’s 

goal is defined as tracking the desired force trajectory of the 

actuator’s spring, i.e.,  12 1 2
desdes

springF k q q  . The force control 
goal can also be considered as the desired deflection of the 
spring. It is one of the main superiorities of SEAs over 
conventional stiff actuators in force control. 

The dynamic equations of an SEA can be directly derived 
from Fig.1 as follows: 

          
 

 
1 1 1 1 12 1 2

2 2 2 2 12 1 2

matched
n n in n dis

mismatched
n n n dis

m q b q F k q q

m q b q k q q





    

   

 

 
                    (1) 

where ,n nm b   and 12nk  represent the nominal parameters of 
,m b  , and 12k , respectively; 

      1 1 1 12 12 1 2 1 1
matched
dis n n frc unmm m q k k q q f f               (2) 

represents the matched disturbances at motor-side;          

        
mismatched

mismatched disFM
dis mismatched

disCM

Free Motion
Contact Motion





 


                     (3) 

in which      2 2 2 12 12 1 2 2 2
mismatched
disFM ext n n frc unmF m m q k k q q f f          

represents the mismatched disturbances at link-side in free 
motion, and    2 2

mismatched mismatched
disCM disFM env env env envD q q K q q        

represents the mismatched disturbances at link-side in contact 
motion; 1frcf and 2frcf represent disturbances due to frictions, 
such as Coulomb and Stribeck frictions, at motor and link sides, 
respectively [5]; and 1unmf and 2unmf represent disturbances due to 
any linear and nonlinear un-modeled dynamics, such as 
backlash, at motor and link sides, respectively.  

Without any approximation, Eq. (1) can be rewritten in state 
space as follows: 

                            u  n n disx A x b τ                             (4) 

where

12 1 12

1 1 1 1
1

12 12 2

2 2 2 2

00 1 0 0
0

0 1
, , ,

0 0 0 1 0
0

0 0

matched
n n n dis

n n n n
n

mismatched
n n n dis

n n n n

k b k
m m m m

m

k k b
m m m m





  
    
          
     
    
    
             

n n disA b τ  

 1 1 2 2
Tq q q qx   and inu F . 

Equation (4) shows that all states of an SEA can be controlled 
by using a state feed-back controller. It can be easily verified 
by showing that the controllability matrix of Eq. (4) is full rank. 
It is shown in section IV that controllability is the necessary and 
sufficient condition to design the proposed robust trajectory 
tracking controller. 

Equation (4) also shows that the dynamic model of an SEA 
includes matched and mismatched disturbances in the second 
and fourth channels, respectively. The former can be directly 
cancelled by feeding-back its estimation through control input. 
However, the latter cannot be similarly cancelled since there is 
no control input in its channel. Therefore, an advanced ADR 
motion controller should be designed to achieve the robustness 
of SEAs [35-37].  

III. DISTURBANCE OBSERVER 
A DOb is an ADR control tool that is widely used to estimate 

plant uncertainties, external disturbances and their successive 
derivatives [35, 38]. In Section V, robust position and force 
controllers are proposed for SEAs by using the estimations of 
the disturbance vector and its first and second order derivatives. 
They are obtained by using a second order DOb as follows: 

In the design of a DOb, the dynamic characteristics of 
disturbances should be predetermined by using some 
assumptions. For example, conventional DOb is designed by 
assuming constant disturbances. However, it can estimate not 
only constant but also variable disturbances if they stay within 
the bandwidth of DOb [38]. In order to design the second order 
DOb, let us assume that the third order derivative of the 
disturbance vector is zero, i.e., disτ 0 .  

Let us first design auxiliary variable vectors in terms of the 
disturbance vector, its first and second order derivatives and the 
state vector of the system which is given in Eq. (4).  

            1L 1 disz τ x                                      (5) 

            2L 2 disz τ x                                                  (6) 

            3L 3 disz τ x                        (7)    

where 4Riz  represents the ith auxiliary variable vector; iL R  

represents the ith gain of DOb; and disτ  and 4Rdisτ represent 
the first and second order derivatives of the disturbance vector, 

disτ .  
Time derivatives of Eq. (5-7) are derived as follows: 

                   1 1 1 2L L u L L      1 1 2 n nz z z A x b x x                   (8) 

                   2 1 3 2 1 3L L u L L      2 n nz z z A x b x x                     (9) 

               3 3 1L L u L    3 1 n nz z A x b x                            (10) 

Since the nominal parameters of the system and control input 
are known and system sates are measured, the estimations of 
the auxiliary variable vectors can be simply obtained by 
substituting them into Eq. (8-10) as follows: 
                  1 1 1 2ˆ ˆ ˆL L u L L      1 1 2 n nz z z A x b x x                  (11) 

               2 1 3 2 1 3ˆ ˆ ˆL L u L L      2 n nz z z A x b x x                    (12) 

              3 3 1ˆ ˆL L u L    3 1 n nz z A x b x                                       (13) 

where 4ˆ Riz  represents the estimation of the ith auxiliary 
variable vector, iz . 

Let us define the error vectors of the auxiliary variable 
estimation by using ˆ ˆ,   1 1 1 2 2 2e z z e z z  and 4ˆ R  3 3 3e z z . 
The dynamic equation of the auxiliary variable estimation error 
is derived by subtracting Eq. (11-13) from Eq. (8-10) 
respectively as follows: 

                                   t te = Ψe                                    (14) 

where    
1

2

3

, ,
L

t t L
L

     
             
          

1 1 4 4 4

2 2 4 4 4

3 3 4 4 4

e e I I 0
e e e e Ψ I 0 I

e e I 0 0


 


, and 4I  and 40

represent 4 4  identity and null matrices, respectively. 
The eigenvalues of Ψ are derived by solving 
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       43 2
1 2 3det 0L L L        12I Ψ            (15) 

Equation (14) and Eq. (15) show that 0e  asymptotically if 
the gains of DOb are properly tuned, i.e., all eigenvalues of Ψ 
are negative. Larger magnitude eigenvalues correspond to 
faster estimations of auxiliary variable vectors.  

It is noted that the assumption of disτ 0 is not crucial in the 
design of the proposed second order DOb. When disτ 0 ,the 
error dynamics can be rewritten as follows:  

                       
 

4 1

4 1

12 1dis

t t
t







 
   
  

0
e = Ψe 0

τ



                           (16) 

One can easily show by analytically solving Eq. (16) that it is 
input to state stable if the observer gains are adequately tuned 
and disτ is bounded, e.g., dis τ where 0 R   . In other 
words, any estimation error   te ,which lies in a circular plane 

whose radius is      1
0 mint  


e Ψ , converges to a smaller 

circular plane whose radius is    1
min 

Ψ  where  min Ψ
represents the slowest dynamics of disturbance estimation, i.e., 
the bandwidth of DOb. The accuracy and convergence rate of 
disturbance estimation can be simply improved by increasing 
the bandwidth of DOb; however, it is limited by practical design 
constraints such as noise and sampling time.  

As 0e , the auxiliary variable vectors are accurately 
estimated, i.e., ˆ 1 1z z , ˆ 2 2z z  and ˆ 3 3z z . Hence, the 
estimations of the disturbance vector and its first and second 
order derivatives are derived as follows: 

                   
1

2

3

ˆ ˆ
ˆ ˆ
ˆ ˆ

L

L

L

 

 

 

dis 1

dis 2

dis 3

τ z x

τ z x

τ z x





                                   (17) 

where ˆˆdis disτ ,τ  and 4ˆ Rdisτ  represent the estimations of dis disτ ,τ  
and disτ , respectively. 

IV. ROBUST TRAJECTORY TRACKING CONTROLLER 
In this section, a new theorem is proposed for a robust 

trajectory tracking controller that is designed in state space. 
Reader, who is only interested in the motion control 
applications of SEAs, can directly follow the next section 
without going through the theorem.  

In order to design a trajectory tracking controller in state 
space, not only control input but also state references should be 
adequately generated.  One can systematically obtain them in 
terms of a fictitious design variable, namely differentially flat 
output, by using DF [39, 40].  

A linear system is flat, i.e., its state and control input 
references can be generated in terms of differentially flat output 
variable, if and only if it is controllable. They are applied to a 
conventional state feed-back controller so that not only 
regulation but also trajectory tracking control can be performed 
[41, 42]. However, a conventional state feed-back controller is 
sensitive to internal and external disturbances; e.g., assigned 
poles may significantly change due to plant uncertainties. 

Therefore, not only the performance but also the stability may 
deteriorate in real implementations. 

In the following theorem, robust state and control input 
references are systematically generated by using DF and DOb 
so that a robust trajectory tracking controller is designed in state 
space. It has a 2-DOF control structure. Disturbances are 
cancelled/suppressed by feeding-back their estimations via 
DOb. Since the system is nominalized by cancelling 
disturbances, the state feed-back controller can independently 
adjust the performance in practice. 

Theorem: The dynamic model of a linear controllable system 
can be defined in polynomial matrix form by using 

                            s s s u s n n disA x b τ                      (18) 
where   n ns R nA  represents polynomial nominal system 
matrix, and it is full rank;   ns Rnb represents polynomial 
nominal control input vector;   ns Rx  represents states of the 
system; u R  represents control input;   ns Rdisτ  represents 
polynomial disturbance vector; and s  represents complex 
Laplace variable.  

The robust state and control input references can be generated 
by using 
                  1 ˆDFO DFOs s y s y s s  ref mismatched

2 disx p p P τ              (19) 

         1 ˆ ˆref T T
DFO DFOu q s y q s y s s   matched mismatched

2 dis 3 disq τ q τ       (20) 

where      1, ,s s s2p p q and   ns R3q ;   n ns R 2P ; refx and
refu represent state and control input references, respectively; 

and  ˆ smatched
disτ  and  ˆ ns Rmismatched

disτ  represent the estimations of the 
matched and mismatched disturbance vectors, respectively. 

  DFOs yp is derived by solving 

                       ˆ 0T T
DFOs s s y s s mismatched

n disc A p c τ                 (21) 

where   ns Rc  is orthogonal to  snb , i.e.,     0T s s nc b  . 

 1q s ,  s2q and  s3q are obtained by using 

             

            

      
            

1

1

1

1

T T

T

T T T

q s s s s s s

s s s

s s s s s s













n n n n 1

2 n n n

3 n n 2 n n

b b b A p

q b b b

q b b P A b

          (22)  

Proof: Since the linear system is controllable, states and 
control input can be defined in terms of differentially flat output 
variable. Equation (18) can be rewritten as follows: 

            DFO DFO DFOs s y s y s q s y n nA p d b             (23) 

            s s s s q s n nA p d b                 (24) 

where     DFOs s yx p ,   DFOu q s y  , and     DFOs s ydisτ d  in 

which           ns s q s s s R  n nd b A p . 
Let us first prove the existence of the solution of Eq. (21). 

The matched and mismatched disturbances of  sdisτ and  sd  
can be directly separated as follows: 

           
     

     
s s s

s s s

 

 

matched mismatched
dis dis dis

matched mismatched

τ τ τ

d d d
               (25) 
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5

If Eq. (24) is multiplied by  T sc , which is orthogonal to  snb , 
from left side and Eq. (25) is substituted into the disturbance 
vector, then Eq. (21) is derived as follows: 

                   0T s s s nc A w                              (26) 

where        1 ns s s s R  mismatched
nw p A d . Since  snA  is full 

rank, the polynomial  sp  can be obtained by using

       1s s s s  mismatched
np w A d .  

Equation (25) shows that the polynomial  sw  is orthogonal 

to    T s snA c . It can be obtained by using  

              ,
2

Ts s s   
 

nw R r A c                             (27) 

where  , n nR R r  is orthogonal rotational matrix; nRr  is the 
axis of rotation; and R  is the angle of rotation. Equation (27) 
shows that the polynomial  sp has no unique solution. 

Equation (22) can be directly derived by multiplying Eq. (23) 
with       1T Ts s s



n n nb b b  from the left side.  
Hence, states and control input are derived in terms of the 

disturbance vector and differentially flat output variable. The 
robust state and control input references can be generated by 
using the estimations of disturbances via DOb and deriving the 
differentially flat out variable in terms of control goal.  

The block diagram of the proposed robust motion controller 
is shown in Fig. 2a. Without any simplification, it can be 
represented by using the analogy of a conventional DOb-based 
robust motion control system as shown in Fig. 2b. In this figure,

 1ˆref
DFOu q s y  represents control input reference,  ˆref

DFOs y 1x p  

represents state reference,  ˆ ˆn ref refu u  K x x  represents 

nominal control input signal,  rob Tu s matched
2 disq τ

    T s s mismatched
3 2 disq KP τ represents robust control input signal, 

and K  represents state feed-back control gain. It has a 2-DOF 
control structure. The robustness of the motion control system 
is achieved by feeding-back the estimations of disturbances in 
the inner-loop. Since DOb nominalizes the inner-loop by 
cancelling internal and external disturbances, outer-loop 
controller, i.e., state feed-back controller, can be designed by 
only considering the nominal plant model. In order to improve 
the robustness of the motion control system, the dynamics of 
disturbance estimation should be faster than that of motion 
control system. Therefore, the higher the bandwidth of DOb is 
the more the robustness improves. The stability and 
performance of the motion control system are simply adjusted 
by tuning the state feed-back control gain, i.e., K , for nominal 
system. Reader is invited to refer to [38] for further details of 
conventional DOb-based 2-DOF motion control systems. 

V. ROBUST POSITION AND FORCE CONTROL OF SEAS 
In this section, robust position and force controllers are 

proposed for SEAs by using DF and DOb. The design 
philosophy of the robust controllers is explained in the previous 

section. Without going into detail of Theorem, one can directly 
design the robust motion controllers for SEAs as follows: 

Let us first consider the state space dynamic model of an 
SEA, which is shown in Eq. (4), by neglecting disturbances, i.e., 

disτ 0. One can easily adjust its nominal stability and 
performance by using modern control methods such as pole 
assignment. For example, all nominal poles of an SEA can be 
placed on the real axis via state feed-back control so that the 
vibration of the actuator’s link is precisely suppressed. If the 
state feed-back controller, K , is adequately tuned, then all states 
of the nominal system exponentially go to zero, i.e., regulation 
is performed. Its state and control input references should be 
properly generated to perform trajectory tracking control; e.g., 
they are defined in terms of differentially flat output variable in 
DF [41]. However, the nominal stability and performance 
cannot be achieved due to internal and external disturbances of 
an SEA in practice. 

Let us now improve the robustness of an SEA by treating its 
matched and mismatched disturbances in the design of the 
controller. The estimations of the disturbances and their first 
and second order time derivatives are obtained by using the 
second order DOb in section III. They are fed-back through 
control input so that disturbances are precisely suppressed. 
Since an SEA does not suffer from disturbances when ADR 
control is implemented, its nominal stability and performance 
can be achieved by using the state feed-back controller in real 
implementations. The proposed motion controller has 2-DOF; 
i.e., the robustness and performance can be independently 
adjusted by using DOb and state feed-back controller, 
respectively.  

The robust state and control input references of the state feed-
back controller are systematically generated in terms of 
differentially flat output variable, estimations of disturbances 
and their successive time derivatives as follows: 

The dynamic model of an SEA, which is given in Eq. (1), can 
be represented in polynomial matrix form by using 

 
a) Proposed robust motion controller. 

 
b)  Two-degrees-of-freedom motion control structure. 
Fig.2: Block diagrams of the proposed robust motion control system. 
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                 s s s s s u  matched mismatched
n dis dis nA x τ τ b                   (28) 

where    
2

11 1 12 12
2

212 2 2 12

; ;n n n n

n n n n

qm s b s k k
s s

qk m s b s k
     

         
nA x  

  0
Tmatched

diss   
matched
disτ ;   0

Tmismatched
diss   

mismatched
disτ ;    1 0 ;Ts nb  

inu F ; and s represents complex Laplace variable.  
Let us multiply Eq. (28) with    0 1T s c , which is 

orthogonal to  snb  and  smatched
disτ , from the left side.  

                            0T Ts s s s s mismatched
n disc A x c τ                         (29) 

where     2
12 2 2 12

T
n n n ns s k m s b s k     nc A  and

   T mismatched
diss s mismatched

disc τ . 

If it is assumed that        1 2
T

DFO DFO DFOs s y p s y p s y   x p    

where DFOy  represents differentially flat output variable, then 
Eq. (29) is rewritten in terms of DFOy  and the mismatched 
disturbance as follows: 

    
 

12
12 2 2 12

2

0mismatched
n n n n DFO dis

p s
k m s b s k y

p s


 
       

 




           (30) 

As shown in Theorem, there is no unique solution for Eq. 
(30). In this paper, the polynomial vector  sp is derived by 
choosing  2 12np s k  as follows: 

   
 

 2
2 2 12 121

2 12

mismatched
n n n DFO dis n

DFO DFO

n DFO

m s b s k y kp s
s y y

p s k y

    
   

    
p





    (31) 

where   DFOs yp satisfies Eq. (30). 
The control input is derived by multiplying Eq. (28) with 

      
1T Ts s s


n n nb b b  from the left side as follows: 

      

 

4 3 2
1 2 1 2 2 1 1 2 12 1 2

21 1
12 1 2

12 12

(

)

n n n n n n n n n n n

matched mismatched mismatched mismatchedn n
n n n DFO dis dis dis dis

n n

u s m m s m b m b s b b k m m s

b m
k b b s y s s

k k
   

      

    
   (32) 

Equation (31) and Eq. (32) show that not only the 
differentially flat output variable but also disturbances are 
required to generate state vector and control input. However, 
disturbances are unknown in many practical motion control 
applications. In this paper, state vector and control input are 
generated by using the estimations of disturbances as follows: 

                 1 2 3 4 1 1 2 2
T Tx x x x q q q q x                     (33) 

where 1 2 2 12 12ˆmismatched
n DFO n DFO n DFO dis nx m y b y k y k     ; 2x 

1 2 2 12 12
ˆmismatched

n DFO n DFO n DFO dis nx m y b y k y k        ; 3 12n DFOx k y ; 

4 3 12n DFOx x k y   ; and  

 
    

 

1 2 1 2 2 1 1 2 12 1 2

1 1
12 1 2

12 12

ˆ ˆˆ ˆ

n n DFO n n n n DFO n n n n n DFO

matched mismatched mismatched mismatchedn n
n n n DFO dis dis dis dis

n n

u m m y m b m b y b b k m m y

b m
k b b y

k k
   

      

    

  

  
   (34) 

To perform position and force control applications, the 
desired differentially flat output variable is designed by 
considering the position and force control goals as follows:   

Position Control: The position of the actuator’s link is 
defined in terms of system states and differentially flat output 
variable by using Eq. (33) as follows: 

           2 3 12n DFOq x k y                                (35) 

Let us define the desired position of the actuator’s link by 
using 2

desq . The desired differentially flat output variable is 
derived in terms of 2

desq  by using Eq. (35) as follows: 

                       3 2

12 12

des des
des
DFO

n n

x qy
k k

                               (36) 

where des  represents desired . The robust state and control 
input references of the position controller are generated by 
applying Eq. (36), i.e., des

DFO DFOy y , into Eq. (33) and Eq. (34).   
Force Control: Similarly, spring force is defined in terms of 

system states and differentially flat output variable by using Eq. 
(33) as follows:  

       12 1 3 12 2 2 ˆmismatched
spring n n n DFO n DFO disF k x x k m y b y                   (37) 

Let us define the desired spring force by using des
springF . The 

desired differentially flat output variable is derived in terms of 
des
springF  by using Eq. (37) as follows: 

               2 12

12 2

ˆdes mismatched des
spring dis n n DFOdes

DFO
n n

F b k y
y

k m
 




                        (38) 

The robust state and control input references of the force 
controller are similarly generated by applying Eq. (38) into Eq. 
(33) and Eq. (34). 

Hence, either position or force control applications of an 
SEA can be performed by using the proposed unified ADR 
motion controller. 

VI. EXPERIMENTS 
In this section, robust position and force control experimental 

results of an SEA, which is shown in Fig. 3, are given to validate 
the proposed controllers. It has a novel mechanical structure 
which consists of torsional and linear springs in series. By 
adjusting the compliance of the springs, e.g. hard torsional and 
soft linear springs, a compact variable-stiffness SEA can be 
designed. The reader is invited to refer to [5, 17] for further 
details on the novel mechanical design of the two-state variable 
stiffness SEA. However, in this paper, only the torsional spring, 
i.e., a conventional SEA is used to validate our proposals. The 
specifications of the experimental setup are given in Table I. 
The center processor is dSPACE DS1007 with DS3002 counter 
board to collect encoder signals and DS2102 DAC board to 
control motor driver. The experiments were performed by using 
2 KHz sampling frequency. The resolutions of the encoders are 
2048 and 1024 at motor and link sides, respectively.  

 
Fig. 3: Novel Variable Stiffness Series Elastic Actuator. 
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Section VI is divided into two subsections, namely position 
control and force control. In the former, the control goal is 
defined as the desired position of the actuator’s link. However, 
in the latter, the control goal is defined as the desired deflection 
of the actuator’s spring. It is widely used in the force control 
applications of SEAs. In order to evaluate the position and force 
control performances, step and sinusoidal reference inputs are 
applied in regulation and trajectory tracking control 
applications, respectively. It is experimentally shown that  
 The link of the actuator can precisely follow step and 

sinusoidal reference inputs by suppressing internal and 
external disturbances when the proposed robust position 
controller is implemented. 

 The spring force, i.e., the deflection of the spring, can 
precisely follow step and sinusoidal reference inputs when 
the proposed robust force controller is implemented. 

The robust position and force controllers are designed by 
using the following three steps: 
Step1. The state feed-back controller is designed for the 

nominal plant model by neglecting internal and 
external disturbances, i.e., disτ 0. For example, 

 , ,acker des
n nK A b p , in which desp  represents the 

desired poles, command of MATLAB can be used to 
automatically obtain the sate feed-back controller 
gain. The desired poles are experimentally tuned; e.g., 
as they are increased, the motion control system 
becomes more noise-sensitive; however, as they are 
decreased, the performance deteriorates. 

Step2. The robust state and control input references are 
generated by using Eq. (33) and Eq. (34), respectively.  

Step3. To perform the robust position and force control 
applications by using the unified motion controller, the 
differentially flat output variable is derived as follows: 

3.1. Equation (36) is used so that robust position 
control is performed. 

3.2. Equation (38) is used so that robust force 
control is performed. 

Note that the conventional DF-based position controller is 
designed by neglecting the estimations of disturbances and their 
successive derivatives in Eq. (33) and Eq. (34).  

A. Position Control: 
Let us first consider point-to-point position control, i.e., 

position regulation, problem of the actuator’s link. By using 
Step1, the state feed-back controller is tuned as 

[-0.1056  0.0007  0.1119  -0.0006]K  so that all poles of the 
nominal system are placed at -100. The robust state and control 
input references are generated by using Step2, and the desired 
differentially flat output variable of position control is derived 
by using Step3.1. A step reference input, which has 0.32 rad 
amplitude, is applied after 5 seconds. To evaluate the robustness 
of the position controllers, the actuator is disturbed by directly 

pulling and pushing its link with hand; i.e., a variable unknown 
and dynamic external disturbance is applied. Figure 4a shows 
the position control results when the conventional DF-based 
position controller and the proposed robust position controller 
are implemented. The former is sensitive to internal and 
external disturbances. It suffers from steady state error between 
8 to 11 and 19 to 22 seconds due to internal disturbances such 
as friction. Moreover, its performance significantly deteriorates 
when the external disturbance is applied between 11 and 19 
seconds. The proposed robust controller improves the 
performance of the position control of SEA by suppressing 
disturbances. The link of the actuator can precisely follow step 
reference input when the SEA suffers from internal and external 
disturbances. Figure 4b illustrates the estimations of matched 
and mismatched disturbances. It is clear from the figure that 
similar external disturbances are applied when the proposed 
robust and conventional DF-based position controllers are 
implemented. Control signals of the position control 
experiments are also illustrated in this figure. The robustness of 
the position control is improved without requiring high control 
signals thanks to the proposed ADR control structure in which 
disturbances are cancelled by feeding-back their estimations. 

To evaluate the robustness and noise-sensitivity of the 
proposed position controller, let us re-perform the regulation 
experiment by using different bandwidth values of DOb. In this 
experiment, the state-feedback controller is tuned as 

[-0.1936  0.0003  0.1940  -0.0003]K  in Step1 so that all poles 
of the nominal system are placed at -50. It is more sensitive to 

TABLE I 
SPECIFICATIONS OF EXPERIMENTAL SETUP 

Parameter                  Value            Description 
m1n               2.2 x 10-6 Kgm2 Nominal mass 
m2n             4 x 10-6 Kgm2 Nominal mass 

k12n            0.14 Nm/rad Stiffness of the spring 

 

 
a) Position control results.  

 
b) Estimations of disturbances and control inputs. 
Fig. 4: Position regulation control results when the proposed robust and 
conventional DF-based position controllers are implemented. The bandwidth of 
DOb is 700 rad/s. 
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disturbances than the previous state feed-back controller. The 
position controller is similarly designed by following Step2 and 
Step3.1. The link of the actuator follows the same reference 
input and suffers from similar external disturbances. Figure 5a 
shows the position control results when different bandwidth 
values of DOb are used in the design of the proposed robust 
position controller. It is clear from the figure that the higher the 
bandwidth of DOb is the more the robustness improves. To 
achieve high performance, i.e., precisely suppress disturbances, 
the bandwidth of DOb should be increased. Control signals of 
the robust position control experiments are illustrated in Fig. 
5b. It shows that as the bandwidth of DOb is increased, the 
control signal does not dramatically change; however, it 
includes more noise. The estimations of disturbances and their 

first derivatives are illustrated in Fig. 5b and Fig. 5c, 
respectively. The noise of disturbance estimation increases 
when DOb is designed by using higher bandwidth values. It is 
the main source of the control signal noise in Fig. 5b. The 
experiment clearly shows that there is a trade-off between the 
robustness and noise-sensitivity in the design of the proposed 
position controller. 

Let us now consider the trajectory tracking control problem 
of the actuator’s link. The state feed-back controller is designed 
as [-0.1345    0.0006    0.1380   -0.0006]K  in Step1 so that the 
double poles of the nominal system are placed at -75 and -100. 
The trajectory tracking controller is similarly designed by 
following Step2 and Step3.1. The bandwidth of DOb is set as 

 
a) Robust position control results. 

 
b) Estimations of disturbances and control inputs.  

 
c) Estimations of the first order derivatives of disturbances. 
Fig. 5: Position regulation control results when different bandwidth values are 
used in the design of DOb. 

 
a) Sinusoidal trajectory tracking control results when f = 1Hz. 

 
b) Estimations of disturbances and control inputs. PRC: Proposed robust 

controller; DFC: Differential Flatness-based Controller 

 
c) Sinusoidal trajectory tracking control results when f = 5Hz. 
Fig. 6: Position trajectory tracking control results when the proposed robust and 
conventional DF-based position controllers are implemented. 
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750 rad/s. Sinusoidal reference inputs, which have 0.16 rad 
amplitude and 1Hz and 5Hz frequencies, are applied after 7 
seconds. Two different external disturbances are applied as 
follows: a constant known external disturbance is applied by 
hanging a 2-kg weight to the link of the actuator; a variable 
unknown and dynamic external disturbance is applied by 
directly pulling and pushing the link of the actuator with hand. 
Figure 6a shows the trajectory tracking control results when the 
proposed robust and conventional DF-based position 
controllers are implemented. The former improves the 
performance of trajectory tracking control by suppressing 
disturbances. The link of the actuator can accurately follow 
sinusoidal reference input. However, the conventional 
controller suffers from not only external but also internal 
disturbances. The link of the actuator cannot precisely follow 
the desired trajectory due to internal disturbances between 7 to 

11 and 18 to 20 seconds. Plus, its performance significantly 
deteriorates when external disturbances are applied between 11 
and 18 seconds. Figure 6b illustrates the estimations of 
disturbances and control signals. The proposed robust position 
controller automatically adjusts the control signal and 
suppresses disturbances when they are applied. Thanks to the 
proposed ADR control structure, the robustness of the position 
control is obtained without using high control signals. Figure 6c 
shows that high frequency reference trajectories can be 
precisely followed by using the proposed robust position 
controller. 

B. Force Control: 
Let us first consider the force regulation control problem of 

SEA. In order to assign the double poles of the nominal system 
at -75 and -100, the state feed-back controller is similarly 
designed as [-0.1345  0.0006  0.1380   -0.0006]K  in Step1. 
The robust state and control input references are similarly 
generated by using Step2; however, the desired differentially 
flat output variable of force control is derived by using Step3.2. 
Several step reference inputs are consecutively applied by using 
0.25Nm, 0.5Nm, 0.75Nm, 1Nm, 3Nm, 5Nm, 7Nm, 10Nm, 
13Nm, 15Nm, 10Nm, 5Nm, 0Nm, 15Nm and 0Nm. A sponge 
is placed between the link of the actuator and a metal 
environment so that the stability and performance of contact 
motion are evaluated for different environmental dynamics, i.e., 
stiffness. As the force control input is increased, the dynamics 
of the rigid environment (metal) becomes more dominant. 
Figure 7a illustrates the force regulation control results when 
the proposed robust force controller is implemented by using 
different bandwidth values of DOb. At low force reference 
range, the actuator contacts to soft environment (sponge); 
however, as the force reference input is increased, it starts to 
contact to hard environment (metal). The figure clearly shows 
that stable contact motion can be achieved for different 
environmental dynamics, and the force regulation control can 
be precisely performed for different bandwidth values of DOb. 
Control input signals of robust force control experiments are 
illustrated in Fig. 7b. Similar to the robust position control 
experiments, as the bandwidth of DOb is increased, the robust 
force control system becomes more noise-sensitive. However, 
high performance force regulation control experiments can be 
performed for low bandwidth values of DOb. Figure 7c 
illustrates the fictitious differentially flat output variable of the 
robust force regulation control experiment. 

Lastly, let us consider the force trajectory tracking control 
problem of SEA. The state feed-back controller is designed as 

[-0.0445  0.0009  0.0587  -0.0006]K  so that the double poles 
of the nominal system are placed at -120 and -125 in Step1. The 
robust force controller is similarly designed by following Step2 
and Step3.2. Trajectory reference inputs are applied by using 

7 3sin(2 )des
spring iF f t Nm   where 1,2i  , and f1 = 1 Hz and f2 

= 1 Hz. The link of the actuator initially contacts to a rigid 
environment, i.e., metal. Figure 8a shows force trajectory 
tracking control results when the frequency of sinusoidal 
reference input is 1Hz and the robust force controller is 
designed by using different bandwidth values of DOb. Force 
trajectory tracking control can be precisely performed when the 
proposed robust force controller is implemented. Its 

 
a) Robust force control results. Output torque. 

 
b) Control signals. Motor torque. 

 
c) Differentially flat output variable. 
Fig. 7: Robust force regulation control results when different bandwidth values 
are used in the design of DOb. 
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performance is improved as the bandwidth of DOb is increased. 
However, as shown in Fig. 8b, it is limited by noise in practice. 

The trade-off between the robustness and noise sensitivity 
should be considered in the design of the robust force controller 
as well. Figure 8c shows the differentially flat output variable 
when the frequency of the force reference input is 1Hz. The 
fluctuation of differentially flat output variable is suppressed by 
using better disturbance estimation. Figure 8d shows the robust 
force trajectory tracking control result when the frequency of 
sinusoidal reference input is 5Hz. It is clear from the figure that 
high frequency trajectory reference can be precisely tracked 
when the proposed robust force controller is implemented. 

The position and force control performances of an SEA are 
limited when conventional PID controllers are implemented as 
shown in [17]. In this section, similar position control 
performance limitations are shown when conventional DF- 
based controller is implemented. It is experimentally shown that 
the proposed robust controller significantly improves the 
position and force control performances of SEAs by 
suppressing internal and external disturbances. Against 
resonance ratio controller [17], it can suppress not only constant 
but also variable disturbances. Therefore, it is very practical for 
motion control applications. The robustness of the proposed 
motion controller can be simply improved by increasing the 
bandwidth of DOb. However, it is limited by practical design 
constraints such as noise and sampling time. They are directly 
related to experimental setup; e.g., noise can be suppressed by 
using high resolution encoders in practice. However, it 
increases cost. The trade-off between the robustness and noise-
sensitivity should be considered in the design of the proposed 
robust motion controller. 

VII. CONCLUSION 
This paper has proposed a unified ADR motion controller for 

the robust position and force control problems of SEAs in state 
space. It is designed by combining DF and DOb so that not only 
the state and control input references of the state feed-back 
controller are generated but also its robustness is achieved. The 
proposed motion controller has 2-DOF; its performance and 
robustness can be adjusted by separately tuning the state feed-
back controller and DOb, respectively. The former, i.e., 
performance controller, is designed by neglecting internal and 
external disturbances; e.g., the vibration of the actuator’s link is 
suppressed by assigning all poles of the nominal system on the 
real axis. The robustness is achieved by feeding-back the 
estimations of disturbances thanks to the proposed ADR control 
structure.  The robust state and control input references of the 
state feed-back controller are systematically generated in terms 
of the differentially flat output variable, the estimations of 
disturbances and their successive derivatives in Theorem. They 
are estimated by designing a second order DOb in state space. 
To improve the robustness of the proposed controller, i.e., the 
performance of disturbance estimation, the poles of DOb should 
be faster than that of the nominal system. Faster poles in the 
design of DOb correspond to its higher bandwidth. However, it 
is limited by practical design constraints, such as noise and 
sampling time, and cannot be freely increased in real 
implementations. The trade-off between the robustness and 
noise sensitivity is clarified by giving experimental results in 
section VI. It is shown that the proposed robust motion 
controller significantly improves the position and force control 

 
a) Robust force control results. Output torque f = 1Hz. 

 
b) Control input signals. f = 1Hz. 

 
c) Differentially flat output variable. 

 
d) Robust force control result. Output torque. f = 5 Hz. 

Fig. 8: Robust force trajectory tracking control results when different 
bandwidth values are used in the design of DOb. 
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performances of an SEA without requiring its precise dynamic 
model. It is validated by giving position and force control 
experimental results of an SEA. 
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