From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

A Unified Theory of Heuristic Evaluation
Functions and its Application to Learning

Jens Christensen
Computer Science Department, Stanford University,
Stanford, Ca. 94305

Richard E. Korf

Computer Science Department, University of California,
Los Angcles, Ca. 90024

Abstract

We present a characterization of heuristic evaluation functions
which unifics their treatment in singic-agent probiems and two-
person games. The central result is that a useful heuristic function is
one which determines the outcome of a scarch and is invariant
along a solution path. This local characterization of heuristics can
be used to predict the effectiveness of given heuristics and to
automaticaily lcarn uscful heuristic functions for problems, In one
experiment, a sct of relative weights for the different chess pieces
was automatically lcarned.

1. Introduction

Consider the following anomaly. The Manhattan distance
heuristic for the Fifteen Puzzle is computed by mceasuring the
distance along the two-dimensional grid of cach tile from its
current position to its goal position, and summing these values for
cach tile. Manhattan distance is a very cffective heuristic function
for solving the Fifteen Puzzic [4]. A completely analogous heuristic
can be defined in three dimensions for Rubik’s Cube: for cach
individual movable picce of the cube, count the number of twists
required to bring it to its goal position and orientation, and sum
these values for cach component. Three dimensional Manhattan
distance, however, is effectively worthless as a heuristic function for
Rubik’s Cubc[5]. Even though Rubik’s Cube is similar to the
Fifteen Puzzle, the two heuristics are virtually identical, and in both
cases the goal is achicved when the value of the heuristic is
minimized, the heuristic is very effective in one case and uscless in
the other.

As another anomalous example, consider the games of checkers
and Othello with material count as an cvaluation function. Othello
is a game played on an cight by cight square grid with picces which
arc white on one side and black on the other. Fach player
alternatcly places picces with his color showing on emipty squares,
Whenever a player places his picees at both ends of a line of his
opponent’s picces, the opponent’s picces are flipped over and
become the property of the original player. The winner is the player
whose color shows on the majority of the picces at the end of the
game. Material count is an cvaluation function which sums the
number of picces belonging to one player and subtracts the total
material of the other player. It turns out that material count is a
fairly successful evaluation function for checkers but relatively
incffective for Othello, even though the winner is the player that
maximizes his material in both cases.®

*Strictly speaking. a checkers game is won when the oppenent has no more legal
moes, but this almost always occurs as a result of the opponent tosing all his pieces.

148 / SCIENCE

A challenge for any theory of heuristic evaluation functions is to
cxplain these anomalics. An additional challenge is to present a
consistent interpretation of heuristic functions in single-agent
problems and two-player games. Surprisingly. the trcatment in the
literature of heuristic scarch in these two different domains has
little in common. In single-agent scarches, a heuristic cvaluation
function is viewed as an estimate of the cost of the remainder of the
solution path. In two-person games, however, a heuristic function
is vagucly characterized as a measure of the "strength” of a board
position for one player versus the other.

2. A Unified Theory of Heuristic Evaluation
Functions

One criterion which distinguishes the successful heuristics from
the unsuccessful ones above is that in the successful cases, primitive
moves in the problem space make only small changes in the value
of the heuristic function. In the case of Manhattan distance for the
Fifteen Puzzle. a single move changes the Manhattan distance by a
single unit whercas for Rubik’s Cube a single twist can change the
Manhattan distance by as much as cight units (cight picces move at
once). Similarly, the material count in checkers rarcly changes by
more than a single picce during onc move. but in Othello it can
change by a large number of picces (up to 18 in one casc). This
suggests a theory that evaluation functions which are relatively
invariant over single moves are more effective.

A closcly related idea was suggested by lenat in the more
gencral context of heuristic production rules [6]. A production rule
has a left-hand side that specifies a situation where it is applicable,
and a right-hand side that determines the action to be taken in that
situation. 1.enat argues that the power of heuristic production rules
is derived from the fact that the appropriatencss of a situation-
action pair is a continuous function of both the situation and the
action. In other words, if a particular action is appropriatc in a
particular situation, then 1) a similar action is likely to be
appropriate in the same situation, and 2) the same action is likely to
e appropriate in a similar situation. I we broaden the definition of
action to include evaluation, and allow the situation variable to
range over different states in the same problem space, then our
notion of relative invariance over single moves becomes a special
casc of L.enat's continuity idca.

Of course, invariance over single moves is not enough to assurc a
useful evaluation function, since this can be trivially achicved by
assigning all states the same constant value. ‘The heuristic vatues
must be tied to actual payoffs in the game, in particular to the
values of the goal states. This suggests that when a heuristic
function is applicd to a goal state, it should return the exact value of
that state.

Informally, we claim that an ideal heuristic evaluation function
has two propertics: 1) when applied to a goal state, it returns the
outcome of the scarch; and 2) the valuc of the function is invariant
along an optimal solution path. “Taken together, these two
propertics cnsure a function which is a perfect predictor of the
outcome of pursuing any given path in the problem space.
Therefore, a heuristic search algorithm using such a function
should always make optimal moves. Furthermore, we claim that
any successful cvaluation function will satisfy these propertics to
some cxtent,

For cxample, the evaluation function for the A* algorithm [3] is
fin)=g(n)+ h(n) where g(n) is the cost of the best path from the
initial statc to the node # and /i(n) is an estimate of the cost of the
best path from node n to a goal state. Typically the 4 term is called
the heuristic in this function, but for our purposcs we will refer to
the entire function fas the heuristic evaluation function. When this
function is applicd to a goal node, the 4 term is zcro, the g term
represents the cost of reaching the goal from the initial state, and
hence freturns the cost of the path or the outcome of the scarch. If
his a perfect estimator, then as we move along an optimal path to a
goal state, each move increases g by the cost of the move and
decrcases 4 by the same value, Thus, the value of f remains
invariant alonz an optimal path. If A is not a perfect estimator, fwill
vary somewhat depending upon the amount of crror in A Thus, a
good cvaluation function for an algorithm such as A* will
determine the outcome of the scarch and is relatively invariant over
single moves.

Now consider a two-person game using minimax scarch and a
static cvaluation function. The static evaluation reflects the strength
of a given board position. When applied to a state where the game
is over, the function determines the outcome of the game, or which
player won, ‘This is often added as a special case to an cvaluation
function, typically returning positive and necgative infinity for
winning positions for MAX and MIN, respectively. When applicd
to a non-goal node, the function is supposed to rcturn a value
which predicts what the ultimate outcome of the game will be. To
the cxtent that the evaluation is an accurate predictor, its value
should not change as the anticipated moves are made. Thus, a good
cvaluation function should be invariant over the actual sequence of
moves made in the game. Therefore, in both examples we sce that a
good evaluation function should have the propertics of 1)
determining outcome and 2) invariance over single moves.

2.1. Formal Description of the Theory

In this scction we will define the propertics of outcome
determination and move invariance and show that these conditions
are sufficient for perfect play by a heuristic scarch algorithm.

A heuristic function is said to determine the outcome of a scarch
if when applied to any terminal or goal state, it returns the figure of
merit for the task. This is the criterion against which success is
measurcd. For example, in a single-person scarch where the task is
to find a lowest cost path to a goal state, the outcome would be the
actual cost of the solution path found. In a two-person game, the

outcome might be cither win, lose, or draw for a particular player,
or a number indicating a score.

An optimal move from a given state is one which leads to a best
outcome in the worst case. For cxample, in a single-person
problem an optimal move is a move along a lowcest cost path from
the given state to a goal state. For a two-person game, an optimal
move is determined by expanding the entire game tree to terminal
values, minimaxing the terminal values back up the tree, and
picking a move which forces a win if one cxists, or forees a draw if
no wins cxist. If all moves result in a forced loss, all moves are
optimal. Note that the optimal move is the best move given the
current state of the problem or game. It is defined for all states, not
just thosc on a globally optimal path from the initial state.

An algorithm exhibits perfect play if for all states, it makes an
optimal move.

A hcuristic function is said to be move invariant if the value it
returns for any given state is cqual to the value returned for the
immediate successor which results from an optimal move.

A heuristic search algorithm is onc which makes its decisions
about what move to make next solely based on the minimum
and/or maximum valucs of the heuristic cvaluation function of the
successors of the current state. Note that such an algorithm may or
may not include lookahcad. l.ookahead is included by allowing it
as part of the heuristic cvaluation of a state. This definition
cncompasses all the standard heuristic scarch algorithms for
onc- and two-player gamcs.

Our main theorctical result is the following: Quicome
determination plus move invariance are sufficient conditions for a
heuristic evaluation function to guarantee perfect play by a heuristic
search algorithm. 1ts proof is as follows:

Move invariance requires that the heuristic value of any state
and its successor resulting from an optimal move be the same,
Since an optimal solution path is just a sequence of optimal moves,
move invariance implics that the heuristic evaluations of all states
along an optimal solution path from any given statc are the same.
Outcome determination ensures that the heuristic value of the goal
at the end of such a path cquals its exact vatue. ‘Therefore, both
properties together guarantee that the heuristic value of any given
state is a perfect predictor of the eventual outcome of that state
given perfect play. Thus, a heuristic scarch algorithm nced only
generate all successors of the current state, cvaluate them, and
choosc the minimum or maximum valuc as appropriate to cnsure
optimal moves from cvery state.

While outcome determination and move invariance are sufficient
conditions for perfect play, strictly speaking they arc not necessary
conditions. The reason is that a heuristic function with these
propertics could be composed with any function which preserves
the maximum or minimum of a sct without changing the moves
that would be made. If we ignore such order-preserving functions,

Search: AUTOMATED REASONING / 149

however, outcome determination and move invariance become
necessary for perfect play.

Since outcome determination plus move invariance is equivalent
to perfect prediction, one way of interpreting the above result is
that perfect heuristics are necessary and sufficient for perfect play.
On the surface, this scems somewhat contrary to well-known results
such as the optimality of A* with inexact, but admissible, heuristics.
Note, however, that A* docsn’t commit itsclf to making any moves
until it has searched the optimal solution path all the way to the
goal, and hence it knows the exact outcome of the best move before
it chooses that move.

2.2. Predicting Heuristic Performance

The decomposition of perfect prediction into the independent
conditions of outcome determination and move invariance is uscful
for predicting heuristic performance qualitatively. IFor example,
Manhattan Distance satisfics outcome determination in both the
Fiftcen Puzzie and Rubik’s Cube, as docs material count in both
checkers and Othello. Both heuristics, however, differ markedly in
move invariance in their two respective problems. Thus, our theory
successfully distinguishes the uscful from the useless heuristic in
both cascs. Furthermore, it provides a single, uniform
interpretation of heuristic evaluation functions over both single-
person and two-playcr games.

3. Learning Evaluation Functions

In addition to unifying the theory of heuristic functions, and
making qualitative predictions about the performance of given
cvaluation functions for given problems, our theory can be used as
the basis of a method for learning heuristic functions. "The main
contribution of the theory to this problem is that it decomposcs the
global property of perfect prediction into the two local propertics
of outcome determination and move invariance. ‘Thus, we can
search for heuristics that satisfy onc of thesc propertics, and then
test to what extent the other is satisfied as well.

‘The basic idea is that since part of the characterization of a
successful cvaluation function is in terms of invariance over single
moves, candidate evaluation functions can be optimized based on
Tocal information in a problem space. In particular, one can scarch
for a function which is invariant over moves along a solution path.
"I'his technique was implicitly used by Samucl's[10] pioncering
cxperiments on learning checkers evatuation functions, and by
Rendell's [9] more recent work on lcarning heuristics for the
Fiftcen Puzzle. Below we describe some experiments which replace
Samuel's ad hoc techniques with the well-understood method of
lincar regression, and extend the method to the domain of chess.

3.1. Description of the Method

We adopt the standard game-playing model of mini-max scarch
with static evaluation at the scarch fronticr [11]. While other
learning cxperiments have focused on openings or endgames

150 / SCIENCE

[2.7. 8]. we have addressed the mid-game. Samuel [10] obscrved
that the most effective way of improving mid-game performance is
to modify the evaluation function.

The first game program to improve its performance by lcarning
was Samucl’s checkers program [10]. Although it also employed
other learning techniques, it is mostly known for learning the
cocfficients in its polynomial evaluation function. Samucl’s idea
was that the difference between the static evaluation of a board
position and the backed-up value derived from a mini-max search
could be used to modify the evaluation function. This is based on
the assumption that for a given evaluation function, values based
on looking ahead are more accurate than purcly static cvaluations.
Samuecl's program altered the coefficients of the function at every
move where there was a significant difference between the value
calculated by the cvaluation function and that returned by the
mini-max scarch. The idea is to alter the evaluation function so
that it can calculate the backed-up value at the original state
without having to look ahcad. An idcal evaluation function
climinates the need for a mini-max scarch since it always calculates
the correct valuc for any state.

The main diffcrence between our approach and Samucl’s is in
how the valuc returned by the mini-max scarch is used to modify
the cvaluation function. Samucl ecmployed an ad-hoc technique
based on corrclation cocfficients and somewhat arbitrary correction
factors. Our method is based on the well-understood technique of
lincar regression. In addition, while his investigation focused on
checkers, our cxperiments have been carried out in the more
complex game of chess.

3.2. Coefficient Modification by Regression

For pedagogical rcasons, we will explain the technique using the
simple example of a checkers evaluation function based only on the
numbers of single picces and kings. In other words, we want to
determine the relative value of the kings and picces in an
evaluation function of the form C I, +C,I", where F,and I are
the numbers of picces and kings, respectively. Of course, there
would also be terms for the opponent’s material, but we assume
that the cocfficicnts have the same magnitude and opposite signs.

We start with an initial estimate of the cocfficients, c.g. both
cqual to one, Given a particular board position, we can plug in
values lor I"I and I"Z Then, we perform a look-ahead scarch to
some depth, cvaluate the nodes at the frontier using the initial
estimate of the cocfficients, and back-up these values using the
mini-max algorithm, resulting in a numerical value for the original
position. This information can be represented as an cquation of the
form ¢, +(=R, where the ¢ are the parameters of the
cquation, the /, arc the factors of the cvaluation functionor
dependent variables, and the R is the backed-up mini-max value.
Onc can then perform a lincar regression on this data to determine
the best-fitting values for the parameters of the equation, thus in
cffect establishing the cocfficients of the factors in the evaluation
function.

Unfortunately, the result of the regression is not the best choice
of coefficients but rather a better cstimate. The rcason is that the
right-hand sides of the equations are not exact but approximate
valucs since they arc based on the samc estimated cocfficients.

) 3 et ha canantad cioloa tha osmads
Thus, the cntirc process must be repeated usifig the ncw

cocfficients derived from the regression. These iterations are
continued until the values converge.

This iterative algorithm can be viewed as hill-climbing in the
space of cocfficients, with potentially all the normally associated
problems of hill-climbing. In particular, there may exist values
which are locally stable but not globally optimal. No effective way
exists to detect such local stabilitics except by drastically altering
some of the coefficients in the regression analysis to sce if different
maxima are encountered. If that is the case, then these different
cvaluation functions can be played against each other to see which
ong is indeed the best.

This learning method can be applied to any game which can be
implemented using mini-max scarch with static evaluation. Note
that the Icarning is accomplished simply by the program playing
games against itself, without any outside input.

Our method was first explored in the simple game of 4x4x4 tic-
tac-toe, and performed remarkably well. We uscd six factors in the
cvaluation function, namely the number of rows, columns, and
diagonals in which a side could win with cither one, two, or three
picces of the same color already in place. Not only did it order the
factors of the evaluation function in increasing order of the number
of picces in place, but it also quickly recognized which cocfficients
had incorrect signs and reversed them.

3.3. Experiments with Chess

As a scrious test, we chose the game of chess and a simple
cvaluation function consisting only of material advantage. 'The
cxperiment was to sec if the learning program would approximate
the classically accepted weights for the picces: 9 for the queen, 5 for
the rook, 3 for the bishop, 3 for the knight, and 1 for the pawn.
‘The chess program was implemented using a two-ply (one full
move) mini-max scarch with alpha-beta pruning and quiescence.
1400 half-moves were made between cach regression, I neither
side won during a game it was stopped after 100 half-moves and a
new game was started. For purposes of the experiment, a win was
assigned onc more than the total initial material value, and the
individual picce values were rounded off to the necarest 0.5. 'The
picces stabilized at: Queen, 8.0; rook, 4.0; bishop, 4.0; knight, 3.0;
pawn, 2.0.

The above results were based on a scarch of only two ply, plus
quiescence. ‘This means that the chess program was playing a
tactical game, trying to maximize material in the short run rather
than to achieve checkmate. Since the cquations correspond to
movces from cvery phasc of the game, the final values are average
weights from the opening, midgame, and cndgame. Berliner has
obscrved, however, that the optimal cvaluation function is in

general a function of the stage of the game[1]. Because of the
weakness in the end game caused by the lack of planning the chess
program could not take advantage of the rook’s increased strength
during the end game. Other picces might suffer from similar
cifects.

When we played the derived ' function against the classical
function in one hundred games, the derived function won
seventeen games and lost sixteen. The rest were draws. This does
not mean that our derived function is optimal, only that it is as
good as the classical onc in the context in which it was learned,
namely two ply scarch using only a material evaluation function.

4. Conclusions

We have presented a theory which unifies the trcatment of
heuristic cvaluation functions in single-person problems and two-
person games. The theory characterizes a useful heuristic function
as onc which determines the outcome of a scarch when applied to a
terminal position, and is invariant over optimal moves. We have
shown that these two propertics are sufficient for perfect play by a
heuristic scarch algorithm. This local characterization is uscful for
making qualitative predictions about the performance of given
heuristics, and for the automatic lcarning of heuristic functions. In
one cxperiment, our program was able to automatically Icarn a set
of relative weights for the different chess picces that are as good as
the classical valucs in the context in which they were learned.

5. Acknowledgments

This research has bencfitted from discussions with Bruce
Abramson and Judca Pearl. ‘This research was supported by the
National Science Foundation under grant IST-85-15302, and by an
IBM Faculty Development Award.

6. References

[11 Berlincr, Hans.
On the construction of evaluation functions for large
domains.
In Proceedings of 1JC A1-79, pages 53-55. International Joint
Conferences on Artificial Intelligence, Tokyo, Japan,
August, 1979.

2] Berliner, Hans, and Murray Campbell.
Using chunking to solve chess pawn endgames.
Artificial Intelligence 23(1):97-120, 1984,

[3] Har P.E, N.J. Nilsson, and B. Raphael.
A formal basis for the heuristic determination of minimum
cost paths.
IEEE Transactions on Systems Science and Cybernetics
4(2):100-107, 1968,

Search: AUTOMATED REASONING / 151

[4]

31

(6]

(7]

&)

[10]

(11

Korf, R.E.

Depth-first iterative-decpening: An optimal admissible tree
search.

Artificial Intelligence 27:97-109, 1985.

Korf, R.E.
Macro-operators: A weak method for learning.
Artificial Intelligence 26:35-71, 1985.

Lenat, Douglas'B.
The Nature of Heuristics.
Artificial Intelligence 19:189-249, 1982,

Minton, Steven.

Constraint-based generalization, Learning game-playing
plans from single cxamples.

In AAAJ-84, pages 251-254. American Association for
Artiticial Intelligence, Austin, Texas, August, 1984.

Quinlan, J. Ross.

ILearning cfficient classification procedures and their
application to chess end games.

In Michalski, R.S., J.G. Carbonell, and T.M. Mitchell
(cditors), Machine Learning, pages 463-482. Tioga, Palo
Alto, Ca,, 1983.

Rendell, L.

A new hasis for state-space learning systems and a successful
implementation.

Artificial Intelligence 20:369-392, 1983.

Samucl, A.L.

Some studics in machinc learning using the game of
checkers.

In Feigenbaum, E.A. and J. Feldman (cditors), Computers
and Thought, . McGraw-Hill, N.Y., 1963.

Shannon, Claude E.
Programming a computer for playing chess.
Philosophical Magazine (Series 7) 41:256-275, 1950.

152 / SCIENCE

