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Abstract

Decentralized stochastic optimization methods

have gained a lot of attention recently, mainly

because of their cheap per iteration cost, data lo-

cality, and their communication-efficiency. In this

paper we introduce a unified convergence analysis

that covers a large variety of decentralized SGD

methods which so far have required different in-

tuitions, have different applications, and which

have been developed separately in various com-

munities.

Our algorithmic framework covers local SGD up-

dates and synchronous and pairwise gossip up-

dates on adaptive network topology. We derive

universal convergence rates for smooth (convex

and non-convex) problems and the rates interpo-

late between the heterogeneous (non-identically

distributed data) and iid-data settings, recovering

linear convergence rates in many special cases,

for instance for over-parametrized models. Our

proofs rely on weak assumptions (typically im-

proving over prior work in several aspects) and

recover (and improve) the best known complex-

ity results for a host of important scenarios, such

as for instance coorperative SGD and federated

averaging (local SGD).

1. Introduction

Training machine learning models in a non-centralized

fashion can offer many advantages over traditional central-

ized approaches in core aspects such as data ownership,

privacy, fault tolerance and scalability. In efforts to depart

from the traditional parameter server paradigm (Dean et al.,

2012), federated learning (Konečnỳ et al., 2016; McMahan
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et al., 2016; 2017; Kairouz et al., 2019) has emerged, but

also fully decentralized approaches have been suggested

recently—though yet still at a smaller scale than federated

learning (Lian et al., 2017; Assran et al., 2019; Koloskova

et al., 2020). However, the community has identified a host

of challenges that come along with decentralized training:

notably, high communication cost (Tang et al., 2018a; Wang

et al., 2019; Koloskova et al., 2019), a need for time-varying

topologies (Nedić & Olshevsky, 2014; Assran et al., 2019)

and data-heterogeneity (Li et al., 2018; Karimireddy

et al., 2019; Li et al., 2020a;b). It is imperative to have a

good theoretical understanding of decentralized stochastic

gradient descent (SGD) to predict the training performance

of SGD in these scenarios and to assist the design of optimal

decentralized training schemes for machine learning tasks.

In contrast to the centralized setting, where the conver-

gence of SGD is well understood (Bach & Moulines, 2011;

Rakhlin et al., 2012; Dekel et al., 2012), the analyses of SGD

in non-centralized settings are often application specific

and have been historically developed separately in different

communities, besides some recent efforts towards a unified

theory. Notably, Wang & Joshi (2018) propose a framework

for decentralized optimization with non-heterogeneous data

and Li et al. (2019) study decentralized SGD for non-convex

heterogeneous settings. We here propose a significantly ex-

tended framework that covers these previously proposed

ones as special cases.

We provide tight convergence rates for a large family of

decentralized SGD variants. Proving convergence rates in

a unified framework is much more powerful than studying

individual special cases on their own: We are not only able

to recover many existing analyses and results, we can also

often show improved rates under more general setting. Re-

markably, for instance for local SGD (Zinkevich et al., 2010;

Stich, 2019b; Patel & Dieuleveut, 2019) we show improved

rates for the convex and strongly-convex case and recover

the best known rates for the non-convex case under weaker

assumptions than assumed in prior work (highlighted in

Table 1).
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1.1. Contributions

• We present a unified framework for gossip based decen-

tralized SGD methods that captures local updates and

time-varying, randomly sampled, mixing distributions.

Our framework covers a rich class of methods that

previously needed individual convergence analyses.

• Our theoretical results rely on weak assumptions that

measure the strength of the noise and the dissimilarity

of the functions between workers and a novel assump-

tion on the expected mixing rate of the gossip algo-

rithm. This provides us with great flexibility on how

to select the topology of the network and the mixing

weights.

• We demonstrate the effectiveness and tightness of our

results by exemplary showing that our framework gives

the best convergence rates for local SGD for both, het-

erogeneous and iid. data settings, improving over all

previous analyses on convex functions.

• We provide a lower bound that confirms that our con-

vergence rates are tight on strongly convex functions.

• We empirically verify the tightness of our theoretical

results on strongly convex functions and explain the

impact of noise and data diversity on the convergence.

2. Related Work

The study of decentralized optimization algorithms can be

tracked back at least to (Tsitsiklis, 1984). For the problem

of computing aggregates (finding consensus) among clients,

various gossip-based protocols have been proposed. For

instance the push-sum algorithm (Kempe et al., 2003),

based on the intuition of mixing in Markov chains and

allowing for asymmetric communication, or the symmetric

randomized gossip protocol for averaging over arbirary

graphs (Xiao & Boyd, 2004; Boyd et al., 2006) that we

follow closely in this work. For general optimization

problems, the most common algorithms are either combina-

tions of standard gradient based methods with gossip-type

averaging step (Nedić & Ozdaglar, 2009; Johansson

et al., 2010), or specifically designed methods relying on

problem structure, such as alternating direction method of

multipliers (ADMM) (Wei & Ozdaglar, 2012; Iutzeler et al.,

2013), dual averaging (Duchi et al., 2012; Nedić et al.,

2015; Rabbat, 2015), primal-dual methods (Alghunaim &

Sayed, 2019), or block-coordinate methods for generalized

linear models (He et al., 2018). There is a rich literature

in the control community that discusses various special

cases—motivated by particular applications—such as for

instance asynchronity (Boyd et al., 2006) or time-varying

graphs (Nedić & Olshevsky, 2014; Nedić & Olshevsky,

2016), see also (Nedić et al., 2018) for an overview.

For the deterministic (non-stochastic) descentralized opti-

mization a recent line of work developed optimal algorithms

based on acceleration (Jakovetić et al., 2014; Scaman et al.,

2017; 2018; Uribe et al., 2018; Fallah et al., 2019). In the

machine learning context, decentralized implementations

of stochastic gradient descent have gained a lot of attention

recently (Lian et al., 2017; Tang et al., 2018b; Assran et al.,

2019; Koloskova et al., 2020), especially for the particular

(but not fully decentralized) case of a star-shaped network

topology, the federated learning setting (Konečnỳ et al.,

2016; McMahan et al., 2016; 2017; Kairouz et al., 2019).

Rates for the stochastic optimization are derived in (Shamir

& Srebro, 2014; Rabbat, 2015), under the assumption that

the distributions on all nodes are equal. However, this is a

very strong assumption for practical problems.

It has been noted quite early that decentralized gradient

based methods in heterogenous data setting suffer from

a ‘client-drift’, i.e. the diversity in the functions on each

node leads to a drift on each client towards the minima

of fi—potentially far away from the global minima of f .

This phenomena has been discussed (and sometimes been

adressed by modifing the SGD updates) for example in (Shi

et al., 2015; Lee et al., 2015; Nedić et al., 2016) and been

rediscovered frequently in the context of stochastic opti-

mization (Zhao et al., 2018; Karimireddy et al., 2019). It

is important to note that in analyses based on the bounded

gradient assumption—which was traditionally assumend for

analyzing SGD (Lacoste-Julien et al., 2012; Rakhlin et al.,

2012)—the diversity in the data distribution on each worker

sometimes can be hidden in this generous upper bound and

the analyses cannot distinguish between iid. and non-iid.

data cases, such as e.g. in (Koloskova et al., 2019; Nadi-

radze et al., 2019; Li et al., 2020b). In this work, we use

much weaker assumptions and we show how the conver-

gence rate depends on the similarity between the functions

(by providing matching lower and upper bounds). Our re-

sults show that in overparametrized settings no drift effects

occur and linear convergence can be achieved similar as to

the centralized setting (Schmidt & Roux, 2013; Needell

et al., 2016; Ma et al., 2018).

For reducing communication cost, various techniques have

been proposed. In this work we do not consider gradi-

ent compression techniques (Alistarh et al., 2017; Stich

et al., 2018; Tang et al., 2018a; 2019; Stich & Karimireddy,

2019)—but such orthogonal techniques could be added on

top of our scheme—and instead only focus on local updates

steps which are often efficient in practice but challenging

to handle in the theoretical analysis (McMahan et al., 2017;

Stich, 2019b; Yu et al., 2019; Lin et al., 2020).
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3. Setup

We study the distributed stochastic optimization problem

f⋆ := min
x∈Rd

[

f(x) :=
1

n

n
∑

i=1

fi(x)

]

(1)

where the components fi : R
d → R are distributed among n

nodes and are given in stochastic form:

fi(x) := Eξi∼Di
Fi(x, ξi), (2)

where Di denotes the distribution of ξi over parameter

space Ωi on node i. Standard empirical risk minimization

is an important special case of this problem, when each Di

presents a finite number mi of elements {ξ1i , . . . , ξmi
i }.

Then fi can be rewritten as fi(x) = 1
mi

∑mi

j=1 Fi(x, ξ
j
i ).

In the special case of mi = 1, for each i ∈ [n], we further

recover the deterministic distributed optimization problem.

It is important to note that we do not make any assump-

tions on the distributions Di. This means that we especially

cover hard heterogeneous machine learning problems where

data is only available locally to each worker i ∈ [n] :=
{1, . . . , n} and the local minima x⋆

i := argmin
x∈Rd fi(x),

can be far away from the global minimizer of (1). This

covers a host of practically relevant problems over decen-

tralized training data, as in federated learning (motivated

by privacy), or large datasets stored across datacenters or

devices (motivated by scalability). We will discuss several

important examples in Section 3.2 below.

3.1. Assumptions on the objective function f

For all our theoretical results we assume that f is smooth.

Assumption 1a (L-smoothness). Each function

Fi(x, ξ) : R
d × Ωi → R, i ∈ [n] is differentiable

for each ξ ∈ supp(Di) and there exists a constant L ≥ 0
such that for each x,y ∈ R

d, ξ ∈ supp(Di):

‖∇Fi(y, ξ)−∇Fi(x, ξ)‖ ≤ L ‖x− y‖ . (3)

Sometimes it will be enough to just assume smoothness of

fi instead.

Assumption 1b (L-smoothness). Each function

fi(x) : R
d → R, i ∈ [n] is differentiable and there

exists a constant L ≥ 0 such that for each x,y ∈ R
d:

‖∇fi(y)−∇fi(x)‖ ≤ L ‖x− y‖ . (4)

Remark 1. Clearly, Assumption 1b is more general than As-

sumption 1a. Moreover, for convex F (y, ξ) Assumption 1a

implies Assumption 1b (Nesterov, 2004).

Assumption 1b is quite common in the literature (e.g. Lian

et al., 2017; Wang & Joshi, 2018) but sometimes also the

stronger Assumption 1a is assumed (Nguyen et al., 2018).

We here use this version in the convex case only, to allow

for a more general assumption on the noise instead (see

Section 3.2 below).

For some of the derived results we need in addition convex-

ity. Specifically, µ-convexity for a parameter µ ≥ 0.

Assumption 2 (µ-convexity). Each function fi : R
d → R,

i ∈ [n] is µ-(strongly) convex for constant µ ≥ 0. That is,

for all x,y ∈ R
d:

fi(x)− fi(y) +
µ

2
‖x− y‖22 ≤ 〈∇fi(x),x− y〉 . (5)

3.2. Assumptions on the noise

We now formulate our conditions on the noise. For the

convergence analysis of SGD on smooth convex functions

it is typically enough to assume a bound on the noise at

the optimum only (Needell et al., 2016; Bottou et al., 2018;

Gower et al., 2019; Stich, 2019a). Similarly, to express

the diversity of the functions fi in the convex case it is

sufficient to measure it only at the optimal point x⋆ (such a

point always exists for strongly convex functions).

Assumption 3a (Bounded noise at the optimum). Let x⋆ =
argmin f(x) and define

ζ2i := ‖∇fi(x
⋆)‖22 , ζ̄2 := 1

n

∑n
i=1 ζ

2
i . (6)

Further, define

σ2
i := Eξi ‖∇Fi(x

⋆, ξi)−∇fi(x
⋆)‖ 2

2 , (7)

and similarly as above, σ̄2 := 1
n

∑n
i=1 σ

2
i . We assume that

σ̄2 and ζ̄2 are bounded.

Here, σ̄2 measures the noise level, and ζ̄2 the diversity of

the functions fi. If all functions are identical, fi = fj ,

for all i, j, then ζ̄2 = 0. Many prior work in the con-

text of stochastic decentralized optimization often assumed

bounded diversity and bounded noise everywhere (such as

e.g. Lian et al., 2017; Tang et al., 2018b), whereas we here

only need to assume this bound locally at x⋆.

For the non-convex case—where a unique x⋆ does not nec-

essarily exist—we generalize Assumption 3a to:

Assumption 3b (Bounded noise). We assume that there

exists constants P , ζ̂ such that ∀x ∈ R
d,

1
n

∑n
i=1 ‖∇fi(x)‖22 ≤ ζ̂2 + P ‖∇f(x)‖22 , (8)

and constants M , σ̂ such that ∀x1, . . .xn ∈ R
d

Ψ ≤ σ̂2 + M
n

∑n
i=1 ‖∇f(xi)‖22 , (9)

where Ψ := 1
n

∑n
i=1 Eξi ‖∇Fi(xi, ξi)−∇fi(xi)‖ 2

2.
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We see that Assumption 3a is weaker than Assumption 3b as

it only needs ho hold for xi = x⋆. Further, it is important to

note that we do not assume a uniform bound on the variance

(as many prior work, such as Li et al., 2019; Tang et al.,

2018b; Lian et al., 2017; Assran et al., 2019) but instead

allow the bound on the noise and the diversity to grow with

the gradient norm (similar assumptions are common in the

convex setting (Bottou et al., 2018)).

Discussion. We now show that the Assumption 3b is weaker

than assuming a uniform upper bound on the noise. The

uniform variance bound is given as

E ‖∇Fi(x, ξi)−∇fi(x)‖22 ≤ σ2
unif , ∀x ∈ R

d ,

similarly for the similarity of functions between nodes

1
n

∑n
i=1 E ‖∇fi(x)−∇f(x)‖22 ≤ ζ̄2unif , ∀x ∈ R

d .

By recalling the inequality ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2
for a,b ∈ R

d, it is easy to check that these two bounds

imply Assumption 3b with B = 2, M = 0, σ̂2 = σ2
unif and

ζ̂2 = 2ζ̄2unif . Thus, our assumptions are weaker and ζ̂ and σ̂
can be much smaller than ζ̄2unif , σ

2
unif in general.

A second common assumption is to assume that the (stochas-

tic) gradients are uniformly bounded (e.g. Koloskova et al.,

2019; Li et al., 2020b), that is

E ‖∇Fi(x, ξi)‖22 ≤ G2 ,

for a constant G. Under the bounded gradient assumption,

Assumption 3b is clearly satisfied, as all terms on the left

hand side of (8) and (9) can be upper bounded by 2G2.

3.3. Notation

We use the notation x
(t)
i to denote the iterates on node i at

time step t. We further define the average

x̄(t) := 1
n

∑n
i=1 x

(t)
i . (10)

We use both vector and matrix notation whenever it is more

convenient, and define

X(t) :=
[

x
(t)
1 , . . . ,x(t)

n

]

∈ R
d×n (11)

and likewise define X̄(t) :=
[

x̄(t), . . . , x̄(t)
]

≡ X(t) 1
n11

⊤.

4. Decentralized (Gossip) SGD

We now present the generalized decentralized SGD frame-

work. Similar to existing works (Lian et al., 2017; Wang

& Joshi, 2018; Li et al., 2019) our proposed method allows

only decentralized communications. That is, the exchange

of information (through gossip averaging) can only occur

between connected nodes (neighbors). The algorithm (out-

lined in Algorithm 1) consists of two phases: (i) stochastic

gradient updates, performed locally on each worker (lines

4–5), followed by a (ii) consensus operation, where nodes

average their values with their neighbors (line 6).

The gossip averaging protocol can be compactly written in

matrix notation, with N (t)
i := {j : w(t)

ij > 0} denoting the

neighbors of node i at iteration t:

X(t+1) = X(t)W (t) ⇔ x
(t+1)
i =

∑

j∈N (t)
i

w
(t)
ij x

(t)
j ,

where the mixing matrix W (t) ∈ [0, 1]n×n encodes the

network structure at time t and the averaging weights (nodes

i and j are connected if w
(t)
ij > 0).

Our scheme shows great flexibility as the mixing matrices

can change over iterations and moreover can be selected

from (changing) distributions.

Definition 1 (Mixing matrix). A symmetric (W =W⊤) dou-

bly stochastic (W1=1, 1⊤W =1⊤) matrix W ∈ [0, 1]n×n.

4.1. Algorithm

Algorithm 1 DECENTRALIZED SGD

input for each node i ∈ [n] initialize x
(0)
i ∈ R

d,

stepsizes {ηt}T−1
t=0 , number of iterations T ,

mixing matrix distributions W(t) for t ∈ [0, T ]
1: for t in 0 . . . T do

2: Sample W (t) ∼ W(t)

3: In parallel (task for worker i, i ∈ [n])

4: Sample ξ
(t)
i , compute g

(t)
i := ∇Fi(x

(t)
i , ξ

(t)
i )

5: x
(t+ 1

2 )
i = x

(t)
i − ηtg

(t)
i ⊲ stochastic gradient updates

6: x
(t+1)
i :=

∑

j∈N t
i
w

(t)
ij x

(t+ 1
2 )

j ⊲ gossip averaging

7: end for

In each iteration in Algorithm 1 a new mixing matrix W (t)

is sampled from a possibly time-varying distribution W(t),

t ∈ {0, . . . , T} (we will show below that also degenerate

mixing matrices, for instance W (t) = In which implies no

communication in round t, are possible choices). We will

discuss several important instances below, but first we now

state our assumption on the quality of the mixing matrices.

This assumption is novel in the literature to the best of our

knowledge and a natural generalization of earlier versions.

4.2. New assumption on mixing matrices

We recall that for randomized gossip averaging with a ran-

domly sampled mixing matrix W ∼ W it holds

EW

∥

∥XW − X̄
∥

∥

2

F
≤ (1− p)

∥

∥X − X̄
∥

∥

2

F
, (12)

for a value p ≥ 0 (related to the spectrum of EW⊤W ), that

is, the averaging step brings the values in the columns of
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X ∈ R
d×n closer to their row-wise average X̄ := X · 1n11⊤

in expectation (see e.g. Boyd et al., 2006).

In our analysis it will be enough to assume that a property

similar to (12) holds for the composition of mixing matrixes,

and does not necessarily hold for every single step.

Assumption 4 (Expected Consensus Rate). We assume that

there exists two constants p ∈ (0, 1] and integer τ ≥ 1
such that for all matrices X ∈ R

d×n and all integers ℓ ∈
{0, . . . , T/τ},

EW

∥

∥XWℓ,τ − X̄
∥

∥

2

F
≤ (1− p)

∥

∥X − X̄
∥

∥

2

F
, (13)

where Wℓ,τ = W ((ℓ+1)τ−1) · · ·W (ℓτ) and X̄ := X 11
⊤

n

and E is taken over the distributions W (t) ∼ W(t) and

indices t ∈ {ℓτ, . . . , (ℓ+ 1)τ − 1}.

It is crucial to observe that this assumption does not require

every realization W to satisfy a decrease property as for

the standard analysis, it is enough if it holds over the

concatenation of τ mixing steps. This assumption differs

from the connectivity assumptions sometimes used in

the control community. For example Nedić & Olshevsky

(2014) require strong connectivity of the graph after every

τ steps, whereas we here do not require this (for example,

even sampling one single random edge leads to a positive

decrease in expectation, whereas to ensure connectivity one

would need to perform Ω(n) pairwise communications).

This means that our bounds are typically much tighter

that bounds derived on the strong connectivity assumption.

However, as we require W to be symmetric, our setting

is less general than the one considered in (Nedić et al.,

2017; Xi & Khan, 2017; Saadatniaki et al., 2018; Assran

& Rabbat, 2018; Scutari & Sun, 2019; Assran et al., 2019).

Commonly used weights are for instance the Metropolis-

Hastings weights wij = wji = min
{

1
deg(i)+1 ,

1
deg(j)+1

}

for (i, j) ∈ E, see also (Xiao & Boyd, 2004; Boyd et al.,

2006) for further guidelines. With these weights, the values

of p for commonly used graphs are p = 1 for the complete

graph, p = Θ
(

1
n

)

for 2-d torus on n nodes, and p = Θ
(

1
n2

)

for a cycle on n nodes. Intuitively, p−1/2 correlates with the

diameter of the graph and is related to the mixing time of

Markov chains. A commonly studied randomized scheme

is the pairwise random gossip algorithm (Boyd et al., 2006;

Loizou & Richtárik, 2019), where one edge at a time is sam-

pled from an underlying graph G = ([n], E), i.e. the a ran-

dom mixing matrix Zi,j := In − 1
2 (ei − ej)(ei − ej)

⊤, for

all edges in the graph (i, j) ∈ E, where ei ∈ R
n is the ith

coordinate vector. In this case p = ρ(G)/|E|, where ρ(G)
denotes the algebraic connectivity of the network (Fiedler,

1973; Boyd et al., 2006; Loizou & Richtárik, 2016). For

example, with the complete graph as base graph, pairwise

gossip attains p = Θ
(

1
n2

)

, i.e. enjoys equally fast mixing

as averaging over a (fixed) cycle (which requires n pairwise

communications per round).

5. Examples Covered in the Framework

Our framework is very general and covers many special

cases previously introduced in the literature.

5.1. Fixed Sampling Distribution (τ = 1, W(t) ≡ W)

The simplest instances of Algorithm 1 arise when the mixing

matrix W is kept constant over the iterations. By choos-

ing the fully connected matrix W = 1
n11

⊤ we recover

• centralized mini-batch SGD (Dekel et al., 2012) and by

choosing an arbitrary connected W , we recover • decen-

tralized SGD (Lian et al., 2017).

To reduce communication overheads, it has been proposed

to choose sparse (not necessarily connected) subgraphs of

the network topology. For instance in • MATCHA (Wang

et al., 2019) it is proposed to sample edges from a matching

decomposition of the underlying network topology, there-

fore allowing for pairwise communications between nodes.

Whilst no explicit values of p were given for this approach,

for the simpler instance of • pairwise randomized gos-

sip (Boyd et al., 2006; Ram et al., 2010; Lee & Nedić, 2015;

Loizou & Richtárik, 2019) we have p = Θ
(

1
n2

)

, thus by

sampling a linear number of (independent) edges—not nec-

essarily a matching—we approximately have p = Θ
(

1
n

)

for

this • repeated pairwise randomized gossip variant. This

approach can be generalized to • randomized subgraph

gossip, where a subgraph of the base topology is selected

for averaging. A special case of this is • clique gossip

(Liu et al., 2019), or an alternative variant is to • sample

from a fixed set of communication topologies (known to

all decentralized) workers.

One noteably instance of this type is • loopless local de-

centralized SGD where the mixing matrix is (a fixed) W
with probability 1

τ , and In with probability 1 − 1
τ , for a

parameter τ ≥ 1. This algorithm mimicks the behavior of

the local SGD (see subsection below), commonly analyzed

for W = 1
n11

⊤ only, but the loopless variant is much easier

to analyze (with p decreased by a factor of τ , but no need to

consider local steps explicitly in the analysis.).

5.2. Periodic Sampling (τ > 1, W(t) ≡ W(t+τ))

Our analysis covers the empirical (finite-sample) versions

of the aforementioned algorithms, for instance • alternat-

ing decentralized SGD that sweeps through τ fixed mix-

ing matrices. A special algorithm of this type is • local

SGD (Coppola, 2015; Zhou & Cong, 2018; Stich, 2019b)

where averaging on the complete graph is performed every

τ iterations and only local steps are performed otherwise

(mixing matrix In for τ − 1 steps).
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Our analysis covers also natural extensions such as • de-

centralized local SGD where mixing is performed with

an arbitrary matrix W , and • random decentralized local

SGD where the mixing matrix is sampled from a distribu-

tion. More generally, our framework also allows to combine

local steps with all of the examples described in the previous

section.

5.3. Non-Periodic Sampling

It is not necessary to have a periodic structure, it is suffi-

cient that the composition of every τ consecutive mixing

matrixes satisfies Assumption 4. For instance as in • dis-

triributed SGD over time-varying graphs (Nedić & Ol-

shevsky, 2014).

5.4. Other Frameworks

In contrast to many prior works, we here allow the topology

and the averaging weights to change between iterations.

Our framework covers • Cooperative SGD (Wang & Joshi,

2018) which considers only the IID data case (fi = fj) with

local updates and a fixed mixing matrix W , and the recently

proposed • periodic decentralized SGD (Li et al., 2019)

that allows for multiple local update and multiple mixing

steps (for fixed W ) in a periodic manner. None of these

work considered sampling of the mixing matrix and do only

provide rates for non-convex functions.

6. Convergence Result

In this section we present the convergence results for decen-

tralized SGD variants that fit the template of Algorithm 1.

6.1. Complexity Estimates (Upper Bounds)

Theorem 2. For schemes as in Algorithm 1 with mixing

matrices such as in Assumption 4 and any target accuracy

ǫ > 0 there exists a (constant) stepsize (potentially depend-

ing on ǫ) such that the accuracy can be reached after at

most the following number of iterations T :

Non-Convex: Under Assumption 1b and 3b, it holds
1

T+1

∑T
t=0 E

∥

∥∇f(x̄(t))
∥

∥

2

2
≤ ǫ after

O
(

σ̂2

nǫ2
+

ζ̂τ
√
M + 1 + σ̂

√
pτ

pǫ3/2
+

τ
√

(P + 1)(M + 1)

pǫ

)

· LF0

iterations. If we in addition assume convexity,

Convex: Under Assumption 1a, 3a and 2 for µ ≥ 0, the

error 1
(T+1)

∑T
t=0(E f(x̄(t))− f⋆) ≤ ǫ after

O
(

σ̄2

nǫ2
+

√
L(ζ̄τ + σ̄

√
pτ)

pǫ3/2
+

Lτ

pǫ

)

·R2
0

iterations, and if µ > 0,

Strongly-Convex: then
∑T

t=0
wt

WT
(E f(x̄(t)) − f⋆) +

µE ‖x̄(T+1) − x⋆‖2 ≤ ǫ for1

Õ
(

σ̄2

µnǫ
+

√
L(ζ̄τ + σ̄

√
pτ)

µp
√
ǫ

+
Lτ

µp
log

1

ǫ

)

iterations, for positive weights wt and F0 := f(x0) − f⋆

and R0 = ‖x0 − x⋆‖ denote the initial errors.

6.2. Lower Bound

We now show that the terms depending on ζ̄ are necessary

for the strongly convex setting and cannot be removed by

an improved analysis.

Theorem 3. For n > 1 there exists strongly convex and

smooth functions fi : R
d → R, i ∈ [n] with L = µ = 1 and

without stochastic noise (σ̄2 = 0), such that Algorithm 1 for

every constant mixing matrix W (t) ≡ W with p < 1 (see

Assumption 4) for τ = 1, requires

T = Ω̃

(

ζ̄(1− p)√
ǫp

)

iterations to converge to accuracy ǫ.

6.3. Discussion

Exemplary, we focus in our discussion on the strongly con-

vex case only. For strongly convex functions we prove that

the expected function value suboptimality decreases as

Õ
(

σ̄2

nµT
+

L(τ2ζ̄2 + τpσ̄2)

µ2p2T 2
+

LτR2
0

p
exp

[

−µTp

τL

])

where T denotes the iteration counter. We now argue that

this rate is optimal up to acceleration.

Stochastic Terms. If σ̄2 > 0 the convergence rate is asymp-

totically dominated by the first term, which cannot be fur-

ther improved for stochastic methods (Nemirovsky & Yudin,

1983). We observe that the dominating first term indicates a

linear speedup in the number of workers n, and no depen-

dence on the number of local steps τ , the mixing parameter

p or the dissimilarity parameter ζ̄2. This means that decen-

tralized SGD methods are ideal for the optimization in the

high-noise regime even when network connectivity is low

and number of local steps is large (see also (Chaturapruek

et al., 2015) and recent work (Pu et al., 2019)). In our rates

the variance σ̄2 parameter also appears in the second term,

but affects the convergence only mildly (for T = Ω(τn/p)
this second term gets dominated by the first one).

Optimization Terms. Even when σ̄2 = 0, the convergence

1
Õ/Ω̃-notation hides constants and polylogarithmic factors.
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Table 1. Comparison of convergence rates for Local SGD in non-iid settings, most recent results. We improve over the convex results, and

recover the non-convex rate of Li et al. (2019).

Reference convergence to ǫ-accuracy

strongly convex convex non-convex

Li et al. (2020b) O
(

σ̄2

nµ2ǫ +
τ2ζ̄2

µ2ǫ

)

a - -

Khaled et al. (2020) - O
(

σ̄2+ζ̄2

nǫ2 +
√
Lτ(ζ̄+σ̄)
ǫ3/2

+ Lτ
ǫ

)

-

Li et al. (2019) - - O
(

Lσ̄2

nǫ2 + L(τζ̄+
√
τσ̄)

ǫ3/2
+ Lτ

ǫ

)

this work Õ
(

σ̄2

nµǫ +
√
L(τζ̄+

√
τσ̄)

µ
√
ǫ

+ κτ
)

O
(

σ̄2

nǫ2 +
√
L(τζ̄+

√
τσ̄)

ǫ3/2
+ Lτ

ǫ

)

O
(

Lσ̂2

nǫ2 + L(τζ̂+
√
τσ̂)

ǫ3/2
+ Lτ

ǫ

)

aThe paper relies on slightly different assumptions (bounded gradients and different measure of dissimilarity). For better comparison
of the rates we write here ζ̄2 instead (which is strictly smaller than their parameter).

of decentralized SGD only sublinear when ζ̄2 > 0:2

Õ
(

Lτ2ζ̄2

µ2p2T 2
+

LτR2
0

p
exp

[

−µTp

τL

])

.

The dependence on the dissimilarity ζ̄2 cannot be removed

in general as we show in Theorem 3. These results show

that decentralized SGD methods without additional modifi-

cations (see also Shi et al., 2015; Karimireddy et al., 2019)

cannot converge linearly.

We can further observe see that the rates only depend on the

ratio p/τ , but not on p or τ individually. This also means

that the rates for local variants of decentralized SGD are

the same as for their loopless variants (when the mixing

is performed with probability 1
τ only). The error term de-

pending on R2
0 vanishes exponentially fast, as expected for

SGD methods (Bach & Moulines, 2011). The linear de-

pendence on L
µp (the therm in the exponent) is expected

here, as we use non-accelerated first order schemes and

standard gossip. This term could potentially be improved to
(

L
µp

)1/2
with acceleration techniques, such as in (Scaman

et al., 2017). The linear dependence on τ cannot further be

improved in general. This follows from the lower bound

for the communication complexity of distributed convex

optimization (Arjevani & Shamir, 2015), as the number of

communication rounds is at most T
τ (no communication

happens during the local steps). However, when ζ̄2 = 0
(as for instance the case for identical functions fi on each

worker), this lower bound becomes vacuous and improve-

ment of the dependence on τ might be possible (which we

cannot not exploit here).

Linear Convergence for Overparametrized Settings.

In overparametrized problems, there exists always x⋆ s.t.

‖∇fi(x
⋆)‖2 = 0, that is σ̄2 = 0 and ζ̄2 = 0. We prove here

that decentralized SGD converges linearly in this case, simi-

2Except for the special case when p = 1 (fully connected
graph, such as for mini-batch SGD). In this case the rate does not
depend on ζ̄2. We detail this (known result) in the appendix.

larly to mini-batch SGD (Bach & Moulines, 2011; Schmidt

& Roux, 2013; Needell et al., 2016; Ma et al., 2018; Gower

et al., 2019; Loizou et al., 2020).

7. Special Cases: Highlights

Our rates apply to all the examples discussed in Section 5

and of course we could design even more variants and com-

binations of these schemes. This gives great flexibility in

designing new schemes and algorithms for future applica-

tions. We leave the exploration of the trade-offs in these

approaches for future work, and highlight here only a few

special cases that could be of particular interest.

7.1. Best Rates for Local SGD

Local SGD is a simplified version of the federated averaging

algorithm (McMahan et al., 2016; 2017) and has recently

attracted the attention of the theoretical community in the

seek of the best convergence rates (Stich, 2019b; Wang

& Joshi, 2018; Yu et al., 2019; Basu et al., 2019; Patel &

Dieuleveut, 2019; Stich & Karimireddy, 2019; Li et al.,

2019; Khaled et al., 2020). Our work extends this chain

and improves previous best results for convex settings and

recovers the results of Li et al. (2019) in the non-convex

case as we highlight in Table 1. We point out that all these

rates are still dominated by large-batch SGD and do not

match the lower bounds established in (Woodworth et al.,

2018) for the iid. case ζ̄2 = 0. See also recent parallel work

in (Woodworth et al., 2020). Whilst these previous analysis

were often specifically tailored and only applicable to the

mixing structure in local SGD, our analysis is much more

general and tighter at the same time.

In their recently updated parallel version, Karimireddy et al.

(2019) improve upon these rates by removing σ from the

second term. However, they do analyze a different version

of local SGD (with different stepsizes for inner and outer

loops) than we consider here. This change does not fit in

our framework and it is not clear if similar trick is possible
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Figure 1. Convergence of 1
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∥
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i

−x
⋆
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2

2
to target accuracy ǫ = 10

−5 for different problem difficulty (σ̄2 increasing to the bottom,

ζ̄2 increasing to the right), and different topologies on n = 25 nodes, d = 50. Stepsizes were tuned for each experiment individually to

reach target accuracy in as few iterations as possible.

the decentralized setting.

7.2. Comparison to Recent Frameworks

We mentioned major differences to other frameworks in

Section 5.4 above already. Our results for the non-convex

case recover the best results from (Wang & Joshi, 2018) for

the iid. case3 (ζ̂2 = 0) and the non-iid. case from (Li et al.,

2019) for their specific settings. We point out that our results

also cover the convex setting and deterministic setting.

3These results can be recovered by optimizing the stepsize
in (Wang & Joshi, 2018, Theorem 1) directly, instead of resorting
to the worse rate stated in (Wang & Joshi, 2018, Corollary 1).
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Figure 2. Problem setup. Parameters σ̄2 and ζ̄2 change the

noise level and the difficulty of the problem. (Here we depict
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∑
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− x
⋆
∥

∥

2

2
on the ring with n = 25 nodes, d = 10,

using fixed stepsize η = 10
−2 for illustration.

7.3. Best Rates for Decentralized SGD

We improve best known rates of Decentralized SGD (Ol-

shevsky et al., 2019; Koloskova et al., 2019) for strongly

convex objectives and recover the best rates in the non-

convex case (Lian et al., 2017).

8. Experiments

Complementing prior work that established the effective-

ness of decentralized training methods (Lian et al., 2017;

Assran et al., 2019) we here focus on verifying whether the

numerical performance of decentralized stochastic optimiza-

tion algorithms coincides with the rates predicted by theory,

focusing on the strongly convex case for now.

We consider a distributed least squares objective with

fi(x) :=
1
2 ‖Aix− bi‖22, for fixed Hessian A2

i = i2

n · Id
and sample each bi ∼ N (0, ζ̄

2
/i2Id) for a parameter ζ̄2,

which controls the similarity of the functions (and coin-

cides with the parameter in Assumption 3a). We control

the stochastic noise σ̄2 by adding Gaussian noise to every

stochastic gradient. We depict the effect of these parameters

in Figure 2.

Setup. We consider three common network topologies,

ring, 2-d torus and fully-connected graph and use the

Metropolis-Hasting mixing matrix W , i.e. wij = wji =
1

deg(i)+1 = 1
deg(j)+1 for {i, j} ∈ E. For all algorithms we

tune the stepsize to reach a desired target accuracy ǫ with

the fewest number of iterations.
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Discussion of Results. In Figure 1 we depict the results.

We observe that in the high noise regime (bottom row) the

graph topology and the functions similarity ζ̄2 do not impact

the number of iterations needed to reach the target accuracy

(the σ̄2

T term is dominating in this regime. We also see linear

rates when σ̄2 = ζ̄2 = 0 as predicted. When increasing

ζ̄2 (in the case of σ̄2 = 0) we see that on the ring and

torus topology the linear rate changes to a sublinear rate:

even thought the curves look like straight lines, they stop

converging when reaching the target accuracy (the stepsize

must be further decreased to achieve higher accuracy). By

comparing two top right plots, we see that for fixed topology

the number of iterations increases approximately by a factor

of
√
10 when increasing ζ̄2 by a factor of 10, as one would

expect from the term ζ̄2

p2T 2 in the convergence rate (see also

Figure 3 in the appendix). The difference in number of

iterations on the torus vs. ring scales approximately linear

in the ratio of their mixing parameters p, (that is, Θ(n) as

mentioned in Section 4.2).

9. Extensions

We presented a unifying framework for the analysis of

decentralized SGD methods and provide the best known

convergence guarantees. Our results show that when the

noise is high, decentralized SGD methods can achieve linear

speedup in the number of workers n and the convergence

rate does only weakly depend on the graph topology, the

number of local steps or the data heterogeneity. This shows

that such methods are perfectly suited to solve stochastic

optimization problems in a decentralized way. However, our

results also reveal that when the noise is small (for e.g. when

using large mini-batches), the effect of those parameters

become more pronounced and especially function diversity

can hamper the convergence of decentralized SGD methods.

Our framework can be further extended by considering gra-

dient compression techniques (Koloskova et al., 2019) or

overlapping communication steps (Assran et al., 2019; Wang

et al., 2020) to additionally speedup the distributed training.
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