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Abstract --In this paper, a unified theory for frequency-domain simula- 
tion and sensitivity analysis of linear and nonlinear circuits is presented. 
An elegant derivation expands the harmonic balance technique from non- 
linear simulation to nonlinear adjoint sensitivity analysis. This provides an 
efficient tool for the otherwise expensive but essential gradient calcula- 
tions in design optimization. The hierarchical approach, widely used for 
circuit simulation, is generalized to sensitivity analysis and to computing 
responses in any subnetwork at any level of the hierarchy. Therefore, 
important aspects of frequency-domain circuit CAD such as simulation and 
sensitivity analysis, linear and nonlinear circuits, hierarchical and nonhier- 
archical approaches, voltage and current excitations, or open- and short- 
circuit terminations are unified in this general framework. Our theory 
provides a key for the coming generation of microwave CAD software. It 
will take advantage of the many existing and mature techniques such as the 
syntax-oriented hierarchical analysis, optimization, and yield driven design 
to handle nonlinear as well as linear circuits. Our novel sensitivity analysis 
approach has been verified by a MESFET mixer example exhibiting a 90 
percent saving of CPU time over the prevailing perturbation method. 

I. INTRODUCTION 
N THIS PAPER, we present a unified approach to the I simulation and sensitivity analysis of linear/nonlinear 

circuits in the frequency domain. The linear part of the 
circuit can be large and can be herarchically decomposed, 
highly suited to modern microwave CAD. Analysis of the 
nonlinear part is performed in the time domain and the 
large-signal steady-state periodic analysis of the overall 
circuit is carried out by means of the harmonic balance 
(HB) method. In the sensitivity analysis we exploit the 
concept of the adjoint network technique. 

The HB method has become an important tool for the 
analysis of nonlinear circuits. The work of Rizzoli et al. [l], 
Curtice and Ettenberg [2], Curtice [3], [4], Gilmore and 
Rosenbaum [5], Gilmore [6], Camacho-Penalosa and 
Aitchison [7] stimulated work on HB in the microwave 
CAD community. The excellent paper by Kundert and 
Sangiovanni-Vincentelli [ 81 provided systematic insight into 
the HB method. Many others, e.g., [9]-[15], have also 
contributed substantially to the state of the art of the HB 
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technique. The first step toward design optimization was 
made by Rizzoli et al. [l], who used the perturbation 
method to approximate the gradients. A recent review of 
this area was given by Rizzoli and Neri [16]. 

The adjoint network approach has been a classical vehi- 
cle for sensitivity analysis of linear circuits [17], [18] and of 
nonlinear time-domain or dc circuits [18], [19]. The exist- 
ing methods, however, are not suitable for the sensitivity 
analysis of nonlinear circuits operating under large-signal 
steady-state periodic or almost periodic conditions, espe- 
cially in the context of, the HB method. The HB analysis is 
performed in the frequency domain and generates the 
circuit responses through their spectra. The time-domain 
approach, such as that of SPICE, is very inefficient in the 
steady-state case since the analysis must be carried out 
until the transient responses vanish. Therefore, the adjoint 
network nonlinear time-domain sensitivity analysis, even if 
applicable, would be inefficient as well. On the other hand, 
the nonlinear dc analysis is only a part of the harmonic 
balance analysis; moreover, it is integrated with the calcu- 
lation of all harmonics simultaneously. If there are large- 
signal ac sources in the circuit, the dc analysis cannot be 
separated from the ac analysis. Therefore, the existing 
nonlinear dc adjoint network technique is not directly 
applicable to the HB method. 

In our paper, we extend to the HB technique the power- 
ful adjoint network concept. The concept involves solving 
a set of linear equations whose coefficient matrix is avail- 
able in many existing HB programs. The solution of a 
single adjoint system is sufficient for the computation of 
sensitivities with respect to all parameters in both the 
linear and nonlinear subnetworks, in the bias circuit, driv- 
ing sources, and terminations. No parameter perturbation 
or iterative simulations are required. 

To make our theory highly suitable for microwave ori- 
ented CAD programs, we have also developed a hierarchi- 
cal treatment of the adjoint system analysis. Preferred by 
leading experts, e.g. Jansen [20], and used in circuit simula- 
tors such as Super-compact and Touchstone, the syntax- 
oriented hierarchcal approach has proved very convenient 
and efficient in analyzing linear circuits. Our theory fur- 
ther extends such an approach to adjoint sensitivity analy- 
sis. 
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TABLE I 
NOTATION AND DEFINITION 

Notation Definition 

total number of nodes (internal and external) of a linear 
Subnetwork. 

number of circuit nodes (or ports) used in harmonic analysis. 
AISO. it is the number of external nodes for a typical 
subnetwork of Fig. 2. 

number of harmonics, including DC. 

harmonic index. k = 0 for DC, k = I for the fundamental 
harmonic. k - 2. 3, .... H-l for other harmonics. 

complex N,-vectors indicating kth harmonic voltages or 
at all nodes (both internal and external) of a linear subnetwork. 

complex N-vectors indicating kth harmonic voltages or currents 
at all external nodes of any linear subnetwork (at the highest 
level of hierarchy the nodes or ports at  which the harmonic ba- 
lance equations are formulated). 

real 2HN,-vectors containing real and imaginary parts of V,(k) 
or I,(k) at all harmonics k. k = 0. I .  _.., H-I. 

real 2"-vectors containing real and imaginary parts of V(k) or 
I(k) at all harmonics k. k = 0, I ,  ..., H-I.  

N, by N, matrix representing the unreduced nodal admittance 
matrix of a linear subnetwork at harmonic k. 

N by N matrix representing the reduced nodal admittance matrix 
of a linear subnetwork at harmonic k. 

currents 

Definition 

2": by 2HNt real matrix obtained by splitting the real and 
imaginary parts of Yt(k) for all harmonics k, k - 0. I ,  ..., H-I. 

2HN by 2HN real matrix obtained by splitting the real and 
imaginary parts of Y(k) for all harmonics k, k - 0, I. ._.. H-I. 

2": by 2HN, real matrix representing the Jacobian defined in 
(A2). 

2HN by 2HN real matrix representing the Jacobian defined by 
( 5 ) .  The internal nodes of the linear subcircuit are suppressed. 

LHN, real vector selecting the output voltage from the vector 
vt. 

LHN real vector selecting the output voltage from the vector 
V. 

[ :fk) -;] where U is [: ] 
and 1 is an N by N identity matrix. 

nE by nE diagonal matrix whose diagonal entries are the 
terminating impedances Zi. i I I ,  2. _... nE. 

nI by nI diagonal matrix whose diagonal entries are the 
terminating admittances Yi. i - I ,  2, ..., nI. 

nE-vector containing voltage excitations Ei, i = I ,  2, _.., nE 

n,-vector containing current excitations i = I ,  2, .... nI. 

The sensitivities we propose are exact in terms of the 
harmonic balance method itself. Our exact adjoint sensitiv- 
ity analysis can be used with various existing HB simula- 
tion techniques, e.g., the basic HB [8], the modified HB [6] ,  
and the APFT HB [15]. The only computational effort 
includes solving the adjoint linear equations and calculating 
the Fourier transforms of all time-domain derivatives at the 
nonlinear element level. Significant CPU time savings are 
achieved over the perturbation method. 

In Section 11, we define the notation used throughout 
this paper. In Section 111, the simulation of linear and 
nonlinear circuits is reviewed under a general circuit hier- 
archy. In Section IV, a new and unified treatment to 
adjoint systems for linear and nonlinear circuits is intro- 
duced. Novel sensitivity formulas for nonlinear circuits are 
derived in Section V. Finally, in Section VI, a MESFET 
mixer example is used to verify our theory. 

11. NOTATION AND DEFINITION 
We follow the notation of [8]. Real vectors containing 

voltages and currents at time t are denoted by u ( t )  and 
i ( t ) .  Capitals V( k )  and Z (  k )  are used to indicate complex 
vectors of voltages and currents at harmonic k.  A sub- 
script t at V , ( k )  indicates that the vector contains the 
nodal voltages at all N, nodes (both internal and external) 
of a linear subnetwork. If there is no subscript, then the 
vector corresponds to the port voltages (currents) at all N 
ports of the reduced subnetwork. A bar denotes the split 
real and imaginary parts of a complex vector. In particu- 
lar, v or are real vectors containing the real and the 
imaginary parts of V ( k )  or Z(k) ,  respectively, for all 
harmonics k ,  k = 0,l; -, H - 1. The total number of 
harmonics taken into consideration, including dc, is H. 
The hat dktinguishes quantities of the adjoint system. For 
example, V,( k )  represents adjoint voltages at internal and 
external nodes of a subnetwork at harmonic k .  A detailed 
definition of the notation is given in Table I. 

111. LINEAR AND NONLINEAR SIMULATION 

A. Circuit Structure 
Our exact adjoint sensitivity analysis can be used for 

hierarchcally structured linear subcircuits. Consider the 
arbitrary circuit hierarchy of Fig. 1. A typical subnetwork 
containing internal and external nodes is shown in Fig. 2. 
A general representation of a terminated circuit is depicted 
in Fig. 3. An unpartitioned or nonhierarchical approach is 
a special case of Fig. 1 when only one level exists. 

For a completely linear circuit, the sources and loads are 
applied at the highest level of the herarchy, as depicted in 
Fig. 3. For a nonlinear circuit, the linear part of the overall 
circuit can have an arbitrary hierarchy as illustrated by 
Fig. 1 while the nonlinear part is connected directly at the 
highest level to the linear part. Therefore, in any case we 
consider an unterminated N-port circuit at the highest 
level of hierarchy. Such an approach simultaneously facili- 
tates both the effect of the reference plane in microwave 
circuits and the need for the harmonic balance equations. 

B. Hierarchical Simulation of the Linear Network 
Hierarchical simulation of linear circuits has been suc- 

cessfully used in many microwave CAD packages. It is 
summarized and expanded here into a set of formulas, 
enabling voltage responses at any nodes (internal or exter- 
nal) for any subnetwork at any level to be systematically 
computed. Firstly, we solve the terminated circuit at the 
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Fig. 1. An arbitrary circuit hierarchy. Each thick line represents a 
group of nodes. Each rectangular box represents a connection block for 
a subcircuit. Each bottom circular box represents a circuit element and 
the top circular box represents the sources and loads. 

linked to 
higher level blocks h, 

... 

external nodes - 
j j 

. . .  . . .  
1 2  N,-N N,-N+2 N, , 

have to be linked to 
lower level blocks 
- 

all nodes (internal and external) 
(a) (b) 

Fig. 2. A typical subcircuit connection block: (a) as seen from Fig. 1; 
(b) detailed representation of all the nodes of the subnetwork. Nodes at 
the top (bottom) of the rectangular box are the external (external and 
internal) nodes of the subnetwork. 

highest level of the hierarchy using 

(1) 

where the overall quantity in the curly bracket is an N by 
N matrix linking the port voltages V( k )  with the external 
sources for the terminated circuit. As defined in Table I, 
Y,( k )  and Z,( k )  are diagonal matrices containing termi- 
nating admittances and impedances, respectively, of the 
circuit shown in Fig. 3. Y ( k )  is the admittance matrix of 
the unterminated circuit. C ( k )  and Z,(k)  denote the volt- 
age and current excitations of the circuit, respectively. The 
solution vector V ( k )  contains external voltages of the 
circuit block under consideration. Then, all (both internal 
and external) nodal voltages V , ( k )  of this subnetwork can 
be obtained from the equation 

2 2  I I 

I :  

Fig. 3. A representation of a terminated subnetwork. Both current and 
voltage sources can be accommodated. The overall port sequence is 
such that ports 1,2; . ., nE correspond to voltage sources and ports 
n E  + 1, n E  + 2,. . ., nE + n, correspond to current sources. The total 
number of ports is N ,  Le., N = n E  + n,. 

. levels of the hierarchy until all desired nodal voltages 
are found. 

Our formulas can directly accommodate both open- and 
short-circuit terminations. For example, a short-circuit ter- 
mination at port 1 simply means Z, = 0 in the matrix 2, 
in (1). An open-circuit termination at port n E  + 2 simply 
means Yz = 0 in the matrix Y, in (1). 

C. Simulation of Nonlinear Circuits 
The frequency-domain simulation of a nonlinear circuit 

is done effectively by the harmonic balance technique 
[1]-[16]. The problem is to find a V such that 

F( V )  A FNL( V )  + I,( V )  = 0 (3) 

where the vectors and I,, are defined as the currents 
into the linear and nonlinear parts at the ports of their 
connection. V contains the split real and imaginary parts 
of voltages, as defined in Table I. The Newton update for 
solving (3) is 

where j is the Jacobian matrix defined by 

.7 A ( a F T / a  J )  T .  
(2) 

where A ( k )  is the modified nodal admittance matrix of the 
subnetwork, as defined in Table I. Z ( k )  represents cur- 

The solution of (2), Le., V,( k ) ,  provides external voltages 
of all the subnetworks at the next level down the hierarchy. 
Therefore, (2) is used iteratively for the first, second, 

The ( i ,  j ) th  entry of the Jacobian matrix j is the deriva- 
tive of the ith entry of F with respect to the j t h  entry of 
V. 

In the context of the overall hierarchical structure, the 
solution of (3) provides the external voltages V ( k ) ,  k = 

rents into the subcircuit through its external ports. - 
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IV. ADJOINT SYSTEM SIMULATION 
Efficient and exact sensitivity analysis can be achieved 

by solving an adjoint system. In this section, a new and 
unified formulation of adjoint systems for hierarchically 
structured linear/nonlinear circuits is presented. 

A .  Adjoint System for Linear Networks 
At the highest level of the hierarchy, the adjoint system 

is excited by a unit source at the output port. Suppose the 
output voltage V,,, can be selected from V ( k )  by an 
N-vector e as 

Vout = eTV( k ) .  ( 6 )  
For example, if V,,, is chosen as the voltage at the first 
port, then the vector e contains 1 as the first entry and 
zeros everywhere else. By solving 

we obtain adjoint voltages $ ( k )  at external ports at the 
highest level of the hierarchy. Y, (k ) ,  Z J k ) ,  and Y ( k )  are 
the same matrices as used in (1). In order to obtain adjoint 
voltages 6) k )  at all (both internal and external) nodes of 
the circuit block, we solve the equation 

though the theoretical derivation for this case is rather 
involved, as given in the Appendix, we found a very logical 
and easy-to-implement method to handle this situation. 
First, we compute the adjoint voltages at the external ports 
of the linear subnetwork. This can be done by disconnect- 
ing the nonlinear part and then solving the linear part for 
individual harmonics separately. The resulting vector, de- 
noted by v,, is then transformed to the actual adjoint 
excitations of the overall circuit (including both linear and 
nonlinear parts) to be incorporated to (10) in place of 2. 
The final equation takes the form 

_ _  _ -  
J T V =  Y'VL. (11) 

In (ll), v and 7, have exactly the same dimensions and 
both represent the split real and imaginary parts of adjoint 
voltages at the connection ports of the linear and nonlinear 
subcircuits. The former is computed from the overall cir- 
cuit and the latter is computed from the linear subcircuit 
only. 

Equations (10) or (11) provide adjoint voltages at exter- 
nal ports at the highest level of the hierarchy. We then use 
(8) iteratively for the first, second, . . levels of the hierar- 
chy to obtain adjoint voltages at both internal and external 
nodes of all subnetworks. 

V. SENSITIVITY ANALYSIS 

where AT( k )  is the transpose of the modified nodal admit- 
tance matrix of the subnetwork used in (2). The solution 
vector c ( k )  provides external adjoint voltages for all 
subnetworks at the next level down the hierarchy. There- 
fore, (8) can be used iteratively for the first, second, 
. . . levels of the hierarchy until all desired adjoint voltages 
are found. 

Notice that (8) is a convenient formulation of the ad- 
joint system since the LU factors of A ( k )  can already be 
available from solving (2). 

B. Adjoint System for Nonlinear Networks 

Suppose v,,, is the real or imaginary part of output 
voltage V,,, and can be selected from the voltage vector v 
by a vector 2 as 

- 
V,", = eT V .  

The adjoint system is the linear equation 
(9) 

j ' V =  2 (10) 
where J j s  the Jacobian at the solution of (3). Notice that 
V and v are both 2"-vectors containing the split real 
and imaginary parts of voltages at the connection ports of 
the linear and nonlinear subcircuits. According to pur 
notation v is defined for the original network and v is 
defined for the adjoint network. Also notice that the LU 
factors of j c a n  be aqilable from the last iteration of (4). 
Therefore, to obtain v from (lo), we need only the for- 
ward and backward substitutions. 

The adjoint voltages can be computed even if the output 
port is suppressed from the harmonic equation (3). Al- 

- 

A.  Adjoint System Approach to Sensitivity Evaluation 

Differentiating ( 3 )  with respect to x gives 
Let x be a design variable of the nonlinear circuit. 

(aF ' /av )  T (  a7 /ax )  + ( a F / a x )  = 0 (12) 

or 

av/ax = - P( aF,,ax) (13) 

where j has been defined in (5). Premultiplying (13) by 2' 
results in 

This expression is further simplified by considering the 
locations of x in F. Notice that each entry of vector 
corresponds to a port and to a harmonic of the circuit. 
Take, for instance, a nonlinear resistor described by i ( t )  = 

i( u( t ) ,  x )  and connected across the j t h  port. The variable 
x enters F at the positions relating to port j and harmonic 
k ,  k = 0,l; . ., H - 1, by the Fourier transform of 
i ( u ( t ) ,  x ) .  In this case, (14) is simplified to 

a To,, / a x  = - Real [ < ( k ) G* ( k )] ( 15) 

where < ( k )  is the adjoint voltage at the j t h  port, G ( k )  is 
the kth Fourier coefficient of a i / d x  and superscript * 
denotes the complex conjugate. 

X 
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TABLE I1 
SENSITIVITY EXPRESSIONS AT THE ELEMENT LEVEL 

Type of Expression Applicable 
Element* for  G,(k) Equation 

linear G 1 ( 1 6 4  

linear R -1/R2 ( 16a) 

linear C jw,  ( 16a) 

linear L -l/(.iw,L2) ( 1 W  

nonlinear VCCS or [kth Fourier coefficient (16b) 
resistor i = i(v(t),x) 

nonlinear capacitor wk !kth Fourier ( 1 6 ~ )  
9 = q(v(t),x) 

current  driving I (16b) o r  ( 1 6 ~ ) '  

voltage driving 1 (16b) o r  (16c)+ 

of %/ax]  

coefficient of aq lax ]  

source 

source source impedance 

* 
element is in branch b and contains x 

(16b) for the real part and (16c) for  the imaginary part of the driving 
source 

wk is the kth harmonic angular frequency 

+ 

0,l; . -, H - 1, at the hghest level of the linear part. The 
desired internal and external voltages at all levels of the 
hierarchy can be solved by using (2) iteratively. 

B. Sensitivity Expressions 
Suppose a variable x belongs to branch b. We have 

derived the following general formula for computing the 
exact sensitivity of Vout with respect to x :  

a v o u t  ~- - a x  

1665 

TABLE 111 
GRADIENTS OF MIXER CONVERSION GAIN 

Variable x Gradient  Expression 

c - 2O/Ln I O  

R and X represent the real and the imaginary parts of the impedance 
terminations, respectively. Subscripts g and d represent the gate and  the 
drain terminations, respectively. 

complex quant i ty  aV,,,/ax is obtained by solving (9). (IO) and (16)  twice, 
once f o r  the The  LU 
factors of J and the Fourier transforms of  element sensitivities a re  common 
between the two operations. 

real part and the other  for  the imaginary part. 

Notice that our sensitivity formulas permit variable x to 
appear in any subcircuit at any level of the hierarchy since 
all required voltages can be calculated as needed. 

C. Comparison with the Perturbation Method 
To approximate the sensitivities using the traditional 

perturbation method, one needs a circuit simulation for 
each variable. The best possible situation for this method 
is that all simulations finish in one iteration. For our exact 
adjoint sensitivity analysis, the major computation, Le., 
solving the adjoint equations, is done only once for all 

' - Real [ th( k)Vh* ( k ) G , *  ( k ) ]  if x E linear subnetwork 
k 

- Real [ Ph( k )  G; ( k  )] if x E nonlinear VCCS or nonlinear resistor or real part of a complex 
k driving source (16b) 

- c Imag[?h(k)GS(k)l if x E nonlinear capacitor or imaginary part of a complex 
i k driving source. (164 

Complex quantities V J k )  and Qh(k)  are the voltages of 
branch b t t  harmonic k and are obtained from vectors 
V,( k )  and V,( k ) ,  respectively. Gh( k) denotes the sensitivity 
expression of the element containing variable x. For exam- 
ple, if x is the conductance of a linear resistor, G , ( k )  =l. 
If x belongs to a nonlinear resistor represented by i = 

i ( v ( t ) ,  x ) ,  G , ( k )  is the kth Fourier coefficient of a i / d x .  A 
list of various cases of G6( k )  is given in Table 11. 

Our sensitivity formula (16) has no restrictions on the 
selection of harmonic frequencies or the time samples. In a 
multitone case, the index k in (16) corresponds to all the 
harmonics used in the harmonic equation (3). When the 
multidimensional Fourier transform is used, we simply 
place a multidimensional summation in (16). 

variables. A detailed comparison reveals that the worst 
case for our approach takes less computation than the best 
situation of the perturbation method. In our experiment, 
we used only 1.6 percent of the CPU time required by the 
perturbation method to obtain all sensitivities. 

D. Gradient Vector for Optimization 
The novel formula (16) can be used as a key to formu- 

late the gradient vectors for design optimization and yield 
maximization of nonlinear circuits. Table I11 lists the gra- 
dients of a FET mixer conversion gain with respect to 
various variables, expressed as simple functions of 
a v,,t/ax. 
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VI. EXAMPLES 'gd 

Example 1: Hierarchical Circuit Description gate drain 

Many researchers, e.g., [3], and [7], have used FET mixer 
examples to test harmonic balance simulators. Here, we 
describe a mixer under the framework of hierarchical 
analysis. Such a description fits in with existing commer- 
cial software such as Super-compact. The overall nonlin- 
ear circuit with its biasing and driving sources is described 
by a Super-Compact-like circuit file as follows. 

* 
BLOCK 
* 

HIERARCHICAL ANALYSIS OF A MESFET MIXER 

INPUT MATCHING AND GATE BIAS SUBNETWORK 
IND 3 4 L = 1 5 N H  Fig. 4. A large-signal MESFET model. All parameter values are consis- 
IND 2 3 L =.5NH tent with [7]. 
CAP 3 0 C = 2.2PF 
CAP 1 2 C = 2.2PF 
IND 2 5 L =.55NH 

source 

~~ * DEFINE THE SUBCIRCUIT AS A 3-PORT 
CKTl: 3PORT 1 4  5 

END 
BLOCK * OUTPUT MATCHING AND DRAIN BIAS SUBNETWORK 

IND 2 3 L = 1 5 N H  
IND 1 2 L = 1.1" 
CAP 2 O C = 2 0 P F  
CAP 1 4  C=20PF  

CKT2: 3PORT 1 4  3 
* DEFINE THE SUBCIRCUIT AS A 3-PORT 

END 
BLOCK 
* THE HIGHEST HIERARCHY 

CKTl 1 3 5 
CKT2 7 2 4 
CAP 6 C = 2 P F  
A TRANSMISSION LINE BETWEEN PORT 6 0 AND PORT 7 
MIC 6 7  

* 

* BIAS SOURCES 
BIAS 3 V = - . 9  
BIAS 4 V= 3. 

NODE NUMBERS REFER TO GATE, DRAIN AND SOURCE 
NFET 5 6 0 

* NONLINEAR FET * 

END 
FREQUENCIES 
* DEFINE LO FREQUENCY 

TONE 1 
l l G H Z  

TONE 2 
l2GHZ 

END 
SOURCES 
* DEFINE LO DRIVING SOURCE 

* DEFINE RF FREQUENCY 

TONE 1 
POWER 1 0 P = 7DBM 

* DEFINE RF DRIVING 
TONE 2 
POWER 1 0 P - 15DB 

END 

SOURCE 

1M 

The LO and RF input matching and the gate bias circuits 
are analyzed separately in subnetwork CKTl. The IF 
output matching and drain bias circuits are analyzed in 
subnetwork CKT2. These subnetworks are then connected 
to a higher level of the hierarchy formulating an untermi- 
nated circuit block. This circuit block is then connected to 
nonlinear device ports. Using formulas developed in Sec- 
tions I11 and IV, we tire able to hierarchically simulate the 
original circuit as well as the adjoint circuit. This is a direct 

h 
N a 
5 
Y 

E .- 

50 

40 

30 

20 

10 

n 
" 0  1 2 3 4 

u2 

Fig. 5. The dc characteristics of the MESFET model. 

realization of the syntax-oriented step-by-step topological 
description [20], permitting the sensitivity analysis of a 
large circuit to be performed by solving a set of small 
original and adjoint systems. 

Example 2: Simulation and Sensitivity Analysis of a 
MESFET Mixer 

The MESFET mixer example reported in [7] was used to 
verify our theory. Figs. 4 and 5 show the large-signal 
MESFET model and the dc characteristics of the device. 
The frequencies are fLo=ll GHz, f R F = 1 2  GHz, and 
fIF = 1 GHz. The dc bias voltages are V,, = -0.9 V and 
V,, = 3.0 V. With LO power P,, = 7 dBm and RF power 
P,, = - 15 dBm, the conversion gain was 6.4 dB. Twenty- 
six variables were considered, including all parameters in 
the linear as well as the nonlinear parts, dc bias, LO 
power, RF power, and IF, LO, and RF terminations. 
Exact sensitivities of the conversion gain with respect to all 
the variables are computed using our novel theory. The 
results were in excellent agreement with those from the 
perturbation method, as shown in Table IV. The circuit 
was solved in 22 seconds on a VAX 8600. The CPU time 
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TABLE IV 
NUMERICAL VERIFICATION OF SENSITIVITIES OF THE MIXER 

Location Variable 
of Variable 

linear cd, 
subnetwork Cgd 

r. 

~~ 

Exact 
Sensitivity 

2.23080 
-29.44595 
0.00000 
3. I7234 
6.42682 
11.50766 
-0.02396 
-0.50245 
-0.20664 
1.15334 

Numerical 
Sensitivity 

Difference 
( % )  

2.23042 
-29.44659 
0.00000 
3.172 I4 
6.42751 

I I SO805 
-0.024 12 
-0.50346 
-0.20679 
1.15333 

0.02 
0.00 
0.03 
0.01 
0.0 I 
0.00 
0.66 
0.20 
0.07 
0.00 

nonlinear C,, -6. I7770 -6. I7786 0.00 
subnetwork' r 0.49428 0.49414 0.03 

LO POWER (dBm) 

v0 -20.85730 -20.85758 0.00 Fig. 6. Sensitivities of conversion gain with respect to bias voltages as 

VA.. 
-26.48210 -26.48041 0.01 functions of LO power. 
0.01064 0.01028 3.33 

vF.0 
"__ 

'd,p 9.93696 9.93680 0.00 

bias and V,, -3 1.62080 -3 1.62423 0.01 
driving 'DS -2.17821 -2.17823 0.00 
sources PLO 2.764 I2 2.76412 0.00 

PRF -0.05401 -0.05392 0.16 

terminations Rg(fLo) 0.0667 1 0.06657 0.22 
X,(f,,) 0.37855 0.37854 0.00 
R,(fRF) 0.78812 0.78798 0.02 
X (f ) 0.45120 0.451 19 0.00 
R:(fP,F) 0.7 I451 0.71436 0.02 
xd(fIF) 0.10866 0.10871 0.14 

' Nonlinear elements are characterized by 

and the function for i,,,(vl, va) is shown in Fig. 5, whose mathematical 
expression is consistent with [7]. V,, V@, Vd, and Id,p are parameters 
in the function i,,,(vl, vz). 

for sensitivity analysis using our method and the perturba- 
tion method are 3.7 seconds and 240 seconds, respectively. 
The CPU time saving of our method is 90 percent for both 
simulation and sensitivity calculations, and 98 percent if 
only sensitivity analysis is compared. 

The dangling node between the nonlinear elements Cgs 
and R;, a case which could cause trouble in HB programs, 
is directly accommodated in our approach. 

We have plotted selected sensitivities versus LO power 
in Fig. 6. For example, as LO power is increased, conver- 
sion gain becomes less sensitive to changes in gate bias 

lation are very costly. Consequently, the adjoint sensitivity 
analysis becomes far more significant for nonlinear circuits 
than for linear ones. 

The hierarchical approach widely used for circuit simu- 
lation is generalized for sensitivity analysis and for com- 
puting responses in any subnetwork at any level of the 
hierarchy. Therefore, important aspects of frequency- 
domain circuit CAD such as simulation and sensitivity 
analysis, linear and nonlinear circuits, hierarchical and 
nonhierarchical approaches, voltage and current excita- 
tions, and open- and short-circuit terminations are unified 
in this general framework. 

An immediate application of our theory would be the 
parameter extraction of nonlinear devices under RF large- 
signal excitations. The optimization criterion is to match 
computed responses with the measured ones at dc and at 
fundamental and lugher harmonics. A powerful gradient 
optimizer should be used. Gradient information would be 
obtained using the adjoint network approach. 

Our theory provides a key for the coming generation of 
microwave CAD software. It can take advantage of many 
existing and mature techniques such as the syntax-oriented 
hierarchical analysis and optimization and yield driven 
design to handle nonlinear as well as linear circuits. 

Our novel sensitivity analysis approach has been verified 
by a MESFET mixer example. Compared with the pertur- 
bation method, the CPU time saving of our method is 90 
percent for both simulation and sensitivity calculations, 
and 98 percent for sensitivity analysis only. 

VGS. APPENDIX A 
DERIVATION OF EQUATION 11 

VII. CONCLUSIONS 
Suppose 

- - This paper presents a unified theory for frequency- 

nonlinear circuits. Our formula (16) encompasses the ad- 
joint network approach previously used in linear [17], [18] 
and nonlinear dc circuits [18], [19] as special cases. Since 
the simulation of nonlinear circuits is expensive, gradient 
approximations for nonlinear circuits using repeated simu- 

domain simulation and sensitivity analysis of linear and VOUt = 2: v, . (AI)  

The harmonic balance equations can be formulated with 
respect to all nodes of the circuit, i.e., without suppressing 
the internal nodes in a single level description of the 
circuit. In such a case the Jacobian matrix j ]  can be 
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defined similarly to (9, and 

.J = Y, + Q D ~ P ~  (‘42) 
where D is a 2HN X 2HN matrix representing the contri- 
bution to j from nonlinear components, i.e., 

J = Y + D T .  (A3) 
Matrices P and Q are 2HN, X 2” incidence matrices 
containing 0’s and & 1’s. 

Let 

T = E’. (A4) 
As with (9) and (lo), based on (Al) the adjoint voltages at 
both internal and external nodes can be computed as 

Applying the Householder formula [21] to (A5) we have 
- 

= T-‘i?, - T - ’ P ( D - ’ +  QTT-’P)- lQTT-’e, .  (A6) 

Notice that 

( y T ) - ’ = Q T T - l p .  (A7) 
Let 

(A81 X = p -  

v, = Q ~ T - ~ Z , .  (‘49) 
- 

Premultiplying (A6) by QT gives 
A , .  - f A Q T c  = v, - X - ’ ( D - ’  + X - ’ ) - ’ e L .  (A10) 

Again, using the Householder formula [21], 

1988. 
R. J. Gilmore and F. J. Rosenbaum, “Modelling of nonlinear 
distortion in GaAs MESFET’s,” in IEEE In / .  Microwuue Symp. 
Dig. (San Francisco, CA), 1984, pp. 430-431. 
R. Gilmore, “Nonlinear circuit design using the modified harmonic 
balance algorithm,” IEEE Trans. Microwuve Theocv Tech., vol. 

C. Camacho-Penalosa and C. S. Aitchison, “Analysis and design of 
MESFET gate mixers,” I E E E  Truns. Microwuoe Theorv Tech., vol. 

K. S. Kundert and A. Sangiovanni-Vincentelli, “Simulation of 
nonlinear circuits in the frequency domain,” IEEE Truns. Com- 
puter-Aided Design, vol. CAD-5, pp. 521-535, 1986. 
S. Egami, “Nonlinear. linear analysis and computer-aided design of 
resistive mixers,” IEEE Truns. Microwuue Theon Tech .. vol. MTT- 
22, pp. 270-275,1974. 
F. Filicori, V. A. Monaco, and C. Naldi, “Simulation and design of 
microwave class-C amplifiers through harmonic analysis,” IEEE 
Trans. Microwuve Theoiy Tech., vol. MTT-27, pp. 1043-1051,1979, 
R. G. Hicks and P. J. Khan, “Numerical analysis of subharmonic 
mixers using accurate and approximate models,” IEEE Truns. 
Microwuue Theoiy Tech.. vol. MTT-30, pp. 2113-2120. 1982. 
C. Camacho-Penalosa, “Numerical steady-state analysis of nonlin- 
ear microwave circuits with periodic excitation,” IEEE Truns. 
Microwuoe Theory Tech., vol. MTT-31, pp. 724-730, 1983. 
M. S. Nakhla and J. Vlach, “A piecewise harmonic balance tech- 
nique for determination of periodic response of nonlinear systems,” 
IEEE Trans. Circuits Svst., vol. CAS-23, pp. 85-91. 1976. 
A. Ushida and L. 0. Chua, “Frequency-domain analysis of nonlin- 
ear circuits driven by multi-tone signals,” I E E E  Truns. Circuits 
Syst., vol. CAS-31, pp. 766-779, 1984. 
K. S. Kundert, G. B. Sorkin, and A. Sangiovanni-Vincentelli, 
“Applying harmonic balance to almost-periodic circuits,” IEEE 
Truns. Microwuve Theory Tech., vol. MTT-36, pp. 366-378, 1988. 
V. Rizzoli and A. Neri, “State of the art and present trends in 
nonlinear microwave CAD techniques,” IEEE Trans. Microwuve 
Theoiy Tech., vol. MTT-36, pp. 343-365, 1988. 
S. W. Director and R. A. Rohrer, “The generalized adjoint network 
and network sensitivities,” IEEE Truns. Circuit Theon, vol. CT-16, 
pp. 318-323, 1969. 
L. 0. Chua and P. M. Lin. Computer-Aided Anulvsis of Electronic 

MTT-34, pp. 1294-1307. 1986. 

MTT-35, pp. 643-652, 1987. 

Circuits. Englewood Cliffs, NJ: Prentice-Hall, 1975. . 
(Al l )  [19] D. A. Calahan, Computer-Aided Network Design, 2nd ed. New 

York, NY: McGraw-Hill, 1972. 
R. H. Jansen, “Computer-aided design of hybrid and monolithic 

( D - ’ +  x-’)-’= x- x(D + x)-’x 
and substituting (A3) and (A8) into (A10) we get [20] 

microwave integrated circuits-State of the art, problems and 
trends,” in Proc. European Microwuoe Con/. (Numberg, West 
Germany), 1983, pp. 67-78. 

(A121 
or [21] A. S. Householde;,-“A survey of some closed methods for inverting 

matrices,” SIAM J., vol. 5 ,  pp. 155-169, 1957. 
(A13) 

ACKNOWLEDGMENT 
Technical discussions with Dr. R. A. Puce1 of Raytheon 

Company, Research Division, Lexington, MA, Dr. F. J. 
Rosenbaum of Washington University, St. Louis, MO, and 
Dr. R. Gilrnore of Compact Software Inc., Paterson, NJ, 
on nonlinear circuits and devices and on harmonic balance 
simulation techniques are gratefully appreciated. 

REFERENCES 
[ l ]  V. Ruzoli, A. Lipparini and E. Marazzi, “A general-purpose pro- 

gram for nonlinear microwave circuit design,” IEEE Trans. Mi- 
crowave Theon? Tech., vol. MTT-31. pp. 762-769. 1983. 
W. R. Curtice and M. Ettenberg, “A nonlinear GaAs FET model 
for use in the design of output circuits for power amplifiers,” IEEE 
Truns. Microwuue Theory Tech., vol. MTT-33, pp. 1383-1394, 1985. 
W. R. Curtice, “Nonlinear analysis of GaAs MESFET amplifiers, 
mixers, and distributed amplifiers using the harmonic balance 
technique,” IEEE Trans. Microwuue Theoiy Tech., vol. MTl-35, 
pp. 44-447, 1987. 
W. R. Curtice, “GaAs MESFET modeling and nonlinear CAD,” 
I E E E  Truns. Microwui~e Theory Tech., vol. MTT-36, pp. 220-230, 

[2] 

[3] 

[4] 

John W. Bandler (S’66-M’66-SM’74-F’78) was 
born in Jerusalem, Palestine. on November 9, 
1941. He studied at the Imperial College of Sci- 
ence and Technology, London, England, from 
1960 to 1966. He received the B.Sc. (Eng.). Ph.D 
and D.Sc. (Eng.) degrees from the University of 
London, London, England, in 1963, 1967, and 
1976, respectively. 

He joined Mullard Research Laboratories. 
Redhill, Surrey, England, in 1966. From 1967 to 
1969 he was a Postdoctorate Fellow and Ses- 

sional Lecturer at the University of Manitoba, Winnipeg, Canada. He 
joined McMaster University, Hamilton, Canada, in 1969, where he is 
currently a Professor of Electrical and Computer Engineering. Dr. 
Bandler has served as Chairman of the Department of Electrical Engi- 
neering and Dean of the Faculty of Engineering. He currently directs 
research in the Simulation Optimization Systems Research Laboratory. 
He is President of Optimization Systems Associates Inc., Dundas, Ont., 



BANDLER et al. : UNIFIED THEORY FOR FREQUENCY-DOMAIN SIMULATION 1669 

Canada, which he established in 1983. OSA currently provides consulting 
services and software to numerous microwave clients in CAE of mi- 
crowave integrated circuits. 

Dr. Bandler contributed to Modern Filter Theory and Design (Wiley- 
Interscience, 1973) and to Analog Methodr for Computer-Aided Circuit 
Analysis and Diagnosis (Marcel Dekker, 1988). He has more than 220 
publications, four of which appear in Computer-Aided Filter Design 
(IEEE Press, 1973), one in Microwave Integrated Circuits (Artech House, 
1975), one in Low-Noise Microwave Transistors and Amplifiers (IEEE 
Press, 1981). one in Microwave Integrated Circuits (2nd ed., Artech 
House, 1985), one in Statisticul Design of Integrated Circuits (IEEE Press, 
1987). and one in Analog Fault Diagnosis (IEEE Press, to be published). 
Dr. Bandler was an Associate Editor of the IEEE TRANSACTIONS ON 
MICROWAVE THEORY AND TECHNIQUES (1969-1974). He was Guest 
Editor of the Special Issue of the IEEE TRANSACTIONS ON MICROWAVE 
THEORY AND TECHNIQ~JES on Computer-Oriented Microwave Practices 
(March 1974). 

Dr. Bandler is a Fellow of the Royal Society of Canada and of the 
Institution of Electrical Engineers (Great Britain). He is a member of the 
Association of Professional Engineers of the Province of Ontario 
(Canada). 

f& 

Qi-jun Zhang (S’84-M’87) was born in Xianyan, 
Shanxi, China, on October 8, 1959. He received 
the B.Fing. degree from the East China Engineer- 
ing Institute, Nanjing, China in 1982, and the 
Ph.D. Degree from McMaster University, 
Hamilton, Canada in 1987, all in electrical engi- 
neering. 

He was a research assistant in the Institute 
of Systems Engineering, Tianjin University, 
Tianjin, China, from 1982 to 1983. He was a 
teachine assistant in the DeDartment of Electri- 

cal and Computer Engineering, hcMaster Universiti from 1984 to 1987. 
He was a postdoctoral fellow in the Department of Electrical and 
Computer Engineering, McMaster University from September 1987 to 

March 1988. Presently he is a research engineer with Optimization 
Systems Associates Inc., Dundas, Ontario, Canada. His professional 
interests include all aspects of circuit CAD with emphasis on large-scale 
simulation and optimization, design and modelling of nonlinear mi- 
crowave circuits, statistical modeling, sensitivity analysis, and the diagno- 
sis and tuning of analog circuits. 

Dr. Zhang is a contributor to Analog Methods for Computer-Aided 
Circuit Analysis und Diagnosis (Marcel Dekker, 1988). 

Radoslaw M. Biernacki (M85-SM86) was born 
in Warsaw, Poland. He received the Ph.D. degree 
from the Technical University of Warsaw, War- 
saw, Poland, in 1976. 

He became a Research and Teaching Assistant 
in 1969 and an Assistant Professor in 1976 at the 
Institute of Electronics Fundamentals, Technical 
University of Warsaw. From 1978 to 1980 he 
was on leave with the Research Group on Sim- 
ulation, Optimization and Control and the 
Denartment of Electrical and Comouter Enei- ~~ ~r ~-~ Y 

neering, McMaster University, Hamilton, Canada, as a Post-Doctorate 
Fellow. From 1984 to 1986 he was a Visiting Associate Professor at Texas 
A&M University, College Station, TX. He joined Optimization Systems 
Associates, Inc., Dundas, Ontario, Canada, in 1986, as Senior Research 
Engineer. In 1988 he also became a Professor (part-time) in the Depart- 
ment of Electrical and Computer Engineering, McMaster University. His 
research interests include system theory, optimization and numerical 
methods, and computer-aided design of integrated circuits and control 
systems. 

Dr. Biernacki has more than 50 publications and has been awarded 
prizes several times for his research and teaching activities. 


