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A unified theory of balance in the
extratropics

By SIMAL SAUJANI AND THEODORE G. SHEPHERD
Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

(Received 19 August 2005 and in revised form 12 June 2006)

Many physical systems exhibit dynamics with vastly different time scales. Often the
different motions interact only weakly and the slow dynamics is naturally constrained
to a subspace of phase space, in the vicinity of a slow manifold. In geophysical
fluid dynamics this reduction in phase space is called balance. Classically, balance is
understood by way of the Rossby number R or the Froude number F ; either R � 1
or F � 1.

We examined the shallow-water equations and Boussinesq equations on an f -plane
and determined a dimensionless parameter ε, small values of which imply a time-scale
separation. In terms of R and F ,

ε =
RF√

R2 + F 2
.

We then developed a unified theory of (extratropical) balance based on ε that includes
all cases of small R and/or small F . The leading-order systems are ensured to be
Hamiltonian and turn out to be governed by the quasi-geostrophic potential-vorticity
equation. However, the height field is not necessarily in geostrophic balance, so
the leading-order dynamics are more general than in quasi-geostrophy. Thus the
quasi-geostrophic potential-vorticity equation (as distinct from the quasi-geostrophic
dynamics) is valid more generally than its traditional derivation would suggest. In the
case of the Boussinesq equations, we have found that balanced dynamics generally
implies hydrostatic balance without any assumption on the aspect ratio; only when
the Froude number is not small and it is the Rossby number that guarantees a time-
scale separation must we impose the requirement of a small aspect ratio to ensure
hydrostatic balance.

1. Introduction
The concept of balance is a central theme in geophysical fluid dynamics (e.g. Daley

1991). Although rotating stratified fluids allow for both vortical and inertia–gravity-
wave motions, we often observe the former to play a dominant role in the time
evolution of the system. That is, we find the dependent variables are constrained by
diagnostic equations, and we say the dynamics is balanced. There has been much effort
to derive dynamical equations to model geophysical flows that remain balanced, or
nearly so, for all time. Such models are an important means of developing theoretical
understanding and diagnostic-analysis methods for the large-scale atmosphere and
oceans.

Recent research has shown that for non-trivial flows the concept of balance is not ex-
act (e.g. Warn 1997; Ford, McIntyre & Norton 2000; Wirosoetisno & Shepherd 2000),
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and most mathematical approaches to balance are based on an asymptotic analysis.
However, practical applications of balance show that it is surprisingly accurate even
when the asymptotic parameters are not particularly small (McIntyre & Norton 2000).

Classically, there are two main approaches corresponding to two distinct balanced
regimes. The small-Rossby-number limit (Charney 1948) corresponds to a rapidly
rotating flow and, as is well known, yields the quasi-geostrophic equations. The small-
Froude-number limit (Charney 1963) corresponds to a strongly stratified flow and
was originally developed for the tropics, where the Rossby number is unbounded. It
has been argued that this regime is also relevant to the extratropical mesoscale, where
the Rossby number is O(1) or larger (Lilly 1983). In both cases, small values of a
dimensionless parameter characterize a particular balanced dynamics; the parameter
may be considered as a dimensionless amplitude of the motion (relative to rotation
or stratification). Assuming an asymptotic expansion in this parameter, we may write
a hierarchy of dynamical equations. The lowest-order equations capture the essential
effects of the small parameter; higher-order equations may be solved as needed.
Care must be taken, however, that the parameter is sufficiently small to ensure that
the analysis and resulting models are valid. In particular, attempting to allow for,
say, O(1) Rossby-number terms by including higher-order terms in a small-Rossby-
number expansion is inconsistent. It would also seem to be quite unnecessary since
the basis for balance, in this case, should be a small Froude number.

The derivations of these two classical models are completely independent. Although
there are ad hoc methods to combine them a posteriori (e.g. McWilliams 1985;
Vallis 1996), a more general theory would incorporate both cases systematically
and simultaneously. Moreover, since the governing equations are Hamiltonian, the
leading-order balance equations would themselves be Hamiltonian. This is important
for the development of general theory (Shepherd 2003). Combining models in an
ad hoc fashion tends to spoil the Hamiltonian structure.

Fundamentally, balance is possible when the dynamics admits motions with vastly
different time scales (van Kampen 1985). For geophysical flows, balance requires the
time scale of the vortical motion to be significantly larger than that of the inertia–
gravity waves. Clearly, if the dynamics is to be determined by a subset of the variables
(the ‘slow’ variables) then we would expect little or no interaction with the remaining
(‘fast’) variables. By demanding different time scales we minimize interactions due to
frequency matching through nonlinearity (Errico 1982; Saujani & Shepherd 2002).
Furthermore, by distinguishing slow and fast variables we can avoid secular growth in
the asymptotic analysis (Warn et al. 1995; Wirosoetisno, Shepherd & Temam 2002).
We shall therefore define a dimensionless time-scale-separation parameter ε, small
values of which will characterize balance rather than a particular balanced state. This
simple definition makes ε the correct asymptotic parameter for a general theory of
balance. It turns out that

ε =
RF√

R2 + F 2
, (1.1)

where R is the Rossby number and F is the Froude number. It follows that
ε ∼ min[R, F ]. Hence small ε includes the small-Rossby-number and small-Froude-
number cases – the latter even when R → ∞. Moreover, no further assumptions
are necessary. In particular, the balance of terms in the equations of motion is not
considered.

For a nonlinear system we infer the dominant time scales of motion by considering
the dispersion relation for the linearized system and comparing the resulting time
scales with the nonlinear (advective) time scale. We expect the linearized frequencies
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to correspond to peaks in the frequency spectrum, broadened due to nonlinearity.
The geophysical models to be considered possess just two time scales, one slow and
one fast. By considering their ratio we may choose the dimensionless product ε in
such a way that the limit ε → 0 forces this ratio to be large. Consequently, we expect
some kind of balance with ε as our asymptotic parameter.

Explicit in our approach is the assumption of a reference state. This is what allows
us to define a time-scale separation and thus develop the asymptotic theory that
leads to the balance constraints, without any further assumptions. A complementary
approach (e.g. Salmon 1983) is to impose the balance constraints on the basis of
empirical knowledge, in which case there is no need to introduce a reference state.

We focus on the rotating shallow-water equations and their Boussinesq counterpart.
The Coriolis parameter is taken to be constant (not excluding zero). Our analysis
incorporates the slaving technique of Warn et al. (1995). This leads to unified balanced
dynamical equations that apply equally well to both the small-Rossby-number and
small-Froude-number regimes.

2. Analysis of the shallow-water equations
2.1. Fast and slow variables

The rotating shallow-water equations in Cartesian coordinates are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v + g

∂h

∂x
= 0, (2.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f u + g

∂h

∂y
= 0, (2.2)

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
+ h

(
∂u

∂x
+

∂v

∂y

)
= 0, (2.3)

where (u, v) is the horizontal fluid velocity, f is the (constant) Coriolis parameter, h

is the surface height and g is the (constant) acceleration due to gravity. For simplicity,
we shall assume a domain D with doubly periodic boundary conditions.

First we linearize about a rest state (u, v, h) = (0, 0, H ), where H is constant.
Assuming normal-mode solutions of the form

{u, v, h} = {ũ, ṽ, h̃}ei (kx+ly−ωt) (2.4)

the dispersion relation is found to be

ω3 − (f 2 + gHκ2)ω = 0, (2.5)

where κ2 ≡ k2 + l2. The solutions are

ω0 = 0, ω± = ±
√

f 2 + gHκ2. (2.6)

Under nonlinear frequency broadening by advection these become, to a good
approximation,

ω0 ∼ Uκ, ω± ∼ Uκ ±
√

f 2 + gHκ2, (2.7)

where U is a characteristic flow speed. Now consider the ratio of the slow time scale
and the fast time scale, that is, the ratio of the fast frequency and the slow. We have

ω+

ω0

∼ 1 +

√
R2 + F 2

RF
, (2.8)

where R = Uκ/f is the Rossby number and F = U/
√

gH is the Froude number.
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Two important points are borne from the above simple analysis. First, the dispersion
relation has three solutions: one slow vortical mode and two fast inertia–gravity waves.
Thus there are two time scales of the motion and we expect to find suitable variables
that split the dynamics into these separate time scales. Second, the time scales are
distinct if and only if the ratio ω+/ω0 is large, i.e. if and only if

ε ≡ RF√
R2 + F 2

� 1. (2.9)

This ε is our time-scale separation parameter. As ε → 0 the motion may be considered
as weak (relative to rotation and gravity) and we are ensured disparate time scales in
the dynamics. This necessary condition satisfied, we are then justified to hope for, if
not expect, a balanced system by setting the fast dynamics to zero.

Notice that

min[R, F ]√
2

� ε � min[R, F ]. (2.10)

As an asymptotic parameter for balance, ε is equivalent to min[R, F ] and yet has
been determined solely from the physics. Both the traditional approximations, the
small-Rossby-number limit (R → 0, B ≡ F/R fixed) and the small-Froude-number
limit (F → 0, R fixed), imply ε → 0. However, ε → 0 is more general; it includes,
for example, planetary geostrophy (R → 0, F fixed). We will consider the time-scale
separation limit ε → 0 without specifying R or F , thereby obtaining a unified scaling.

Let us now set about the task of finding suitable variables. Our goal is to rewrite
the shallow-water equations in terms of slow and fast variables that decouple the
slow motion from the fast. Following Warn et al. (1995) the desired form is

∂s

∂t
= S(s, f̃ ; ε), (2.11)

∂f̃

∂t
+

Λf̃

ε
= F(s, f̃ ; ε). (2.12)

Here s and f̃ refer to slow and fast variables respectively, Λ is a linear invertible
operator, S and F are nonlinear operators and ε is a small asymptotic parameter.
Obviously, s evolves on an O(1) time scale, while f̃ naturally evolves on a time scale
of O(ε) � 1. The eigenvalues of Λ are the eigenfrequencies of the fast waves on the
fast time t/ε.

First we must non-dimensionalize the equations. We use the characteristic flow
speed U , the horizontal length scale L, the mean depth H and, as we are seeking
slow solutions, the advective time scale T = L/U . Noting that all variables are now
dimensionless, the equations become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− v

R
+

1

F 2

∂h

∂x
= 0, (2.13)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

u

R
+

1

F 2

∂h

∂y
= 0, (2.14)

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
+ h

(
∂u

∂x
+

∂v

∂y

)
= 0. (2.15)

Since ε � 1 corresponds to weak motions, it is natural to assume small surface
displacements by taking h = 1 + εη. This, however, neglects the possibility of large
length scales over which small surface displacements can accumulate to produce O(1)



Balance in the extratropics 451

effects. In the light of this R → 0 limit, we choose to scale with h = 1 + Fη. Also, it
is convenient to rewrite these equations in terms of a velocity potential and stream
function: (u, v) = ∇φ + ẑ × ∇ψ. This allows us to replace (2.13), (2.14) with equations
for the scalars φ and ψ . Finally, choosing the rotational Froude number B = F/R

(the shallow-water analogue of the inverse square root of the Burger number) and
ε instead of the Rossby and Froude numbers as our dimensionless parameters, we
obtain

∂

∂t
∇2φ − 1

ε

(
B√

1 + B2
∇2ψ − 1√

1 + B2
∇2η

)

+ J
(
φ, ∇2ψ

)
− 2J

(
∂ψ

∂x
,
∂ψ

∂y

)
+

1

2
∇2 [∇φ · ∇φ − 2J (φ, ψ)] = 0, (2.16)

∂

∂t
∇2ψ +

1

ε

B√
1 + B2

∇2φ + ∇ · (∇2ψ ∇φ) + J (ψ, ∇2ψ) = 0, (2.17)

∂η

∂t
+ ∇φ · ∇η + J (ψ, η) +

(
1√

1 + B2ε
+ η

)
∇2φ = 0. (2.18)

Here J (f, g) = det(∂(f, g)/∂(x, y)). As written, the equations naturally suggest the
fast variables

δ ≡ ∇2φ, (2.19)

Γ ≡ b ∇2ψ −
√

1 − b2 ∇2η, (2.20)

where b ≡ B/
√

1 + B2 ∈ [0, 1). (We allow b = 0 so as to include the case f = 0.) Since
the potential vorticity is an exact Lagrangian invariant, it evolves on the advective
time scale and thus makes an obvious choice for the slow variable. Here it takes the
form

Q =
b

√
1 − b2 + ε

√
1 − b2 ∇2ψ√

1 − b2 + εη
. (2.21)

However, since we are interested in disturbances to the rest state, rather than potential
vorticity the disturbance potential vorticity is the appropriate quantity. Let us call it
q . We must have

Q =
b

√
1 − b2 + ε

√
1 − b2 ∇2ψ√

1 − b2 + εη
= b +

ε√
1 − b2

q (2.22)

⇐⇒ q =
(1 − b2)∇2ψ − b

√
1 − b2η√

1 − b2 + εη
. (2.23)

Note that the perturbation potential vorticity is scaled to be an O(ε) quantity, except
when b → 1 (R → 0) and it becomes O(1). Exactly as for η, its value must be allowed
to accrue over large length scales in this limit. We have then, finally,

∂q

∂t
= −∇φ · ∇q − J (ψ, q), (2.24)

∂δ

∂t
− Γ

ε
= −J (φ, ∇2ψ) + 2J

(
∂ψ

∂x
,
∂ψ

∂y

)
− 1

2
∇2[∇φ · ∇φ + 2J (ψ, φ)], (2.25)

∂Γ

∂t
+

Aδ

ε
=

√
1 − b2 ∇2[∇ · (η∇φ) + J (ψ, η)] − b[∇ · (∇2ψ ∇φ) + J (ψ, ∇2ψ)], (2.26)
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where A ≡ b2 − (1 − b2)∇2. That we have succeeded in writing the equations in the
desired (Warn et al. 1995) form (2.11), (2.12) justifies our choice of fast and slow
variables. Here b ranges between 0 (inclusive) and 1 (exclusive), and there is no
corresponding singularity in these equations nor in the variables defined by (2.19),
(2.20) and (2.23). Thus ε is our sole singular perturbation parameter; special limits can
subsequently be considered by treating b (i.e. B) as a regular perturbation parameter.

In finding asymptotic solutions we shall repeatedly encounter Poisson’s equation,
and it is convenient to use the notation (∇2)−1. Technically, the Laplacian with periodic
boundary conditions has a unique solution only to within an arbitrary constant. For
us, this constant can always be shown to be zero or to be attached to a velocity
potential or stream function. In the latter case it has no physical significance and we
assign it to be zero for simplicity. The distinction will be made clear as necessary. The
operator A is strictly invertible for b �= 0 and reduces to the Laplacian when b = 0.

2.2. Asymptotic models

Following van Kampen (1985) and Warn et al. (1995), we assume the slow variable
q to be exact and expand all other variables in our asymptotic parameter ε (see
Wirosoetisno et al. 2002 for a justification). In particular, the fast variables have
asymptotic expansions

δ = δ0 + εδ1 + ε2δ2 + · · · (2.27)

Γ = Γ0 + εΓ1 + ε2Γ2 + · · · (2.28)

Any other variables are expanded similarly and are necessarily written in terms of

q, δ and Γ . Provided F = ε/
√

1 − b2 � 1, we may expand q according to

q =
√

1 − b2∇2ψ0 − bη0+ε

(√
1 − b2∇2ψ1−bη1−η0∇2ψ0+

b√
1 − b2

η2
0

)
+O(ε2). (2.29)

Since this equation must hold at all orders,

q =
√

1 − b2 ∇2ψ0 − bη0. (2.30)

Now at O(ε−1) , (2.25) and (2.26) give us

−Γ0 = −b ∇2ψ0 +
√

1 − b2 ∇2η0 = 0, (2.31)

Aδ0 = [b2 − (1 − b2)∇2]∇2φ0 = 0. (2.32)

Immediately we have ∇2φ0 = 0, whence we may take φ0 = 0. Using (2.30), (2.31) we
can solve for ψ0 and η0 in terms of q alone:

ψ0 = −
√

1 − b2A−1q, (2.33)

η0 = −bA−1q. (2.34)

Thus, from (2.24), our leading-order evolution equation for the balanced dynamics is

∂q

∂t
= −J (ψ0, q), (2.35)

with (2.33) or, equivalently,

q =
√

1 − b2 ∇2ψ0 − b2

√
1 − b2

ψ0, (2.36)

=
1√

1 + B2
(∇2ψ0 − B2ψ0). (2.37)
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This is the leading-order balanced-dynamics model and is guaranteed to be
Hamiltonian. The potential-vorticity evolution equation (2.35), (2.36) is identical to
the quasi-geostrophic (QG) equation for shallow-water flow (e.g. Pedlosky 1987), but
our derivation shows that the equation is valid more generally than its traditional
derivation would suggest; no assumption of R � 1 has been made, only that ε � 1.
As such, different balanced regimes are possible.

The standard QG limit is R → 0 and F → 0 with b (i.e. B) held fixed. In this
case (2.33), (2.34) gives geostrophic balance and (2.35) gives the corresponding QG
evolution equation.

In the small-Froude-number limit F → 0 with R fixed (but arbitrary), we have
b → 0 (i.e. B → 0) and q = ∇2ψ0. Here δ0 satisfies Laplace’s equation and so must
be constant. Integrating δ0 over the domain and applying the periodic boundary
conditions reveals this constant to be zero. Therefore (2.35) reduces to the two-
dimensional Euler equation. This regime holds even if f = 0 (R = ∞); there is no
singularity, we simply have ε = F → 0. Clearly, quasi-geostrophy is not implied in this
limit since (2.31) implies that η0 is constant. As η0 is defined to be the departure from
the mean depth this constant must be zero. Hence height is a fast variable rather
than being related to the stream function through geostrophic balance. Note that it
was not necessary to rescale the perturbation height h. All this confirms that we have
chosen the correct asymptotic parameter and correct variables to describe the motion.

The third special case of physical interest is planetary geostrophy (PG) or Type II
QG scaling; here R → 0 with F fixed implying b → 1 (i.e. B → ∞). Returning to

definition (2.23) and noting that
√

1 − b2 = ε/F we have now

q = − η0

1 + Fη0

+ ε

[
∇2ψ0 − Fη1

F (1 + Fη0)
+

Fη0η1

(1 + Fη0)2

]
+ O(ε2), (2.38)

whence, since q is exact,

q = − η0

1 + Fη0

. (2.39)

Of course, (2.31), (2.32) still apply; we find ∇2ψ0 = ∇2φ0 = 0 and the leading-order
dynamics is trivial, ∂q/∂t = 0. The height perturbations are, however, non-trivial,
being slaved to q via

η0 = − q

1 + Fq
. (2.40)

The key point is that the time-evolution equation (2.35) together with the diagnostic
relations (2.31), (2.32) (and the definition (2.30)) represent a unified theory of balance
based upon an assumed time-scale separation between the vortical motion and inertia–
gravity waves. In particular, there is no assumption of geostrophy, nor any particular
assumption on R or F .

Continuing to O(1) in (2.25), (2.26) we find

−Γ1 = −b ∇2ψ1 +
√

1 − b2 ∇2η1 = 2J

(
∂ψ0

∂x
,
∂ψ0

∂y

)
, (2.41)

Aδ1 = [b2 − (1 − b2)∇2]∇2φ1 = −bJ (ψ0, ∇2ψ0). (2.42)

Since q is exact, and first assuming F � 1, we have from (2.29) that
√

1 − b2 ∇2ψ1 − bη1 − η0q√
1 − b2

= 0. (2.43)
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The system is linear in ψ1, φ1 and η1 and it is straightforward to solve for these
variables in terms of q alone (through ψ0 and η0). This yields

ψ1 = −(A ∇2)−1

[
2bJ

(
∂ψ0

∂x
,
∂ψ0

∂y

)
+ ∇2(η0q)

]
, (2.44)

φ1 = −b(A ∇2)−1[J (ψ0, ∇2ψ0)], (2.45)

η1 = −A−1

[
2
√

1 − b2J

(
∂ψ0

∂x
,
∂ψ0

∂y

)
+

b√
1 − b2

η0q

]
. (2.46)

Thus, from (2.24), the evolution equation for the balanced dynamics with O(ε)
correction is now

∂q

∂t
= −J (ψ0, q) − ε [∇φ1 · ∇q + J (ψ1, q)] , (2.47)

with (2.30), (2.31) and (2.41)–(2.43).
As with the leading-order system we can now consider various special cases. In

the QG limit the equations hold as written with b (i.e. B) regarded as an arbitrary
parameter. Setting b = 1/

√
2 (i.e. B = 1), which amounts to a specific choice of the

length scale L, our model reduces to (40)–(42) of Warn et al. (1995). (Note that their
ε is equivalent to our R and B = 1 implies R =

√
2ε for our R and ε. With this caveat

the equations are indeed identical.)
For F → 0 with R fixed we have ε = Rb → 0 as b → 0. From (2.42) we see that δ1

satisfies Laplace’s equation and, just as was argued for δ0, must also vanish. From
(2.43) it follows that ψ1 = 0 and there is no correction to the leading-order flow at this
order. There is, however, a non-trivial correction to the surface displacement given
by (2.41),

∇2η1 = 2J

(
∂ψ0

∂x
,
∂ψ0

∂y

)
, (2.48)

and also, from (2.30) and (2.31), an O(b) correction to η0, namely

∇2η0 = bq. (2.49)

Thus the O(ε) slow dynamics can be written

∂q

∂t
= −J (ψ0, q) , (2.50)

∇2η = ε
q

R
+ 2εJ

(
∂ψ0

∂x
,
∂ψ0

∂y

)
, (2.51)

where η = η0 + εη1. The evolution equation remains the two-dimensional Euler
equation, but now we have (ageostrophic) nonlinear Charney balance providing a
slaving relation for the height field.

For R → 0, (2.31) now implies an O(
√

1 − b2) correction to the leading-order
velocity field, namely

−∇2ψ0 +
ε

F
∇2η0 = 0. (2.52)

Accordingly, to this order of approximation, (2.41) and (2.42) imply ψ1 = φ1 = 0. Using
(2.38) with (2.39) we obtain

∇2ψ0 − Fη1(1 + Fq) = 0 (2.53)
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and it is consistent to take η1 = 0 at this order. We have now a non-zero velocity field
but still trivial slow dynamics. (A non-trivial slow dynamics does emerge two orders
higher.)

The system of equations (2.24)–(2.26) is indeed quite general. As noted by Warn
et al. (1995), systems of this form allow balanced dynamics that can be extended to
arbitrarily high order; in particular, the invertibility of the linear operators on the left-
hand sides of (2.25) and (2.26) guarantees slaving relations to all orders. The main
feature of the present analysis is that two theories of balance, previously considered
disjoint, are shown to be special cases of one general theory.

3. Analysis of the Boussinesq equations
3.1. Fast and slow variables

We now consider the (non-hydrostatic) Boussinesq equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− f v +

1

ρs

∂P

∂x
= 0, (3.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ f u +

1

ρs

∂P

∂y
= 0, (3.2)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
− Θ

θs

g +
1

ρs

∂P

∂z
= 0, (3.3)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (3.4)

∂Θ

∂t
+ u

∂Θ

∂x
+ v

∂Θ

∂y
+ w

∂Θ

∂z
= 0, (3.5)

where (u, v, w) is the fluid velocity, f is the (constant) Coriolis parameter, g is the
(constant) acceleration due to gravity, ρs is the (constant) reference density, θs is the
(constant) reference potential temperature, Θ is the potential-temperature departure
from θs and P is the pressure departure from a reference pressure. For simplicity,
we again choose periodic boundary conditions on a domain D, except that now
they will be applied to departures from a stably stratified rest state with potential
temperature Θ0(z) and pressure P0(z) in hydrostatic balance. The Brunt–Väisälä
frequency N =

√
(g/θs)dΘ0/dz is assumed constant.

We proceed much as before. Linearizing about (u, v, w, P, Θ) = (0, 0, 0, P0(z), Θ0(z))
and assuming normal-mode solutions of the form

{u, v, w, P − P0, Θ − Θ0} = {ũ, ṽ, w̃, P̃ , Θ̃}ei(kx+ly+mz−ωt), (3.6)

we obtain the dispersion relation

ω3 −
(

f 2m2 + N2κ2

κ2 + m2

)
ω = 0, (3.7)

where again κ = k2 + l2. We find solutions

ω0 = 0, ω± =

√
f 2m2 + N2κ2

κ2 + m2
. (3.8)
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Under a nonlinear frequency broadening by advection we have, to a good
approximation,

ω0 ∼ Uκ, ω± ∼ Uκ ±
√

f 2m2 + N2κ2

κ2 + m2
, (3.9)

where U is a characteristic flow speed. The ratio of the slow and fast time scales is

ω+

ω0

∼ 1 +
1√

1 + α2

√
R2 + F 2

RF
. (3.10)

Here R = Uκ/f is the Rossby number, F = Um/N is the Froude number for a
stratified flow and α = κ/m is the aspect ratio of the length scales. Our condition for
balance, i.e. a separation in time scales, holds if and only if

ε =
RF√

R2 + F 2
� 1√

1 + α2
. (3.11)

Typically, in geophysical applications α � 1. As ε is an asymptotic parameter we may
replace the right-hand side of (3.11) with unity. Then this condition is identical to
that for the shallow-water equations.

To continue we must non-dimensionalize the equations. We use the characteristic
flow speed U , the horizontal length scale L, the vertical length scale H and the
(horizontal) advective time scale T = L/U . For the potential temperature we use
HdΘ0/dz =HθsN

2/g, and for the pressure we assume a scaling Π , to be determined.
Furthermore, we shall assume displacements from the background stratification Θ0(z)
by setting Θ = Θ0(z) + Fθ and P = P0(z) + Fp. These perturbations are always small
except in the PG limit when F is held fixed. Recall that this is the long-length-
scale limit over which small perturbations may accumulate. As before, we prefer
b =B/

√
1 + B2 = F/

√
R2 + F 2 and ε instead of R and F for our dimensionless

parameters; we have now

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− b

ε
v +

εΠ√
1 − b2ρsU 2

∂p

∂x
= 0, (3.12)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+

b

ε
u +

εΠ√
1 − b2ρsU 2

∂p

∂y
= 0, (3.13)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
−

√
1 − b2

α2ε
θ +

εΠ

α2
√

1 − b2ρsU 2

∂p

∂z
= 0, (3.14)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (3.15)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
+

√
1 − b2

ε
w = 0. (3.16)

Note that here Θ0 is dimensionless and, by our choice of scaling, dΘ0/dz =1. Observe
also that hydrostatic balance emerges naturally upon taking the limit α → 0 with no
assumption on ε.

We may now decide upon an appropriate value for Π . From the momentum
equations it follows that

Π ∼ ρsU
2 max

[√
1 − b2

ε
,
b

√
1 − b2

ε2
,
1 − b2

ε2

]
. (3.17)
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Since we are interested in balanced dynamics for which ε � 1 this suggests the scaling

Π =
√

1 − b2ρsU
2/ε2. Thus we have

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− b

ε
v +

1

ε

∂p

∂x
= 0, (3.18)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+

b

ε
u +

1

ε

∂p

∂y
= 0, (3.19)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
−

√
1 − b2

α2ε
θ +

1

α2ε

∂p

∂z
= 0, (3.20)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (3.21)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
+

√
1 − b2

ε
w = 0. (3.22)

It is worth remarking that as ε → 0 (3.20) yields

√
1 − b2θ =

∂p

∂z
(3.23)

to leading order. Thus, unless b → 1, balanced dynamics implies hydrostatic balance.
No assumption of small aspect ratio (α � 1 ⇐⇒ H � L) is required.

Now we exploit the incompressibility constraint in order to reduce the number
of equations. Formally, we shall consider w a functional of u and v and tacitly
remember (3.21) as part of the system. As it is only ∂w/∂z that (3.21) determines, this
necessarily introduces some ambiguity, and we shall occasionally refer back to the
full set of governing equations when seeking solutions. Choosing dependent variables
δ, ζ instead of u, v, we have

∂δ

∂t
− bζ − ∇2p

ε
= −uuu · (∇δ − ∇2uuu) − 1

2
∇2|uuu|2 + ζ 2 − ∂uuu

∂z
· ∇w − w

∂δ

∂z
, (3.24)

∂ζ

∂t
+

bδ

ε
= −uuu · ∇ζ − δζ − w

∂ζ

∂z
+

∂

∂z
(ẑ × uuu) · ∇w, (3.25)

∂θ

∂t
+

√
1 − b2

ε
w = −uuu · ∇θ − w

∂θ

∂z
, (3.26)

where δ = ∂u/∂x+∂v/∂y is the horizontal divergence, ζ = ∂v/∂x−∂u/∂y is the vertical
component of vorticity, uuu= (u, v) and ∇ =(∂/∂x, ∂/∂y). Again, as in the shallow-water
analysis, we have a system with three prognostic variables. This is consistent with the
third-order dispersion relation (3.7), which implies one slow and two fast variables.
Pressure is a diagnostic variable and it is useful to have an explicit expression for it:

Lp = bζ +

√
1 − b2

α2

∂θ

∂z
+ ε

(
uuu · ∇2uuu − 1

2
∇2|uuu|2 + ζ 2 − 2

∂uuu

∂z
· ∇w − δ2

)
, (3.27)

where L ≡ ∇2 + (1/α2)(∂2/∂z2).
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As written, the equations naturally suggest fast variables δ and Γ̃ = bζ −∇2p. Using
(3.27) it follows that

Γ̃ = bζ − ∇2L−1

[
bζ +

√
1 − b2

α2

∂θ

∂z

+ ε

(
uuu · ∇2uuu − 1

2
∇2|uuu|2 + ζ 2 − 2

∂uuu

∂z
· ∇w − δ2

)]
. (3.28)

It is reasonable then to take

Γ ≡ α2L
[
b(1 − ∇2L−1)ζ −

√
1 − b2

α2
∇2L−1 ∂θ

∂z

]

= b
∂2ζ

∂z2
−

√
1 − b2 ∇2 ∂θ

∂z
(3.29)

as our second fast variable, since (apart from application of the operator α2L) Γ

and Γ̃ differ by a quantity of O(ε). Notice that in determining Γ we have replaced
the pressure field using (3.27), an equation involving ∂θ/∂z rather than θ itself.
Necessarily, we have lost physical information and, as is the case for w, this is
resolved by invoking the original equations when needed.

We have also an exact Lagrangian invariant, the Boussinesq potential vorticity

Q =

√
1 − b2

R
+

√
1 − b2ζ + b

∂θ

∂z

+ ε

[(
α2 ∂w

∂y
− ∂v

∂z

)
∂θ

∂x
+

(
∂u

∂z
− α2 ∂w

∂x

)
∂θ

∂y
+ ζ

∂θ

∂z

]
, (3.30)

where we have non-dimensionalized with U (ρsL
√

1 − b2)−1 dΘ0/dz. Wishing to focus
on the disturbance fields, we choose for the slow variable

q = Q −
√

1 − b2

R

=
√

1 − b2ζ + b
∂θ

∂z
+ ε

[(
α2 ∂w

∂y
− ∂v

∂z

)
∂θ

∂x
+

(
∂u

∂z
− α2 ∂w

∂x

)
∂θ

∂y
+ ζ

∂θ

∂z

]
. (3.31)

Our equations (3.24)–(3.26) can now be cast in the desired (Warn et al. 1995) form
(2.11), (2.12) as follows:

∂q

∂t
= −uuu · ∇q − w

∂q

∂z
, (3.32)

∂δ

∂t
− L−1Γ

α2ε
= −uuu · (∇δ − ∇2uuu) − 1

2
∇2|uuu|2 + ζ 2 − ∂uuu

∂z
· ∇w − w

∂δ

∂z

− ∇2L−1

(
uuu · ∇2uuu − 1

2
∇2|uuu|2 + ζ 2 − 2

∂uuu

∂z
· ∇w − δ2

)
, (3.33)

∂Γ

∂t
+

Aδ

ε
=

√
1 − b2

∂

∂z
∇2

(
uuu · ∇θ + w

∂θ

∂z

)

− b
∂2

∂z2

(
uuu · ∇ζ + δζ + w

∂ζ

∂z
− ∂

∂z
( ẑ × uuu) · ∇w

)
, (3.34)

where A = (1 − b2)∇2 + b2∂2/∂z2 is an elliptic operator. Here b appears as a regular
perturbation parameter; once again there is no singularity for b ∈ (0, 1). Formally, we
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allow for b = 0 so as to include the possibility of no rotation. As in the shallow-water
analysis, certain differential operators are not generally invertible; the ambiguity
causes no problems and we write their inverses formally for convenience. This will be
justified as needed.

3.2. Asymptotic models

Proceeding with the analysis, we expand all variables in ε except the slow variable q .
The first-order system is simple:

q =
√

1 − b2ζ0 + b
∂θ0

∂z
, (3.35)

Γ0 = b
∂2ζ0

∂z2
−

√
1 − b2 ∇2 ∂θ0

∂z
= 0, (3.36)

A δ0 =

[
(1 − b2)∇2 + b2 ∂2

∂z2

]
δ0 = 0. (3.37)

The last of these implies that δ0 is constant. Integrating δ0 over a horizontal cross-
section and applying the periodic boundary conditions reveals this constant to be
zero. Using ∇2ψ0 ≡ ζ0 the first two equations yield

∇2ψ0 =
√

1 − b2A−1 ∇2q, (3.38)

∂θ0

∂z
= bA−1 ∂2q

∂z2
. (3.39)

The inverse of A introduces constants of integration. Unique solutions are determined
by the boundary conditions, namely∫

(1 − b2)A−1∇2q dA = 0, (3.40)∫
b2A−1 ∂2q

∂z2
dz = 0. (3.41)

Here the first integral is over any horizontal cross-section, the second over any vertical

column. From (3.20) we see that
√

1 − b2θ0 = ∂p0/∂z. With (3.38), (3.39) we can find
p0 (to within a constant) from (3.27) and so have θ0 well determined. Now (3.22)
shows that w0 = 0 and so, by (3.21), the leading-order velocity field is two-dimensional
and non-divergent. Thus uuu0 = ẑ × ∇ψ0 and the leading-order balanced dynamics is

∂q

∂t
= −J (ψ0, q) , (3.42)

with (3.38) or, equivalently,

q =
√

1 − b2 ∇2ψ0 +
b2

√
1 − b2

∂2ψ0

∂z2
(3.43)

=
1√

1 + B2

(
∇2ψ0 + B2 ∂2ψ0

∂z2

)
. (3.44)

This model is Hamiltonian. As with (2.35), (2.36) for the shallow-water system, the
potential-vorticity evolution equation is identical to the QG equation. Note again,
however, that no explicit restriction has been placed on R, only that ε be sufficiently
small. In particular, geostrophic balance is not required. Thus, we have again shown
that the QG potential vorticity equation – as distinct from QG dynamics – is valid
more generally than its traditional derivation would suggest.
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In the small-F limit b = ε/R → 0, or even if b =0, we have

q = ζ0. (3.45)

To this order (3.37) implies δ0 = δ0(z, t). Integrating over a horizontal cross-section
and applying the boundary conditions forces δ0 = 0 identically. Yet these equations
are insufficient to determine θ0 uniquely. In fact, θ0 remains an undetermined periodic
function of z.

To see this we appeal to the full set of equations (3.18)–(3.22) with b = 0. Clearly
∇p0 = 0, implying that p0 is a function of z, t alone. Since

θ0 =
∂p0

∂z
, (3.46)

thus so also is θ0 a function of z, t alone. Additionally, to leading order we find
that w0 = 0. For more information we require the O(ε) horizontal divergence and
knowledge of the vertical velocity w1. From (3.34), (3.21) and the above we have

A δ1 = ∇2δ1 =
∂

∂z
∇2

(
uuu0 · ∇θ0 + w0

∂θ0

∂z

)
= 0, (3.47)

δ1 +
∂w1

∂z
= 0. (3.48)

Again the periodic boundary conditions force δ1 to be identically zero. It follows that
w1 depends only on x, y, t . Now (3.22) becomes

∂θ0

∂t
(z, t) + w1(x, y, t) = 0, (3.49)

and it follows that both ∂θ0/∂t and w1 are functions of t alone. Returning to (3.46),
we differentiate once with respect to time, integrate vertically and invoke the periodic
boundary conditions to conclude that θ0 is independent of time.

Therefore θ0 = θ0(z) and otherwise goes undetermined, except that it must be
periodic and satisfy (3.46). We may consider it part of the initial conditions, the
horizontal average of θ at t =0. However, it plays no role in the dynamics at this
order. The leading-order flow is two-dimensional and we may write uuu0 = ẑ × ∇ψ0. We
have then the leading-order balanced dynamics

∂q

∂t
= −J (ψ0, q) , (3.50)

with (3.45). The slow dynamics decouples in the vertical into two-dimensional Euler
dynamics for each value of z (e.g. Vallis 1996).

For the small-R limit, b =
√

1 − (ε/F )2 → 1; now

q =
∂θ0

∂z
. (3.51)

From (3.36), (3.37) and the periodic boundary conditions we readily find that both δ0

and ζ0 are independent of z. With (3.21) it follows that δ0 must vanish. From (3.18)–
(3.20) we obtain ẑ × (u0, v0) + ∇p0 = 0 and that p0 is independent of z. This is exactly
the situation of the Taylor–Proudman theorem, which tells us to expect horizontal
components of velocity independent of z and a horizontal divergence equal to zero.
In the classical exposition, rigid-boundary conditions force the vertical component of
velocity to be equal to zero throughout the flow. In our case we have no information
about w0 except that it depends on x, y, t only. The fluid moves in columns, each
with its own vertical velocity profile.
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More can be said, however, if we are allowed to assume a small aspect ratio. For
example, suppose f � N; this is the regime relevant to large-scale geophysical flows.
Then R → 0 with all else fixed is certainly the long-wave limit and we have

α =
H

L
=

R

F

f

N
�

ε

F
→ 0. (3.52)

From the governing equations we can now determine w0. We have

θ0

F
− ∂p1

∂z
= 0, (3.53)

∂w0

∂z
= 0, (3.54)

∂θ0

∂t
+ u0

∂θ0

∂x
+ v0

∂θ0

∂y
+ w0

(
q +

1

F

)
= 0. (3.55)

The first of these implies the z-average of θ0 to be zero. For a statically stable fluid
we are assured that q + 1/F �= 0 and, since u0, v0, w0 are independent of z, we can
integrate the last to conclude that w0 = 0 identically.

Continuing the general analysis to the next order, (3.31), (3.33) and (3.34) together
with previous work give

√
1 − b2ζ1 + b

∂θ1

∂z
= ∇

(
∂ψ0

∂z

)
· ∇θ0 − ∇2ψ0

∂θ0

∂z
, (3.56)

−b
∂2ζ1

∂z2
+

√
1 − b2 ∇2 ∂θ1

∂z
=

∂2

∂z2

(
∇ψ0 · ∇(∇2ψ0) − 1

2
∇2|∇ψ0|2 +

(
∇2ψ0

)2
)

, (3.57)

(
(1 − b2)∇2 + b2 ∂2

∂z2

)
δ1 =

√
1 − b2

∂

∂z
∇2J (ψ0, θ0) − b

∂2

∂z2

(
J

(
ψ0, ∇2ψ0

) )
.

(3.58)

These equations are linear in ζ1, θ1, δ1 and straightforward to solve; using ∇2ψ1 ≡ ζ1

and ∇2φ1 ≡ δ1, we find

∇2ψ1 = A−1

[√
1 − b2 ∇2

(
∇

(
∂ψ0

∂z

)
· ∇θ0 − ∇2ψ0

∂θ0

∂z

)

− b
∂2

∂z2

(
∇ψ0 · ∇

(
∇2ψ0

)
− 1

2
∇2 |∇ψ0|2 + (∇2ψ0)

2

) ]
, (3.59)

∂θ1

∂z
= A−1 ∂2

∂z2

[
b

(
∇

(
∂ψ0

∂z

)
· ∇θ0 − ∇2ψ0

∂θ0

∂z

)

−
√

1 − b2
∂2

∂z2

(
∇ψ0 · ∇

(
∇2ψ0

)
− 1

2
∇2 |∇ψ0|2 + (∇2ψ0)

2

) ]
, (3.60)

∇2φ1 = A−1

[√
1 − b2

∂

∂z
∇2J (ψ0, θ0) − b

∂2

∂z2
J

(
ψ0, ∇2ψ0

) ]
. (3.61)

The apparent ambiguity in θ1 is resolved using (3.27) and then (3.20), exactly as was
done for θ0. We determine the vertical velocity field w1 from (3.22). Our O(ε) slow
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dynamics is now

∂q

∂t
= −J (ψ0, q) − ε

[
∇φ1 · ∇q + J (ψ1, q) + w1

∂q

∂z

]
, (3.62)

with (3.35)–(3.37) and (3.56)–(3.58). This equation is quite general and, if so desired,
could be extended to arbitrarily high order.

Both small-Rossby-number and small-Froude-number balance regimes are found
by considering special limits for b. We simply note that, for the small-F limit, (3.56)
is replaced with

ζ1 + q
∂θ0

∂z
− ∇

(
∂ψ0

∂z

)
· ∇θ0 = 0, (3.63)

which determines ζ1, since at this order θ0 is slaved to q by way of (3.36). Neglecting
terms of O(b), (3.57) and (3.58) reduce to linear partial differential equations for θ1

and δ1, with everything on the right-hand sides known. In the limit of small R, (3.56)
becomes

qζ0 +
∂θ1

∂z
− ∇

(
∂ψ0

∂z

)
· ∇θ0 = 0, (3.64)

which determines θ1; now it is ζ0 that is slaved to q through (3.36). Neglecting terms

of O(
√

1 − b2), (3.57) and (3.58) reduce to linear partial differential equations for ζ1

and δ1.
Bokhove (1997) applied the same approach to the hydrostatic Boussinesq equations

on an f -plane but using the Rossby number for his asymptotic parameter and
assuming QG scaling. Furthermore, he considered a geometry unbounded in the
horizontal and with rigid vertical boundaries. The restriction to QG scaling permits
an O(1) variation in N(z), something we cannot allow because we are making explicit
use of the Froude number. In the QG limit, our analysis implies hydrostatic balance
whereas Bokhove assumes it from the outset; the resulting systems of balanced
equations differ only in that Bokhove chooses a different slow variable, the QG (or
linearized) potential vorticity. In consequence, with b now held fixed, the right-hand
side of (3.56) is replaced with zero while (3.57), (3.58) remain unchanged, and so his
slow-dynamics equation is not simply pure advection.

4. Conclusions
Our purpose here has been to consider balanced dynamics from a general point

of view. Rather than focus on specific equations we have asked what is required for
a system evolving in time to remain balanced. Our answer is physically motivated:
the dominant frequencies of motion should split into two groups, fast and slow, and
there should be little interaction between them – the point being to limit the potential
for frequency matching through nonlinearity. With this idea we have determined
a dimensionless quantity which, in some sense, measures the strength of possible
coupling between the fast and slow motions. Using this as our asymptotic parameter,
we have found balanced-dynamics equations that are quite general. Our approach
unifies the notions of small-Rossby-number and small-Froude-number balance, and,
of course, preserves the Hamiltonian structure at leading order.

For the shallow-water equations and Boussinesq equations on an f -plane, we have
learned that a time-scale separation in the dynamics is a necessary and sufficient
condition for all classic forms of balance based on R � 1 or F � 1. Moreover, for the
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Boussinesq equations without any assumption on the aspect ratio, balanced dynamics
generally implies hydrostatic balance. Only when the Froude number is not small and
it is the Rossby number that guarantees a time-scale separation must we impose a
small aspect ratio to ensure hydrostatic balance.

The analysis has been presented on an f -plane for simplicity only. Including the
effects of a variable Coriolis parameter on a (mid-latitude) β-plane is straightforward.
The slow-motion solution of the dispersion relation is no longer trivial. Now we have
Rossby waves with frequency ωR ∼ βL ∼ f L/a, where a is the radius of the earth.
Since the inertia–gravity-wave frequency ωG is bounded from below by f , we have
a time-scale separation ωR/ωG � L/a � 1 provided that L/a is sufficiently small. On
the β-plane L/a is an independent dimensionless parameter. If the vortical frequency
ωV =U/L, we have ωR/ωV ∼ βL2/U ∼ (L/a)/R and this ratio may be small, large or
otherwise. While the situation is somewhat more complicated than the analysis above,
the separation of time scales can still be made to hold. In the tropics the situation is
quite different, for there the Rossby-wave frequency cannot be bounded away from
that of the fast motion; ωR �

√
βc/2 but the fast-motion frequency cutoff is

√
βc,

where c is the gravity-wave speed.
For the Boussinesq equations we chose to assume a constant Brunt–Väisälä

frequency N(z) = N for the background state. Evidently there is no simple physical
parameter to control this term if we relax this assumption. Nevertheless, the present
variables suffice to distinguish fast and slow motions if we include in our hypothesis
that N be slowly varying, i.e. dN/dz ∼ ε. The equations are modified accordingly and
the analysis follows through.

A restriction of our approach is to assume a non-zero stratification and, in
particular, f � N . Associated with this is the assumption α � 1. This is appropriate
for large-scale geophysical flows. In the case of unstratified rotating flow, where a
Taylor–Proudman-like balance is possible for which α 
 1, a modified analysis would
be required.

Another restriction is the use of periodic boundary conditions. Rigid boundaries
allow additional slow dynamics (Bokhove 2000; Ren & Shepherd 1997), while
unbounded domains allow Lighthill radiation (Ford, McIntyre & Norton 2000).
Again, for these cases, a modified analysis would be required.

Finding balanced models uniformly valid on the sphere would seem to be the final
frontier; the complications that arise near the equator are quite challenging. The
technique presented here, however, has met with some success. A full discussion of
the equatorial β-plane equations appears in Saujani (2005).

REFERENCES

Bokhove, O. 1997 Slaving principles, balanced dynamics, and the hydrostatic Boussinesq equations.
J. Atmos. Sci. 54, 1662–1674.

Bokhove, O. 2000 On hydrostatic flows in isentropic coordinates. J. Fluid Mech. 402, 291–310.

Charney, J. G. 1948 On the scale of atmospheric motions. Geophys. Publ. 17, No. 2, 251–265.

Charney, J. G. 1963 A note on large scale motions in the tropics. J. Atmos. Sci. 20, 607–609.

Daley, R. 1991 Atmospheric Data Analysis. Cambridge University Press.

Errico, R. M. 1982 Normal mode initialization and the generation of gravity waves by quasi-
geostrophic forcing. J. Atmos. Sci. 39, 573–586.

Ford, R., McIntyre, M. E. & Norton, W. A. 2000 Balance and the slow quasimanifold: some
explicit results. J. Atmos. Sci. 57, 1236–1234.

van Kampen, N. G. 1985 Elimination of fast variables. Phys. Rep. 124, 69–160.



464 S. Saujani and T. G. Shepherd

Lilly, D. K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos.
Sci. 40, 746–761.

McIntyre, M. E. & Norton, W. A. 2000 Potential vorticity inversion on a hemisphere. J. Atmos.
Sci. 57, 1214–1235.

McWilliams, J. C. 1985 A uniformly valid model spanning the regimes of geostrophic and isotropic,
stratified turbulence: balanced turbulence. J. Atmos. Sci. 42, 1773–1774.

Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.

Ren, S. & Shepherd, T. G. 1997 Lateral boundary contributions to wave-activity invariants and
nonlinear stability theorems for balanced dynamics. J. Fluid Mech. 345, 287–305.

Salmon, R. 1983 Practical use of Hamilton’s principle. J. Fluid Mech. 132, 431–444.

Saujani, S. & Shepherd, T. G. 2002 Comments on ‘Balance and the slow quasimanifold: some
explicit results.’ J. Atmos. Sci. 59, 2874–2877.

Saujani, S. 2005 Towards a unified theory of balanced dynamics. PhD thesis, Department of Physics,
University of Toronto, 71 pp.

Shepherd, T. G. 2003 Hamiltonian dynamics. In Encyclopedia of Atmospheric Sciences (ed. J. R.
Holton et al.), pp. 929–939. Academic.

Vallis, G. K. 1996 Potential vorticity inversion and balanced equations of motion for rotating and
stratified flows. Q. J. R. Met. Soc. 122, 291–322.

Warn, T. 1997 Nonlinear balance and quasi-geostrophic sets. Atmos.-Ocean 35, 135–145.

Warn, T., Bokhove, O., Shepherd, T. G. & Vallis, G. K. 1995 Rossby number expansions, slaving
principles and balance dynamics. Q. J. R. Met. Soc. 121, 723–739.

Wirosoetisno, D. & Shepherd, T. G. 2000 Averaging, slaving and balance dynamics in a simple
atmospheric model. Physica D 141, 37–53.

Wirosoetisno, D., Shepherd, T. G. & Temam, R. M. 2002 Free gravity waves and balanced
dynamics. J. Atmos. Sci. 59, 3382–3398.


