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�is paper presents free vibration analysis of open and closed shells with arbitrary boundary conditions using a spectro-geometric-
Ritz method. In this method, regardless of the boundary conditions, each of the displacement components of open and closed
shells is represented simultaneously as a standard Fourier cosine series and several auxiliary functions. �e auxiliary functions are
introduced to accelerate the convergence of the series expansion and eliminate all the relevant discontinuities with the displacement
and its derivatives at the boundaries. �e boundary conditions are modeled using the spring sti	ness technique. All the expansion
coe
cients are treated equally and independently as the generalized coordinates and determined using Rayleigh-Ritz method. By
using this method, a uni�ed vibration analysis model for the open and closed shells with arbitrary boundary conditions can be
established without the need of changing either the equations of motion or the expression of the displacement components. �e
reliability and accuracy of the proposed method are validated with the FEM results and those from the literature.

1. Introduction

Open and closed shells, consisting of segments of shells of
revolution (e.g., cylindrical, conical, and spherical shells),
are important structural elements commonly used in many
engineering �elds such as aerospace cra�s, naval vehicles, and
construction buildings, owing to their excellent mechanical
and physical properties. It is noticed that the open and
closed shells in these applications o�en work in complex
environmental conditions and can be subjected to a variety of
boundary conditions including all the classical cases, elastic
restraints, point supports, and their combinations as well
as su	ering various dynamic loads, which may result in
violent vibrations and structural collapse. Furthermore, the
shells used in the practical engineering may have di	erent
geometries based mainly on their curvature characteristics.
For the sake of presenting the proposed solution clearly, the
open and closed shells considered in the present work are
focused on cylindrical, conical, and spherical shells, which are
most frequently used in the engineering application.

�e development of accurate shell theories has been the
subjected of signi�cant research interest for many years,

and a large number of shell theories based on di	erent
approximations and assumptions have been proposed. A
careful selection of the appropriate shell theory is crucial
for a feasible vibration analysis of practical shells. It has
been reported more than a century ago by Lord Rayleigh
and A.E.H. Love. And, thenceforth, the wide use of these
structures has motivated a huge amount of research e	orts in
developing more accurate, e
cient, and applicable theories
and modeling techniques, aiming to provide insight into
vibration behaviors and sound radiations and reliable design
of these shells. Survey articles and monographs oriented to
such contributions may be found in Carrera [1], Liew et al.
[2], Qatu et al. [3], Leissa [4], and Reddy [5]. Classical shell
theories were developed originally for thin shells based on the
Kirchho	-Love kinematic hypothesis that the straight lines
normal to the unreformed reference surface remain straight
and normal to the reference surface a�er deformation. �is
hypothesis is equivalent to the disregard of the e	ect of
transverse shear deformations of shells.

So far, some of the static and dynamic behaviors of the
closed shells with classical boundary conditions had been
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presented precisely by researchers. Starting from Flügge’s
three equations of motion for a uniform thin cylindrical
shell, Warburton [6] gave a general solution, from which the
dependence of natural frequencies on shell dimensions and
mode number can be investigated for any end conditions.
Bert and Malik [7] made a step forward in furthering the
potential of the DQM in the area of structural mechanics
by introducing the application of the di	erential quadrature
method (DQM) to the dynamic analysis of thin circular
cylindrical shells. Lam and Loy [8] employed a formulation
based on Love’s �rst approximation theory and with beam
functions used as axial modal functions in the Ritz procedure
to study the e	ects of boundary conditions on the free
vibration characteristics for a multilayered cylindrical shell.
Loy and Lam [9] presented an approximate analysis using a
layer-wise approach to study the vibration of thick circular
cylindrical shells on the basis of three-dimensional theory
of elasticity. Utilizing the in�nite circular cylinders solution
based on the technique of variables separation, Mofakhami
et al. [10] developed a general solution to analyze the
vibration of �nite circular cylinders. Dai et al. [11] obtained
an exact series solution for the vibration analysis of circular
cylindrical shells with arbitrary boundary conditions using
the elastic equations based on Flügge’s theory. In this series
solution, each of the three displacements was represented
by a Fourier series and auxiliary functions and sought in a
strong form by letting the solution exactly satisfy both the
governing di	erential equations and the boundary condi-
tions on a point-wise basis. Chen et al. [12] developed an
exact solution to obtain the free vibrations of cylindrical
shell with nonuniform elastic boundary constraints using an
improved Fourier series method. Khalili et al. [13] presented
a closed-form formulation of three-dimensional (3D) re�ned
higher-order shear deformation theory (RHOST) for the free
vibration analysis of simply supported-simply supported and
clamped-clamped homogenous isotropic circular cylindrical
shells. Jin et al. [14] developed a uni�ed and exact solution
method for the free vibration analysis of composite lami-
nated cylindrical shells with various boundary condition and
arbitrary lamination schemes. Viola and Tornabene [15] used
the Generalized Di	erential Quadrature (GDQ) method to
study the free vibration of conical shell structures. Liew et
al. [16, 17] carried out the free vibration analysis of thin
conical shells under di	erent boundary conditions using the
element-free ��-Ritz method. Shu [18] applied the global
method of Generalized Di	erential Quadrature (GDQ) for
the �rst time to study the free vibration of isotropic conical
shells. Tornabene et al. [19, 20] focused on the dynamic
behavior of moderately thick functionally graded conical,
cylindrical shells and annular plates based on the �rst-order
shear deformation theory (FSDT).Wu and Lee [21] presented
the free vibration analysis of laminated conical shells with
variable sti	ness using the method of di	erential quadrature
(DQ). Tornabene and Viola [22] used the technique known
as the Generalized Di	erential Quadrature (GDQ) to deal
with the dynamical behavior of hemispherical domes and
spherical shell panels. Lee [23] applied the pseudospectral
method to the axisymmetric and asymmetric free vibration
analysis of spherical caps, in which the displacements and

the rotations were expressed by Chebyshev polynomials
and Fourier series. Gautham and Ganesan [24] employed
a �rst-order shear deformable semianalytical shell �nite
element to deal with the free vibration characteristics of
isotropic and laminated orthotropic spherical caps. Kang and
Leissa [25] presented a three-dimensional method of analysis
for determining the free vibration frequencies and mode
shapes of spherical shell segments with variable thickness.
Qu et al. [26, 27] introduced a variational formulation for
predicting the free, steady-state, and transient vibrations
of composite laminated and functionally graded shells of
revolution subjected to various combinations of classical and
nonclassical boundary conditions. A modi�ed variational
principle in conjunction with a multisegment partitioning
technique was employed to derive the formulation based on
the �rst-order shear deformation theory. �e above review
of the literature reveals that problems pertaining to the
free vibration analyses of closed shells subjected to classical
boundaries such as free, simply-supported, and clamped and
their combinations as well as elastic boundary conditions
have been comprehensively studied.

In contrast to the closed shells, information available for
the free vibration analysis of open shells, especially the open
conical and spherical shells, is rare. �us, the free vibration
analysis of open shells based on Flügge’s thin shell theory has
attracted increasing research e	ort in the past few years. In
order to properly focus on the features and emphasis of the
present paper, a brief review of recent works pertaining to the
vibration analyses of open shells of revolution, including the
cylindrical, conical, and spherical shells, is reported below.
Selmane and Lakis [28] presented a hybrid of �nite element
method for the dynamic and static analysis of thin, elastic,
anisotropic, and nonuniformopen cylindrical shells based on
classical shell theories. �e open shells were assumed to be
freely simply supported along their curved edges and to have
arbitrary straight-edge boundary conditions. Kandasamy and
Singh [29] developed a formulation considering �rst-order
shear deformation theory of shells and including rotary
inertia and shear deformation to analyze the free vibration of
skewed open circular cylindrical deep shells. Zhang et al. [30]
presented the vibration analysis of cylindrical panels using
a wave propagation method. Yu et al. [31] obtained exact
solutions for open circular cylindrical shells with di	erent
combinations of primary boundary conditions using the
generalized Navier method. Bardell et al. [32, 33] used the ℎ-� version of the �nite element method to furnish a detailed
study of the vibration characteristics of completely free,
open, cylindrical, and conical isotropic shell panels. Lim
and Kitipornchai [34] presented a computational investiga-
tion on the e	ects of subtended and vertex angles on the
free vibration characteristics of open conical shell panels.
Unlike the conventional approximation using a rectangular
or cylindrical coordinate system, this analysis adopted a
natural conical coordinate system so that any approximation
in geometry was eliminated. Zhao et al. [35] analyzed the free
vibration of conical panels by the mesh-free ��-Ritz method.
Furthermore, the group in [36] extended this method to
spherical panels subjected to di	erent boundary conditions
based on the three-dimensional elastic theory. Ye et al. [37]
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Figure 1: Geometry and notations of an open shell with elastically restrained edges: (a) coordinate system and (b) partial view.

studied the free vibration analysis of open shells with various
boundary conditions by using the Chebyshev-Ritz method.
Qatu and Asadi [38] presented the �rst comprehensive study
of shallow shell vibrations subjected to as many as 21 pos-
sible classical boundary conditions and obtained relatively
accurate results for natural frequencies of doubly curved
shallow shells including spherical, cylindrical, hyperbolic,
and paraboloidal shells of revolutionwith arbitrary boundary
conditions using the Ritz method. Some other contributions
are given in [39–64].

In view of the aforementioned issues and concerns, it
should be emphasized that most of the researches were
restricted to the single cylindrical, conical, and spherical
shell or subjected to a limited sets of classical supports.
�e vibration behaviors of open and closed shells with
varying geometrical dimensions, subjected to di	erent com-
binations of classical and nonclassical boundary constraints,
have until now remained unsolved. However, in practical
engineering applications, the general boundary conditions
are o�en encountered as compared to the classical boundary
conditions since the support types of such structures are
always complicated and variable in nature. Moreover, to
the authors’ best knowledge, no publications dealing with
the vibration characteristics of the open and closed shells
integrated with a uni�ed, e
cient, and accurate formulation
have been reported.

Recently, an improved Fourier series technique proposed
by Li [65, 66] is widely used in the vibrations of beams,
plates, and shells with general boundary conditions. And
then Jiang et al. [67] proposed a spectrogeometric method
(SGM) based on the improved Fourier series method to
study di	erent structures and their combination. In this
paper, the authors present a spectro-geometric-Ritz method
based on the SGM and Ritz method to solve the free
vibrations of the open and closed shells with arbitrary bound-
ary conditions. �e arbitrary boundary conditions of the
shells are realized by applying the arti�cial spring technique.
�e equations of motion and the related boundary equa-
tions are derived via Hamilton’s principle based on Flügge’s
thin shell theory. Regardless of the boundary conditions,

the displacement components of the thin shells are rep-
resented as the expansion series simultaneously by using
the SGM, which can be described as a standard cosine
series and auxiliary functions which can be expressed as
a sine series. �e introduction of the auxiliary functions
not only removes all the potential discontinuities at the
boundary, but also ensures and accelerates the convergence
of the series expansions. All the expansion coe
cients are
considered as the generalized coordinates and determined
using Rayleigh-Ritz method. By using this method, a uni�ed
vibration analysis formulation for the open and closed shells
with arbitrary boundary conditions is developed without
the need of changing the expression of the displacements.
�e reliability and accuracy of the results and the ease
of implementation of the present method are validated by
comparing selected cases against the FEM results and those
existing in the literature. �e e	ects of boundary conditions
and the geometrical dimensions on vibration behavior of the
shell are also illustrated.

2. Theory and Formulation

2.1. System Description. �e geometry and coordinate sys-
tems for the open shell are depicted in Figure 1.�e open shell
under consideration is thought to be thin and of length ��,
width ��, and uniform thickness ℎ.�emiddle surface of the
shell where an orthogonal coordinate (�, �, and �) is �xed is
taken as the reference surface.�e radii of curvature in � and� directions are represented by 	� and 	�, respectively. �e
displacement components of the shell in�,�, and �directions
are denoted by 
, V, and�, respectively. Along each end of the
shell, three groups of translational springs (��, �V, and ��) and
one group of rotational springs (��) which are distributed
uniformly along the boundary are introduced to separately
simulate the given or typical boundary conditions expressed
in the form of axial force resultant, tangential force resultant,
transverse force resultant, and the �exural moment resultant.
�us, the given boundary conditions can be readily achieved
by assigning these springs at proper sti	ness. For instance,
a clamped boundary condition can be generated by simply
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setting the sti	ness of all the springs equal to in�nite (which
is represented by a very large number). Speci�cally, ���0, �V�0,���0, and ���0 denote the set of springs distributed along the
edge � = 0. Similarly, by replacing the subscript �0 with��, �0, and ��, the other three sets of boundary springs at
corresponding ends can be designated, respectively.

2.2. Energy Functional of the �in Shells. According to the
Kirchho	 hypothesis and Flügge’s thin shell theory [4],
the middle surface strains, curvature, and twist changes of
the thin shell can be written in terms of displacements
components as

� = 1� �
�� + V�� ���� + �	� , (1a)

� = 1� �V�� + 
�� ���� + �	� , (1b)

�� = �� ��� ( 
�) + �� ��� ( V�) , (1c)

�� = 1� ��� ( 
	� − 1� ���� )
+ 1�� ( V	� − 1� ���� ) ���� ,

(2a)

�� = 1� ��� ( V	� − 1� ���� )
+ 1�� ( 
	� − 1� ���� ) ���� ,

(2b)

� = �� ��� [ 1� ( 
	� − 1� ���� )]
+ �� ��� [ 1� ( V	� − 1� ���� )]
+ 1	� (

1� �
�� − V�� ����)
+ 1	� (

1� �V�� − 
�� ���� ) ,

(2c)

where �, �, and �� indicate the strains in themiddle surface;��, ��, and � are the curvature changes; 
, V, and� denote the
shell displacement components in the �, �, and � directions,
respectively; 	� and 	� represent the radii of curvature in the�, � directions as depicted in Figure 1.�e quantities� and �
are the Lamé parameters. When the coordinate systems and
geometric parameters �, �, 	�, and 	� are given di	erent
values, the corresponding type of shells can be obtained. In
Figure 2, the speci�c shells constructed as the three types
of curvatures, for example, cylindrical shells, conical shells,
and spherical shells, are presented. According to Figure 2, the
parameters 	�, 	�,�, and � of the above three types of shells
are given as follows:

(a) Cylindrical shell:

� = �;
� = �;

	� = 1;
	� = 	;
� = 1;
� = 	.

(3)

(b) Conical shell:

� = �;
� = �;

	� = 1;
	� = � tan�;
� = 1;
� = � sin�.

(4)

(c) Spherical shell:

� = �;
� = �;

	� = 	;
	� = 	;
� = 	;
� = 	 sin�.

(5)

According to Flügge’s thin shell theory, the linear strains
in the space of the thin shell are expressed as

 � = 11 + �/	� (� + ���) , (6a)

 � = 11 + �/	� (� + ���) , (6b)

%�� = 1
(1 + �/	�) (1 + �/	�) [(1 − �2	�	�) ��

+ �(1 + �2	� + �2	�)�] ,
(6c)

where −ℎ/2 ⩽ � ⩽ ℎ/2. According to general Hooke’s law, the
corresponding stresses are obtained as

{{{{{{{

4�4�4��
}}}}}}}

= [[
[
>11 >12 0
>21 >22 0
0 0 >66

]]
]

{{{{{{{

 � �%��
}}}}}}}

, (7a)
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Figure 2: De�nition of shell coordinate system: (a) cylindrical shell; (b) conical shell; and (c) spherical shell.

in which 4� and 4� are the normal stresses; 4�� is shear stress.>�� (B, C = 1, 2, 6) denote the constants relating stresses with
strains. �ey are de�ned as

>11 = >22 = E1 − F2 ,
>12 = >21 = FE1 − F2 ,
>66 = E2 (1 + F) ,

(7b)

where E and F are Young’s modulus and Poisson’s ratio,
respectively.

From the theory of elasticity, the well-known expression
for the strain energy stored in a shell body during elastic
deformation is

G� = 12 ∫
	
(4� � + 4� � + 4��%��) dG, (8)

where dG is the element of volume which, expressed in shell
coordinates, is

dG = (1 + �	�)(1 + �	�)��d�d�d�. (9)

Recognizing that, for a thin shell, �/	� (B = �, �) is less
than unity, then one can expand the quotient 1/(1+�/	�) into
a well-known geometric series by simple division; that is,

11 + �/	� =
∞∑
�=0

(− �	�)
� , B = �, �. (10)

Replacing 1/(1 + �/	�) with (10), neglecting terms raised
to powers of � greater than two in the integrand, and
substituting (1a)–(7b) and (9) into (8) result in

G� = Eℎ2 (1 − F2) ∬[>0 + ℎ212 (>1 + >2)]�� d� d�, (11)

where

>0 = 2� + 2� + 2F�� + 1 − F2 2��, (12a)

>1 = �2� + �2� + 2F���� + 1 − F2 �2, (12b)

>2 = −2( 1	� − 1	�)(��� − ���)
− 1 − F2 ( 1	� + 1	�) ���

+ ( 1	� − 1	�)( 2�	� − 2�	�)

+ 1 − F2 ( 1	2� + 1	2� − 1	�	�)2��,

(12c)

and the maximum kinetic energy of the thin shell can be
de�ned as

M = Nℎ2 ∬(�̇2 + 
̇2 + V̇
2)�� d� d�, (13)

where the dot above a variable represents di	erentiation
with respect to time. Since the value of the kinetic energy
is maximum, the kinetic energy expression in (13) can be
rewritten as

M = NℎP22 ∬(�2 + 
2 + V
2)�� d� d�. (14)

In (11)–(14),E,F, andN, respectively, areYoung’smodulus,
Poisson ratio, and density of the shell. P indicates the angular
frequency of the shell.

2.3. Arbitrary Boundary Conditions and Continuity Condi-
tions. In order to simulate the arbitrary boundary conditions,
three groups of translational restraining springs (��, ��, and�V) and one group of rotational restraining springs (��)
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which are arranged uniformly along each boundary with
independent sti	ness are introduced to separately simulate
the given or typical boundary conditions expressed in the
form of axial force resultant, tangential force resultant,
transverse force resultant, and the �exural moment resultant,
which is shown in Figure 1. �us, the given boundary con-
ditions can be readily achieved by assigning these springs at
proper sti	ness. For instance, a clamped boundary condition
can be generated by simply setting the sti	ness of all the
springs equal to in�nite (which is represented by a very large
number). �erefore, the general boundary conditions for an
elastically restrained shell can be described as follows:

At edge � = 0,
���0
 = Q�,
�V�0V = Q�� + R��	� ,
���0� = >� + �R���� ,

���0 ���� = −R�.

(15)

At edge � = ��,
����
 = −Q�,
�V��V = −Q�� − R��	� ,

����� = −>� − �R���� ,
���� ���� = R�.

(16)

At edge � = 0,
���0
 = Q�� + �R���	� ,
�V�0V = Q�,
���0� = >� + �R���� ,

���0 ���� = −R�.

(17)

At edge � = ��,
����
 = −Q�� − R��	� ,
�V��V = −Q�,

����� = −>� − �R���� ,
���� ���� = R�,

(18)

where Q�, Q��, and >� denote the force resultants
acting on the face perpendicular to the �-axis. Q�,Q�� (Q�� = Q��), and >� are the force resultants
on the face perpendicular to the �-axis. Similarly,R�, R�, and R�� are the moment resultants on
the corresponding face. Q�, Q�, and Q�� are the
normal and in-plane shear force resultants; >� and>� denote the transverse shear force; R�, R�, andR�� represent the bending and twisting moment
resultants.

�e force andmoment resultants are obtained by integrat-
ing the stresses over the shell thickness:

[[[
[

Q�Q�Q��
]]]
]

= ∫ℎ/2
−ℎ/2

[[[
[

4�4�4��
]]]
]
d�,

[[[
[

R�R�R��
]]]
]

= ∫ℎ/2
−ℎ/2

[[[
[

4�4�4��
]]]
]

� d�,

[>�>�] = ∫ℎ/2
−ℎ/2

[4��4��] d�.

(19)

By carrying the integration of stresses over the cross
section and integrating the moments of the in-plane stresses
over the thickness, the force and moment resultants relations
to the strains in themiddle surface and curvature changes are
de�ned as

Q� = Eℎ1 − F2 (� + F�) ,
Q� = Eℎ1 − F2 (� + F�) ,
Q�� = Eℎ2 (1 + F)��,

(20a)

R� = Eℎ312 (1 − F2) (�� + F��) ,
R� = Eℎ312 (1 − F2) (�� + F��) ,
R�� = Eℎ324 (1 + F)�.

(20b)
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Figure 3: �e sketches of the closed shells with coupling circumferential edge: (a) cylindrical shell; (b) conical shell; (c) spherical shell.

�us, the total potential energy of the spring restrained
shell stored in the boundary springs can be expressed as

G� = 12 ∫{{{
[���0�2 + ���0
2 + �V�0V2

+ ���0 ( V	� − ���� )2]
�=0

+ [�����2 + ����
2

+ �V��V2 + ���� ( V	� − ���� )2]
�=��

}}}
� d� + 12

⋅ ∫{[���0�2 + ���0
2 + �V�0V2

+ ���0 ( 
	� − ���� )2]
�=0

+ [�����2 + ����
2

+ �V��V2 + ���� ( 
	� − ���� )2]
�=��

}� d�.

(21)

As indicated in the mathematical expressions of bound-
ary conditions, all the force and moment resultants of the
open shells are restrained by utilized springs.�erefore, arbi-
trary boundary constraints can be achieved by varying the
values of spring’s sti	ness. �e classical boundary conditions
specially can be simulated by varying the sti	ness of the
boundary springs to be extremely large or extremely small.

When all of the energy expressions are prepared, the
complete solution can be obtained by using the Rayleigh-
Ritz method. �e total energy functional of the open shell
is taken as the sum of the energy contributions from the
shell, which is composed of the strain energy and the kinetic
energy, and boundary constraints. �us, the Lagrangian
energy functional (�) of the open shell can be expressed as

� = G� + G� − M. (22)

Asmentioned earlier, a closed shell can bemathematically
viewed as a special case when the inclusion or circumferential
angle is set equal to 2Y, as shown in Figure 3. However, this
simple mathematical operation alone cannot automatically
ensure a complete transition of the open shell into a closed
shell; that is, the continuities of the displacements and their
derivatives at � = 0 and � = 2Y are not necessarily the same.
To overcome this problem, a set of coupling springs (�� , �V ,�� , and�� ), which are uniformly distributed at the common
edge, will be adopted to enforce the continuity conditions
of displacements, slope, forces, and bending moment at the
junction in circumference. �e presence of these coupling
springs can be accounted for by the potential energies:

G = 12 ∫[
[
�� (�|�=0 − �|�=2�)2 + �� (
|�=0

− 
|�=2�)2 + �V (V|�=0 − V|�=2�)2 + �� ( V	�
ZZZZZZZZZZ�=0

− ����
ZZZZZZZZ�=0 −

V	�
ZZZZZZZZZZ�=2� +

����
ZZZZZZZZ�=2�)

2]
]

� d�,

(23)

where �� , �� , and �V represent the sti	ness for translational
coupling springs; �� is the sti	ness for rotational coupling
springs.

�erefore, arbitrary coupling conditions can be obtained
by varying the values of coupling spring’s sti	ness. �e
discontinuity and continuity of the displacement and slope
specially at the common edge can be achieved by varying
the sti	ness of the boundary springs to be extremely small
and extremely large, which can simulate the open shell with
the circumferential angle � = 2Y and the closed shell,
respectively. In fact, these two cases are di	erent and the
two cases will get di	erent vibration behavior. �e function
of connective springs at the interface for the continuity of
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the displacement and slope is embodied in the Lagrangian
energy functional (�) of the closed shell:

� = G� + G� + G − M. (24)

In fact, as the open shell is expanded to the closed one,
the boundary restraint spring’s sti	ness at the edges � = 0
and � = 2Y should be set to zero and the coupling spring’s
sti	ness should be set in�nitely large.

2.4. Admissible Displacement Functions and Solution Proce-
dure. An admissible function for displacement is essential to
achieve an accurate and convergent solution in the Rayleigh-
Ritz procedure. However, the original Fourier series expres-
sion only applies to a few simple boundary conditions and can
lead to unavoidable convergence problem for other boundary
conditions, thus limiting the applications of the Fourier series
to only a few ideal boundary conditions [65]. Take a beam
problem as an example. �e governing equations for free
vibration of a general supported Euler beam are obtained as

[�4� (�)��4 − N�P2� (�) = 0, (25)

where [, N, and � are, respectively, the �exural rigidity, the
mass density, and the cross-sectional area of the beam; P
is frequency in radian. From (25), we can know that the
displacement solution�(�) on a beam of length � is required

to have up to the fourth derivatives; that is, �(�) ∈ ]3.
Generally, the displacement function �(�) de�ned on an
interval [0, �] can be expanded into a Fourier series inside
the interval excluding boundary points:

� (�) = ∞∑
�=0

�� cos(`Y�� ) , 0 < � < �, (26)

where�� are the expansion coe
cients. From (26), it can be
seen that the transverse displacement function �(�) can be
viewed as a part of an even function de�ned on the interval[−�, �], as shown in Figure 4. �us, the Fourier cosine series
is able to correctly converge to �(�) at any point over [0, �].
However, its �rst derivative ��(�) is an odd function on[−�, �] leading to a jump at end locations.�e corresponding
Fourier expansion of ��(�) continues on [0, �] and can be
di	erentiated term-by-term only if ��(0) = ��(�) = 0. �us,
its Fourier series expansion (sine series) will accordingly have
a convergence problem due to the discontinuity at end points
when ��(�) is required to have up to the �rst-derivative
continuity.

Recently, Li [65, 66] proposed an improved Fourier series
technique to overcome this problem; in this technique, the
displacement function �(�) considers a new function:

� (�) = � (�) + b (�) = ∞∑
�=0

�� cos(`Y�� ) + b (�) ,
0 ≤ � ≤ �,

(27)

x

L

O

−L

w(x)

w�(x)

Figure 4: An illustration of the possible discontinuities of the
displacement and its derivative at the end points.

where auxiliary function b(�) in (27) represents an arbitrary
continuous function that, regardless of boundary conditions
equations (15)–(20b), is always chosen to satisfy the following
equations:

b� (0) = �� (0) = �0, (28a)

b� (d) = �� (d) = �1, (28b)

b��� (0) = ���� (0) = �0, (28c)

b��� (d) = ���� (d) = �1. (28d)

In (28a), (28b), (28c), and (28d), the actual values �0, �1,�0, and �1 of the �rst and third derivatives at the boundaries
need to be determined from the given boundary conditions
equations (15)–(20b). �e function b(�) is here introduced
to take care of the potential discontinuities of the (original)
displacement function and its derivatives at the end points.
Essentially, �(�) represents a residual beam function which
is continuous over [0, �] and has zero slopes at both ends.
Apparently, the cosine series with the auxiliary function b(�)
employed representation of�(�) is able to converge correctly
to the function itself and its �rst derivative at every point
on the beam. �us, based on the above analysis, b(�) can
be understood as a continuous function that satis�es (28a),
(28b), (28c), and (28d); its form is not a concern but must be
a closed form and su
ciently smooth on the interval [0, �] of
the beam in order to meet the requirements provided by the
continuity conditions and boundary constraints. �erefore,
the addition of the auxiliary function b(�) will have two
immediate bene�ts: (1) the Fourier series expansion will be
applicable to any boundary condition; (2) the Fourier series
solution can be drastically improved regarding its accuracy
convergence.

According to the above analysis, it is simple and con-
venient to expand the displacement �eld of beams to one
of the shells. In this paper, the function b(�) is chosen
in a trigonometric series form by using SGM. �us, the
displacement �eld of the thin shells can be described by
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the SGM and then the detailed expressions of the displace-
ments in �, �, and � directions are given as

� (�, �) = ∞∑
�=0

∞∑
�=0

e1�� cos f�� cos f��

+ ∞∑
�=0

4∑
�=1

e2�� cos f�� sin f��

+ 4∑
�=1

∞∑
�=0

e3�� cos f�� sin f��

+ 4∑
�=1

4∑
�=1

e4�� sin f�� sin f��,

(29a)


 (�, �) = ∞∑
�=0

∞∑
�=0

g1�� cos f�� cos f��

+ ∞∑
�=0

2∑
�=1

g2�� cos f�� sin f��

+ 2∑
�=1

∞∑
�=0

g3�� cos f�� sin f��

+ 2∑
�=1

2∑
�=1

g4�� sin f�� sin f��,

(29b)

V (�, �) = ∞∑
�=0

∞∑
�=0

G1�� cos f�� cos f��

+ ∞∑
�=0

2∑
�=1

G1�� cos f�� sin f��

+ 2∑
�=1

∞∑
�=0

G3�� cos f�� sin f��

+ 2∑
�=1

2∑
�=1

G4�� sin f�� sin f��,

(29c)

where f� = `Y/��, f� = hY/��, e1��, e2��, e3��, e4��,g1��,g2��,g3��,g4��,G1��,G2��,G3��, andG4�� are the expansion
coe
cients for the shells and they can be solved by the
Rayleigh-Ritz procedure.

For thin shells, the thickness is assumed to be negligible
compared to length or radii of curvature of the shell and
the normal to the middle surfaces are considered always to
be straight and normal to the middle surface. Under these
assumptions, Rayleigh-Ritz energy method will be used to
establish the theoretical formulation of the thin shells based
on Flügge’s thin shell theory.

Since the energy expressions and admissible function
of the shell have been established, the remaining task is to
determine the unknown coe
cients and supplemented coef-
�cients of displacement functions. �e Lagrangian energy
functions (�)of the open and closed shell have been expressed
in (22) and (24). �us, the Lagrangian energy function
can be expressed with displacement functions by substitut-
ing (11), (14), (21), and (23) together with the admissible
functions de�ned in (29a), (29b), and (29c) into (22) and
(24). �e undetermined coe
cients of the expansion series
are considered the generalized coordinates and then, using
the Rayleigh-Ritz method, the Lagrangian expression is
minimized by taking its derivatives with respect to these
coe
cients:

���i = 0, i = e��, g��, G��, (30)

where i denotes the undetermined coe
cients includinge��, g��, and G��. Since the displacement functions of the
shell structure are truncated at ` = R and h = Q to obtain
the results with acceptable accuracy, a total of (R+5) ∗ (Q+5) + 2 ∗ (R + 3) ∗ (Q + 3) equations are obtained.

By substituting (22) and (24) into (30), it can be summed
up in a matrix form as follows:

(K − P2M)E = 0, (31)

where K denotes the sti	ness matrix for the structure and
M is the mass matrix. �e unknown coe
cients in the
displacement expressions can be described in the vector form
as E. �ey can be expressed separately as

K = [[[
[

K�� K�� K�V

K�� K�V

symm K
VV

]]]
]

, (32)

M = diag [M�� M�� M
VV
] , (33)

E = [W��,U��,V��]� , (34)

W�� = [e10,0 ,e10,1, . . . ,e1�,�, . . . ,e1�,�,e20,1, . . . ,e20,4,
e21,1, . . . ,e2�,4, . . . ,e2�,4,e31,0,e31,1, . . . ,e31,�,e32,0,
. . . ,e34,�,e41,1, . . .e41,4,e42,1, . . . ,e42,4, . . . , e44,4]� ,

(35a)

U�� = [g10,0 , g10,1, . . . , g1�,�, . . . , g1�,�, g20,1, g20,2, g21,1, . . . ,
g2�,2, . . . , g2�,2, g31,0, g31,1, . . . , g31,�, g32,0, . . . , g32,�, g41,1,
g41,2, g42,1, g42,2]� ,

(35b)

V�� = [G10,0 , G10,1, . . . , G1�,�, . . . , G1�,�, G20,1, G20,2, G21,1, . . . ,
G2�,2, . . . , G2�,2, G31,0, G31,1, . . . , G31,�, G32,0, . . . , G32,�, G41,1,
G41,2, G42,1, G42,2]� .

(35c)
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Obviously, the natural frequencies and eigenvectors can
now be readily obtained by solving a standard matrix eigen-
value problem. Since the components of each eigenvector
are actually the coe
cients of the expansion series, the
correspondingmode shapes can be directly determined from
(35a), (35b), and (35c). In other words, once the coe
cient
eigenvector E is determined for a given frequency, the dis-
placement functions of the shell structure can be determined
by substituting the coe
cients into (29a), (29b), and (29c).
When the forced vibration is involved, by adding the work
done by external force in the Lagrangian energy function
and summing the loading vector F on the right side of (31),

the characteristic equation for the forced vibration of the shell
can readily be obtained.

As mentioned previously, the present method can obtain
vibration characteristics for the shells with arbitrary bound-
ary conditions including uniform and nonuniform restraints.
�us, another interest of this paper is focused on the nonuni-
form boundary restraints, and therefore, as the considerably
prevalent cases, the point supported case will be considered
here. For the point supported case, instead of being uniformly
distributed around the shell ends, the boundary springs are
located at discrete points. In this way, the total energy stored
by boundary springs is given by

Gpoints

� = 12
��∑
�=0

{���0,�� (��, ��)2 + ���0,�
 (��, ��)2 + �V�0,�V (��, ��)2 + ���0,� [V (��, ��)	� − �� (��, ��)�� ]2}
��=0

+ 12

⋅ ��∑
�=0

{����,�� (��, ��)2 + ����,�
 (��, ��)2 + �V��,�V (��, ��)2 + ����,� [V (��, ��)	� − �� (��, ��)�� ]2}
��=��

+ 12

⋅ ��∑
�=0

{���0,�� (��, ��)2 + ���0,�
 (��, ��)2 + �V�0,�V (��, ��)2 + ���0,� [
 (��, ��)	� − �� (��, ��)�� ]2}
��=0

+ 12

⋅ ��∑
�=0

{����,�� (��, ��)2 + ����,�
 (��, ��)2 + �V��,�V (��, ��)2 + ����,� [
 (��, ��)	� − �� (��, ��)�� ]2}
��=��

,

(36)

where Qs means the total number of restrained points
along each boundary end. ���0,�, ���0,� , �V�0,�, and ���0,� are the
sti	ness of the four groups of boundary springs at the tth
point at �� = 0. Similarly, ����,�, ����,�, �V��,�, and ����,� denote
the sti	ness of corresponding springs at �� = ��; ���0,�,���0,�, �V�0,�, and ���0,� express the sti	ness of corresponding

springs at �� = 0; and ����,�, ����,�, �V��,�, and ����,� represent
the sti	ness of corresponding springs at �� = ��. �e
coordinates of the tth point are represented by (��, ��). It
can be seen from (36) that the numbers and locations of the
boundary point supports are little limited, making it available
for both equally spaced or asymmetrically located cases.
Similar to the uniform boundary restraint case, by solving
characteristic equation (31) for the nonuniform boundary
conditions, the eigenvalues can be obtained by replacing
the energy expressions of uniform boundary restraints, the
integrals in (21), with those of the nonuniform boundary
restraints, in (36).

3. Results and Discussion

In this section, a systematic comparison between the cur-
rent solutions and theoretical results published by other
researchers or �nite element method (FEM) results is carried
out to verify the excellent accuracy, reliability, and feasibility
of the spectro-geometric-Ritz method. A comprehensive

study about the e	ects on the vibration behavior of vari-
ous boundary conditions and geometric parameters is also
presented. �e discussion is arranged as follows. Firstly, the
convergence of the current solution is checked. In addition,
the in�uence of the sti	ness of boundary spring components
is studied. Secondly, the accuracy and reliability of the uni�ed
formulation of the open and closed shells with various
arbitrary boundary conditions and structural parameters are
examined. Finally, the e	ects on the vibration behavior of
the various boundary restraint parameters and structural
geometric parameters are investigated.

For conveniently referring to the classical boundary
conditions, F, SD, S, and C denote, respectively, free, Shear-
diaphragm, simply supported, and clamped restraints. In
addition to that, a four-letter (two-letter) string is applied
for the open (closed) shells to represent the boundary
condition. For examples, F-SD-S-C identi�es the open shell
with edges � = 0, � = 0, � = ��, and � = �� having free,
Shear-diaphragm, simply supported, and clamped boundary
conditions, respectively. Similarly, C-F represents the closed
shell with edges � = 0 and � = �� having clamped and free
boundary restraints. In the following discussion, vibration
frequencies of the shell structure with classical boundary
conditions, general elastic boundary conditions, and their
combinations will be presented. Taking edge � = 0 as a case,
the corresponding spring sti	ness parameters for three types
of classical boundary conditions and three types of elastic
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boundary conditions, which are commonly encountered in
engineering practices, are given as follows:

B.C.

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

F: ���0 = 0, �V�0 = 0, ���0 = 0, ���0 = 0
SD: ���0 = 0, �V�0 = 1010[, ���0 = 1010[, ���0 = 0
S: ���0 = 1010[, �V�0 = 1010[, ���0 = 1010[, ���0 = 0
C: ���0 = 1010[, �V�0 = 1010[, ���0 = 1010[, ���0 = 1010[
E1: ���0 = 104[, �V�0 = 1010[, ���0 = 1010[, ���0 = 1010[
E2: ���0 = 1010[, �V�0 = 104[, ���0 = 1010[, ���0 = 1010[
E3: ���0 = 1010[, �V�0 = 1010[, ���0 = 104[, ���0 = 1010[,

(37)

where [ = Eℎ3/12(1 − F2) is the transverse �exural sti	ness
of the shell. �e unit of the translational restraining spring
is N/m, the unit of the rotational spring is Nm/rad, and
the spring’s sti	ness values are expressed in a unit length
along the edge. �e appropriateness of de�ning the classical
boundary conditions of shell structures in terms of boundary
spring’s sti	ness will be veri�ed by several examples given in
following discussion.

3.1. Convergence and Sti	ness Value Study. Since the expan-
sion series is numerically truncated and only �nite terms are
counted in actual calculations, the proposed method should
be understood as a solution with arbitrary precision. For
the sake of validating the convergence of present method
�rstly, natural frequencies of the open shell, that is, cylindrical
shell, conical shell, and spherical shell, subject to di	erent
truncated con�gurations, are carried out in this subsection.
In order to compare with those in other literatures, the
dimensions of the shell structures used for the analysis are
the following: for cylindrical shell, E = 210GPa, F = 0.3,N = 7800 kg/m3, 	 = 2m, � = 3m, �0 = 45∘, and ℎ = 0.01m;

for conical shell, E = 70GPa, F = 0.3, N = 2700 kg/m3,	0 = 0.34m, � = 1.14m, � = 3.8∘, �0 = 130∘, and ℎ =0.002m; and for spherical shell, E = 70GPa, F = 0.3, N =2700 kg/m3,	 = 2m, �0 = 75.7∘, �1 = 104.3∘, �0 = 28.6∘, andℎ = 0.01m. �eoretical and experimental results reported
by Bardell et al. [33], Zhao et al. [35], and Liew et al. [36] as
well as those obtained from �nite element analyses have also
been provided for comparisons. �e �rst nine frequencies
of the open shell subjected to F-F-F-F boundary conditions
are listed in Table 1. �e symbols “—” in Table 1 are missing
frequencies that were not considered by Liew et al. [36].

From Table 1, we can �nd that the �rst eight frequencies
converge rapidly with the increasing truncated number and
a very close agreement between present solutions and ref-
erential results, although di	erent displacement admissible
functions and solution procedures were used in the literature.
It should be noted that the results provide by Liew et al.
[36] are based on 3D shallow shell theory. �e convergence
study shows the excellent e
ciency of the SGM-Ritz solution.

To further validate the accuracy and reliability of current
solution, more numerical examples will be presented. In each
case, the convergence study is performed and, for brevity
purposes, only the converged results are presented here. Since
the results converge well at the truncated number R = Q =14, the following calculations will be implemented with the
truncated numbers.

As mentioned earlier, in the current modeling frame-
work, all the classical boundary conditions and their com-
binations can be conveniently viewed as special cases by
setting the values of the linear and rotational boundary
springs sti	ness either equal to zero or in�nitely large. �us,
the e	ects on the modal characteristics of the linear and
rotational spring’s sti	ness should be investigated. For the
sake of generalizing the e	ects, the nondimensional elastic
restraint parameters Γ�, ΓV, Γ�, and Γ�, which are de�ned as
the ratios of the corresponding spring’s sti	ness of �-axial, �-
axial, and �-axial and rotational boundary spring’s sti	ness

to the transverse �exural sti	ness [ = Eℎ3/12(1 − F2), are
introduced here. Since current investigations about the e	ects
on vibration behavior of the various boundary conditions
are mostly concentrated on the closed shell, the open shells,
that is, cylindrical shell, conical shell, and spherical shell, are
introduced here to analyze the e	ects on vibration behavior of
the various boundary spring’s sti	ness in this subsection. In
Figure 5, variations of the 1st-, 3rd-, and 5th-order frequency

parameters Ω = P�2√Nℎ/[ against the elastic restraint
parameters Γ� (where z = 
, V, � and e) of three di	erent
open shells are depicted, respectively.�ematerial properties
for the three types of considered open shells are given as

follows: E = 210GPa, F = 0.3, and N = 7800 kg/m3. And
the geometrical dimensions are employed as follows: for the
cylindrical shell, 	 = 2m, � = 3m, ℎ = 0.01m, and �0 = 90∘;
for the conical shell, 	0 = 1m, � = 2m, ℎ = 0.01m, � = 45∘,
and �0 = 60∘; for the spherical shell, 	 = 2m, ℎ = 0.01m,�0 = 60∘, �1 = 120∘, and �0 = 60∘. In Figure 5, each of the
shells is supposed to be clamped at edge � = 0, free at edges� = 0 and � = ��, and elastically restrained at edge � = ��
by only one group of spring componentswith various sti	ness

value (varying from 10−4 to 1010) and the other three groups



12 Shock and Vibration

Table 1: Comparison and convergence of the �rst eight natural frequencies (Hz) for three open shells with F-F-F-F boundary condition.

Model R = Q Model sequence

1 2 3 4 5 6 7 8

Cylindrical shell

2 35.77 38.351 43.957 48.779 62.233 63.943 66.038 76.359

4 16.32 25.170 28.765 31.603 35.307 56.076 60.732 61.657

6 8.071 22.883 26.809 30.312 33.721 54.988 58.716 61.556

8 7.467 22.336 26.337 30.125 33.328 54.699 58.374 61.541

10 7.379 22.183 26.207 30.082 33.215 54.609 58.288 61.538

12 7.354 22.133 26.165 30.068 33.177 54.578 58.261 61.537

14 7.345 22.113 26.148 30.063 33.162 54.565 58.250 61.536

16 7.341 22.105 26.141 30.061 33.156 54.560 58.245 61.535

Ref. [37] 7.225 22.096 26.179 30.011 33.105 54.507 58.182 61.535

ANSYS [37] 7.312 22.094 26.096 30.014 33.064 54.400 58.106 61.517

Conical shell

2 38.4 54.85 84.08 103.0 159.23 229.3 353.4 381.1

4 18.7 25.30 32.04 36.89 49.87 72.59 88.88 96.85

6 15.9 15.98 21.86 35.56 46.43 70.10 79.02 83.43

8 10.2 14.45 20.23 35.32 45.74 69.56 76.99 78.38

10 8.37 13.60 19.43 35.25 45.54 69.32 76.40 76.91

12 7.75 13.16 19.04 35.21 45.47 69.18 76.18 76.41

14 7.48 12.92 18.83 35.17 45.44 69.05 76.06 76.19

16 7.48 12.92 18.83 35.17 45.44 69.05 76.06 76.19

Ref. [37] 7.29 12.59 18.54 35.19 45.38 69.06 75.94 76.05

Ref. [33] 7.21 12.32 18.21 34.40 44.32 67.78 75.43 76.05

Experiment [33] 7.50 12.70 18.20 35.60 46.00 59.50 70.40 73.10

Ref. [35] 7.33 12.85 18.80 35.96 46.18 70.46 76.52 76.69

Spherical shell

2 93.009 134.18 136.42 149.49 176.026 207.42 244.63 250.30

4 36.887 53.459 95.559 97.201 126.99 182.01 219.35 225.24

6 34.687 50.676 92.738 94.323 125.45 178.61 217.53 223.42

8 34.462 50.256 92.318 93.893 125.19 178.05 217.20 223.08

10 34.413 50.156 92.221 93.792 125.13 177.92 217.17 222.99

12 34.398 50.125 92.191 93.762 125.11 177.88 217.09 222.96

14 34.393 50.113 92.179 93.750 125.09 177.86 217.08 222.95

16 34.390 50.108 92.175 93.745 125.09 177.85 217.07 222.95

Ref. [37] 33.955 49.944 91.743 92.975 124.21 177.05 216.22 221.60

Ref. [36] 33.460 48.906 91.297 — 121.80 173.11 211.57 —

of spring components’ sti	ness value with zero. Brie�y, this

type of boundary condition can be denoted by C-F-EI-F.
From Figure 5, it is observed that the frequency parame-

ters Ω increase as the sti	ness parameters Γ� increase in the
certain range. Speci�cally, the frequency parameters almost
keep at a level when the sti	ness parameters Γ� of the

boundary springs are smaller than 10−1. As they further
increase, a distinct in�uence can be observed, in which
the frequency parameters increase rapidly; when they are

beyond 108, the frequency parameters approach the utmost
and remain unchanged. As mentioned early, it is reasonable
that the classical boundary condition is simulated by setting
the ratios of the corresponding spring sti	ness to the �exural

sti	ness [ = Eℎ3/12(1 − F2) to be 1010. Similarly, the
ratios of the coupling spring sti	ness to the �exural sti	ness[ at the interface are set to be 1010 to satisfy the rigid
connective conditions for the closed shells. From Figure 5,

it can be concluded that the di	erent restraint springs have
di	erent e	ects on the vibration behavior of the open shells.
Comparing Figure 5(c)with 5(a) and 5(b), it can be found that
the in�uence of spring component �� on the spherical shell is
di	erent from the cylindrical and conical shells, which may
be because the spherical shell is doubly curved. Furthermore,
from Figure 5, it can be seen that the translational spring’s
components have e	ects on the vibration behavior on the
shells more than the rotational spring’s component for all the
three types of open shells.

3.2. Free Vibration Analysis of Open Shells. In order to study
the free vibration characteristics of the present method for
the uni�ed open and closed shell formulation, the vibration
analysis of the open shells, that is, open cylindrical shell, open
conical shell, and open spherical shell, is focused on in this
section.
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Figure 5: E	ects of boundary spring sti	ness on the 1st, 3rd, and 5th frequency parameters Ω = P�2√Nℎ/[ of open shells with C-F-EI-F
boundary conditions: (a) open cylindrical shell; (b) open conical shell; and (c) open spherical shell.
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Table 2: Comparison of the �rst four frequency parametersΩ = P�2√Nℎ/[ for an open cylindrical shell with various boundary conditions.

Boundary conditions
Ref. [38] Present

1 2 3 4 1 2 3 4

F-F-F-F 13.44 21.28 28.12 34.69 13.48 21.17 28.13 34.47

SD-F-F-F 6.640 19.43 25.80 26.10 6.673 19.45 25.79 25.95

C-F-F-F 5.164 8.594 24.65 28.10 5.180 8.587 24.60 28.01

SD-SD-F-F 3.347 17.93 22.68 40.57 3.389 17.73 22.69 40.33

C-SD-F-F 6.779 19.53 28.28 45.24 6.797 19.33 28.29 45.01

C-C-F-F 8.440 25.57 29.56 51.11 8.506 25.42 29.54 50.90

SD-F-SD-F 13.10 16.41 37.22 43.26 13.13 16.41 37.02 43.26

C-F-SD-F 18.64 21.00 40.21 53.51 18.63 20.99 40.26 53.08

SD-SD-SD-F 14.78 29.57 44.94 61.91 14.82 29.35 44.94 61.66

C-SD-SD-F 19.73 33.15 54.56 64.20 19.79 32.96 54.59 63.93

C-C-SD-F 20.08 39.72 54.05 74.34 20.54 39.32 54.88 74.25

C-F-C-F 25.12 26.85 44.33 64.01 25.32 26.91 44.32 64.25

SD-C-SD-F 15.79 36.41 45.24 64.32 15.84 36.22 45.24 64.38

C-SD-C-F 25.96 37.66 65.26 66.90 26.05 37.53 65.62 66.80

C-C-C-F 26.75 43.68 66.05 77.50 26.65 43.41 65.87 77.14

SD-SD-SD-SD 25.48 49.61 55.84 80.46 25.32 49.34 55.71 80.23

C-SD-SD-SD 29.05 52.11 64.19 87.56 28.90 51.86 64.08 87.38

C-C-SD-SD 34.16 61.76 66.44 94.71 34.07 61.55 66.48 94.48

C-SD-C-SD 33.69 55.30 73.85 95.62 33.66 55.13 74.00 95.75

C-C-C-SD 37.38 63.67 76.00 99.98 38.05 64.30 76.14 102.33

C-C-C-C 46.08 74.02 78.10 109.68 46.14 74.11 79.14 109.95

Table 3: Comparison of the �rst seven natural frequencies (Hz) for an open cylindrical shell with various boundary conditions.

Modes
SD-F-SD-F SD-SD-SD-SD F-S-F-S

Experiment [28] �eory [28] Ref. [37] Present Ref. [37] Present Ref. [37] Present

1 300 286 285.162 286.012 1059.60 1059.17 837.437 837.467

2 470 476 475.131 476.367 1693.43 1694.86 1862.92 1863.09

3 850 819 817.600 819.124 2061.83 2061.58 1903.48 1903.04

4 870 859 857.365 859.198 2068.16 2068.64 1928.89 1929.87

5 1330 1341 1339.58 952.465 2401.35 2400.62 2436.56 2435.24

6 1460 1440 1437.56 1341.65 3089.38 3088.82 3041.67 3042.74

7 1490 1486 1486.98 1440.09 3412.99 3415.73 3351.38 3350.37

3.2.1. Cylindrical Shells. In this section, open cylindrical
shells subjected to di	erent boundary conditionswith various
geometrical and material parameters are investigated. First,
the accuracy and reliability of the present method for the
uni�ed open and closed shell formulation applied to an open
cylindrical shell are studied. Table 2 lists the �rst four natural

frequency parameters Ω = P�2√Nℎ/[ obtained by present
method with literature [38]. �e material properties and
geometrical dimensions of the open cylindrical shell are E =210GPa, F = 0.3, N = 7800 kg/m3, 	 = 2m, � = 1m,ℎ = 0.05m, and �0 = 28.6∘. Table 3 compares the �rst
seven natural frequencies calculated by present method with
those in literature [28, 37]. �e material properties of the
open cylindrical shell keep the same with the case in Table 2
and geometrical dimensions are 	 = 0.1m, � = 0.2m,ℎ = 0.001m, and �0 = 60∘. In order to further validate the
accuracy of the presentmethod, Table 4 compares the �rst �ve

frequency parameters Ω = P	√N/E of the open cylindrical
shell obtained by present method with those in literature [29,
37] with various geometric parameters, for example, �/	 and�0, subjected to C-F-C-F boundary condition. �e material
properties remain unchanged and geometrical dimensions of
the open cylindrical shell are 	 = 2m and ℎ = 0.02m.
From Tables 2–4, it can be found clearly that a consistent
agreement of present results and referential data is seen. �e
discrepancy is very small although di	erent shell theories are
used in the literature.�e small discrepancy in the resultsmay
be attributed to the di	erent solution approaches used in the
literature.

As mentioned early, the uni�ed shell formulation can
deal with the free vibration analysis with arbitrary boundary
condition.�e accuracy and reliability of thismethod applied
to open cylindrical shell with classical boundary condition
are validated in Tables 2–4. In the following discussion,
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Table 4: Comparison of the �rst �ve nondimensional frequency parameters Ω = P	√N/E for an open cylindrical shell with C-F-C-F
boundary condition.

�0 Modes
�/	 = 1 �/	 = 2 �/	 = 3

Ref. [29] Ref. [37] Present Ref. [29] Ref. [37] Present Ref. [29] Ref. [37] Present

30∘

1 0.120 0.120 0.120 0.046 0.046 0.046 0.025 0.025 0.025

2 0.169 0.169 0.169 0.054 0.054 0.054 0.028 0.028 0.028

3 0.281 0.280 0.281 0.100 0.101 0.101 0.059 0.059 0.059

4 0.330 0.327 0.331 0.132 0.132 0.132 0.066 0.066 0.066

5 0.338 0.337 0.339 0.167 0.167 0.167 0.094 0.095 0.095

60∘

1 0.142 0.141 0.142 0.061 0.061 0.061 0.031 0.031 0.031

2 0.153 0.151 0.153 0.068 0.069 0.069 0.054 0.054 0.054

3 0.305 0.300 0.305 0.118 0.119 0.119 0.074 0.074 0.075

4 0.305 0.303 0.305 0.128 0.129 0.129 0.078 0.078 0.078

5 0.308 0.303 0.309 0.185 0.187 0.188 0.106 0.106 0.106

Table 5: First six frequency parametersΩ = P�2√Nℎ/[ for an open cylindrical shell subjected to various classical-elastic combined boundary
conditions.

Modes
E1-F-E1-F E2-S-E2-S E3-C-E3-C

Ref. [37] Present Error (%) Ref. [37] Present Error (%) Ref. [37] Present Error (%)

1 38.0712 38.1628 0.24050 128.550 128.4335 0.09062 156.917 156.882 0.02209

2 51.5365 51.6942 0.30606 181.842 181.8735 0.01733 214.063 214.044 0.00899

3 87.8899 87.7157 0.19816 206.415 206.1768 0.11538 222.556 222.437 0.05370

4 92.1902 92.3438 0.16660 228.360 228.2684 0.04011 248.105 247.994 0.04464

5 99.7832 99.9866 0.20384 279.383 279.053 0.11811 291.150 290.934 0.07431

6 143.176 143.098 0.05421 289.155 288.959 0.06778 294.611 294.394 0.07367

the elastically supported boundary condition is employed to
further illustrate the accuracy and reliability of this method.
Table 5 shows the �rst six frequency parameters expressed

in a dimensionless form as Ω = P�2√Nℎ/[ for an open
cylindrical shell with di	erent elastic boundary conditions.
�ree sets of classical-elastic combined boundary conditions

are examined, namely, the E1-F-E1-F, E2-S-E2-S, and E3-
C-E3-C. In comparison with the present method, results
obtained by Ye et al. [37] are also included in Table 5. �e
material properties and geometrical dimensions used for the

shells areE = 210GPa,F = 0.3,N = 7800 kg/m3,	 = 2m,� =3m, ℎ = 0.05m, and �0 = 60∘. In Table 5, it can be observed
that an excellent agreement can be seen from the comparison,
and the di	erence is very small and does not exceed 0.30606%
for the worst case. Moreover, some selected corresponding

mode shapes for this open cylindrical shell with E3-C-E3-
C boundary constraints are also depicted in Figure 6. From
the competition study presented in Tables 2–5, it can be
concluded that the present method for open cylindrical shells
with arbitrary boundary conditions is numerically accurate.

As mentioned earlier, the uni�ed shell formulation can
deal with vibration characteristics subjected to arbitrary
boundary conditions including uniform and nonuniform
boundary restraint. Some uniform boundary conditions are
employed to illustrate the vibration characteristics in the
examples above. It is interesting to study the free vibration
of the uni�ed shells subjected to nonuniform boundary
restraint, for example, point supports, and several examples

involving cylindrical shells with nonuniform boundary
restraints will be discussed in following discussions. Since
the vibration results for shells with point supported are very
rare in literature, the �rst eight natural frequencies of the
open cylindrical shell with multipoints clamped-supported
are calculated in Table 6 as the benchmarking by researchers
and reference data for practicing engineers. As a special case,
the numbers and locations of the boundary point supports are
limited to the equally spaced cases at boundary ends � = 0
and � = ��, and the other two boundaries are free. �e
material properties are the same as the model in Table 5 and
the geometrical dimensions are 	 = 0.5m, � = 1m, ℎ =0.005m, and �0 = 90∘. Furthermore, by gradually increasing
the total number of the clamped points around the edge from
4 to 52, it is found that the frequency parameters become
stable when the total number of clamped points reaches 44.
In fact, these frequencies �nally converge to the ones of the
uniformly clamped shell case, as denoted by “C-F-C-F” in the
table.

3.2.2. Conical Shells. As mentioned early, the method can
obtain the vibration behavior of the open shell, for example,
cylindrical shell, conical shell, and spherical shell, and the
accuracy of the formulation of the open cylindrical shell by
using this method has been validated. In this subsection,
the accuracy of the present formulation is evaluated for
the vibration problems of open conical shells with arbitrary
classical boundary conditions and their combinations. For
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Table 6: First eight frequencies (Hz) for an open cylindrical shell with multipoints clamped-supported on the two edges � = 0 and � = ��.
Number of
clamped points

Mode orders

1 2 3 4 5 6 7 8

4 42.0733 73.7520 124.399 129.400 163.200 175.784 225.104 238.232

8 84.2526 99.8218 184.433 185.978 234.422 265.143 295.010 297.424

12 97.5774 106.417 189.546 194.152 238.902 274.257 299.952 302.187

16 99.7987 107.456 136.231 199.570 249.178 277.450 308.594 308.774

20 102.000 107.095 197.781 201.784 259.985 281.080 308.559 315.573

24 103.398 109.240 200.089 204.168 270.959 283.070 315.387 317.166

28 103.996 109.545 200.608 204.545 274.651 286.455 317.069 318.288

32 104.759 110.067 201.069 205.168 276.958 286.988 317.541 318.674

36 105.207 110.616 201.133 205.606 278.442 288.107 318.179 319.547

40 105.194 111.732 203.235 206.126 279.873 287.052 320.491 321.935

44 106.558 111.801 202.972 207.610 279.990 288.192 320.612 321.992

48 106.610 111.865 203.425 207.548 280.293 288.029 321.033 322.303

52 106.603 111.748 203.412 207.457 280.072 288.051 320.677 321.821

C-F-C-F 106.596 111.739 203.401 207.608 279.849 287.903 320.618 321.542

1st mode 3rd mode2nd mode 4th mode

1st mode 3rd mode2nd mode 4th mode

1st mode 3rd mode2nd mode 4th mode

Open cylindrical shell with �0 = 90∘

Open cylindrical shell with �0 = 180∘

Open cylindrical shell with �0 = 270∘

Figure 6: First four mode shapes for an open cylindrical shell with E3-C-E3-C boundary constraints.
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Table 7: First four frequency parameters Ω = P�2√Nℎ/[ for an open conical shell subjected to various cone vertex angle � and boundary
conditions.

� Modes
F-F-F-F SD-F-SD-F C-SD-C-SD C-C-C-C

Ye et al. [37] Present Ye et al. [37] Present Ye et al. [37] Present Ye et al. [37] Present

15∘

1 21.7369 21.7869 68.3314 68.4257 276.046 276.156 362.599 362.681

2 33.2499 33.3564 80.3334 80.3412 331.696 331.755 376.082 376.311

3 66.3301 66.4411 95.9809 96.6836 377.556 377.743 517.224 516.001

4 85.5839 85.5869 158.287 158.323 445.588 445.206 540.634 540.451

30∘

1 19.7435 19.8247 61.2279 61.2920 246.813 246.896 289.007 289.076

2 20.1969 20.2408 66.1966 66.2187 250.462 250.502 297.547 297.489

3 49.1755 49.1780 134.671 134.7452 303.748 303.453 381.886 379.499

4 57.1880 57.2699 140.764 140.8377 362.315 362.345 412.226 407.261

45∘

1 14.1233 14.1762 53.0474 53.0949 203.828 203.843 233.139 233.132

2 19.4793 19.5093 55.4028 55.4244 212.084 212.089 239.744 239.578

3 34.3252 34.3282 114.218 114.295 234.695 234.516 303.960 301.209

4 51.7167 51.7673 121.476 121.563 282.851 280.819 315.028 309.892

60∘

1 11.4157 11.4424 43.3049 149.211 161.854 161.862 182.496 182.453

2 18.9259 18.9409 45.8304 151.341 163.326 163.369 186.331 186.280

3 27.0994 27.1017 95.1813 173.651 186.638 186.534 232.598 231.343

4 46.9403 46.9606 102.109 177.658 225.308 223.702 247.410 243.849

75∘

1 10.0080 10.0154 31.6590 31.6748 105.540 105.5392 125.150 125.101

2 18.0186 18.0226 34.6073 34.6197 119.710 119.7116 129.281 129.276

3 23.3268 23.3277 73.3475 73.3749 125.399 125.4059 169.937 169.771

4 40.9675 40.9723 76.1915 76.2144 148.330 148.2946 176.065 175.723

Table 8: Comparison of the �rst six frequency parametersΩ = P�2√Nℎ/[ for an open conical shell with various boundary conditions.

Modes
S-S-S-S C-C-C-Cℎ-� FEM [33] ANSYS [33] Ye et al. [37] Present ℎ-� FEM [33] ANSYS [33] Ye et al. [37] Present

1 19.2 19.1 19.100 19.09991 35.2 35.0 35.08838 35.09070

2 43.6 43.5 43.632 43.63151 66.3 66.0 6.20422 66.20527

3 50.9 50.7 50.811 50.81127 74.9 74.4 74.60812 74.60727

4 78.9 78.6 78.942 78.94172 108.4 107.7 108.2133 108.2071

5 83.3 82.9 83.176 83.17624 113.2 112.2 112.8819 112.9004

6 101.1 100.6 100.795 100.7949 134.9 133.0 133.4319 133.4149

comparing the present results with those in literature, the
material parameters used are E = 70GPa, F = 0.3, and N =2700 kg/m3. And a dimensionless frequency parameter Ω =P�2√Nℎ/[ is introduced in the calculations in this subsec-
tion. Table 7 shows the comparison of the �rst four frequency
parametersΩ for an open conical shell with various boundary
conditions and cone vertex angles.�e geometric dimensions
of the shell are 	0 = 1m, � = 3m, ℎ = 0.01m, and �0 = 90∘.
What is more, the present formulation can also be applied
to an annular plate, which involves the following procedure:
setting the cone vertex angle to 90∘. And then a conical shell
can degenerate to an annular sector plate. For the sake of
completeness, Table 8 compares the vibration solutions by
present method of the annular sector plate, which can be
treated as a special case of open conical shells, with those
in literature.�ematerial parameters remain unchanged and
the geometric dimensions of the shell are 	0 = 1m, � = 2m,ℎ = 0.006m, �0 = 60∘, and � = 90∘. It can be observed from

Tables 7 and 8 that the present results match very well with
those in literature. �e excellent agreements of comparisons
between the proposed solutions and the published results for
open conical shells with various geometric dimensions and
boundary conditions separately given in Tables 7-8 indicate
that the present analysis is accurate.

To further validate the accuracy and reliability of the
present solutions, more complex numerical examples are
presented. �e vibration analysis for the open conical shell
subjected to classical-elastic combined restraints is concen-
trated on. Table 9 compares the �rst six frequency parametersΩ = P�2√Nℎ/[ with those calculated by Ye et al. [37] for
the conical shell subjected to various elastically supported
restraint conditions.�ematerial properties and geometrical
dimensions are employed as E = 210GPa, F = 0.3, N =7800 kg/m3, 	0 = 1m, � = 2m, ℎ = 0.01m, � =30∘, and �0 = 90∘. From Table 9, it can be found that
the maximum di	erence between present results and those
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Table 9: First six frequency parameters Ω = P�2√Nℎ/[ for an open conical shell subjected to various classical-elastic combined boundary
conditions.

Modes
E1-F-E1-F E2-F-E2-F E3-F-E3-F

Ref. [37] Present Error (%) Ref. [37] Present Error (%) Ref. [37] Present Error (%)

1 56.9432 56.8022 0.24763 68.0095 67.9740 0.05226 68.3529 68.3048 0.07040

2 57.1139 56.9227 0.33470 69.3596 69.3364 0.03347 69.9152 69.8886 0.03800

3 118.408 118.226 0.15366 130.858 130.957 0.07561 131.411 131.269 0.10843

4 125.462 124.511 0.75773 131.270 131.359 0.06747 131.693 131.559 0.10175

5 137.038 136.743 0.21519 158.506 158.160 0.21803 164.337 164.089 0.15109

6 153.413 152.120 0.84285 178.341 177.884 0.25638 181.088 180.727 0.19913

Table 10: First eight frequencies (Hz) for an open conical shell with multipoints clamped-supported at the edges � = 0 and � = ��.
Number of
clamped points

Mode orders

1 2 3 4 5 6 7 8

4 11.8729 20.0077 32.5122 39.5461 53.0354 55.5817 70.2857 73.8902

8 36.7021 37.0652 68.2869 71.6845 84.1112 90.5067 96.5518 102.390

12 38.0459 39.4913 74.2440 75.3170 92.7235 107.683 114.175 123.842

16 40.6246 41.8082 76.1112 76.4630 96.2314 108.537 119.440 124.762

20 41.5237 42.8696 78.5924 79.2059 98.5312 109.629 124.270 127.001

24 41.9268 42.9051 80.1504 80.3934 101.246 112.015 128.930 129.004

28 42.0010 42.9886 81.3801 81.3833 102.009 112.602 130.785 130.966

32 42.2120 43.2225 81.9266 81.9334 102.514 113.002 131.522 131.946

36 42.6656 43.7936 82.5368 83.2035 103.144 113.490 132.629 132.804

40 42.8653 43.8284 82.6513 82.8204 103.221 113.492 133.088 133.376

44 42.8620 43.8322 82.6605 82.8006 103.223 113.500 133.119 133.339

48 42.8487 43.8083 82.6437 82.8098 103.261 113.488 133.307 133.339

52 42.8579 43.8247 82.6678 82.8223 103.210 113.487 133.093 133.410

C-F-C-F 42.8587 43.8284 82.6528 82.8179 103.219 113.493 133.132 133.349

in literature is only 0.84285% for the worst case. And the
present solutions match well with the results in literature,
which further validate the accuracy and reliability of the
current solutions. Moreover, some selected corresponding

mode shapes subjected to E3-C-E3-C boundary conditions
with various subtended angles �0 are shown in Figure 7.

As mentioned previously, the present method is con-
venient to handle the problem with nonuniform boundary
restraints. �us, a typical case under multipoints supported
boundary conditions, in which the locations of the boundary
point supports are equally spaced at boundary ends � =0 and � = �� and the other two boundaries are free, is
considered here. Table 10 shows the �rst eight frequencies
of the open conical shells with the multipoints clamped-
restrained. For simplicity and convenience, the material
properties and geometry dimensions used for the shells are
the same as the models used in Table 9. Similar to the open
cylindrical shell with multipoints supported, the frequencies
converge to the ones of the uniformly clamped shell case, as
denoted by “C-F-C-F” in the table, when the total numbers of
clamped points reaches 40.

3.2.3. Spherical Shells. �e free vibration analysis for the
open cylindrical and conical shells has been studied and

the accuracy of the present method is validated well. In order
to further investigate the accuracy of the uni�ed formulation
for the open shell, in this subsection, the present formulation
is applied to study the free vibrations of open spherical shells
with arbitrary boundaries for which very limited amount
of vibration results is available in the literature. In Table 11,
comparison solutions by present method and the reported
literature [38] of the �rst four nondimensional frequency

parameters Ω = P�2√Nℎ/[ for an open spherical shell
with various boundary conditions are presented.�ematerial
properties and geometrical dimensions used for the spherical
shell are given as follows: E = 70GPa, F = 0.3, N =2700 kg/m3, 	 = 5m, ℎ = 0.05m, �0 = 84.3∘, �1 =95.7∘, and �0 = 11.5∘. Having gained con�dence in present
method, some further numerical results for open spherical
shells with several types of classical boundary conditions and
their combinations are given in the following presentation.
In Table 12, the comparison of the �rst four nondimension
frequency parameters Ω = P�2√Nℎ/[ for an open spherical
shell with material and geometric parameters, E = 210GPa,F = 0.3, N = 7800 kg/m3, 	 = 2m, ℎ = 0.01m, �0 = 45∘,�1 = 135∘, and �0 = 90∘, subjected to various boundary
conditions, is presented. �e comparison is performed with
numerical solutions by Ye et al. [37]. From Tables 11 and
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1st mode 5th mode3rd mode 7th mode

1st mode 5th mode3rd mode 7th mode

1st mode 5th mode3rd mode 7th mode

Open conical shell with �0 = 90∘

Open conical shell with �0 = 180∘

Open conical shell with �0 = 270∘

Figure 7: Some selected mode shapes for an open conical shell with E3-C-E3-C boundary conditions.

12, it can be obviously found that the results calculated by
present method match well with the corresponding solutions
in literatures [37, 38]. �e excellent agreement results for the
open spherical shell can further illustrate the accuracy of the
uni�ed shell formulation.

Although all the above examples fall into the category of
the classical homogeneous boundary conditions, it has been
demonstrated that they can be solved universally under the
current framework by simply modifying the sti	ness of the
corresponding elastic springs. Since vibration results for the
spherical shells with arbitrary boundary conditions are rare
in the literature, some further numerical results for an open
spherical shell with di	erent elastically supported boundary
conditions and their combinations are given in Table 13,

and �rst eight corresponding mode shapes with E1-C-E1-C
boundary conditions are also drawn in Figure 8. A more
complicated problem is one in which the spherical shell is
multipoints clamped-constrained at boundary ends and the
locations of these boundary point supports are equally spaced
at boundaries � = 0 and � = ��. Table 14 shows the �rst
eight frequencies with the various numbers of the clamped

points. �e material properties and geometrical dimensions
in Tables 13 and 14 are the same as themodel in Table 12. From
Table 13, it can be seen that the frequency parameter increases
with the boundary conditions changing from Λ-F-Λ-F toΛ-C-Λ-C (Λ = E1,E2 and E3), which is due to the increasing
boundary spring sti	ness. Furthermore, a slight increasing
frequency parameter can be observed with the boundary
conditions varying from Λ-S-Λ-S to Λ-C-Λ-C while a huge
increasing value is found subjected to the boundary restraints
changing fromΛ-F-Λ-F toΛ-S-Λ-S. FromTable 14, it is found
that the frequency becomes stable when the total number
of clamped points reaches 40 and these frequencies �nally
converge to the ones of the uniformly C-F-C-F shell case.

3.3. Free Vibration Analysis of Closed Shells. As mentioned
earlier, the uni�ed formulation can be applied to open and
closed shell structure. In Section 3.2, the accuracy of the
formulation applied to open shell has been veri�ed. In order
to further validate the accuracy of the uni�ed method for
the closed shells, the free vibration analysis of the closed
shells, for example, the closed cylindrical shell, conical shell,
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Table 11: Comparison of the �rst four frequency parameters Ω = P�2√Nℎ/[ for an open spherical shell subjected to various boundary
conditions.

Boundary
conditions

Ref. [38] Present

1 2 3 4 1 2 3 4

F-F-F-F 13.46 19.56 25.99 34.85 13.40 19.44 25.77 34.59

SD-F-F-F 6.629 15.34 25.40 27.08 6.582 15.32 25.28 26.76

C-F-F-F 3.754 8.492 21.53 28.26 4.060 8.702 21.58 27.95

SD-SD-F-F 3.367 17.32 20.79 39.71 3.340 17.20 20.61 39.40

C-SD-F-F 5.566 19.35 25.47 44.64 5.753 19.19 25.38 44.47

C-C-F-F 7.894 23.90 27.92 49.27 8.172 23.79 27.75 49.02

SD-F-SD-F 10.07 16.10 38.89 39.59 10.03 15.98 38.43 39.54

C-F-SD-F 15.63 21.68 41.84 49.95 15.76 24.71 41.48 49.83

SD-SD-SD-F 12.22 30.50 41.85 60.14 12.15 30.15 41.77 59.80

C-SD-SD-F 18.01 33.76 52.05 65.24 18.13 33.56 51.89 64.57

C-C-SD-F 18.68 38.58 52.19 72.13 18.69 38.35 52.24 71.80

C-F-C-F 25.30 28.67 45.53 61.34 26.06 30.82 45.31 61.20

SD-C-SD-F 12.95 35.75 42.26 64.09 12.86 35.32 42.17 63.59

C-SD-C-F 26.34 38.07 63.08 68.01 27.07 38.02 63.23 67.31

C-C-C-F 26.62 42.71 63.56 77.64 27.68 42.53 63.53 76.98

SD-SD-SD-SD 23.70 51.04 51.04 80.02 23.45 50.33 50.82 79.36

C-SD-SD-SD 27.32 53.32 60.17 87.13 27.23 52.72 60.00 86.59

C-C-SD-SD 30.64 61.88 62.36 93.66 30.51 61.36 62.02 93.30

C-SD-C-SD 32.47 55.41 70.37 95.06 32.60 55.78 70.43 95.00

C-C-C-SD 35.51 64.76 72.13 101.40 35.63 64.13 72.15 101.09

C-C-C-C 40.26 74.17 74.43 108.66 40.49 73.77 74.42 108.32

Table 12: First four frequency parameters Ω = P�2√Nℎ/[ for an open spherical shell with various boundary conditions.

Boundary conditions
Ref. [37] Present

1 2 3 4 1 2 3 4

F-F-F-S 18.0503 22.6720 48.7319 65.5055 19.2022 22.7991 50.2213 66.8198

F-F-S-S 45.3203 61.1681 139.886 155.410 46.8427 61.6499 142.512 156.769

F-S-S-S 381.345 388.913 713.714 756.822 389.683 395.471 727.650 768.011

F-F-F-C 18.8440 23.4206 49.3404 68.0959 20.0030 23.5524 50.8671 69.2686

F-F-C-C 46.5172 63.1538 144.447 158.654 48.0751 63.6089 147.277 159.850

F-C-C-C 396.124 408.000 756.727 779.639 403.649 415.983 771.244 789.339

S-S-S-S 1528.82 1542.01 1548.17 1601.85 1528.90 1542.11 1548.27 1601.91

S-S-S-C 1531.94 1542.28 1549.23 1603.29 1532.07 1542.39 1549.35 1603.37

S-S-C-C 1534.26 1543.64 1549.31 1604.18 1534.43 1543.59 1549.43 1604.27

S-C-C-C 1537.73 1543.64 1550.42 1605.67 1537.95 1543.77 1550.55 1605.78

C-C-C-C 1540.15 1544.85 1550.50 1606.56 1541.18 1546.99 1553.16 1606.57

and spherical shell, will be investigated in the following text.
From the procedure of the modeling framework, it can be
known that the open shell can be expanded to a closed
one conveniently just by setting the value of the coupling
springs to be in�nitely large when the subtended angle equals
360∘. Furthermore, it is noted that the boundary restraint
spring’s sti	ness at the end edges � = 0 and � = 360∘
is automatically set to be zero. First of all, the coupling
spring’s e	ect on the vibration behavior for the shells, for
example, cylindrical shell, conical shell, and spherical shell,

is concentrated on. Similar to the study for the e	ects on

vibration characteristics of the boundary restraint spring, the

nondimensional coupling spring parameters Γ�, ΓV, Γ�, andΓ�, which are de�ned as the ratios of the corresponding

translational spring’s sti	ness of �-axial, �-axial, and �-axial
and rotational coupling spring’s sti	ness to the transverse

�exural sti	ness [ = Eℎ3/12(1 − F2), are employed here.
In Figure 9, variation of the 1st- and 3rd-order frequency

parametersΩ = P	√N(1 − F2)/E against the coupling spring
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Table 13: First eight frequency parameters Ω = P�2√Nℎ/[ for an open spherical shell subjected to various classical-elastic combined
boundary conditions.

Boundary conditions
Modes

1 2 3 4 5 6 7 8

E1-F-E1-F 139.644 155.540 177.982 178.238 296.232 297.075 376.141 390.785

E2-F-E2-F 171.100 183.000 189.780 191.112 337.909 374.572 386.047 398.328

E3-F-E3-F 51.1307 187.620 221.996 253.487 358.578 422.613 476.818 517.802

E1-S-E1-S 1527.08 1536.94 1545.89 1600.52 1604.08 1607.37 1614.80 1619.77

E2-S-E2-S 752.556 1379.20 1496.59 1529.73 1543.95 1568.62 1593.51 1602.16

E3-S-E3-S 1197.71 1534.13 1544.01 1553.96 1589.09 1604.06 1608.02 1612.91

E1-C-E1-C 1534.85 1537.51 1548.21 1603.92 1605.13 1612.69 1615.10 1624.01

E2-C-E2-C 1425.59 1513.95 1536.62 1547.13 1554.03 1599.93 1603.55 1606.38

E3-C-E3-C 1539.58 1546.14 1554.80 1590.30 1607.21 1612.97 1614.36 1619.72

1st mode 3rd mode2nd mode 4th mode

1st mode 3rd mode2nd mode 4th mode

1st mode 3rd mode2nd mode 4th mode

Open spherical shell with �0 = 90∘

Open spherical shell with �0 = 180∘

Open spherical shell with �0 = 270∘

Figure 8: First four mode shapes for an open spherical shell with E1-C-E1-C boundary conditions.

parameters Γ� (where z = 
, V, � and e) of three di	erent
shells are depicted, respectively. It is noted that 	 denotes the
radius of the smaller circular edge	0 for the conical shell.�e
material properties for the three types of considered shells are

given as follows: E = 210GPa, F = 0.3, and N = 7800 kg/m3.
And the geometrical dimensions are used as follows: for the
cylindrical shell, 	 = 2m, � = 3m, and ℎ = 0.01m; for the
conical shell, 	0 = 1m, � = 2m, ℎ = 0.01m, and � = 45∘;
for the spherical shell, 	 = 1m, ℎ = 0.01m, �0 = 30∘, and

�1 = 90∘. In Figure 9, each of the shells is supposed to be
clamped at edges � = 0 and � = ��, and the junction edge
is coupled with all the four groups of springs, three groups

of which are with in�nite sti	ness (1010[) and the remaining

one is assigned at di	erent sti	ness value (varying from 10−4[
to 1010[).

From Figure 9, it can be found that the frequency param-
eters Ω increase as the sti	ness parameters Γ� increase in the
certain range. Speci�cally, it can be found from Figure 9(a)
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Table 14: First eight frequencies (Hz) for an open spherical shell with multipoints clamped-supported on the two edges � = 0 and � = ��.
Number of
clamped points

Mode orders

1 2 3 4 5 6 7 8

4 12.2312 17.9155 19.5800 29.0130 30.5394 51.4391 51.7373 56.4100

8 40.0975 42.7725 48.9036 53.6622 90.4094 94.7601 106.301 111.696

12 12.3097 43.6488 52.7028 63.2851 82.3730 102.290 113.423 115.059

16 28.0964 45.0074 54.4617 64.3798 90.0115 103.671 118.469 129.903

20 20.5605 46.5769 55.9624 63.4935 89.0453 105.809 119.636 127.748

24 10.8180 47.3839 56.3886 60.9230 87.8615 106.645 119.007 120.778

28 47.4370 48.1909 56.1141 61.0136 81.8681 106.898 120.396 120.396

32 47.2956 56.0249 61.1083 65.9971 78.4332 107.184 119.880 120.514

36 46.9057 55.4473 61.0340 73.1757 106.791 107.405 119.547 120.301

40 46.6960 55.3741 60.8831 72.6460 107.236 111.691 119.571 120.434

44 47.2532 55.2890 61.1750 73.6090 105.835 107.287 119.928 120.366

48 46.8644 55.4429 60.9559 72.8072 107.341 110.834 119.432 120.504

52 46.8610 55.3493 61.1851 72.8144 107.345 111.739 119.527 120.262

CC 46.9276 55.3297 61.3200 72.6933 107.363 111.138 119.577 120.454

Table 15: Comparison of the natural frequencies for a circular cylindrical shell with C-F and C-C boundary conditions.

Mode orders C-F C-C` h FEM [11] Ref. [11] Present FEM [11] Ref. [11] Present

1

0 1614.9 1615.2 1615.2 3229.8 3230.3 3230.4

1 467.58 467.34 468.10 1882.8 1880.9 1883.5

2 315.33 316.02 315.30 899.59 898.18 900.78

3 768.38 768.45 768.00 896.97 896.56 897.71

4 1463.3 1462.8 1462.5 1501.9 1501.6 1502.0

5 2363.1 2362.2 2362.3 2386.1 2386.0 2386.3

2

0 2583.1 2581.7 2583.8 5146.0 5139.8 5147.8

1 2044.0 2043.3 2045.1 3850.7 3848.9 3851.5

2 936.02 936.25 937.22 2017.8 2014.1 2019.9

3 914.16 915.13 914.71 1390.9 1388.9 1393.5

4 1518.7 1519.0 1518.6 1676.4 1676.0 1678.0

5 2401.9 2401.8 2401.8 2472.5 2472.6 2474.0

that the values of the two natural frequency parameters for

cylindrical shell increase rapidly in the range of Γ� (10−2–
107) and keep at a level outside this range. In Figure 9(b),
the frequency parameters for conical shell almost remain
unchanged when the sti	ness of the spring parameters Γ�
is larger than 108 or smaller than 10−2. In Figure 9(c), the
in�uences of the coupling spring parameters of a spherical
shell on frequency parameters are given. It is shown that the
frequency curves change greatly within the spring parameters

range (102 to 107). From Figures 9(a)–9(c), the frequency
parameters almost keep at a level when the sti	ness param-
eters Γ� of the coupling springs are smaller than 10−2. As
they further increase, a distinct in�uence can be observed,
in which the frequency parameters increase rapidly, when

they are beyond 108, the frequency parameters approach the
utmost and remain unchanged. �us, it is reasonable that
the rigid connective condition can be simulated by setting
the ratios of the corresponding coupling spring sti	ness to

the �exural sti	ness [ = Eℎ3/12(1 − F2) to be 1010. In
the following discussion, the value is employed to satisfy
the rigid coupling condition at the interface for the shell
with subtended angle �0 = 360∘ and then the open shells
are expanded to corresponding closed shells. Furthermore,
comparing Figure 9(c) with 9(a) and 9(b), it can be found
that the in�uence of spring components �� and �� on the
spherical shell is di	erent from the cylindrical and conical
shells, which may be because the spherical shell is doubly
curved.

3.3.1. Cylindrical Shells. First of all, the accuracy of the
formulation applied to a closed cylindrical shell is validated
in Table 15. �e comparison is carried out with two classical
boundary conditions, for example, C-F and C-C, to verify the
proposedmethod using the followingmaterial and geometric

parameters: E = 210GPa, F = 0.28, N = 7800 kg/m3,	 = 0.0635m, � = 0.502m, and ℎ = 0.00163m.
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Figure 9: E	ects of coupling spring sti	ness on the 1st and 3rd frequency parameters Ω = P	√N(1 − F2)/E of shells with subtended angle

�0 = 360∘ subjected to C-C boundary conditions: (a) cylindrical shell, (b) conical shell, and (c) spherical shell.
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Table 16: First four frequencies for a clamped elastically supported shell (���� = �V�� = ���� = 0).
Boundary
conditions ����

Ref. [11] Present

1 2 3 4 1 2 3 4

0 131.99 249.82 262.81 377.00 131.57 249.36 262.91 376.55

0.01� 183.01 278.17 279.76 404.12 183.11 278.17 280.00 404.23

0.1� 298.01 310.07 364.98 490.35 299.10 310.28 366.51 490.41

� 315.07 339.86 473.26 491.64 315.65 341.04 478.35 491.70

106� 315.15 343.43 491.36 501.06 316.26 346.25 491.84 508.34

108� 315.15 343.43 491.36 501.08 316.25 346.23 491.84 508.25

(a) 1st mode (b) 2nd mode (c) 3rd mode (d) 4th mode

Figure 10: First four mode shapes for closed cylindrical shells with one boundary end clamped and another end elastically supported (���� =�V�� = ���� = 0 and ���� = 0.01�).

�e other parameters used in the calculations are ` =
1∼2 and h = 0∼5, in which ` and h are the axial and
circumferential wavenumbers. �e comparisons of the �rst
few natural frequencies with [11] are listed in Table 15. Good
agreement can be seen between the present solutions and the
results in [11].

In order to further validate the accuracy of the present
formulation applied to cylindrical shell, a more complicated
case in which the shell is elastically constrained at one end
and the other end is clamped is carried out in Table 16.
For simplicity and convenience, the elastically supported end
only has linear springs attached in the radial direction (���� =�V�� = ���� = 0) and ���� varies from 0 to 108�, where� represents the in-plane sti	ness Eℎ/(1 − F2). Table 16
compares the �rst four frequencies for several spring sti	ness
values calculated by the present method with those in [11],
and the corresponding mode shapes clamped at one end and
elastically supported at the other end (���� = �V�� = ���� = 0
and ���� = 0.01�) are also depicted in Figure 10. Obviously,
the case for ���� = 0 represents C-F supported boundary
conditions. An excellent agreement can be seen from the
comparison, and the di	erence is very small. From Tables 15
and 16, the excellent accuracy and reliability of the current
solution are demonstrated. Furthermore, Table 16 shows that
the �rst four frequencies increase when the radial spring

sti	ness changes from 0 to 106�, and they almost have no

change a�er ���� = 106�.

As mentioned earlier, the uni�ed method can obtain the
vibration characteristics for the shell with arbitrary boundary
conditions, for example, uniform boundary restraints and
nonuniform boundary supports. For the sake of complete-
ness, the comparison of �rst eight frequencies for a closed
cylindrical shell with single point clamped-supported at
each end is listed in Table 17. �e material and geometrical

parameters are E = 216GPa, F = 0.3, N = 7900 kg/m3,	 = 0.237m, ℎ = 0.003m, and � = 1m. �e points
are located at (0, 0) and (��, 0). From the comparison with
the results calculated by Chen et al. [12] in the table, an
excellent agreement is observed. From Tables 15–17, the
accuracy and reliability of the uni�ed shell formulation
applied to the closed cylindrical shell are validated well.
Furthermore, some other numerical results for the cylindrical
shell subjected to single point support with di	erent restraint
spring sti	ness are presented in Table 17, which can be used
for benchmarking by researchers as well as reference data for
practicing engineers.

3.3.2. Conical Shells. In this subsection, studies on the free
vibration of closed conical shells are carried out.�e accuracy
and reliability of the present method are also examined.
Table 18 lists the comparison of the �rst several frequency

parameters Ω = P	1√N(1 − F2)/E with those solutions

obtained by Liew et al. [16] using the element free ��-Ritz
method, Shu [18] using the GDQ method, FSDT solutions
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Table 17: First eight frequencies (Hz) for a closed cylindrical shell with single point clamped-supported at each end.

Modes E1-E1 E2-E2 E3-E3 SD-SD S-S
C-C

Ref. [12] ANSYS [12] Present

1 0.15698 0.12164 0.09646 0.01870 0.01658 0.00 3.01 0.33651

2 19.5430 19.8210 19.4759 0.09810 19.8994 18.84 18.83 19.8442

3 21.2045 21.4837 20.8517 20.6303 20.8838 20.55 20.50 21.2408

4 31.9544 31.6035 31.9604 21.5527 31.9508 31.63 34.30 31.9679

5 32.8183 32.6079 32.8190 31.9495 32.8171 32.62 34.33 32.8170

6 70.1945 73.1681 67.2033 32.8171 68.2388 69.05 67.87 70.9657

7 71.3327 75.6887 72.7092 65.8760 76.7896 73.21 72.94 75.7491

8 97.5789 93.7181 97.4584 76.8374 97.5652 96.98 99.49 97.5773

Table 18: Comparison of frequency parametersΩ = P	1√N(1 − F2)/E for a closed conical shell with di	erent boundary conditions (` = 1).
BC Method

h
0 1 2 3 4 5 6 7

SD-SD

Ref. [16] 0.2234 0.5462 0.6309 0.5061 0.3941 0.3337 0.3235 0.3510

Ref. [18] 0.2233 0.5463 0.6310 0.5062 0.3942 0.3340 0.3239 0.3514

Ref. [27] 0.2230 0.5460 0.6308 0.5061 0.3941 0.3336 0.3232 0.3504

Ref. [48] 0.2233 0.5461 0.6308 0.5062 0.3941 0.3337 0.3233 0.3505

Present 0.2233 0.5461 0.6309 0.5062 0.3942 0.3339 0.3238 0.3515

SD-C

Ref. [16] 0.8691 0.8113 0.6610 0.5244 0.4316 0.3822 0.3732 0.3980

Ref. [18] 0.8700 0.8118 0.6613 0.5246 0.4319 0.3826 0.3737 0.3987

Ref. [27] 0.8693 0.8115 0.6611 0.5245 0.4317 0.3823 0.3731 0.3977

Ref. [48] 0.8694 0.8115 0.6611 0.5246 0.4318 0.3824 0.3732 0.3978

Present 0.8697 0.8117 0.6612 0.5246 0.4318 0.3822 0.3720 0.3948

C-C

Ref. [16] 0.8732 0.8120 0.6696 0.5428 0.4565 0.4088 0.3961 0.4141

Ref. [18] 0.8732 0.8120 0.6696 0.5428 0.4566 0.4089 0.3963 0.4143

Ref. [27] 0.8726 0.8117 0.6694 0.5426 0.4563 0.4085 0.3956 0.4133

Ref. [48] 0.8726 0.8117 0.6694 0.5427 0.4564 0.4086 0.3958 0.4135

Present 0.8729 0.8119 0.6695 0.5427 0.4565 0.4088 0.3960 0.4139

obtained by Qu et al. [27] employing a modi�ed variational
approach, and a uni�ed solution method presented by Su
et al. [48] employing a modi�ed Fourier series for conical
shells subjected to di	erent boundary conditions (i.e., SD-SD,
SD-C, and C-C). �e geometric and material parameters for
closed conical shells are taken to be E = 168GPa, F = 0.3,N = 5700 kg/m3, � sin�/	1 = 0.5, ℎ/	1 = 0.01, 	1 = 1m,
and � = 45∘, where 	1 is the radius of the larger edge.
Similar to the study of closed cylindrical shell, ` and h are
employed to denote axial and circumferential wavenumbers.
�e wavenumbers used in the calculations are` = 1 and h =
0∼7. It is seen that the present results are in good agreement
with those in literature.�e slight discrepanciesmay be due to
the di	erent solutions methods in the four studies. From the
competition studies presented in Table 18, it is concluded that
the present method for closed conical shells is numerically
accurate.

Since vibration results for the conical shells with arbitrary
elastic boundary conditions are rare in the literature, some
further numerical results for a closed conical shell subjected

to di	erent elastically supported boundary conditions and
their combinations with various wavenumbers (h = 1∼7,` = 1) are given in Table 19 as the benchmarking by the
researchers in the future and reference data for the engineers
in practical engineering, and some selected corresponding
mode shapes are also depicted in Figure 11. Furthermore,
the vibration results for the closed conical shell with point
supported are not yet available in the literature and this case
is widely used in practicing engineering. �us, some new
results are calculated for the closed conical shells with three
points supported at each end using di	erent restraint spring
sti	ness in Table 20, which can be used for benchmarking by
researchers as well as reference data for practicing engineers.
As a special case, the locations of the three-point supports
at each end of the conical shell are equally spaced here.
Table 19 presents the �rst several frequency parameters Ω =
P	0√N(1 − F2)/E for a closed conical shell with various

classical, elastic boundary conditions and their combinations.
Table 20 gives the �rst eight frequencies for the conical
shell with three-point supports of di	erent boundary spring
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Table 19: First several frequency parametersΩ = P	0√N(1 − F2)/E for a closed conical shell with elastic boundary conditions (` = 1).
BC

h
1 2 3 4 5 6 7

SD-E1 0.28933 0.20624 0.12470 0.08195 0.06202 0.05701 0.06119

SD-E2 0.16324 0.12524 0.10755 0.09154 0.07779 0.07110 0.07249

SD-E3 0.32825 0.21771 0.14872 0.10699 0.08322 0.07325 0.07373

C-E1 0.30218 0.22873 0.14741 0.09222 0.07081 0.06334 0.06230

C-E2 0.16674 0.12956 0.12594 0.09838 0.08447 0.07970 0.07500

C-E3 0.33006 0.22365 0.15696 0.11607 0.09149 0.07906 0.07638

E1-E1 0.29558 0.20694 0.12597 0.08352 0.06367 0.05809 0.06180

E2-E2 0.14241 0.12291 0.10945 0.09596 0.08341 0.07593 0.07507

E3-E3 0.33004 0.22355 0.15677 0.11584 0.09126 0.07888 0.07627

Table 20: First eight frequencies (Hz) for a closed conical shell with three points supported at each end for di	erent boundary spring restraints.

Modes
BC

E1-E1 E2-E2 E3-E3 SD-SD S-S C-C

1 5.50848 5.46466 5.49980 2.67591 5.49922 5.50128

2 7.93799 7.99347 7.99228 5.49943 7.82854 8.01669

3 8.08121 8.29333 8.24191 6.10897 8.06805 8.25289

4 10.9531 10.8214 10.9137 6.55139 10.8263 10.9334

5 11.0659 11.0870 11.0938 10.6319 11.0359 11.1099

6 12.4547 13.5535 13.4218 10.8251 13.4350 13.7762

7 13.8351 18.5555 18.9106 13.0829 18.8797 18.9523

8 19.0665 21.1011 21.2714 13.2106 20.8085 21.3206

(a) � = 1 (b) � = 3 (c) � = 5 (d) � = 7

Figure 11: Some selectedmode shapes for closed conical shells with various wavenumbers h subjected to E3-E3 boundary conditions (` = 1).

restraints. �e material and geometrical parameters of the
models in these two tables are employed as follows: E =210GPa, F = 0.3, N = 7800 kg/m3, 	0 = 1m, � = 3m, andℎ = 0.01m; in Table 19, � = 45∘; and in Table 20, � = 30∘.

3.3.3. Spherical Shells. In this subsection, the closed spher-
ical shell with arbitrary boundary conditions, for example,
classical boundary constraint, elastically supported bound-
ary, and point supports, is considered. First, the accuracy
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Table 21: Comparison of the frequency parameters Ω = P	√N(1 − F2)/E for an annular spherical shell with di	erent boundary conditions

(` = 1).
BC Method

h
0 1 2 3 4 5 6 7

F-F

Ref. [27] 0.87054 0.86412 0.05726 0.15323 0.27900 0.42940 0.60188 0.79559

ANSYS [27] 0.87054 0.86427 0.05728 0.15330 0.27924 0.43002 0.60321 0.79810

Present 0.87140 0.86508 0.05789 0.15559 0.28434 0.43914 0.61791 0.82054

F-C

Ref. [27] 0.81661 0.60880 0.34857 0.65733 0.96537 1.11557 1.24402 1.40026

ANSYS [27] 0.81659 0.60890 0.34868 0.65762 0.96592 1.11625 1.24523 1.40254

Present 0.81941 0.61013 0.35461 0.66976 0.97533 1.12665 1.26369 1.42208

C-F

Ref. [27] 0.40549 0.15170 0.07636 0.15412 0.27908 0.42941 0.60189 0.79559

ANSYS [27] 0.40597 0.15184 0.07641 0.15420 0.27932 0.43003 0.60321 0.79810

Present 0.40567 0.12814 0.07251 0.15645 0.28441 0.43914 0.61787 0.82043

C-C

Ref. [27] 0.98710 1.02639 1.00292 0.99803 1.04274 1.12623 1.24578 1.40056

ANSYS [27] 0.98741 1.02682 1.00340 0.99842 1.04314 1.12685 1.24697 1.40283

Present 0.98842 1.01639 0.97129 0.98775 1.04467 1.13639 1.26559 1.43364

Table 22: First several frequency parametersΩ = P	√N(1 − F2)/E for a closed spherical shell with various elastic restraints (` = 1).
BC

h
0 1 2 3 4 5 6 7

C-E1 1.18313 1.01569 0.95880 0.97538 1.03337 1.12647 1.25696 1.42669

C-E2 0.98843 0.96798 0.93672 0.96724 1.03005 1.12504 1.25641 1.42658

C-E3 0.98274 1.01433 0.97125 0.98774 1.04461 1.13571 1.26302 1.42817

E1-E1 0.95591 1.02259 0.96528 0.97748 1.03389 1.12657 1.25698 1.42669

E2-E2 0.98843 0.90082 0.86780 0.93593 1.02066 1.12285 1.25598 1.42651

E3-E3 0.97787 1.00847 0.97081 0.98792 1.04458 1.13558 1.26293 1.42814

and reliability of the uni�ed formulation applied to closed
spherical shells are veri�ed. Table 21 compares the �rst several

frequency parameters Ω = P	√N(1 − F2)/E for a spherical

shell subjected to various classical boundary conditions
with results obtained by Qu et al. [27]. �e material and
geometrical parameters are used as follows: E = 168GPa,F = 0.3, N = 5700 kg/m3, �0 = Y/8, �1 = Y/2, ℎ/	 = 0.05,
and 	 = 1m. Similar to the investigation of cylindrical shell,` and h are used to express�-axial and�-axial wavenumbers.
�e values used in the calculations are ` = 1 and h = 0∼7.
From the competition in Table 21, an excellent agreement
can be found. However, some slight discrepancies are seen
in Table 21, which may be due to the di	erent solutions
methods in the three studies. From Table 21, it is concluded
that the present method applied to closed spherical shells is
numerically accurate.

Since vibration results for the closed spherical shells
with more complex boundaries, such as elastic restraints
and point supports, are not yet available in the literature,
some new results are calculated for closed spherical shells,
which can be used for benchmarking by researchers as well
as reference data for practicing engineers. Table 22 gives the

�rst several frequency parameters Ω = P	√N(1 − F2)/E
with di	erent wavenumbers (` = 1 and h = 0∼7) subjected
to various elastic restraints, and the several corresponding

mode shapes with E3-E3 are depicted in Figure 12. Table 23
lists �rst eight frequencies for a closed spherical shell with
single point classically and elastically supported at each end.
For simplicity and convenience, the single point along each
end is located at (0, 0) and (��, 0), respectively. �e material
properties and geometrical dimensions for the two tables
are the same as the ones in Table 21. Unlike the vibrations
for spherical shells with uniform boundary conditions, an
interesting phenomenon can be found fromTable 23 inwhich
the discrepancy of the natural frequency is little among the
various boundary conditions, which is maybe because some
springs sti	ness contributes little to the vibrations for single
point support.

4. Conclusion

In this paper, a uni�ed solutionmethod for the free vibrations
of the open and closed cylindrical, conical, and spherical
shells with arbitrary boundary conditions, for example,
classical, elastic, and point boundary supports, has been
presented. �e classical Flügge thin shell theory based on
Kirchho	 assumptions is adopted to formulate the theo-
retical model. Regardless of the boundary conditions, the
displacement of the thin shell is invariantly expressed as the
expansion series using SGM,which is composed of a standard
cosine series and auxiliary functions introduced to accelerate
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Table 23: First eight frequencies (Hz) for a closed spherical shell with single point classically and elastically supported at each end.

Modes
BC

E1-E1 E2-E2 E3-E3 SD-SD S-S C-C

1 0.14643 0.14493 0.14529 0.09146 0.14496 0.14487

2 24.2791 23.2846 23.3128 0.14486 24.7998 23.2793

3 42.0388 42.0100 42.0387 20.9759 42.0388 42.0388

4 53.2235 47.4842 47.1233 42.0388 60.6122 47.6368

5 94.8830 90.2265 90.2590 54.9703 115.480 90.2196

6 116.457 115.596 116.457 90.4786 116.457 116.457

7 147.464 145.630 147.464 116.457 147.464 147.464

8 185.994 183.715 182.568 147.464 193.759 183.733

(a) � = 1 (b) � = 3 (c) � = 5 (d) � = 7

Figure 12: Several selected mode shapes for closed spherical shells with di	erent wavenumbers subjected to E3-E3 (` = 1).

the convergence of the expansion series and eliminate all the
potential discontinuities at the boundary.�e boundary con-
ditions can be achieved by the arti�cial spring technique and
di	erent boundary conditions can be simulated conveniently
by just varying the sti	ness of corresponding boundary
springs. �e unknown expansion coe
cients are solved by
using the Rayleigh-Ritz method. In comparison with most
existing techniques, the present method does not require
any inconvenient formulation or procedural modi�cations to
accommodate di	erent boundary conditions or geometrical
shapes for thin shells. �e excellent accuracy and reliability
of the proposed method have been adequately con�rmed by
comparing the present results with those available in litera-
ture and FEM. Based on this, a number of examples have been
carried out to illustrate the in�uences on the vibration behav-
ior of the geometrical dimensions and the boundary restraint
parameters of open and closed shells. Moreover, some new
results for the shell with various geometrical dimensions and
elastic boundary conditions are presented, which can serve as
a benchmark solution for other computational techniques in
the future research. It should be pointed out that this solution
method can be readily extended to the composite laminated
and functionally graded shells with varying distributions of

geometrical dimensions. Furthermore this method can also
be expected to be applicable to study vibration analysis of
shell combinations.
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