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Recent advances in technology have enabled the measurement of RNA
levels for individual cells. Compared to traditional tissue-level bulk RNA-seq
data, single cell sequencing yields valuable insights about gene expression
profiles for different cell types, which is potentially critical for understand-
ing many complex human diseases. However, developing quantitative tools
for such data remains challenging because of high levels of technical noise,
especially the “dropout” events. A “dropout” happens when the RNA for a
gene fails to be amplified prior to sequencing, producing a “false” zero in the
observed data. In this paper, we propose a Unified RNA-Sequencing Model
(URSM) for both single cell and bulk RNA-seq data, formulated as a hi-
erarchical model. URSM borrows the strength from both data sources and
carefully models the dropouts in single cell data, leading to a more accurate
estimation of cell type specific gene expression profile. In addition, URSM
naturally provides inference on the dropout entries in single cell data that
need to be imputed for downstream analyses, as well as the mixing propor-
tions of different cell types in bulk samples. We adopt an empirical Bayes’
approach, where parameters are estimated using the EM algorithm and ap-
proximate inference is obtained by Gibbs sampling. Simulation results il-
lustrate that URSM outperforms existing approaches both in correcting for
dropouts in single cell data, as well as in deconvolving bulk samples. We also
demonstrate an application to gene expression data on fetal brains, where our
model successfully imputes the dropout genes and reveals cell type specific
expression patterns.

1. Introduction. A biological organism is made up of individual cells, which
work in concert in tissues to constitute functioning organs. Biologists have long
thought that the key to understanding most human diseases lies in understanding
the normal and abnormal function of cells. Yet, until very recently, our view of
what molecules are expressed and where and when was limited to the level of
tissues. Indeed RNA sequencing (RNA-seq) was introduced as a critical tool to
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answer these questions, but the RNA itself was collected from tissues. This bulk
RNA-seq data provides reliable measurements of gene expression levels through-
out the genome for bulk samples. With sufficient sequencing depth, even weakly
expressed transcripts can be accurately captured by RNA-seq data. This technol-
ogy has led to breakthroughs in various fields. For example, Fromer et al. (2016)
use bulk data, obtained from prefrontal cortex of post-mortem subjects, to gain in-
sight into how genetic risk variation for schizophrenia affects gene expression and
likely generates risk for this severe psychiatric disorder.

Still bulk RNA-seq data inevitably ignores the heterogeneity of individual cells
because the measurements are summed over the population of cells in the tissue.
Yet it is reasonable to predict that diseases like schizophrenia do not arise from
malfunctioning brain tissue, per se, but rather certain malfunctioning cells within
that tissue. A leading hypothesis is that schizophrenia arises from synaptic dys-
function, and synapses are fundamental to neurons, so should neurons alone be
targeted for analyses into schizophrenia? Actually, brain tissue is composed of a
remarkably heterogeneous set of cell types, which have vastly different functions
and expression profiles. While many are different types of neurons, many others
support and alter the function of those neurons and their synapses. Thus, the dif-
ferent gene expression profiles for distinct cell types can have profound functional
consequences. These likely are critical for the development of tissues and human
diseases, and will be especially important as we aspire to fix such complex diseases
as schizophrenia.

It is also of interest to link gene expression with genetic variation, particularly
damaging variants associated with risk of disease. Until recently, researchers have
assumed that most cells express both copies of a gene equally; however, new find-
ings suggest an even more complex situation motivating single cell measurements.
Apparently, some neurons preferentially express the copy of a gene inherited from
one parent over the other and this can shape how mutated genes are expressed at
the cellular level [Huang et al. (2017a)].

One approach to characterize cell type specific gene expression profiles is to
perform deconvolution on bulk RNA-seq data. Consider an observed gene expres-
sion matrix X ∈ R

N×M for N genes in M bulk samples, each containing K dif-
ferent cell types. The goal of deconvolution is to find two nonnegative matrices
Ã ∈ R

N×K and W ∈R
K×M , such that

(1.1) X ≈ ÃW,

where each column of W represents the mixing proportion of K cell types in each
bulk sample, and each column of Ã represents the average gene expression levels
in each type of cells. If the “signature” matrix Ã is available for a set of “bar-
code genes” in each cell type, deconvolution reduces to a regression-type prob-
lem that aims at estimating W . Several algorithms have been proposed under this
setting, including Cibersort [Newman et al. (2015)] and csSAM [Shen-Orr et al.
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(2010)]. However, without knowing the signature matrix, deconvolution is highly
nontrivial, and this line of methods includes the Deconf algorithm [Repsilber et al.
(2010)], semi-supervised Nonnegative Matrix Factorization algorithm (ssNMF)
Gaujoux and Seoighe (2012) and Digital Sorting Algorithm (DSA) [Zhong et al.
(2013)].

A fundamental challenge of the NMF-based methods is the nonuniqueness of
the factorization [Donoho and Stodden (2003)]. Therefore, to obtain a biologically
meaningful result, both ssNMF [Gaujoux and Seoighe (2012)] and DSA [Zhong
et al. (2013)] use a set of “marker genes” to guide the factorization. A marker gene
is a gene that only expresses in one cell type. In other words, there are several rows
of Ã that are priorly known to be non-zero at only one column. This is equivalent
to the separability assumption introduced by Donoho and Stodden (2003) for the
uniqueness of NMF. Unfortunately, marker genes are rarely known in practice.
In fact, extracting high-quality marker genes is a challenging step, which is often
approached by analyzing purified cells [Abbas et al. (2009)].

On the other hand, single cell RNA sequencing provides gene expression mea-
surements in individual cells, yielding a high-resolution view of cellular states that
are uncharacterized in bulk data. Recent advances in high-throughput technologies
have made it possible to profile hundreds and thousands of cells [Fan, Fu and Fodor
(2015), Kolodziejczyk et al. (2015)]. With several extra pre-processing steps in-
cluding reverse transcription and amplification, the single cell mRNA library goes
through similar sequencing procedures as the bulk samples, and the gene expres-
sion levels are measured by the number of mapped reads. With single cell RNA-seq
data, one can investigate distinct subpopulations of cells, gain better understanding
of the developmental features of different cell types [Grün et al. (2015)], identify
cellular differences between healthy and diseased tissues [Kharchenko, Silberstein
and Scadden (2014)] and infer gene-regulatory interactions [Padovan-Merhar and
Raj (2013)].

The challenges of modeling single cell RNA-seq data come from high cell-
to-cell variation, as well as high levels of technical noise during sequencing due
to the low amounts of starting mRNAs in individual cells. One important bias
comes from the so-called “dropout” events. A dropout happens when a transcript
is not detected due to failure of amplification prior to sequencing, leading to a
“false” zero in the observed data [Kolodziejczyk et al. (2015)]. Given the exces-
sive amount of zero observations in single cell RNA-seq data, it is critical to dis-
tinguish between (i) the dropout genes where transcripts are missed in sequencing
and (ii) the “structural zeros” where the genes are truly un-expressed. Modeling the
dropout events is especially challenging because of their complicated dependency
on gene expression levels and cell characteristics. Specifically, dropouts are more
likely to occur in genes expressed at low levels, and certain cells may have sys-
tematically higher dropout probabilities than others. In addition to dropout events,
other challenges in modeling single cell data include the over-dispersion due to
both cellular and technical variation, as well as high magnitude outliers due to
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bursts and fluctuations of gene expression levels. We refer the readers to Haque
et al. (2017) for a more comprehensive review.

Despite the success of many early single-cell studies, statistical tools that ac-
count for the technical noise in single cell RNA-seq data, especially the dropout
events, are limited. There have been efforts to analyze single cell data for various
purposes. Many methods propose to quantify and account for technical noise us-
ing spike-ins [Brennecke et al. (2013), Vallejos, Marioni and Richardson (2015),
Vallejos, Richardson and Marioni (2016)]. However, spike-ins are usually unavail-
able in single cell data due to its expenses in practice. For differential expres-
sion analysis, SCDE [Kharchenko, Silberstein and Scadden (2014)] is based on a
Bayesian hypothesis testing procedure using a three-component mixture model to
capture technical noise; subsequently, MAST [Finak et al. (2015)] uses a hurdle
model that can adjust for various covariates; more recently, Vu et al. (2016) con-
struct a beta-poisson mixture model, integrated within a generalized linear model
framework. Various relevant problems have also been studied, including inferring
the spatial localization of single cells in complex tissues [Satija et al. (2015)], di-
mension reduction using Zero-Inflated Factor Analysis (ZIFA) [Pierson and Yau
(2015)], and clustering unlabeled single cells while accounting for technical vari-
ation [Prabhakaran, Azizi and Pe’er (2016)]. All of these aforementioned methods
have been successfully applied to different single cell data sets. However, analyt-
ical methods that aim at the fundamental problem of imputing dropout genes and
estimating the cell-type-specific gene expression profiles remain underdeveloped.

In this paper, we propose to jointly analyze single cell and bulk RNA-seq data
using the Unified RNA-Sequencing Model (URSM), which simultaneously cor-
rects for the dropout events in single cell data and performs deconvolution in bulk
data. We point out that URSM only requires consistent cell types between both
data sources, preferably measured on the same tissue from subjects with similar
ages. It does not require the single cell and bulk data being measured on the same
subjects, nor does it assume the same proportions of cell types in both data sets.
Given a single cell data set, usually there are existing bulk data measured on the
same tissue that can be modeled jointly using URSM. For example, BrainSpan
provides extensive gene expression data on adult and developing human brains
[Sunkin et al. (2013)], and GTex establishes a human RNA-seq gene expression
database across 43 tissues [GTEx Consortium (2013)].

By integrating single cell and bulk RNA-seq data, URSM borrows the strength
from both data sources, and is able to (i) obtain reliable estimation of cell type
specific gene expression profiles, (ii) infer the dropout entries in single cell data
and (iii) infer the mixing proportions of different cell types in bulk samples. Our
framework explicitly models the dropout events in single cell data, and captures
the relationship between dropout probability and expected gene expression levels.
By involving high-quality bulk data, URSM achieves more accurate estimation
of cellular expression profiles than using only single cell data. By incorporating
the single cell data, URSM provides, for the first time, deconvolution of the bulk
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samples without going through the error-prone procedure of estimating marker
genes. To the best of our knowledge, this is the first model that jointly analyzes
these two types of RNA-seq data. We will illustrate in simulation (Section 4) and
real-world data (Section 5) that URSM successfully corrects for the dropouts in
single cell data, and provides reliable deconvolution for bulk samples.

2. A unified statistical model. Suppose RNA-sequencing is conducted on N

genes and K types of cells are of interest. Then bulk and single cell RNA-seq data
can be linked together by a common profile matrix A ∈ R

N×K , where the kth col-
umn A·k represents the expected relative expression levels of N genes in the kth
type of cells, such that each column sums to one. Note that by considering the rela-
tive expression levels, the profile matrix A does not depend on sequencing depths,
and thus remains the same in both data sources. The two data sources provide two
different views on the profile matrix A. In single cell data, the observations are
independent realizations of different columns of A with extra noise due to dropout
events. In bulk data, the expected relative expression levels for a mixture sample
are weighted sums of columns of A, where the weights correspond to mixing pro-
portions of different cell types. Here, we propose URSM to analyze the bulk and
single cell RNA-seq data together, which borrows the strength from both data sets
and achieves more accurate estimation on the profile matrix. This further enhances
the performance of deconvolving bulk samples, as well as inferring and imputing
the dropout genes in single cells.

The plate model of URSM for generating single cell and bulk RNA-seq data
is given in Figure 1. Specifically, for single cell data, let Y ∈ R

N×L represent the
measured expression levels of N genes in L single cells, where the entries are
RNA-seq counts. To model the dropout events, we introduce the binary observ-
ability variable S ∈ {0,1}N×L, where Sil = 0 if gene i in cell l is dropped out,
and Sil = 1 if it is properly amplified. For each cell l, let Gl ∈ {1, . . . ,K} de-
note its type, then the vector of gene expression Y·l ∈ R

N is assumed to follow
a Multinomial distribution with probability vector pl , and the sequencing depth
Rl = ∑N

i=1 Yil is the number of trials. Without dropout events, pl would be the

FIG. 1. Plate model of URSM, with both single cell data (on the left) and bulk samples (on the
right). The two greyed nodes X and Y represent observed gene expression levels. Node S is a binary
variable representing dropout status in single cells, and node W represents the mixing proportions
in bulk samples. The node π representing observation probability is double-circled because it is
deterministic, and all model parameters are shown without circles, including the profile matrix A

that links the two data sources.
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corresponding column of the profile matrix, A·Gl
, which is the true relative ex-

pression levels for cell type Gl . With the existence of dropouts, pl becomes the
element-wise product of A·Gl

and S·l , which is then normalized to sum to one. To
capture the dependency between dropout probabilities and gene expression levels,
the observation probability πil = P(Sil = 1) is modeled as a logistic function of
Ai,Gl

,

(2.1) πil = logistic(κl + τlAi,Gl
),

so that lowly expressed genes have high probabilities of being dropped out, where
the coefficients (κl, τl) are cell-dependent that capture the cellular heterogeneity.
Under this model, the set of dropout entries and structural zeros are defined as

dropouts = {
(i, l) : Sil = 0

}
,

(2.2)
structural zeros = {

(i, l) : Sil = 1, Yil = 0
}
.

For bulk data, let X ∈ R
N×M represent the RNA-seq counts of N genes in M

bulk samples. For the j th bulk sample, let W·j ∈ R
K denote the mixing proportions

of K cell types in the sample, satisfying
∑K

k=1 Wkj = 1. Then the gene expression
vector X·j ∈ R

N is assumed to also follow a Multinomial distribution, where the
probability vector is the weighted sum of K columns of A with the weights being
W·j , and the number of trials is the sequencing depth for sample j , defined as
Rj = ∑N

i=1 Xij .
For the hierarchical model setting, we assign the conjugate Dirichlet prior for

the mixing proportions W·j , and Gaussian priors for the cell-dependent dropout
parameters (κl, τl). Here, we adopt an empirical Bayes’ approach, where the
parameters are estimated by maximum-likelihood-estimations (MLE) using the
expectation-maximization (EM) algorithm. Using this framework, our goal is
threefold: (i) learn the profile matrix A as part of the model parameters, which
characterizes the cellular gene expression profiles, (ii) make posterior inference on
the dropout status S for single cell data, which can be used to identify dropout
entries and (iii) make posterior inference on the mixing proportions W in bulk
samples. Finally, the inferred dropout entries in single cell data can be imputed by
their expected values using the estimated A and sequencing depths Rl .

Full model specification.

• Bulk data
– W·j

i.i.d.∼ Dirichlet(α) for j = 1, . . . ,M , where α ∈R
K , α ≥ 0.

– X·j |W·j
indep.∼ Multinomial(Rj ,AW·j ) for j = 1, . . . ,M , where Rj =∑N

i=1 Xij .
• Single cell data

– κl
i.i.d.∼ N(μκ,σ 2

κ ), τl
i.i.d.∼ N(μτ ,σ

2
τ ) for l = 1, . . . ,L.
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– πil = logistic(κl + τlAi,Gl
), where Gl ∈ {1, . . . ,K} is the type of the lth cell.

– Sil|κl, τl
indep.∼ Bernoulli(πil) for i = 1, . . . ,N; l = 1, . . . ,L.

– Y·l|S·l
indep.∼ Multinomial(Rl,pl) for l = 1, . . . ,L, where Rl = ∑N

i=1 Yil ,

pl = (pil)i=1,...,N , where pil = Ai,Gl
Sil∑N

n=1 An,Gl
Snl

.

REMARK 1. We assume all entries in A to be strictly positive. In principle,
one can allow some entries Aik to be exactly zero, but this will lead to a degen-
erate multinomial distribution and complicate the likelihood function. In addition,
making inference on Sil when Ai,Gl

= 0 is an ill-defined problem. If Aik = 0,
then we will have Xil = 0 for all type-k cells, but such structure rarely appears
in real data. In practice, it is usually helpful to use some small positive numbers
rather than exact zeros to capture the background signal in sequencing processes
[Kharchenko, Silberstein and Scadden (2014)].

REMARK 2. It is straightforward to use one part of URSM when only one data
source is available. In Section 4, we will show the performance of the submodel
for single cell data. It is also possible to use the submodel for bulk data when
only bulk data are available, but extra information about marker genes needs to be
incorporated in this scenario to avoid the non-identifiability issue, as explained in
Section 1.

3. Inference and estimation: EM algorithm. This section presents an
expectation-maximization (EM) algorithm [Dempster, Laird and Rubin (1977)]
for fitting the maximum likelihood estimation (MLE) of the parameters θ =
(A,α,μκ, σ

2
κ ,μτ , σ

2
τ ), as well as a Gibbs sampling algorithm for posterior in-

ference on latent variables H = (W,S, κ, τ ). As illustrated in Section 2, the key
values of scientific interests include (i) an estimate of the profile matrix A that char-
acterizes the cellular gene expression profiles, (ii) E[S|Y, θ ], the inferred dropout
probability at each entry in single cell data and (iii) E[W |X,θ ], the inferred mix-
ture proportion of bulk samples.

The main difficulty of handling our model is the intractable posterior distri-
butions due to nonconjugacy. Therefore, approximate inference needs to be per-
formed. One of the main methods for approximate inference in Bayesian modeling
is Monte Carlo Markov Chain (MCMC) sampling [Gelfand and Smith (1990)],
where a Markov chain on latent variables is constructed, with stationary distri-
bution being the true posterior. After obtaining a long enough chain, the pos-
terior can be approximated with empirical estimation. Gibbs sampling [Casella
and George (1992), Geman and Geman (1984)] is one of the most widely used
forms of MCMC algorithms given its simplicity and efficiency. On the other hand,
variational methods form an alternative line for approximate inference, where the
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posterior is approximated analytically by a family of tractable distributions [Blei,
Kucukelbir and McAuliffe (2017), Jordan et al. (1999), Wainwright and Jordan
(2008)]. While being computationally scalable in many large-scale problems, vari-
ational methods are inherently less accurate due to the inevitable gap between the
variational distributions and the true posterior distribution.

In this paper, we present a Gibbs sampling algorithm for approximate inference
on latent variables using the data augmentation trick. This algorithm can also be
used in the E-step of the EM procedure, leading to a Gibbs-EM (GEM) algorithm
for obtaining MLEs of model parameters [Dupuy and Bach (2016)]. The specific
steps are outlined in Section 3.1 and Section 3.2, and more details can be found
in the supplement [Zhu et al. (2018)]. Finally, we point out that one can also pro-
ceed with variational inference, but due to space limitation, we do not pursue this
approach in detail.

3.1. E-step: Gibbs sampling. The latent variables for bulk data and single
cell data are conditionally independent given observed data X,Y and parameters.
Therefore, Gibbs sampling can be performed on the two data sources in parallel.
In this section, we describe the sampling procedure for the two parts separately.

Bulk data. To obtain the posterior inference of W (the mixing proportions) in
bulk data, we rewrite the model to be mixture of multinomials by introducing the
augmented latent variables Z and d as follows:

W·j
i.i.d.∼ Dirichlet(α), j = 1, . . . ,M,

Zrj
i.i.d.∼ Multinomial(1,W·j ), r = 1, . . . ,Rj ,

(3.1)
drj

indep.∼ Multinomial(1,A·Zrj
), r = 1, . . . ,Rj ,

Xij =
Rj∑
r=1

I{drj=i}, i = 1, . . . ,N, j = 1, . . . ,M.

Note that this model is closely related to the Latent Dirichlet Allocation (LDA)
model [Blei, Ng and Jordan (2003)] in topic modeling, if we view a gene as a
word, a cell type as a topic and a bulk sample as a document. Although the Gibbs
sampling algorithm has been developed for LDA in Griffiths and Steyvers (2004),
there are two difficulties that prevent us from directly applying this algorithm to
our model. First, the LDA model assumes observations of drj , which are the actual
words in an document, but in RNA-seq data, only the final counts Xij are observed.
Second, the sequencing depths Rj ’s are typically large in real data, so it will be
extremely computationally demanding to keep track of Zrj and drj . Therefore, we
propose a modified algorithm by defining another set of augmented latent variables

(3.2) Z̃ij,k := ∑
r:drj=i

I{Zrj=k} and Z̃ij := (Z̃ij,k) ∈ R
K,
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and it can be shown that

W·j |W·(−j), Z̃,X ∼ Dirichlet

(
α +

N∑
i=1

Z̃ij

)
,

Z̃ij |Z̃(−ij),W,X ∼ Multinomial
(
Xij ,

Ai· � W·j∑K
k=1 AikWkj

)
,

(3.3)

where � denotes element-wise multiplication, and the index (−i) denotes every-
thing else other than i.

Single cell data. As for posterior inference of S, κ, τ in single cell data, note
that the first part of the model can be rewritten as

(κl, τl) ∼ N(μ,�), where μ = (μκ,μτ ),� = Diag
(
σ 2

κ , σ 2
τ

)
,

Sil|κl, τl ∼ Bernoulli
(
logistic(ψil)

)
, where ψil = κl + τlAi,Gl

,
(3.4)

which has the same form as a Bayesian logistic regression, with covariates being
(1,Ai,Gl

). Therefore, following the recent development of Gibbs’ sampling tech-
nique in this area [Polson, Scott and Windle (2013)], we introduce a set of aug-
mented latent variables ω, and the conditional complete posteriors can be shown
to be

ωil|ω(−il), S, Y, κ, τ ∼ Polya-Gamma(1,ψil),

(κl, τl)|κ(−l), τ(−l),ω,S,Y ∼ N
(
mωl,V

−1
ωl

)
,

Sil|S(−il),ω,S, κ, τ, Y ∼ Bernoulli(bil),

(3.5)

where

ψil = κl + τlAi,Gl
,

Vωl =

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

ωil + σ−2
κ

N∑
i=1

ωilAi,Gl

N∑
i=1

ωilAi,Gl

N∑
i=1

ωilA
2
i,Gl

+ σ−2
τ

⎞⎟⎟⎟⎟⎟⎠ ,

mωl = V −1
ωl

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

Sil − N/2 + μκ/σ 2
κ

N∑
i=1

SilAi,Gl
− 1/2 + μτ/σ

2
τ

⎞⎟⎟⎟⎟⎟⎠ ,

bil =
⎧⎪⎨⎪⎩

1, if Yil > 0,

logit
(
ψil + Rl log

( ∑
n�=i An,Gl

Snl

Ai,Gl
+ ∑

n�=i An,Gl
Snl

))
, if Yil = 0.
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3.2. M-step. In the M-step of GEM algorithm, the parameters are updated to
maximize a lower bound on the expected complete log likelihood function, or the
so-called Evidence Lower BOund (ELBO), where the posterior expectation EQ is
estimated using Gibbs samples obtained in the E-step. The optimal dropout param-
eters (μκ, σ 2

κ ,μτ , σ
2
τ ) have the following closed forms:

μ̂κ = 1

L

L∑
l=1

EQ(κl), σ̂ 2
κ = 1

L

L∑
l=1

EQ

[
(κl − μ̂κ)2]

,

μ̂τ = 1

L

L∑
l=1

EQ(τl), σ̂ 2
τ = 1

L

L∑
l=1

EQ

[
(τl − μ̂τ )

2]
.

(3.6)

For A and α, there are no closed form solutions, and we use the projected gradient
ascent algorithm:

Anew·k ← Proj(Aold·k + t · ∇ELBO(Aold·k )),

αnew ← Proj(αold + t · ∇ELBO(αold)),
(3.7)

where the step size t is determined by backtracking line search, and the Proj func-
tion is the projection onto the feasible set:

(3.8) Aik ≥ εA,

N∑
i=1

Aik = 1, αk ≥ εα,

where εA, εα > 0 are some small predetermined constants. The gradients are com-
puted as

∂ELBO

∂Aik

=
M∑

j=1

EQ[Z̃ij,k]
Aik

+ ∑
l:Gl=k

[
YilEQ(Sil)

Aik

−EQ

[
ωilτ

2
l

]
Aik

− EQ(Sil)Rl

ul

+EQ

[(
Sil − 1

2

)
τl − ωilτlκl

]]
,(3.9)

∂ELBO

∂αk

=
M∑

j=1

EQ[logWkj ] + M

[


(
K∑

k=1

αk

)
− (αk)

]
,

where ul = ∑N
i=1 Ai,Gl

EQ(Sil) and (·) is the digamma function. More detailed
derivations can be found in the supplement.

4. Simulation results. In this section, we evaluate the performance of URSM
in synthetic datasets. We focus on the accuracy of recovering the profile matrix A

and mixing proportions W , as well as the ability of distinguishing between dropout
entries and structural zeros using the posterior inference of S.
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4.1. Settings. Let N be the number of genes. The sequencing depths for bulk
samples are independently generated from Poisson(50N ). To account for the fact
that the sequencing depths of single cell data are usually much lower and highly
variable, they are generated from the Negative Binomial with mean 2N and dis-
persion parameter 2.

The cell-type specific profile matrix A is generated as follows: (i) simulate all
entries independently from log-normal with μ = 0, σ = 1, (ii) for each cell type k,
let Nm = 10 genes be marker genes, that is, set Ail = 0 for l �= k, (iii) for each cell
type k, let Na = 10 genes be anti-marker genes, that is, set Aik = 0, (iv) let another
set of Nh = 30 genes be housekeeping genes that have the same expression levels
in all cell types and (v) finally, properly normalize A so that each column sums
to 1. Specifically, in each column, we normalize the Nh housekeeping genes such
that they sum to Nh/N , and the remaining genes sum to 1 − Nh/N .

Finally, the observation status {Sil}il for each gene i in each single cell l is sim-
ulated independently from Bernoulli(πil). Recall that Sil = 0 indicates a dropout,
and the dropout probability is determined by

(4.1) 1 − πil = 1 − logistic(κl + τlAi,Gl
),

where Gl ∈ {1, . . . ,K} is the type of cell l. In the following sections, κl’s are inde-
pendently generated from Normal(−1,0.52), and τl’s are independently generated
from Normal(1.5N, (0.15N)2). Note that by construction, the mean of each col-
umn of A, Ā·,k , is always 1/N . Therefore, E[κl + τlĀ·,Gl

] = 0.5 for each cell,
which corresponds to an average dropout probability of 37.8%, and the maximal
dropout probability is 73.1% when Aik = 0.

4.2. Estimation of profile matrix. In this section, we illustrate that URSM pro-
vides accurate estimation on the profile matrix A after correcting for dropouts and
utilizing bulk samples. Following the simulation settings specified in Section 4.1,
we generate L = 100 single cells and M = 150 bulk samples on N = 200 genes.
We consider K = 3 cell types. For single cells, 30%,30% and 40% of the cells are
assigned to the 3 different types, respectively. For bulk samples, the hyperparame-
ter of the mixing proportions is set to α = (1,2,3). The dropout probability curves,
simulated following equation (4.1), are shown in Figure 2(a). The simulated single
cell data has 64.6% entries being zero.

A naive method to estimate the profile matrix A is to use the sample means of
single cell expression levels, after normalizing by their sequencing depths. Specif-
ically, recall that Y ∈ R

N×L represents the observed expression levels in single
cells, {Gl}l=1,...,L represent the cell types and {Rl}l=1,...,L are the sequencing
depths, defined as Rl = ∑

i Yil . Then an entry Aik can be estimated by

(4.2) Ânaive
ik = 1

#{l : Gl = k}
∑

l:Gl=k

Yil

Rl

.
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FIG. 2. (a) Simulated logistic dropout probability curves for 100 single cells, as defined in equation
(4.1). (b)–(d) True profile matrix A versus the estimated Â, plotted in the log scale, using (i) the naive
sample mean estimation [equation (4.2)], (ii) a submodel using only single cell data and (iii) URSM
with both single cell and bulk data. The L1 loss

∑
i,k |Âik − Aik | is reported on the top.

However, due to the presence of dropout events and the dependency between πil

and A, this naive sample mean estimation is biased, with L1 loss 0.81 [Figure 2(b)],
where the L1 loss is computed as

∑
i,k |Âik −Aik|. On the other hand, by explicitly

modeling the occurrence of dropout events and capturing the relationship between
dropout probability and expected expression level, a submodel of URSM that only
uses single cell data successfully corrects for the bias, and substantially reduces
the loss to 0.27 [Figure 2(c)]. Finally, by integrating the bulk data, URSM further
improves the estimation and further reduces the L1 loss to 0.17 [Figure 2(d)].

4.3. Deconvolution of bulk samples. Now we further examine the model per-
formance on inferring the mixing proportions W in bulk samples, using the same
simulation setting as in Section 4.2. We compare the performance of URSM
to three widely used deconvolution methods: Digital Sorting Algorithm (DSA)
[Zhong et al. (2013)], semi-supervised Nonnegative Matrix Factorization (ssNMF)
[Gaujoux and Seoighe (2012)] and Cibersort [Newman et al. (2015)].

Both DSA and ssNMF rely heavily on a set of given marker genes as input to
guide the matrix factorization, where a “marker gene” is only expected to express
in one cell type. Unfortunately, marker genes are rarely known in practice, and
a widely adopted procedure is to estimate the list of marker genes from purified
cells by selecting those with the most different expression levels across cell types.
Here, we mimic this procedure by estimating a list of marker genes from single
cell data to guide DSA and ssNMF. Specifically, we adopt the method in Abbas
et al. (2009), which calculates a p-value of each gene by comparing its expression
level in the highest and second-highest types of cells, then selects the group of
genes with the smallest p-values. Figure 3 shows the L1 loss of estimating A

and W using DSA and ssNMF with different sets of estimated marker genes with
p-values smaller than {10−8, . . . ,10−3}, and the number of selected marker genes
is listed in Table 1. It is clear that these two algorithms are sensitive to the input
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FIG. 3. The L1 loss of recovering (a) the profile matrix,
∑

i,k |Âik − Aik |, and (b) mixing propor-

tions,
∑

k,j |Ŵkj − Wkj |. We evaluate DSA and ssNMF when the marker genes are extracted from
single cell data using different thresholds of p-values, as well as under the oracle condition where
the true marker genes are given. We evaluate Cibersort on estimating W when the input signature
matrix is based on the estimated Â from URSM. We report its performance when the entire Â is used
(“Cibersort all”), as well as when only the estimated marker genes are used (“Cibersort”). The per-
formance of URSM is plotted with a square in both panels, which does not depend on thresholding
p-values.

marker genes. For comparison, we also evaluate the performances of DSA and
ssNMF when the oracle information of true marker genes is available.

On the other hand, Cibersort requires a “signature” matrix containing the ex-
pression levels of a group of “barcode” genes that collectively distinguish between
different cell types. Note that this essentially requires knowing part of the pro-
file matrix A, which contains much more information than the marker gene list.
Here, we use the estimated Â from our unified model as the signature matrix for
Cibersort. We report the L1 loss of estimating W when Cibersort only takes the
expression levels of the selected marker genes, as well as when Cibersort uses
the entire Â. Figure 3(b) suggests that Cibersort prefers larger number of barcode
genes as input.

TABLE 1
Number of selected marker genes using different thresholding p-values

# of
markers

log10 (p-value)
True

markers−8 −7 −6 −5 −4 −3

cell type 1 5 8 11 16 19 27 10
cell type 2 2 2 8 11 16 23 10
cell type 3 1 2 7 10 17 21 10
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Finally, URSM automatically utilizes the information in single cell data to guide
deconvolution. Figure 3 illustrates that URSM and Cibersort usually outperform
DSA and ssNMF using estimated marker genes, and achieve comparable L1 loss
even when DSA and ssNMF have the oracle information of marker genes.

4.4. Inference of dropout entries in single cell data. Next, we present the in-
ference on dropout entries in single cell data, again using the same setting as in
Section 4.2. Here, our goal is to distinguish between dropout entries and struc-
tural zeros, as defined in equation (2.2). Note that we only need to make infer-
ence for locations where the observed expression levels are zero, that is, on the set
{(i, l) : Yil = 0}. Recall that Sil = 0 if gene i is dropped out in cell l, and our model
provides the estimated posterior mean of S:

(4.3) π̃il = E(Sil|X,Y, θ),

where θ denotes the model parameters. Hence a natural approach is to predict the
entries with small π̃il to be dropouts.

A potential competitor for imputing dropout entries is the Nonnegative Ma-
trix Factorization (NMF) [Lee and Seung (2000)]. One can construct a low-rank
approximation to the single cell expression matrix Y ∈ R

N×L using NMF. Intu-
itively, the approximated values tend to be higher at dropout entries, and closer
to zero at structural-zero entries. As shown in Figure 4(a), if the rank is properly
specified, this simple NMF-based method demonstrates certain ability to distin-
guish between dropout genes and structural zeros, but not as well as URSM. In
addition, in order to further impute the dropout entries, a good estimation of the
profile matrix A is also needed. Figure 4(b) shows the estimation of A by taking
sample average as in equation (4.2), with Y substituted by the NMF approxima-
tion. It is clear that the NMF approach fails to correct for the bias introduced by

FIG. 4. (a) ROC curves of identifying dropout entries in single cell data. (b) True profile matrix
A versus the sample average of a rank-3 NMF approximation, plotted in the log scale. The L1 loss∑

i,k |Âik − Aik | is reported on the top.
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the dropout events, while URSM succeeds in both identifying dropout entries and
obtaining an unbiased estimation of A [recall Figure 2(d)].

4.5. Robustness. Finally, we demonstrate the robustness of our model. We ap-
ply URSM under the scenario where the number of cell types in single cell data
Ksc is not equal to the number of cell types in bulk data Kbk, as well as when
the number of genes N grows. URSM always takes K = max{Ksc,Kbk} as input,
and estimates Âunif ∈ R

N×K and Ŵunif ∈ R
K×M . When Ksc > Kbk, it is straight-

forward to directly apply URSM, and ideally the estimated Ŵunif will assign zero
proportions to the missing cell types in bulk samples. However, when Ksc < Kbk,
without extra information, deconvolution is an ill-defined problem because of the
nonidentifiability issue (see Section 1 for more details). In order to find a biological
meaningful solution, we follow the idea in ssNMF [Gaujoux and Seoighe (2012)]
and use a set of marker genes to initialize the parameters for the EM algorithm by
setting the corresponding entries in A to be zero. We consider the scenario where
for each cell type, 5 true marker genes and 3 imperfect marker genes are used for
initialization. The imperfect marker genes are selected from the nonmarker genes,
where we pick the ones with the largest difference between the highest and second
highest expression levels across cell types in A.

Following Section 4.1, we simulate M = 150 bulk samples, where the mixing
proportions in bulk samples are generated from Dir(α) with α = (1, . . . ,Kbk). For
single cell data, we generate 40 cells in the majority cell type, and 30 cells in
each of the remaining Ksc − 1 types. To reduce the computation load and enhance
stability, we use the maximum a posteriori estimation for W in the E-step for bulk
samples. More details are included in the supplement.

Again, we compare URSM to DSA, ssNMF and Cibersort. Both DSA and ss-
NMF require a set of marker genes as input, and we report their performances
under two scenarios: (i) the oracle scenario where 5 true marker genes are pro-
vided for each cell type and (ii) a more realistic scenario as used by our uniform
model, where 5 true marker genes and 3 imperfect marker genes are provided for
each cell type. Note that when Ksc > Kbk, bulk samples contain no information of
the expression patterns for the missing cell types, so we allow DSA and ssNMF to
only deconvolve Kbk cell types in these cases. We point out that this strategy favors
the DSA and ssNMF methods by providing them extra information of the missing
cell types in bulk samples. For Cibersort, as in the previous sections, we use the
estimated profile matrix obtained from our uniform model as the input signature
matrix.

Figure 5(a) summarizes the performance of different models under various
choices of Ksc and Kbk when N = 200 in 10 repetitions. In order to make a compa-
rable comparison across different K’s, we report the average per cell type L1 loss,
that is, the average L1 loss ‖Â·,k −A·,k‖1 and ‖Ŵ·,k −W·,k‖1 across all columns k.
We see that the performance of URSM remains robust under different settings, and
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FIG. 5. The average per cell type L1 loss of recovering the profile matrix A and the mixing
proportions W in 10 repetitions, with the standard deviations shown by the error bars, when
(a) Ksc,Kbk ∈ {3,4,5} with N = 200 genes; (b) N = {200,500,1000} with Ksc = Kbk = 3. Each
figure shows the performance of (i) URSM, (ii) DSA and ssNMF with 5 true marker genes and 3
imperfect marker genes per cell type as input and (iii) DSA and ssNMF under the oracle scenario
where 5 true marker genes per cell type are provided. We also report the performance of Cibersort
for estimating W using the estimated Âunif from URSM as the input signature matrix.

is usually comparable to DSA and ssNMF algorithms even when the latter two al-
gorithms have the oracle marker gene information. Not surprisingly, Cibersort has
similar performance as URSM because it uses our estimated Âunif as input. We
point out that when the sample mean estimation Ânaive [equation (4.2)] is given to
Cibersort as the signature matrix, the performance is unstable and it cannot provide
deconvolution when Ksc < Kbk. Finally, we also demonstrate the performance of
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different models when N = {200,500,1000}, where we set Ksc = Kbk = 3. Fig-
ure 5(b) verifies that URSM remains robust with larger numbers of genes.

5. Application to fetal brain data.

5.1. Data preprocessing. In this section, we apply URSM to gene expression
measured on fetal brains. The single cell RNA-seq data comes from Camp et al.
(2015), where 226 cells from fetal brains are sequenced on 18,927 genes. The
authors have removed endothelial cells and interneurons, and the remaining 220
single cells are labeled into three types: 40 apical progenitors (APs), 19 basal pro-
genitors (BPs) and 161 neurons (Ns). In addition, the authors have normalized the
RNA-seq counts using FPKM (Fragments Per Kilobase of exon per Million frag-
ments mapped) and performed log-transformation by log2(x + 1). We refer the
readers to Camp et al. (2015) for more details of the single cell data preprocessing.
On the other hand, microarray bulk gene expression data on fetal brains is provided
by the BrainSpan atlas Kang et al. (2011). Within the same window of develop-
ment, 12 to 13 post-conception week, 72 bulk samples from prefrontal cortex are
measured on 16,947 genes. To apply our model, the single cell RNA-seq data are
transformed back to linear scale by 2x − 1, and all measurements are truncated to
integers. To approximate the RNA-seq counts in bulk samples, we transform the
BrainSpan microarray data in the same way and treat them as pseudo-RNA-seq
counts. The resulting bulk samples have an average pseudo sequencing depth of
5.5 × 106, which is 26 times larger than the average effective sequencing depth in
single cells, 2.1 × 105, where the effective sequencing depth is calculated as the
sum of FPKM across all genes in each single cell.

To reduce computational load, we only focus on genes with significantly dif-
ferent expression levels among the three cell types. Specifically, we use the 315
so-called PC genes proposed in Camp et al. (2015), which have the largest load-
ings in a Principal Component Analysis (PCA) and account for the majority of cel-
lular variation. After restricting to the overlapping genes that are also sequenced
in BrainSpan bulk samples, a final list of 273 PC genes are obtained and used
in the following analyses. When restricting to these 273 genes, the average ef-
fective sequencing depth (i.e., the sum of RNA-seq counts in each sample) is
3.2 × 105(sd = 1.6 × 104) in BrainSpan tissues, and 1.4 × 104(sd = 4.3 × 103)

in single cells.
Due to the nature of active cell development from APs and BPs to Neurons in fe-

tal brains, we expect to have a few cells that are actively transitioning between two
cell types, whose labels are ambiguous. We first remove these ambiguously labeled
cells from our analysis. Specifically, we project the single cells to the leading 2-
dimensional principal subspace, where the pseudo developing time is constructed
using the Monocle algorithm [Trapnell et al. (2014)]. Based on the results, the 3
BPs that are close to AP or Neuron clusters are removed, so are the 4 Neurons
that are close to AP or BP clusters [Figure 6(b)]. The remaining 213 single cells



626 ZHU, LEI, DEVLIN AND ROEDER

FIG. 6. (a) Single cell gene expressions (log2(FPKM + 1)) after removing 7 ambiguously labeled
cells. Rows are 213 cells and columns are 273 genes. (b) PCA applied on the original single cell
data with 220 labeled cells using 273 PC genes, where the Monocle algorithm is applied to construct
pseudo developmental times. 7 cells are identified to be ambiguously labeled and are removed from
our analyses (marked as triangles). (c) Entries in cleaned single cell data that are inferred to be
dropout and imputed (marked in blue) versus the entries that are inferred to be structural zeros
(marked in white) in cleaned single cell data. The entries with positive expression levels have no need
for posterior inference, and are marked in grey. (d) After imputing dropout genes, PCA is conducted
on the 213 cells using 273 PC genes, and the three different types of cells are more clearly separated.

are retained for analysis, and their gene expression levels on the 273 PC genes are
visualized in Figure 6(a).

5.2. Imputation of single cell data. Here, we apply URSM to identify and
impute the dropout entries in single cell data. Note that in order to distinguish be-
tween dropout entries and structural zeros in single cell data [equation (2.2)], we
only need to focus on the entries where the observed gene expression levels are
zero. The inference of dropout entries is based on the estimated posterior expec-
tation of E(Sil|X,Y, θ). As a result, among the 37,771 zero-observation entries,
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45.7% are inferred to be dropouts with probability one [Figure 6(c)]. These entries
are then imputed by their expected values, calculated using the corresponding en-
tries in the estimated profile matrix A multiplied by the sequencing depths of the
corresponding cells. To illustrate the impact of imputation, we apply PCA again
on the imputed data. Figure 6(d) visualizes the cells in the first two principal com-
ponents, and the clusters for different cell types are more clearly separated.

5.3. Deconvolution of bulk samples. Finally, we present the deconvolution re-
sults of bulk samples using URSM. According to the prior knowledge that the
proportions in bulk samples should be roughly consistent with that in single cell
data, the mixing parameter α is initialized at (2 × 104,104,7 × 104) for AP, BP
and Neurons. The scale of α is chosen to be comparable to the average effective se-
quencing depths of 1.4×104 among all single cells. Figure 7(a) shows the inferred
mixing proportions of APs, BPs and Neurons in each of the 72 bulk samples, with
an average of 17.7% AP cells, 8.7% BP cells and 73.6% Neurons.

For comparison, we also apply the Digital Sorting Algorithm (DSA) [Zhong
et al. (2013)], semi-supervised Nonnegative Matrix Factorization (ssNMF)
[Gaujoux and Seoighe (2012)] and Cibersort [Newman et al. (2015)] on the
BrainSpan bulk samples. The marker genes for DSA and ssNMF are selected by
comparing each gene’s expression level in the highest and second-highest types of
cells in the single cell data, and genes with p-value < 10−5 are treated as markers
[Abbas et al. (2009)]. This procedure leads to 21 AP markers, 6 BP markers and 28
Neuron markers, which serve as input to DSA and ssNMF. For Cibersort, the in-
put signature matrix is provided by the estimated Â from URSM. Figure 7(b)–(d)
suggest that the proportions estimated by ssNMF tend to have too large variations,
while DSA overestimates the neural composition, and Cibersort obtains similar
results as URSM.

As another perspective to verify the deconvolution results, we use the intuition
that the true proportions of a cell type should be correlated with the expression lev-
els of its marker genes in bulk samples. To check whether this holds in the results,

FIG. 7. Deconvolution of bulk samples into three cell types, using (a) URSM, (b) Cibersort, (c) Dig-
ital Sorting Algorithm (DSA) and (d) semi-supervised Nonnegative Matrix Factorization (ssNMF).
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TABLE 2
Correlation between the estimated proportions of a cell type k in bulk samples, (Wkj )j , and the
normalized expression levels (Xij /Rj )j of its marker gene i in bulk samples. For genes marking

both AP and BP, the sum of proportions is used

Gene Marked cell type URSM Cibersort DSA ssNMF

HES1 AP 0.73 0.62 0.80 0.68
HES6 BP 0.66 0.58 0.53 −0.72
PAX6 AP.BP 0.91 0.80 0.80 0.61
GLI3 AP.BP 0.90 0.80 0.83 0.54
NEUROD6 N 0.28 0.37 0.02 −0.36
BCL11B N 0.45 0.57 0.23 0.02
MYT1L N 0.44 0.37 0.32 0.80

we first normalize each bulk sample by their effective sequencing depths, such that
the normalized expressions sum to one in each sample. We focus on 7 genes based
on biological knowledge, including the radial glia (RG) markers PAX6 and GLI3
that are expected to only express in AP and BP cells, the RG marker HES1 that
is mostly expressed in AP cells, the early BP marker HES6, as well as neuronal
genes NEUROD6, BCL11B and MYT1L [Camp et al. (2015)]. Table 2 summarizes
the correlations calculated by estimated proportions using different methods, and
we see that URSM and Cibersort usually achieve the highest correlations. Finally,
we point out that if Cibersort uses the naive sample mean estimation from single
cell data as the signature matrix, it will fail to identify BP cells and achieve much
lower correlations.

6. Discussion. In this paper, we propose URSM, a unified framework to
jointly analyze two types of RNA-seq data: the single cell data and the bulk data.
URSM utilizes the strengths from both data sources, provides a more accurate es-
timation of cell type specific gene expression profiles, and successfully corrects
for the technical noise of dropout events in single cell data. As a side product,
URSM also achieves deconvolution of bulk data by automatically incorporating
the cellular gene expression patterns.

Dropouts present one of the biggest challenges to modeling scRNA-seq data.
URSM assumes a dependency between expression level and the probability of ob-
serving dropout and aims, probabilistically, to infer which observations are likely
dropouts. There are a number of alternative approaches in the literature; for a dis-
cussion see Huang et al. (2017b) and Vallejos et al. (2017). The most common
statistical approach is to explicitly model the zero-inflation process, for example,
SCDE [Kharchenko, Silberstein and Scadden (2014)], MAST [Finak et al. (2015)]
and ZIFA [Pierson and Yau (2015)]. Some methods assess the fraction of dropouts
per gene, other methods, such as CIDR [Lin, Troup and Ho (2017)], take this
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process to the next step by imputing the dropout values. SAVER [Huang et al.
(2017b)] avoids trying to determine which observations are dropouts and aims to
impute any poorly measured value using the gene-to-gene correlation pattern, and
other features in the cell-type specific samples.

We apply URSM to two gene expression data sets from fetal brains, and ob-
tain promising results on imputing single cell RNA-seq data and deconvolving
bulk samples. With more upcoming single cell data on fetal brains, it would be of
great scientific interest to apply URSM to specimen from different brain develop-
ing periods, which will aid our understanding on gene expression patterns during
early brain development and their impact on many complex human disorders. In
practice, the degrees of heterogeneity can vary for different tissues. For example,
liver tissues may contain more homogeneous cell types. In all cases, URSM can
be applied to obtain an accurate estimate of the cell type specific profile.

There are many existing bulk RNA-seq data sets for various human and nonhu-
man tissues that can be paired with different single cell data and jointly modeled
using this unified framework. We also conduct simulation studies to demonstrate
that as long as most cell types are consistent across the two data sources, URSM
is robust to subtle mismatched cell types.

As for computation, the bottleneck is the Gibbs sampling step, which scales
linearly with N,M,L and K . In practice, we find that a few hundred Gibbs sam-
ples and 50–100 EM iterations are usually enough to obtain sensible results. In
our experiment, for 100 single cells and 150 bulk samples, one EM iteration with
150 Gibbs samples takes about 3 minutes for 200 genes and 12 minutes for 1000
genes using a single core on a computer equipped with an AMD Opteron(tm) Pro-
cessor 6320 @ 2.8 GHz. It is straightforward to further reduce the computation
time by utilizing the conditional independency to parallelize the Gibbs sampling
procedure.

Many downstream analyses can be conducted with this framework. In partic-
ular, URSM provides accurate estimates of the cell type specific profile matrix,
which can be used for differential expression analysis between diseased and con-
trol samples. One can also apply URSM to single cells sequenced at different de-
velopmental periods to study the developmental trajectories of the cellular profiles.

As technologies improve and costs decline, single cell analysis can move to the
new level by incorporating differential expression by maternal or paternal source of
the chromosome. Such information can be captured if there are genetic differences
between parents in the genes. Moreover, genetic variation can affect expression
of genes; already experiments are being performed to determine which genetic
variants are associated with changes in single cell expression. This would allow
analysis of expression based on parental origin of each copy of the gene. These
sources of variation are ignored in our model. Refining and extending scRNA-seq
analytical tools to accommodate these sources of variation is one of the challenges
for the future.
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In this paper, we present our model assuming a given number of cell types K .
In the situation where K is not known a priori, one can first run the model using a
larger value of K , examine the clustering of single cells after imputation, and then
reduce to a reasonable choice of K by combining cells from similar clusters.

Finally, we point out that the current model is developed under the setting of
supervised learning where the labels for single cells are known. One can extend
this framework to conduct unsupervised cell clustering by introducing extra la-
tent variables for cell labels in the hierarchical model. In addition, by the nature
of the Multinomial distribution, the current model is fully determined by its first
moment. Therefore, the imputation of single cell data may be further improved by
introducing gene-gene correlations to the model. We leave the exploration in these
directions to future work.
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SUPPLEMENTARY MATERIAL

Supplement to “A unified statistical framework for single cell and bulk
RNA sequencing data.” (DOI: 10.1214/17-AOAS1110SUPP; .pdf). This supple-
ment provides additional information on the Gibbs sampling and EM algorithm.
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