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Abstract 

WC prcscnt a characterization of heuristic evaluation functions 
Hhich unities their trcatmcnt in single-agent problems and two- 
person games. ‘l‘hc central result is that a useful heuristic function is 
one which dctcrmincs the outcome of a search and is invariant 
along a solution path. ‘I‘his local chnractcrization of heuristics can 
hc used to predict the cffcctivcncss of given heuristics and to 
automatically learn useful heuristic functions for problems. In one 
cxpcrimcnt, a set of rclntivc weights for the different chess pieces 
was automatically learned. 

1. Int reduction 
Consider the following anomaly. ‘I’hc Manhattan distance 

heuristic for the Fifteen PuzAo is computed by monsuring the 
distance along the two-dimensional grid of each tilt from its 
current position to its goal position, and summing thtic values for 
each tile. Manhattan distance is a very cffccticc heuristic function 
for solving the Fifteen l~uz7lc 141. A complctcly analogous heuristic 
can bc dcfincd in three dimensions for Rubik’s Cube: for each 
individual movable piccc of the cube. count the nun;hcr of twists 
rcquircd to bring it to its goal position and orientation. and sum 
thcsc vducs for each component. ‘I’hrcc dimcnsionzl Manhattan 
dizlancc. howcvcr, is cffcctivcly worthless as a heuristic function for 
liubik‘s Cube 151. l’vcn though Rubik’~ Cube is similar to the 
t-‘iltccn Puy/.lc, the two heuristics arc virtually idcnIical, and i11 both 
ci\scs the goal is ilchicvcd when the value of th: heuristic is 
minimized, the hcurislic is very cffcctivc in one USC and usclcss in 
the other. 

As another anomalous cxamplc, consider the games of chcckcrs 
illld OthCll0 with ITliltCriill c0Ullt ilS iIll evaluation filllcti0n. OlhCll0 

is a game played on an eight by tight square grid with picccs which 
arc white on one side and black on the other. t:,ach player 
altcrniltcly places picccs with his color showing on empty squares. 
Wliciicvcr ;I phycr rrli\C’CS his picccs i\t IX)th ClldS Of il lint Of his 
o~~pcmcnt’s picccs. the opponent’s picccs ;IIY flipped over i\nd 
hcccmc lllc property ol‘thc Wigillill plityCl+. ‘I’hc winner is the player 
whocc COIOI~ shows on the majority of the picccs iit the end of the 
gatnc. Material count is ;LII cv,lluation function which sums the 
number of picccs hclonging to OIIC player and subtracts the total 
material of the other player. It turns out that lTliltCl3;ll count is a 

f,tirly successful evaluation function for chcckcrs but rclativcly 
incffcctivc for OthCll0, CVCn lllougll tllC winiicr is tllC PlilyCr tllilt 

maximi/.cs his nliltcrial in both GISCS.* 

110 111OIC lcgnl 

till hih picccs 

A challenge for any theory of heuristic evaluation fimctions is to 
explain these anomalies. An additional challcngc is to present a 
consistent intcrprctation of heuristic functions in single-agent 
problems and two-player games. Surprisingly, the trcatmcnt in the 
litcraturc of heuristic starch in thcsc two diffcrcnt domains has 
little in common. In single-agent scarchcs, a heuristic evaluation 
function is vicwcd as an cstimatc of the cost of the rcmaindcr of the 
solution path. In two-person pmcs. howcvcr, a heuristic function 
is vaguely charactcrizcd as a measure of the “strength” of a board 
position for one player versus the other. 

2. A Unified Theory of Heuristic Evaluation 
Functions 

One criterion which distinguishes the successful heuristics from 
the unsuccessful ones above is that in the successful casts, primitive 
moves in the problem space make only small changes in the value 
of the heuristic function. In the cast of Manhattan distance for the 
Fificcn Puzzle. a single move clli~ngcs the Manhattan distance by a 

single unit whcrcas for Rubik’s Cube a single twist can change the 
Vanhattan distance by as much as eight units (eight picccs move at 

once). Similarly, the material count in chcckcrs r‘lrcly changes by 
more than a single piccc during mc move. but in Othello it can 
change by a lnrgc numhcr of pieces (up to 18 in one case). ‘I-his 
SuggcSts a theory hilt CVillLl~lti~~ll functions which arc rclativcly 
invariant over single moves i1rC more cffcctivc. 

A closely related idea was suggested by I.cnat in the more 

gcncral context of hcurislic producliotl rules [(I]. A production rule 
has a Icft-hand side that specifics a situation whcrc it is applicable. 
and 3 right-hillId side that dctcrnlincs the action to IX trtkcll in that 
situation. I ,cnilt argues that the power of heuristic production rules 
is dcrivcd from the fact that the appropriatcncss of ;I situation- 
action pair is ;I continuous function of both the situation and the 
action. It1 other words, if a particular action is appropriate in a 
particular SilUiltiOll. lhcn 1) iI similar action is likely to bc 

ilppl’O~~l’i;ltC iii tllc S;IllIC aitu;ltion. , .II\~ 2) the SitIllC ;Icli(jn is likely to 
bc ;q>propri;itc iI1 il simil,ir situ;ltion. Il’wc’ bro;ldcn lhc dclinilion 01 
ilCtiOl1 to include evaluation. and ,IllOW the situation VilliilhlC t0 

range over different states in the siilnc p~~hlcrn sp~c, then our 
notion of rclativc invariance o\‘cr single moves bccomcs il special 
cast of I.cnnt’s continuity idea. 

Of course. invariance over single iiiovcs is not enough to assiirc a 
LISC~UI cvalt~iltion lilnction, since this CalI bc trivially achicvcd by 
assigning ill1 StatCS tllC SiIIllC COllSt~lllt VillllC. ‘I’llC hciiris~ic VillLlCS 

must bc tied to actual payoffs in the game, in particular to the 
values of the goal st;rtcs. This suggests that when ;I heuristic 
function is ;Ipplicd to a goit1 stale. it should return the exact value of 
tllnt StiltC. 
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Informally. we claim that an idcal heuristic evaluation firnction 
has two propertics: 1) when applied to a goal state, it returns the 
outcome of the starch; and 2) the value of the function is invariant 
along an optimal solution path. ‘I’akcn togcthcr, these two 
propcrtics cnsurc a function which is a pcrfcct predictor of the 
outcome of pursuing any given path in the problem space. 
Thcreforc, a heuristic search algorithm using such a tinction 
should always make optimal moves. Furthermore, WC claim that 
any successful evaluation function will satisfy thcsc propcrtics to 
some cxtcnt. 

For cxamplc, the evaluation function for the A* algorithm [3] is 
Jln)=g(r$+- f/(,(n) whcrc g(tz) is the cost of the best path from the 
initial state to the node n and II(U) is an estimate of the cost of the 
best path from node II to a goal state. Typically the !z term is called 
the heuristic in this function, but for our purposes WC will refer to 
the entire function fas the heuristic evaluation function. When this 
function is applied to a goal node. the h term is zero, the g term 
rcprcscnts the cost of reaching the goal from the initial state, and 
hcnccfrcturnt; the cost of the path or the outcome of the starch. If 
h is a pcrfcct estimator. then as WC move along an optimal path to a 
goal state. each move incrcascs g by the cost of the move and 
dccrcascs h by the same value. Thus, the value of f remains 
invariant alon; an optimal path. If h is not a pcrfcct cstimator,fwill 
vary somcwha! dcpcnding upon the amount of error in h. ‘I’hus, a 
good evaluation function for an algorithm such as A* will 
dctcrminc the outcome of the search and is rclativcly invariant over 
si nglc moves. 

Now consider a two-person game using minimax starch and a 
st;ltic evaluation filnction. ‘I’hc static evaluation rcflccts the strength 
of a given board position, When applied to a state whcrc the game 
is over, the function detcrmincs the outcome of the game, or which 
player won. ‘I’his is often added as a special cast to an evaluation 
function. typkillly returning positive and ncgativc infinity for 
winning positions for MAX and MIN. rcspcctivcly. When applied 
to a non-goal node, the function is supposed to return a value 
which predicts what the ultimate outcome of the game will be. ‘1’0 
the cxtcnt that the evaluation is a11 accurate predictor, its value 
should not change as the anticipated moves arc made. ‘Ihu~. a good 
cvaluiltion function should bc invariant over the actual scqucncc of 
moves made in the ganlc. ‘I’hcrcl’orc, in both cxamplcs WC scc that a 
good evaluation function should have the propcrtics of 1) 
dctcrniining Lulconic and 2) iiivariancc over single moves. 

2.1. Formal Description of the Theory 
In this section WC will dcfinc the propcrtics of outcome 

dctcrmination and move invariance and show that thcsc conditions 
arc sufficient for pcrfcct play by a heuristic search algorithm. 

A heuristic function is said to tk/mtritrc tltc ou/mttrc of a starch 
if when ilpplid to any terminal or goal state, it rclurns the figure of 
merit for the task. ‘I‘his is the criterion against which success is 
mcasurcd. I;or: cxi~mplc, in a single-person starch whcrc the task is 
to find ii IOWCSt COSt piItI1 tO a goal SIiltC, tIlC OUtCOlTlC WOtlId hC tIlC 
;ICtlliil COSl 01’ LllC solution pitti li)und. Ii1 ;I two-person gi\lTlC’. 1hC 

outcome might bc cithcr win, lose, 
or a number indicating a score. 

or draw for a particular plwr, 

An opfitnal ntove from a given state is one which leads to a best 
outcome in the worst case. For cxamplc, in a single-person 
problem an optimal move is a move along a lowest cost path from 
the given state to a goal state. For a two-person game, an optimal 
move is dctormined by expanding the cntirc game tree co terminal 
values, minimaxing the terminal values back up the tree, and 
picking a move which forces a win if 011c exists, or forces a draw if 
no wins exist. If all moves result in a forced loss, all moves are 
optimal. Note that the optimal move is the best move given the 
current state of the problem or game. It is dcfincd for all states, not 
just those on a globally optimal path from the initial state. 

An algorithm 
optimal move. 

exhibits petj+ci if for all states. it makes an 

A heuristic hnction is said to bc move invariflnf if the value it 
returns for any given state is equal to the value returned for the 
immcdiatc successor which results from an optimal move 

A heuristic senrch algodhnz is 011c which makes its decisions 
about what move to make next solely based on the minimum 
and/or maximum values of the heuristic evaluation f%nction of the 
successors of the current state. Note that such an algorithm may or 
may not include lookahcad. I,ookahcad is included by allowing it 
as part of the heuristic evaluation of a state. ‘ITis definition 
cncompasscs all the standard heuristic starch algorithms for 
one- and two-player games. 

Our main thcorctical result is the following: Ourcorne 
d~lclertttitrnliori plus tttove ittvm%mce arc suf$cietil cotrdilioiu for a 
hcuris/ic cvnluntiott Jtttction IO guarutttcr pcrfeccl play lty n hmrisfic 
sccrrch rflgori/httt. Its proof is as follows: 

Move invariance rcquircs that the heuristic value of any state 
and its successor resulting from an optimal move bc the same. 
Since an optimal solution path is just a scqucncc of optimal moves, 
move invariance implies that the heuristic evaluations of all states 
along an optimal solution path from any given state arc the snmc. 
Outcome dctcrmination cnsurcs that the heuristic value of the goal 
;It tllC Clltl Of SIICll iI p;llll CqtlillS its CXilCt V;lltlC. ‘Ilicrcli~rc. 1~0th 
propcrlics logcthcr gllill2llLCC lIlil1 (IlC heuristic VillllC 01’ ilIly given 
state is i\ pcrftict predictor of [he CvCntuill outcome of that state 
given pcrfcct play. Thus, a heuristic starch algorithm need only 
gcncratc all successors of the current state, cvaluatc them, and 
choose the minimum or maximum value as appropriate to cnsurc 
optimal moves from cvcry state. 

While outcome dctcrmination and move invariance arc sufficient 
conditions for pcrfcct play, strictly speaking they arc not ncccssary 
conditions. ‘I’hc reason is that a heuristic function with thcsc 
propcrtics could bc composed with any function which prcscrvcs 
the maximum or minimum of iI set without changing the moves 
that would hc made. If’ WC ignore such order-prcscrving functions, 
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however, outcome determination 
necessary for perfect play. 

and move invariance become 

Since outcome determination plus move invariance is equivalent 
to pcrfcct prediction, one way of intcrprcting the above result is 
that pcrfcct heuristics arc necessary and sufficient for pcrfcct play. 
On the surface, this stems somewhat contrary to well-known results 
such as the optimality of A* with inexact. but admissible, heuristics. 
Note, howcvcr. that A* doesn’t commit itself to making any moves 
until it has searched the optimal solution path all the way to the 
goal, and hence it knows the exact outcome of the best move bcforc 
it chooses that move. 

2.2. Predicting Heuristic Performance 
The decomposition of pcrfcct prediction into the indcpcndent 

conditions of outcome dctcrmination and move invariance is useful 
for predicting heuristic pcrformancc qualitatively. For example, 
Manhattan Distance satisfies outcome dctcrmination in both the 
Fifteen Puzzle and Kubik’s Cube, as dots material count in both 
chcckcrs and Othello. Both heuristics, however, differ markedly in 
move invariance in their two rcspcctivc problems. Thus, our theory 
successfully distinguishes the useful from the usclcss heuristic in 
both casts. Furthermore, it provides a single, uniform 
intcrprctation of heuristic evaluation functions over both single- 
person and two-player garncs. 

3. Learning Evaluation Functions 
In addition to unifying tic theory of heuristic tinctions. and 

making qualitative predictions about the pcrformancc of given 
evaluation functions for given problems. our theory can bc used as 
the basis of a method for learning heuristic functions. ‘I’hc main 
contribution of the theory to this problem is that it dccomposcs the 
global property of pcrfcct prediction into the two loci\1 propcrtics 
01’ outcome dctcrminiltion and ITIOVC invariance. ‘I’hus. WC CM\ 

search for heuristics that satisfy OIIC of thcsc propcrtics, and then 
test to what cxtcnt the other is sittisficd as well. 

‘I’hc basic idea is that since part of the charactcri~ation of a 
successful CValUiltioll function is in terms of invariimcc over single 

moves, candidate evaluation functions can bc optimized based on 
kll ill li~l3TliltiOll ill ;I plWhkl?l SplCC. Ill p;lr’~iW!ilr. OJlC Call SCilrCil 

li)r II lilnctioii which is illVariilll1 OVCI IllOvCS ;IlOllg ;I solution ~liltll. 

‘I’his tcchniquc WiIS implicitly used by SillIJ~lCl’S [IO] pioneering 
cxpcrimcnts on Icarning chcckcrs evaluation functions, and by 
I<cndcll’s [9] more recent work on Icarning heuristics for the 
l:iftccn Pu7.71~. 13~10~ WC dcscribc some cxpcrimcnts which rcplacc 
Samuel’s ad hoc tcchniqucs with the well-understood method of 
linear rcgrcssion, and cxtcnd the method to the domilin of chess. 

3.1. Description of the Method 
WC adopt the standard game-playing model of mini-max starch 

with static CVa~UiltiOJl at the ScarCh frontier [l I]. While other 
learning cxpcrimcnts have ftxzuscd on openings or cndgamcs 

[2,7.8]. we have addrcsscd the mid-game. Samuel [lo] observed 
that the most cffcctivc way of improving mid-game performance is 
to modify the evaluation function. 

The first game program to improve its pcrformancc by learning 
was Samuel’s checkers program [lo]. Although it also employed 
other learning techniques, it is mostly known for learning the 
cocfficicnts in its polynomial evaluation fimction. Samuel’s idea 
was that the diffcrcncc bctwccn the static evaluation of a board 
position and the backed-up value dcrivcd from a mini-max starch 
could bc used to modify the evaluation function. This is based on 
the assumption that for a given evaluation function, values based 
on looking ahead are more accurate thatJ purely static evaluations. 
Samuel’s program altcrcd the coefficients of the function at every 
move whcrc thcrc was a significant diffcrcnce between the value 
calculated by the evaluation function and that returned by the 
mini-max starch. The idea is to alter UK evaluation function so 
that it can calculate the backed-up value at the original state 
without having to look ahcad. An ideal evaluation function 
climinatcs the need for a mini-max starch since it always calculates 
the correct value for any state. 

The main diffcrcncc bctwccn our approach and Samuel’s is in 
how the value rcturncd by the mini-max starch is used to modify 
the evaluation function. Samuel cmploycd an ad-hoc technique 
based on correlation cocfficicnts and somewhat arbitrary correction 
factors. Our method is based on the well-understood tcchniquc of 
linear rcgrcssion. In addition, while his investigation focused on 
checkers. our cxperimcnts have been carried out in the more 
complex game of chess. 

3.2. Coefficient Modification by Regression 
For pedagogical reasons. WC will explain the tcchniquc using the 

simple Cxamplc of a chcckcrs cvaluiltion function based only on the 
numbCrs of sin& picccs and kings. In other words, WC want to 

dctcrmine the rclativc value of the kings and picccs in an 
evaluation function of the form C’,E;+(>P; whcrc F, and FP arc 
the numbclx of picccs and kings, rcspcctivcly. Of COLI~SC. thcrc 
woufd also bc terms for the oppotlcnt’s material. but WC assume 
that the cocfficicnts have the s;lmc magnitude and opposite signs. 

WC StiJrt with :rn iniIial CStimiJtc of thC cocfficicnts, c.g. both 
N~\l;il IO OIIC. (iivcn il ~~;llIiCUlill~ I~O;ll~cf posilion. WC Cilll plllg in 

ValUCS IiJr /f; illld F’r ‘I’h~n. WC pcrliJrm iI Iook-iJllCild starch to 

sonic depth. CviJluatc the nodes at the frontier using the initial 

cstilnatc of the cocfficicnts. and back-up thcsc values using the 
mini-Jnax algorithm, resulting in a numerical value for the original 

position. This information can bc rcprcscntcd as an equation of the 
form (‘,/I;+ (‘>/I;= I<, whcrc the (; arc the paramctcrs of the 

C~lliltiOll. 1llC /‘) ;II’C tllC factors Of tllC CVi~llliltiOll function ‘or 

dcpcndcnt vilriablcs, and the I< is the backed-up mini-max value. 
One Can then perform a linc;Jr rcgrcssion on this ditta to dctcnninc 

the best-fitting values for the paramctcrs of the equation, thus in 
cffcct establishing the cocffioicnts of the factors in the evaluation 

function. 
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Unfortunately, the result of the regression is not the best choice 
of cocfficicnts but rather a bcttcr cstimatc. The reason is that the 
right-hand sides of the equations are not exact but approximate 
values since they arc based on the same estimated cocfficicnts. 
Thus, the cntirc process must be rcpcatcd using the new 
coefficients derived from the rcgrcssion. These iterations are 
continued until the values converge. 

This iterative algorithm can bc viewed as hill-climbing in the 
space of cocfficicnts, with potentially all the normally associated 
problems of hill-climbing. In particular, thcrc may exist values 
which are locally stable but not globally optimal. No effcctivc way 
exists to detect such local stabilities except by drastically altering 
some of the cocfficicnts in the regression analysis to see if diffcrcnt 
maxima are encountered. If that is the cast, then these different 
evaluation functions can be played against each other to see which 
one is indeed the best. 

This learning method can be applied to any game which can be 
implcmcntcd using mini-max starch with static evaluation. Note 
that the learning is accomplished simply by the program playing 
games against itself, without any outside input. 

Our method was first explored in the simple game of 4x4x4 tic- 
tat-toe, and pcrformcd remarkably well. WC used six factors in the 
evaluation function. namely the number of rows, columns, and 
diagonals in which a side could win with cithcr one, two, or three 
picccs of the same color already in place. Not only did it order the 
factors of the evaluation function in increasing order of the number 
of picccs in place, but it also quickly rccognizcd which cocfficicnts 
had incorrect signs and rcvcrscd them. 

3.3. Experiments with Chess 
As a serious test, WC chose Ihc game of chess and a simple 

evaluation function consisting only of material advantage. ‘I’hc 
cxpcrimcnt was to see if the Icarning program woultl approximate 
the classically acccptcd weights for the picccs: 9 for the queen, 5 for 
the rook, 3 for the bishop, 3 for the knight, and 1 for the pawn. 
‘I’hc chess program was implcmcntcd using a two-ply (one full 
move) mini-max starch with alpha-beta pruning and quicsccncc. 
1400 half-moves wcrc made bctwccn each rcgrcssion. If ncithcr 
side won during it game it was stopped afkr 100 half-moves and a 
IlCW g;llllC WilS SlillICd. I:Or pUlJJOSCS OI’ LhC cxpcrimcnl, ;I win W;lS 

assigned one more than the total initial material value. and the 
individual piccc vh.x wcrc rounded off to the ncarcst 0.5. ‘I’hc 
picccs stabilized at: Queen, 8.0; rook, 4.0; bishop, 4.0; knight, 3.0: 
pawn, 2.0. 

The above results wcrc based on a starch of only two ply, plus 
quicsccncc. ‘I’his 111C;I11S tllilt LllC CllCSS plVglalI1 was playing a 
tactical game. trying to maximize material in the short run rather 
than to achicvc chcckmatc. Since the equations correspond to 
moves from cvcry phase of the game, the final values arc avcragc 
weights from the opening, midgamc. and cndgamc. I1crlincr has 
obscrvcd, howcvcr, that the optimal evaluation function is in 

general a function of the stage of the game [l]. Because of the 
weakness in the end game caused by the lack of planning the chess 
program could not take advantage of the rook’s incrcascd strength 
during the end game. Other picccs might suffer from similar 
effects. 

When we played the derived ’ function against the classical 
function in one hundred games, the derived hnction won 
scvcntccn games and lost sixteen. The rest wcrc draws. This does 
not mean that our dcrivcd function is optimal, only that it is as 
good as the classical one in the context in which it was learned, 
namely two ply starch using only a material evaluation tinction. 

4. Conclusions 
WC have presented a theory which unifies the treatment of 

heuristic evaluation functions in single-person problems and two- 
person games. The theory characterizes a useful heuristic function 
as one which determines the outcome of a starch when applied to a 
terminal position, and is invariant over optimal moves. We have 
shown that these two propcrtics arc sufficient for pcrfcct play by a 
heuristic search algorithm. This local characterization is useful for 
making qualitative predictions about the pcrformancc of given 
heuristics, and foi the automatic learning of heuristic flmctions. In 
one cxpcrimcnt, our program was able to automatically learn a set 
of rclativc weights for the diffcrcnt chess pieces that arc as good as 
the classical values in the context in which they were lcarncd. 
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