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Abstract

Time-frequency representations such as the spectrogram are commonly used to an-
alyze signals having a time-varying distribution of spectral energy, but the spectro-
gram is constrained by an unfortunate tradeoff between resolution in time and fre-
quency. A method of achieving high-resolution spectral representations has been in-
dependently introduced by several parties. The technique has been variously named
reassignment and remapping, but while the implementations have differed in de-
tails, they are all based on the same theoretical and mathematical foundation. In
this work, we present a brief history of work on the method we will call the method of

time-frequency reassignment, and present a unified mathematical description of the
technique and its derivation. We will focus on the development of time-frequency
reassignment in the context of the spectrogram, and conclude with a discussion of
some current applications of the reassigned spectrogram.
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1 Introduction

Many signals of interest have a distribution of energy that varies in time and
frequency. For example, any sound signal having a beginning or an end has an
energy distribution that varies in time, and most sounds exhibit considerable
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variation in both time and frequency over their duration. Time-frequency rep-

resentations are commonly used to analyze or characterize such signals. They
map the one-dimensional time-domain signal into a two-dimensional function
of time and frequency. A time-frequency representation describes the variation
of spectral energy distribution over time, much as a musical score describes
the variation of musical pitch over time.

In audio signal analysis, the spectrogram is the most commonly-used time-
frequency representation, probably because it is well-understood, and immune
to so-called cross-terms that sometimes make other time-frequency represen-
tations difficult to interpret. But the windowing operation required in spec-
trogram computation introduces an unsavory tradeoff between time resolution
and frequency resolution, so spectrograms provide a time-frequency represen-
tation that is blurred in time, in frequency, or in both dimensions.

Time-frequency reassignment is a technique for refocussing time-frequency
data in a blurred representation like the spectrogram by mapping the data
to time-frequency coordinates that are nearer to the true region of support
of the analyzed signal. This method has been presented in other publications.
In particular, the reader is referred to the excellent tutorial in [1] and to [2].
Time-frequency reassignment is gaining popularity, but it is still common to
see new research conducted using the classical spectrogram that could benefit
in efficiency or effectiveness from the enhancements afforded by reassignment.

In this paper, we will consider the application of time-frequency reassignment
only to spectrogram data, though its effectiveness has also been demonstrated
in the context of many other representations (see for example the extensive
discussion of reassigned time-frequency representations and time-scale repre-
sentations in [3]). For completeness, and because different formulations are
popular in different research communities, we begin with a review of time-
frequency analysis using the spectrogram in Section 2 before introducing the
theory of time-frequency reassignment in Section 3. In Section 4 we discuss
the notion of instantaneous frequency and its estimation using frequency re-
assignment. In Section 5, we introduce the condition called “separability”,
which is crucial to obtain a meaningful time-frequency representation of a
multicomponent signal.

Most common applications of the method of time-frequency reassignment are
discrete (sampled) in time and frequency, so we next turn our attention to
methods for efficiently estimating or computing reassigned time and frequency
coordinates in the discrete case. Algorithms for implementing time-frequency
reassignment have been presented in [1] and [2], but complete derivations of
the techniques have not been published, to our knowledge, so in Section 6, we
offer them as a useful starting point for future research in the computation of
higher-order spectral derivatives.
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We then consider some applications of the method of reassignment. In Sec-
tion 7, we discuss improvements in spectrogram readability that can be achieved
using reassigned data, with specific attention to methods of detecting and re-
moving noisy or unreliable spectral data. In sound modeling applications, not
only the spectral energy or magnitude is needed, but also the spectral phase. In
Section 8, we discuss a high-fidelity additive sound model that is constructed
from reassigned spectral data, and methods by which the short-time Fourier
transform phase can be corrected to agree with the with the time-frequency
estimates obtained by reassignment. Finally, in Section 9, we suggest some
directions for future research using higher-order spectral derivatives.

2 The Spectrogram as a Time-Frequency Representation

One of the best-known time-frequency representations is the spectrogram, de-
fined as the squared magnitude of the short-time Fourier transform

S(t, ω) = |X(t, ω)|2. (1)

The short-time Fourier transform is defined as a complex function of contin-
uous time t and radian frequency ω by

X(t, ω) =
∫

x(τ)h∗(t − τ)e−jωτdτ (2)

=
∫

x(τ)h(t − τ)e−jωτdτ (3)

= M(t, ω)ejφ(t,ω) (4)

where h(t) is a finite-length, real-valued window function, (so h(t) = h∗(t)),
M(t, ω) is the magnitude of the short-time Fourier transform, and φ(t, ω) is
its phase.

Often, it is more convenient to compute the time-varying spectrum by shifting
the input signal, x(t), instead of the window function. This modified transform,
computed by

Xt(ω) =
∫

x(τ + t)h(−τ)e−jωτdτ (5)

= Mt(ω)ejφt(ω) (6)

is simply the Fourier transform of the shifted and windowed input signal,
Mt(ω) is the magnitude of the Fourier transform, and φt(ω) is its phase.

Equations 3 and 5 differ in the range of τ , the variable of integration, over
which the integrand is non-zero. Since h(t) is a finite-duration window func-
tion, the integrand in Equation 5 is always non-zero over the same range of τ ,
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for any t. Thus, the temporal reference of the transform “slides along” the
signal, instead of remaining fixed at t = 0, so we can call this transform the
moving window transform [4], to distinguish it from the short-time Fourier
transform.

The fixed range of integration in Equation 5 makes the moving window trans-
form easy to implement directly in a digital system using a fast Fourier trans-
form, but the two transforms are, in fact, equivalent, differing only in their
temporal reference. By a change of variable, t′ = τ + t, in Equation 5, we can
show that

Xt(ω) =
∫

x(τ + t)h(−τ)e−jωτdτ (7)

=
∫

x(t′)h(t − t′)ejω(t−t′)dt′ (8)

= ejωt

∫

x(t′)h(t − t′)e−jωt′dt′ (9)

= ejωtX(t, ω) (10)

= M(t, ω)ej[ωt+φ(t,ω)] (11)

so the moving window transform defined by Equation 5 is closely related to
the short-time Fourier transform. The magnitudes of the two transforms are
equal, and the phases differ only by a linear frequency term, that is,

Mt(ω) = M(t, ω) (12)

φt(ω) = ωt + φ(t, ω) (13)

For a sinusoid having constant frequency, ω0, the phase of the short-time
Fourier transform evaluated at that frequency, φ(t, ω0), is constant for all
time, and equal to the phase of the sinusoid at t = 0, whereas φt(ω0), the
phase of the moving window transform evalutated at frequency ω0, rotates at
exactly the frequency of the sinusoid.

Though the short-time phase spectrum is known to contain important tem-
poral information about the signal, this information is difficult to interpret,
so typically, only the short-time magnitude spectrum is considered in the con-
struction of a time-frequency representation like the spectrogram. In the con-
struction of additive sinusoidal sound models, the short-time phase spectrum
is sometimes used to improve the frequency estimates in the time-frequency
representation of quasi-harmonic sounds [5], but it is often omitted entirely,
or used only in unmodified reconstruction, as in the Basic Sinusoidal Model,
described by McAulay and Quatieri [6].

As a time-frequency representation, the spectrogram has relatively poor res-
olution. Time and frequency resolution are governed by the choice of analysis
window, h(t), and greater concentration in one domain is accompanied by
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Fig. 1. Spectrogram of an acoustic bass tone having a sharp pluck and a funda-
mental frequency of approximately 73.4 Hz. The spectrogram was computed using
a 112.7 ms Kaiser window with a shaping parameter of 12. The harmonic compo-
nents are resolved but the sharp attack is smeared by the duration of the analysis
window.

greater smearing in the other. This smearing can be seen in Figures 1 and 2,
which show spectrograms of a single pluck of an acoustic bass. The decaying
part of the tone (after the pluck) is well-represented by nearly-harmonic sinu-
soidal components having a fundamental frequency of approximately 73.4 Hz.
A very short-duration analysis window is needed in order to represent the tem-
poral structure of the abrupt attack, but any window function short enough
to provide the necessary temporal precision is much too wide in frequency to
resolve the harmonic components of the tone (spaced at about 73.4 Hz). In
Figure 1, the spectrogram has been computed using a 112.7 ms Kaiser win-
dow with a shaping parameter of 12. The harmonic components are resolved
but the sharp attack is smeared by the duration of the analysis window. In
Figure 2, the spectrogram has been computed using a much shorter Kaiser
window (10 ms). The attack is less distorted but the harmonic structure is
no longer discernible. The combination of poor resolution and poor precision
often makes it necessary to use two or more spectrograms, like the two in
Figures 1 and 2, to analyze an audio signal.

A time-frequency representation having improved resolution, relative to the
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Fig. 2. Spectrogram of an acoustic bass tone having a sharp pluck and a fundamental
frequency of approximately 73.4 Hz. The spectrogram was computed using a 10 ms
Kaiser window with a shaping parameter of 12. The attack is less distorted than in
Figure 1 (though some smearing is still evident) but the harmonic structure is no
longer discernible.

spectrogram, is the Wigner-Ville distribution

Wx(t, ω) =
∫

x(t + τ/2)x∗(t − τ/2)e−jωτdτ (14)

which may be interpreted as a short-time Fourier transform with a window
function that is perfectly matched to the signal. The Wigner-Ville distribution
is highly-concentrated in time and frequency, but it is also highly nonlinear
and non-local. Consequently, this distribution is very sensitive to noise, and
generates cross-components that often mask the components of interest, mak-
ing it difficult to extract useful information concerning the distribution of
energy in multi-component signals.

Cohen’s class of bilinear time-frequency representations [7] is a class of
“smoothed” Wigner-Ville distributions, defined

Cx(t, ω) =
∫∫

Wx(τ, ν)Φ(τ − t, ν − ω)dτdν (15)

where Φ(t, ω) is a smoothing kernel that can reduce sensitivity to noise and
suppresses cross-components, at the expense of smearing the distribution in
time and frequency. This smearing causes the distribution to be non-zero in
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regions where the true Wigner-Ville distribution shows no energy. Cx(t, ω) can
be considered an average over a domain centered at the point t, ω of the values
of the Wigner-Ville distribtuion at neighboring points t − τ, ω − Ω weighted
by the value of the smoothing kernel Φ(τ, Ω).

The spectrogram in Equation 1 is a member of Cohen’s class. It is a smoothed
Wigner-Ville distribution with the smoothing kernel equal to the Wigner-Ville
distribution of the window function h(t), that is,

Φ(t, ω) = Wh(t, ω). (16)

The method of reassignment smoothes the Wigner-Ville distribution, but then
refocuses the distribution back to the true regions of support of the signal com-
ponents. The method has been shown to reduce time and frequency smearing
of any member of Cohen’s class [3], but we will focus here on its application
to the spectrogram, and by extension, to short-time Fourier analysis of time-
varying audio signals. In the case of the reassigned spectrogram, the short-time
phase spectrum, φ(t, ω), is used to correct the nominal time and frequency co-
ordinates of the spectral data, and map it back nearer to the true regions of
support of the analyzed signal.

3 The Method of Reassignment

Pioneering work on the method of reassignment was first published by Kodera,
Gendrin, and de Villedary under the name of Modified Moving Window

Method [4]. Their technique enhances the resolution in time and frequency
of the classical Moving Window Method, the time-frequency representation
constructed from the squared magnitude of the moving window transform de-
fined in Equation 5, by assigning to each data point a new time-frequency
coordinate that better-reflects the distribution of energy in the analyzed sig-
nal.

In the classical moving window method, a time-domain signal, x(t) is decom-
posed into a set of coefficients, ǫ(t, ω), based on a a set of elementary signals,
hω(t), defined

hω(t) = h(t)ejωt (17)

where h(t) is a (real-valued) lowpass kernel function, like the window function
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in Equation 3. The coefficients in this decomposition are defined

ǫ(t, ω) =
∫

x(τ)h(t − τ)e−jω[τ−t]dτ (18)

= ejωt

∫

x(τ)h(t − τ)e−jωτdτ (19)

= ejωtX(t, ω) (20)

= Xt(ω) (21)

In other words, the coefficients in the moving window method are computed
from the moving window transform defined in Equation 5. In the moving
window method, the time-frequency representation is constructed from the
squared magnitude of the coefficients, and since the magnitude of these co-
efficients is identical to the magnitude of the short-time Fourier transform
coefficients (see Equation 12), this time-frequency representation is exactly
equivalent to the spectrogram.

x(t) can be reconstructed from the moving window coefficients by

x(t) =
∫∫

Xτ (ω)h∗

ω(τ − t)dωdτ (22)

=
∫∫

Xτ (ω)h(τ − t)e−jω[τ−t]dωdτ (23)

=
∫∫

Mτ (ω)ejφτ (ω)h(τ − t)e−jω[τ−t]dωdτ (24)

=
∫∫

Mτ (ω)h(τ − t)ej[φτ (ω)−ωτ+ωt]dωdτ (25)

For signals having magnitude spectra, M(t, ω), whose time variation is slow
relative to the phase variation, the maximum contribution to the reconstruc-
tion integral comes from the vicinity of the point t, ω satisfying the phase
stationarity condition

∂

∂ω
[φτ (ω) − ωτ + ωt] = 0 (26)

∂

∂τ
[φτ (ω) − ωτ + ωt] = 0 (27)

or equivalently, around the point t̂, ω̂ defined by

t̂(τ, ω) = τ −
∂φτ (ω)

∂ω
= −

∂φ(τ, ω)

∂ω
(28)

ω̂(τ, ω) =
∂φτ (ω)

∂τ
= ω +

∂φ(τ, ω)

∂τ
. (29)

This phenomenon has long been known in such fields as optics as the principle

of stationary phase (see for example [8]). The principle of stationary phase

8



states that for periodic or quasi-periodic signals, signals that are concentrated
in frequency, the variation of the Fourier phase spectrum not attributable to
periodic oscillation is slow with respect to time in the vicinity of the frequency
of oscillation, and in surrounding regions the variation is relatively rapid.
Analogously, for impulsive signals, that are concentrated in time, the variation
of the phase spectrum is slow with respect to frequency near the time of the
impulse, and in surrounding regions the variation is relatively rapid.

In sinusoidal reconstruction, positive and negative contributions to the synthe-
sized waveform cancel, due to destructive interference, in frequency regions of
rapid phase variation. Only regions of slow phase variation (stationary phase)
will contribute significantly to the reconstruction, and the maximum contribu-
tion (center of gravity) occurs at the point where the phase is changing most
slowly with respect to time and frequency.

The time-frequency coordinates computed by Equation 28 and Equation 29
are the local group delay, t̂g(t, ω), and local instantaneous frequency, ω̂i(t, ω),
and are computed from the phase of the short-time Fourier transform, which
is normally ignored when constructing the spectrogram, though it is known to
contain significant information about the signal. These quantities are “local”
in the sense that they are represent a windowed and filtered signal that is
localized in time and frequency, and are not global properties of the signal
under analysis.

The modified moving window method changes (reassigns) the point of attri-
bution of ǫ(t, ω) to this point of maximum contribution t̂(t, ω), ω̂(t, ω), rather
than to the point t, ω at which it is computed. This point is sometimes called
the “center of gravity” of the distribution, by way of analogy to a mass distri-
bution (in fact, Kodera et al. demonstrated that the coordinates t̂(t, ω), ω̂(t, ω)
represent the center of gravity of Rihaczek’s complex energy distribution [9]
for a real signal filtered by the short-time Fourier transform). This analogy is a
useful reminder that the attribution of spectral energy to the center of gravity
of its distribution only makes sense when there is energy to attribute, so the
method of reassignment has no meaning at points where the spectrogram is
zero-valued.

4 Local Estimation of Instantaneous Frequency

The group delay, defined in Equation 28, is often interpreted as the time delay,
or average time, associated with a particular frequency, and its adoption as
the reassigned temporal coordinate is consistent with that interpretation. In
fact, it can easily be shown that the group delay (or equivalently, the time
reassignment operation) exactly predicts the time of an impulse that lies in
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the region of support of the analysis window h(t).

The notion of instantaneous frequency also has a long history in the signal
processing literature, but it is normally computed from the signal phase, rather
than the spectral phase. Specifically, when a signal is expressed in analytic
form,

x(t) = A(t)ejθ(t) (30)

where A(t) is the (real) amplitude envelope and θ(t) is the (real) phase func-
tion, then the instantaneous frequency is defined as the derivative with respect
to frequency of the signal phase, θ(t), that is

ωi(t) =
dθ(t)

dt
(31)

While it is clearly possible to obtain a single-component analytic representa-
tion of any signal (or, indeed, an infinite number of such representations), such
a representation is not intuitively satisfying for most audio signals. Pitched
sounds, such as musical instrument tones, are characterized by quasi-harmonic
spectra, and a representation as a sum of components representing the vari-
ous harmonic partials is more revealing and intuitive. Vocal sounds are often
analyzed as the response of a resonant system (the vocal tract) to some excita-
tion signal, and a multicomponent representation that identifies the formants
of the resonant system is more informative.

A crucial insight in the development of the method of frequency reassignment
follows from the interpretation of the short-time Fourier transform as a de-
modulated bank of linear time-invariant bandpass filters, wherein each filter,
hω(t), has an impulse response determined by

hω(t) = h(t)ejωt (32)

Since the window function, h(t) is the impulse response of a finite impulse
response lowpass filter, the modulated window function is the impulse re-
sponse of a finite impulse response bandpass filter with passband centered at
frequency ω. Since h(t) is real, hω(t) is complex and, therefore, describes a fil-
ter having an assymmetric frequency response. An analogous bandpass filter
having a real impulse response would pass frequencies around ±ω, but hω(t)
passes only frequencies around ω.

In the filterbank interpretation of the short-time Fourier transform, X(t, ω)
describes the output of a bank of such filters excited by the input signal, x(t).
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That is,

X(t, ω) =
∫

x(τ)h(t − τ)e−jωτdτ (33)

=
∫

x(τ)h(t − τ)ejω[t−τ ]e−jωtdτ (34)

= e−jωt

∫

x(τ)hω(t − τ)dτ (35)

= e−jωt [x(t) ∗ hω(t)] (36)

In this interpretation, X(t, ω0) describes the demodulated output of a single
bandpass filter, centered at frequency ω0. The output of the filter is considered
to be a single complex exponential having magnitude M(t, ω0) and a phase
composed of a linear component, due to sinusoidal oscillation at frequency ω0,
and another time-varying component, φ(t, ω0), accounting for the deviation
from pure sinusoidal oscillation at frequency ω0. X(t, ω0) is the output of the
filter demodulated to remove the sinusoidal oscillation at frequency ω0, and
the output of the moving window transform Xt(ω0) = X(t, ω0)e

jω0t, is the raw
output of the bandpass filter centered at frequency ω0.

Kodera et al. [4] showed that the local instantaneous frequency, computed from
the derivative with respect to time of the spectral phase, φ(t, ω), is equal to
the instantaneous frequency of the bandpass filtered signal that is the output
of the short-time Fourier transform at the coordinates t, ω. For a signal

x(t) = A(t)ejθ(t) (37)

having instantaneous frequency

ωi(t) =
dθ(t)

dt
, (38)

X(t, ω0)e
jω0t is the output of the bandpass filter hω0

(t), centered at frequency
ω0, when the input is x(t). If, at time t, the instantaneous frequency of the
input, ωi(t) is far from ω0, such that the instantaneous frequency of the input
is outside the passband of the filter centered at ω0, then the output of the
filter is essentially zero. If, on the other hand, ω(t), is within the passband of
the filter (near ω0), then the signal passes through the filter unaltered except
for a scale factor, equal to the passband gain, and a constant time delay, so
its instantaneous frequency can be computed from the phase of the response
of hω0

(t) or any filter that passes x(t).

The filters that comprise the short-time Fourier transform introduce only a
constant offset to the phase of any component that they pass, and the spectral
phase obtained from the response of a single short-time Fourier transform filter
differs only by a constant offset from the phase of a single component whose
frequency lies in the passband of that filter. Therefore, the derivative with
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respect to time of the filtered signal, Xt(ω), is equal to the derivative with
respect to time of the original signal, x(t), and so the instantaneous frequency
of that component can be computed from the phase of the short-time Fourier
transform evaluated at ω. That is,

ωi(t) =
∂

∂t
arg{x(t)} (39)

=
∂

∂t
arg{Xt(ω)} (40)

=
∂

∂t
arg{ejωtX(t, ω)} (41)

= ω +
∂φ(t, ω)

∂t
(42)

= ω̂(t, ω) (43)

for any ω such that hω(t) is the impulse response of a filter that passes x(t).

The short-time Fourier transform filters may also introduce a time delay (if,
for example, the frequency of the signal under analysis is not exactly equal to
the center frequency of the filter), but this delay is precisely the group delay.
Therefore, the local instantaneous frequency computed from the derivative
with respect to time of the spectral phase is equal to the instantaneous fre-
quency of the signal at a time offset from the center of the analysis window
by the group delay, computed from the derivative with respect to frequency
of the spectral phase. The short-time Fourier transform coefficients evaluated
at time t and frequency ω are mapped from the geometric center of the anal-
ysis window (t, ω) onto the region of support of the analyzed signal by the
reassignment operations in Equation 28 and Equation 29.

The term local instantaneous frequency indicates that ω̂(t, ω) is the instan-
taneous frequency of the dominant component at a particular time and fre-
quency. Nelson calls it the channelized instantaneous frequency [10,11], to em-
phasize that it is the instantaneous frequency of a component passing through
a single short-time Fourier transform channel. Flanagan also showed that in-
stantaneous frequency could be computed for each short-time Fourier trans-
form bin from partial derivatives of the phase spectrum [12], and his method
has been widely used for obtaining estimates of fundamental frequency (see
for example [13] and [14]).

Figure 3 demonstrates the effect of frequency reassignment for a fragment
of voiced speech. The upper plot shows the conventional (dashed lines) and
reassigned (crosses) magnitude spectra. The lower plot shows the mapping
of nominal (Fourier transform bin) frequency to reassigned frequency for the
same fragment of speech. Near the frequencies of strong harmonics, the map-
ping is flat, as all nearby transform data is reassigned to the frequency of
the dominant harmonic component. This consensus, or clustering among re-
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Fig. 3. Demonstration of frequency reassignment in a single spectrum for a fragment
of speech (the “o” in “open”), computed using a 33.6 ms Kaiser analysis window with
a shaping parameter of 12. The upper plot shows the conventional (dashed lines)
and reassigned (crosses) magnitude spectra. The lower plot shows the mapping of
nominal (Fourier transform bin) frequency to reassigned frequency for the same
fragment of speech. The flat portions of the lower curve represent regions in which
the energy in many transform bins is reassigned to the same frequency. The circled
points show the samples having locally minimal frequency reassignments.

assigned frequency estimates in the vicinity of spectral peaks can be used as
an indicator of the reliability of the time-frequency data [15]. If the reassigned
frequencies for neighboring short-time Fourier transform channels are all very
similar, then there is said to be a high degree of consensus and the quality of
the frequency estimates is assumed to be good.

The method of time-frequency reassignment has been used in a variety of
applications for obtaining improved time and frequency estimates for time-
varying spectral data [16,17,18]. Often, only the frequency reassignment oper-
ation is used to compute instantaneous frequency estimates [13,15]. It should
be noted that, for many choices of analysis window, the much simpler method
of parabolic interpolation of the magnitude spectrum, proposed by Smith and
Serra [19] gives very similar frequency estimates (and in some cases, even more
precise estimates, according to [20]). We are, however, aware of no compet-
ing method for improving the accuracy of the time estimates in short-time
spectral analysis.
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5 Separability

The short-time Fourier transform can often be used to estimate the amplitudes
and phases of the individual components in a multi-component signal, such as
a quasi-harmonic musical instrument tone (see, for example, [5]). Moreover,
the time and frequency reassignment operations described by Equation 28
and Equation 29 can be used to sharpen the representation by attributing the
spectral energy reported by the short-time Fourier transform to the point that
is the local center of gravity of the complex energy distribution [18].

For a signal consisting of a single component, described by Equation 37, the
instantaneous frequency can be estimated from the partial derivatives of phase
of any short-time Fourier transform channel that passes the component, as
shown above. If the signal is to be decomposed into many components,

x(t) =
∑

n

An(t)ejθn(t) (44)

and the instantaneous frequency of each component is defined as the derivative
of its phase with respect to time, that is,

ωn(t) =
dθn(t)

dt
, (45)

then the instantaneous frequency of each individual component can be com-
puted from the phase of the response of a filter that passes that component,
provided that no more than one component lies in the passband of the filter.

This is the property, in the frequency domain, that Nelson called “separa-
bilty” [10,11] and we require this property of all the signals we analyze. If
this property is not met, then we cannot achieve the desired multicomponent
decomposition, because we can not estimate the parameters of individual com-
ponents from the short-time Fourier transform and we must choose a different
analysis window so that the separability criterion is satisfied.

If the components of a signal are separable in frequency with respect to a
particular short-time spectral analysis window, then the output of each short-
time Fourier transform filter is a filtered version of, at most, a single dominant
(having significant energy) component, and so the derivative, with respect to
time, of the phase of the X(t, ω0) is equal to the derivative with respect to time,
of the phase of the dominant component at ω0. Therefore, if a component,
xn(t), having instantaneous frequency ωn(t) is the dominant component in
the vicinity of ω0, then the instantaneous frequency of that component can be
computed from the phase of the short-time Fourier transformevaluated at ω0.

14



That is,

ωn(t) =
∂

∂t
arg{xn(t)} (46)

=
∂

∂t
arg{X(t, ω0)} (47)

Thus, the partial derivative with respect to time of the phase of the short-
time Fourier transform can be used to compute the instantaneous frequencies
of the individual components in a signal described by Equation 44, provided
only that the components are separable in frequency by the chosen analysis
window.

Just as we require that each bandpass filter in the short-time Fourier transform
filterbank pass at most a single complex exponential component, we require
that two temporal events be sufficiently separated in time that they do not
lie in the same windowed segment of the input signal. This is the property of
separability in the time domain, and is equivalent to requiring that the time
between two events be greater than the length of the impulse response of the
short-time Fourier transform filters, the span of non-zero samples in h(t).

Separability in time and in frequency is required of components we wish to
resolve in a reassigned time-frequency representation. If the components in a
decomposition are separable in time and frequency in a certain time-frequency
representation, then the components can be resolved by that time-frequency
representation, and using the method of reassignment, can be characterized
with much greater precision than is possible using classical methods.

For any signal, there are an infinite number of decompositions of the form
given in Equation 44. The separability property must be considered in the
context of the desired decomposition. Figure 4 shows a reassigned spectrogram
of a speech signal computed using an analysis window that is long relative to
the time between glottal pulses. The harmonics are clearly visible, and the
formant frequencies can also be discerned, but the individual glottal pulses
are smeared in this representation, because many pulses are covered by each
analysis window (that is, the individual pulses are not separable, in time,
by the chosen analysis window). Figure 5 shows a spectrogram of the same
speech signal computed using an analysis window that is much shorter than
the time between glottal pulses. In this representation, the individual pulses
are clearly visible, because no window spans more than one pulse, but the
harmonic frequencies are not visible, because the main lobe of the analysis
window spectrum is much wider than the spacing between the harmonics
(that is, the harmonics are not separable, in frequency, by the chosen analysis
window).

15



Fig. 4. Long-window reassigned spectrogram of the word “open”, computed using
a 54.4 ms Kaiser window with a shaping parameter of 9, emphasizing harmonics.

Fig. 5. Short-window reassigned spectrogram of the word “open”, computed using
a 13.6 ms Kaiser window with a shaping parameter of 9, emphasizing formants and
glottal pulses.
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6 Efficient Computation of Reassigned Times and Frequencies

In digital signal processing, it is most common to sample the time and fre-
quency domains. The discrete Fourier transform is used to compute samples
X(k) of the Fourier transform from samples x(n) of a time domain signal,

X(k) =
N−1
∑

m=0

x(m)e
−j2πkm

N (48)

where x(n) is the time domain signal sampled at tn = nT for sampling pe-
riod T , X(k) is the discrete Fourier transform coefficients, equal (for adequately-
sampled bandlimited signals) to samples of the Fourier transform at (radian)
frequencies ωk = 2πk/N . For highly-composite N , such as powers of two, the
discrete Fourier transform can be computed very efficiently using a fast Fourier
transform algorithm.

The discrete short-time Fourier transform can be computed

X(n, k) =
n
∑

m=n−N+1

x(m)h(n − m)e
−j2πkm

N (49)

= e
j2πkn

N

N−1
∑

m=0

x(m + n)h(−m)e
−j2πkm

N (50)

= e
j2πkn

N Xn(k) (51)

where h(n) is samples of a real-valued, finite-length window function that is
non-zero only on the range n = 0 . . . N − 1, and is analogous to the analy-
sis window h(t) in Equation 3. Xn(k) is the discrete Fourier transform of a
shifted and windowed input signal, the discrete time moving window trans-
form defined in Equation 5. For a signal sampled with sampling period T
seconds, the N -point discrete short-time Fourier transform computes samples
of the short-time Fourier transform at times tn = nT and (radian) frequencies
ωk = 2πk/N .

The reassignment operations proposed by Kodera et al. cannot be applied
to the discrete short-time Fourier transform data, because partial derivatives
cannot be computed directly on data that is discrete in time and frequency. It
has been suggested that this difficulty has been the primary barrier to wider
use of the method of reassignment [21].

6.1 Approximation of the Partial Derivatives of Phase

It is possible to approximate the partial derivatives using finite differences.
For example, the phase spectrum can be evaluated at two nearby times, and
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the partial derivative with respect to time be approximated as the difference
between the two values divided by the time difference, as in:

∂φ(t, ω)

∂t
≈

1

∆t

[

φ(t +
∆t

2
, ω) − φ(t −

∆t

2
, ω)

]

(52)

∂φ(t, ω)

∂ω
≈

1

∆ω

[

φ(t, ω +
∆ω

2
) − φ(t, ω −

∆ω

2
)
]

(53)

For sufficiently small values of ∆t and ∆ω, this finite-difference method yields
good approximations to the partial derivatives of phase, because in regions of
the spectrum in which the evolution of the phase is dominated by rotation due
to sinusoidal oscillation of a single, nearby component, the phase is a linear
function.

But the phase of the Fourier transform is the argument of a complex quan-
tity, and can only be computed modulo 2π. This phase wrapping effect, that
equates all phases differing by a multiple of 2π, has no practical impact on
the individual phase values, but is of some consequence when two phases
are combined as in the finite difference derivative approximation, because the
difference between two phase values may not be preserved by the wrapping
process.

Fortunately, ∆t and ∆ω, can be chosen to be small enough that, for a properly-
sampled signal, the phase difference can be easily “unwrapped”. The absolute
value of the difference in phase between consecutive samples, in time or in
frequency, of the short-time Fourier transform cannot exceed π in any region
of the spectrum dominated by a significant oscillating component. Any phase
difference that exceeds π, in the absolute sense, has been corrupted by phase
wrapping, and can be corrected by simply adding or subtracting 2π to obtain
an absolute value that is less than π. Thus, if ∆t and ∆ω are chosen to be one
sample, then the finite difference method can be used to accurately-estimate
the reassigned times and frequencies in regions of the spectrum in which the
evolution of the phase is dominated by rotation due to sinusoidal oscillation
of a nearby component.

Charpentier [22] used a finite difference approximation to Flanagan’s instan-
taneous frequency equation [12] and showed that the approximation could
be computed using only a single Fourier transform for the case of the Hann
analysis window.

Unaware of the work of Kodera et al., Nelson arrived at a similar method for
computing reassigned time-frequency coordinates for short-time spectral data
from partial derivatives of the short-time phase spectrum [10,11]. Instead of
directly computing the first differences of phase, Nelson first computes two
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so-called cross spectral surfaces,

C(t, ω) = X(t +
∆t

2
, ω)X∗(t −

∆t

2
, ω) (54)

L(t, ω) = X(t, ω +
∆ω

2
)X∗(t, ω −

∆ω

2
) (55)

The partial derivatives are then approximated by the phase of these cross
spectra.

∂φ(t, ω)

∂t
≈

1

∆t
arg(C(t, ω)) (56)

∂φ(t, ω)

∂ω
≈

1

∆ω
arg(L(t, ω)) (57)

It is easily shown that approximation of the derivatives by means of a cross
spectral surface is equivalent to computing the finite differences directly, only
the differences are unwrapped automatically when the argument is computed,
for example:

1

∆t
arg(C(t, ω)) =

1

∆t
arg

(

X(t +
∆t

2
, ω)X∗(t −

∆t

2
, ω)

)

(58)

=
1

∆t
arg

(

M(t +
∆t

2
, ω)ejφ(t+∆t

2
,ω)M(t −

∆t

2
, ω)e−jφ(t−∆t

2
,ω)
)

(59)

=
1

∆t
arg

(

M(t +
∆t

2
, ω)M(t −

∆t

2
, ω)ej[φ(t+∆t

2
,ω)−φ(t−∆t

2
,ω)]
)

(60)

=
1

∆t

[

φ(t +
∆t

2
, ω) − φ(t −

∆t

2
, ω)

]

(61)

While these linear differences only approximate the partial derivatives of the
phase with respect to time and frequency, they give very good approximations
in regions of the spectrum dominated by a single, significant concentration of
energy, such as an impulse or a sinusoid, because in these regions the evolution
of the phase spectrum is linear in time and in frequency. In regions of the
spectrum having no significant concentration of energy, the finite difference
approximation may not be a good one, but it makes little sense to compute
reassigned time and frequency coordinates when there is no energy to reassign.

6.2 Evaluation of the Partial Derivatives of Phase Using Transforms

Auger and Flandrin [3] showed how the method of reassignment, proposed in
the context of the spectrogram by Kodera et al., could be extended to any
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member of Cohen’s class of time-frequency representations by generalizing the
reassignment operations in Equation 28 and Equation 29 to

t̂(t, ω) = t −

∫∫

τ · Wx(t − τ, ω − ν) · Φ(τ, ν)dτdν
∫∫

Wx(t − τ, ω − ν) · Φ(τ, ν)dτdν
(62)

ω̂(t, ω) = ω −

∫∫

ν · Wx(t − τ, ω − ν) · Φ(τ, ν)dτdν
∫∫

Wx(t − τ, ω − ν) · Φ(τ, ν)dτdν
(63)

where Wx(t, ω) is the Wigner-Ville distribution of x(t), and Φ(t, ω) is the
kernel function that defines the distribution. They further described an ef-
ficient method for computing the times and frequencies for the reassigned
spectrogram efficiently and accurately without explicitly computing the par-
tial derivatives of phase.

In the case of the spectrogram, Sx(t, ω) = |X(t, ω)|2, the reassignment opera-
tions in Equation 28 and Equation 29 can be computed by

t̂(t, ω) = t −ℜ







XT h(t, ω) · X∗(t, ω)

|X(t, ω)|2







(64)

ω̂(t, ω) = ω + ℑ







XDh(t, ω) · X∗(t, ω)

|X(t, ω)|2







(65)

where X(t, ω) is the short-time Fourier transform computed using an analysis
window h(t), XT h(t, ω) is the short-time Fourier transform computed using a
time-weighted anlaysis window hT (t) = t ·h(t) and XDh(t, ω) is the short-time
Fourier transform computed using a time-derivative analysis window hD(t) =
d
dt

h(t).

In this method, using the auxiliary window functions hT (t) and hD(t), the
reassignment operations can be computed at any time-frequency coordinate
t, ω from an algebraic combination of the values of three Fourier transforms
evaluated at t, ω, without directly evaluating or approximating the partial
derivatives of phase. A method of computing instantaneous frequency equiv-
alent to Equation 65 was independently discovered by Abe [23], and is some-
times used in fundamental frequency estimation (see for example [13]). Since
the these algorithms operate only on spectral data evaluated at a single time
and frequency, and do not explicitly compute any derivatives, they can easily
be implemented in digital systems using discrete times and frequencies.

The time-weighted window function, hT (t), is trivially computed by pointwise
multiplication of the original window function, h(t), by a time ramp. If the
derivative of the window function is unknown, then hD(t) can also be computed
numerically. The derivative theorem for Fourier transforms, which states that
if X(ω) is the Fourier transform of x(t), then the Fourier transform of d

dt
x(t)
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is jωX(ω). That is,

x(t) ↔ X(ω) (66)

implies
d

dt
x(t) ↔ jωX(ω) (67)

We can therefore construct the time-derivative window used in the evaluation
of the frequency reassignment operator by computing the Fourier transform
of h(t), multiplying by jω, and inverting the Fourier transform. That is,

d

dt
h(t) = FFT−1{jωH(ω)} (68)

= −ℑ
{

FFT−1{ωH(ω)}
}

(69)

and so, in discrete time,

hD(n) = −ℑ
{

FFT−1
{2πk

N
H(k)

}

}

(70)

The auxiliary short-time analysis windows employed in the computation of
Auger and Flandrin’s reassignment operations are shown in Figure 6 for the
case of h(n) being 501 samples at 44.1 kHz of a Kaiser window with shaping
parameter equal to 12.

Using Equation 64 and Equation 65, the value of the reassignment operations
at t, ω can be computed from the values of the three short-time Fourier trans-
forms at t, ω, without direct evaluation of any partial derivatives. So if the
values of the transforms at discrete time and frequency coordinates, tn, ωk,
are known, then the values of the reassignment operations can be computed
for those discrete times and frequencies without resorting to discrete approx-
imations to the partial derivatives in Equation 28 and Equation 29. Since the
discrete short-time Fourier transform computes the values of the short-time
Fourier transform at discrete times and frequencies, values of the reassign-
ment operations, ω̂(tn, ωk) and t̂(tn, ωk) can be computed from three discrete
short-time Fourier transforms. This gives an efficient method of computing
the reassigned discrete short-time Fourier transform provided only that the
|X(t, ω)|2 is non-zero. This is not much of a restriction, since the reassign-
ment operation itself implies that there is some energy to reassign, and has
no meaning when the distribution is zero-valued.

In the two sections that follow, we derive the reassignment operations proposed
by Auger and Flandrin. The implementation of the reassignment operations
has been described elsewhere [1,2], and partial derivations have been presented
(see, for example [3] and [21]), but we are not aware of a complete, published
derivation. We include the derivations here for completeness, and because
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Fig. 6. Representative analysis windows employed in the three short-time transforms
used to compute reassigned times and frequencies. Waveform (a) is the original
window function, h(n) (a Kaiser window with shaping parameter 12.0, in this case),
waveform (b) is the time-weighted window function, hT (n), and waveform (c) is the
frequency-weighted window function, hD(n). In each case, the plots were made from
501 samples of the corresponding window function at 44.1 kHz.

we have found them to be a useful starting point for deriving methods of
computing other spectral derivatives.

The procedure in each derivation is the same. First, we show that the partial
derivative of the spectral phase can be expressed in terms of the short-time
Fourier transform and its partial derivative. Then, we show that the par-
tial derivative of the short-time Fourier transform can be computed from the
transform itself and a second transform computed using a different window
function. Finally, we combine the results to obtain an expression for the reas-
signed coordinate that does not include any explicit partial derivatives.

Readers not interested in the mathematical derivation of the reassignment
operations can skip ahead to Section 7.
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6.2.1 Derivation of Efficient Spectrogram Time Reassignment Operator

In this section, we present the mathematical derivation of the efficient time
reassignment operator discovered by Auger and Flandrin. In Section 6.2.2 we
will present the derivation of the frequency reassignment operator. We begin
by restating the time reassignment operation identified by Kodera et. al., and
presented here in Equation 28

t̂(t, ω) = −
∂φ(t, ω)

∂ω
.

To arrive at an expression for the partial derivative of spectral phase with
respect to frequency, we first take the partial derivative of X(t, ω) with respect
to frequency. Applying the product rule of differential calculus to Equation 4,

∂

∂ω
X(t, ω) =

∂

∂ω

[

M(t, ω)ejφ(t,ω)
]

(71)

=
∂M(t, ω)

∂ω
· ejφ(t,ω) + M(t, ω) · j

∂φ(t, ω)

∂ω
ejφ(t,ω) (72)

=
∂M(t, ω)

∂ω
· ejφ(t,ω) + j

∂φ(t, ω)

∂ω
X(t, ω) (73)

In order to isolate the partial derivative of phase, we can multiply by
jX∗(t, ω)/|X(t, ω)|2 (this operation is only valid when |X(t, ω)|2 is non-zero,
but as noted earlier, the reassignment operation itself has no meaning when
the distribution is zero-valued) and simplify to obtain

[

∂

∂ω
X(t, ω)

]

·
jX∗(t, ω)

|X(t, ω)|2
=

[

∂M(t, ω)

∂ω
· ejφ(t,ω) + j

∂φ(t, ω)

∂ω
· X(t, ω)

]

·
jX∗(t, ω)

|X(t, ω)|2

(74)

=
∂M(t, ω)

∂ω
· ejφ(t,ω) ·

jX∗(t, ω)

|X(t, ω)|2
−

∂φ(t, ω)

∂ω
·
|X(t, ω)|2

|X(t, ω)|2

(75)

=
∂M(t, ω)

∂ω
·

jM(t, ω)

|X(t, ω)|2
−

∂φ(t, ω)

∂ω
(76)

= −
∂φ(t, ω)

∂ω
+ j ·

[

M(t, ω)

|X(t, ω)|2

]

·
∂M(t, ω)

∂ω
(77)

Since M(t, ω) is real-valued, the real part of this expression is precisely the neg-
ative partial derivative with respect to frequency of the phase of the short-time
Fourier transform. Thus, we conclude that the partial derivative of spectral
phase with respect to frequency, and hence, the reassigned time, t̂, can be
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computed by

t̂(t, ω) = −
∂φ(t, ω)

∂ω
= ℜ







∂X(t, ω)

∂ω
·
jX∗(t, ω)

|X(t, ω)|2







(78)

Equation 78 expresses the partial derivative of the short-time Fourier trans-
form phase with respect to frequency in terms of the transform itself and its
partial derivative with respect to frequency.

Next, we will show that the partial derivative of the short-time Fourier trans-
form with respect to frequency can be computed without explicitly computing
or approximating any derivatives. Taking the partial derivative of the short-
time Fourier transform given by Equation 3,

∂

∂ω
X(t, ω) =

∂

∂ω

∫

x(τ)h(t − τ)e−jωτdτ (79)

=
∫

x(τ)h(t − τ)

[

∂

∂ω
e−jωτ

]

dτ (80)

=
∫

x(τ)h(t − τ)
[

−jτe−jωτ
]

dτ (81)

= −j
∫

x(τ) · τ · h(t − τ)e−jωτdτ (82)

= −jtX(t, ω) + jtX(t, ω) − j
∫

x(τ) · τ · h(t − τ)e−jωτdτ (83)

= −jtX(t, ω) + j
∫

x(τ) · (t − τ) · h(t − τ)e−jωτdτ (84)

= −jtX(t, ω) + j
∫

x(τ)hT (t − τ)e−jωτdτ (85)

= −jtX(t, ω) + jXT h(t, ω) (86)

where hT (t) = t · h(t) is the time-weighted anlaysis window described in
Section 6 and shown in Figure 6, and XT h(t, ω) is the short-time Fourier
transform computed using this time-weighted analysis window. Multiplying,
as before (and with the same caveat concerning zero-valued distributions), by
jX∗(t, ω)/|X(t, ω)|2, we obtain

[

∂

∂ω
X(t, ω)

]

·
jX∗(t, ω)

|X(t, ω)|2
= [−jtX(t, ω) + jXT h(t, ω)] ·

jX∗(t, ω)

|X(t, ω)|2
(87)

= t ·
|X(t, ω)|2

|X(t, ω)|2
+

jXT h(t, ω) · jX∗(t, ω)

|X(t, ω)|2
(88)

= t −
XT h(t, ω) · X∗(t, ω)

|X(t, ω)|2
(89)
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Substituting this expression into Equation 78, we obtain

t̂(t, ω) = −
∂φ(t, ω)

∂ω
= t −ℜ







XT h(t, ω) · X∗(t, ω)

|X(t, ω)|2







(90)

which is the time reassignment operation proposed by Auger and Flandrin,
previously presented in Equation 28.

6.2.2 Derivation of Efficient Spectrogram Frequency Reassignment Operator

In this section, we present the mathematical derivation of the efficient fre-
quency reassignment operator discovered by Auger and Flandrin. We begin
by restating the frequency reassignment operation identified by Kodera et. al.,
and presented here in Equation 29

ω̂(t, ω) = ω +
∂φ(t, ω)

∂t
.

To arrive at an expression for the partial derivative of spectral phase with
respect to time, we first take the partial derivative of X(t, ω) with respect to
time. Applying the product rule of differential calculus to Equation 4,

∂

∂t
X(t, ω) =

∂

∂t

[

M(t, ω)ejφ(t,ω)
]

(91)

=
∂M(t, ω)

∂t
· ejφ(t,ω) + M(t, ω) · j

∂φ(t, ω)

∂t
ejφ(t,ω) (92)

=
∂M(t, ω)

∂t
· ejφ(t,ω) + j

∂φ(t, ω)

∂t
· X(t, ω) (93)

In order to isolate the partial derivative of phase, we can multiply by
X∗(t, ω)/|X(t, ω)|2 (this operation is only valid when |X(t, ω)|2 is non-zero,
but as noted earlier, the reassignment operation itself has no meaning when
the distribution is zero-valued) and simplifying to obtain

∂X(t, ω)

∂t
·

X∗(t, ω)

|X(t, ω)|2
=

[

∂M(t, ω)

∂t
· ejφ(t,ω) + j

∂φ(t, ω)

∂t
· X(t, ω)

]

·
X∗(t, ω)

|X(t, ω)|2

(94)

=
∂M(t, ω)

∂t
· ejφ(t,ω) ·

X∗(t, ω)

|X(t, ω)|2
+ j

∂φ(t, ω)

∂t
·
|X(t, ω)|2

|X(t, ω)|2

(95)

=
∂M(t, ω)

∂t
·

M(t, ω)

|X(t, ω)|2
+ j

∂φ(t, ω)

∂t
(96)
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Since M(t, ω) is real-valued, the imaginary part of this expression is precisely
the partial derivative with respect to time of the phase of the short-time
Fourier transform. Thus, we conclude that the value of the frequency reas-
signment operator can be computed by

ω̂(t, ω) = ω +
∂φ(t, ω)

∂t
= ω + ℑ







∂X(t, ω)

∂t
·

X∗(t, ω)

|X(t, ω)|2







(97)

Equation 97 expresses the partial derivative of the short-time Fourier trans-
form phase with respect to time in terms of the transform itself and its partial
derivative with respect to time.

Next, we will show that the partial derivative of the short-time Fourier trans-
form with respect to time can be computed without explicitly computing or
approximating any derivatives. Taking the partial derivative of the short-time
Fourier transform given by Equation 3,

∂

∂t
X(t, ω) =

∂

∂t

∫

x(τ)h(t − τ)e−jωτdτ (98)

=
∫

x(τ)

[

∂

∂t
h(t − τ)

]

e−jωτdτ (99)

=
∫

x(τ)hD(t − τ)e−jωτdτ (100)

= XDh(t, ω) (101)

where hD(t) = d
dt

h(t) is the time-derivative anlaysis window described in Sec-
tion 6 and shown in Figure 6, and XDh(t, ω) is the short-time Fourier trans-
form computed using this time-derivative analysis window. Multiplying, as
before (and with the same caveat concerning zero-valued distributions), by
jX∗(t, ω)/|X(t, ω)|2, we obtain

∂X(t, ω)

∂t
·

X∗(t, ω)

|X(t, ω)|2
=

XDh(t, ω) · X∗(t, ω)

|X(t, ω)|2
(102)

Substituting this expression into Equation 97, we obtain

ω̂(t, ω) = ω +
∂φ(t, ω)

∂t
= ω + ℑ







XDh(t, ω) · X∗(t, ω)

|X(t, ω)|2







(103)

which is the frequency reassignment operation proposed by Auger and Flan-
drin, previously presented in Equation 29.
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Fig. 7. Reassigned spectrogram for the onset of an acoustic bass tone having a sharp
pluck and a fundamental frequency of approximately 73.4 Hz. The spectrogram was
computed using a 65.7 ms Kaiser window with a shaping parameter of 12. The sharp
attack and the harmonic components are clearly visible.

7 Pruning Reassigned Data to Improve Spectrogram Readability

Reassigned time and frequency estimates are much more precise than those ob-
tained from traditional methods, so for many applications, the “readability” or
“interpretability” of the spectral data is much improved by reassignment. The
resolving power of the reassigned short-time Fourier transform is no greater
than that of the classical short-time Fourier transform. The separability con-
ditions discussed in Section 5 apply equally to reassigned and non-reassigned
spectra, and components smeared together by the analysis window will be
smeared in both reassigned and non-reassigned spectral data. Provided the
separability conditions are satisfied, however, reassigned spectrograms offer
improved clarity in the representation of quasi-sinusoidal components and im-
proved localization of impulsive events This improved readability is evident
in the plot in Figure 7, showing a reassigned spectrogram for the same bass
pluck that was plotted in Figures 1 and 2. The sharp attack is clearly visible
in this reassigned data, as are the harmonic components.

In spite of the obvious gains in clarity, reassigned spectrograms can be dis-
appointingly noisy. Seemingly random speckle is visible in regions where the
reassigned data is not clearly associated with either a sinusoidal component
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Fig. 8. Reassigned spectrogram of the vowel e (day) computed using a 7.8 ms Hann
window.

or an impulsive component. This random speckle can be seen between the
harmonics in Figure 7, and in the reassigned spectrogram shown in Figure 8,
representing a portion of the vowel e (day), spoken in a “creaky” (low airflow)
voice. The main glottal impulses appear as dark grey lines, and these result
from the sudden release of a puff of air into the mouth from below the vo-
cal cords. There are also fainter secondary impulses of unknown cause (these
have been attributed to the mechanics of the vocal cord action), appearing
just prior to the main impulses in this particular voice sample.

Reassignment provides a mapping from the geometrical center of the short-
time analysis window to the center of gravity of a nearby dominant spectral
component, but in low-energy regions of the spectrum, where there is no domi-
nant component, data is reassigned in a way that has no apparent relationship
to the structure of the analyzed signal.

The reassignment operations can be used to gauge the quality or reliability of
spectral analysis data. Large time or frequency reassignments indicate energy
concentrated far from the geometrical center of the analysis window. Since
window functions used in spectral analysis emphasize signal energy near their
geometrical centers and de-emphasize signal energy far from their centers,
large reassignments indicate data derived primarily from signal features that
are not well-represented in a particular analysis window. Reassigned spectral
data judged to be unreliable on the basis of large time reassignments [18] or
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large frequency reassignments [15] can be pruned from the representation to
further improve its readability, with the assurance that, owing to the high
redundancy of short-time Fourier transform data, the unreliable data will be
represented more reliably in a neighboring short-time Fourier transform frame
or channel. Gardner [15] further showed that consensus among neighboring
estimates of reassigned frequency indicates that those frequency estimates are
reliable, and therefore consensus can be used to guide the choice of an opti-
mal analysis window for resolving sinusoidal components in spectrally sparse
sounds.

When there is a high degree of consensus among reassigned frequency es-
timates, then the reassigned frequency, ω̂(t, ω) is changing very little with
respect to the center frequency of the analysis window, that is

∂ω̂(t, ω)

∂ω
≈ 0. (104)

Since, from Equation 29, the reassigned frequency is computed from the partial
derivative of spectral phase with respect to time, consensus among reassigned
frequency estimates can be evaluated locally from the mixed partial deriva-
tive of spectral phase with respect to time and frequency. Specifically, in the
vicinity of quasi-sinusoidal components, all frequencies, ω, should be mapped
to approximately the same reassigned frequency, ω̂(t, ω), so

∂ω̂(t, ω)

∂ω
= 1 +

∂2φ(t, ω)

∂t∂ω
≈ 0. (105)

Nelson showed that the mixed partial derivative of spectral phase can be used
to clean up or “de-speckle” reassigned spectrograms by removing data that
does not correspond to strongly sinusoidal or impulsive components in the
analyzed signal [10,11]. By plotting just those points in a reassigned spec-
trogram meeting the condition on the mixed partial derivative expressed in
Equation 105, a spectrogram showing just the strongly-sinusoidal components
can be drawn. In a speech signal, analyzed using a short analysis window, these
will be chiefly the vocal tract resonances. A reassigned spectrogram pruned in
this way is shown in Figure 9 for the same speech signal plotted in Figure 8.

Nelson further demonstrated that impulsive components in a signal should
be characterized by a high degree of consensus among neighboring reassigned
time estimates. Near the time of the impulse, the reassigned time, t̂(t, ω),
should be changing very slowly with respect to the temporal center of the
analysis window, that is,

∂t̂(t, ω)

∂t
≈ 0. (106)

Since, from Equation 28, the reassigned time is computed from the partial
derivative of spectral phase with respect to frequency, consensus among re-
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Fig. 9. Reassigned spectrogram showing only the sinusoidal components in the vowel
e (day). The spectrogram was computed using a 7.8 ms Hann window.

assigned time estimates can also be evaluated locally from the mixed partial
derivative of spectral phase. In the vicinity of impulsive components, all times,
t, should be mapped to approximately the same reassigned time, t̂(t, ω), so

∂t̂(t, ω)

∂ω
= −

∂2φ(t, ω)

∂t∂ω
≈ 0. (107)

By plotting just those points in a reassigned spectrogram meeting the condi-
tion on the mixed partial derivative expressed in Equation 107, a spectrogram
can be drawn that clearly and precisely localizes the impulsive events in a
signal. For example, using a short (relative to the fundamental period) analy-
sis window, the individual glottal pulses in a speech signal can be plotted, as
shown for the creaky e signal in Figure 10.

Using the phase of the moving window transform, Nelson identified the reas-
signed data corresponding to sinusoidal components as the points satisfying

∂2φt(ω)

∂t∂ω
≈ 0. (108)

and the reassigned data corresponding to impulsive components as the points
satisfying

∂2φt(ω)

∂t∂ω
≈ 1 (109)
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Fig. 10. Reassigned spectrogram showing only the impulsive components in the
vowel e (day). The spectrogram was computed using a 7.8 ms Hann window.

Equations 108 and 109 are exactly equivalent to Equations 105 and 107, re-
spectively; the apparent shift by one reflects the difference in spectral phase
reported by the moving window transform and the short-time Fourier trans-
form.

By plotting just those points in a reassigned spectrogram meeting the dis-
junction of these two conditions yields a “denoised” reassigned spectrogram
showing precisely-localized quasi-sinusoidal and impulsive components, and
excluding the objectionable “speckle”. Figure 11 shows a fully “despeckled”
reassigned spectrogram of the creaky e, constructed solely from reassigned
spectral data satisfying one of the conditions in Equations 105 and 107. Fig-
ure 12 shows a similarly “despeckled” reassigned spectrogram for the acoustic
bass pluck shown in Figure 7.

Nelson used finite differences to compute the mixed partial derivative of spec-
tral phase, but using the derivations of the reassignment operations in Sec-
tions 6.2.1 and 6.2.2, it can be shown the the mixed partial derivative can be
computed directly from Fourier transforms by

∂2φ(t, ω)

∂t∂ω
= ℜ

{

XT Dh(t, ω)X∗(t, ω)

|X(t, ω)|2

}

−ℜ

{

XT h(t, ω)XDh(t, ω)

X2(t, ω)

}

(110)

where XT Dh(t, ω) is the short-time Fourier transform of x(t) computed using
a window hT D(t) = t d

dt
h(t), that is, the window used to compute XDh(t, ω)
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Fig. 11. “Despeckled” reassigned spectrogram showing only the sinusoidal and im-
pulsive components in the vowel e (day). The spectrogram was computed using a
7.8 ms Hann window.

multiplied by a time ramp.

8 Phase-Correct Additive Sound Modeling

In many applications, only the reassigned energy distribution is desired. In
sound modeling applications, where the goal is to construct a model of the
sound that can be used to reconstruct the sound, possibly with modifications,
we retain not the squared magnitude of the Fourier transform, the spectro-
gram, but the magnitude and phase of the transform.

The reassigned bandwidth-enhanced additive sound model [24] is a high-fidelity
representation that allows manipulations and transformations to be applied
to a great variety of sounds, including noisy and non-harmonic sounds. It is
similar in spirit to traditional sinusoidal models [6,19,25] in that a waveform
is modeled as a collection of components, called partials, having time-varying
frequencies and amplitudes. Estimates of partial frequency, amplitude, and
phase are obtained by following ridges on a reassigned time-frequency surface,
such as the one shown in Figure 13, constructed by reassigning discrete short-
time Fourier transform data. This algorithm shares with traditional sinusoidal
methods the notion of temporally-connected partial parameter estimates, but
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Fig. 12. “Despeckled” reassigned spectrogram showing only the sinusoidal and im-
pulsive components in the onset of an acoustic bass tone having a sharp pluck and a
fundamental frequency of approximately 73.4 Hz. The spectrogram was computed
using a 65.7 ms Kaiser window with a shaping parameter of 12.

by contrast, the reassigned estimates are non-uniformly distributed in both
time and frequency. The reassigned bandwidth-enhanced model yields greater
resolution in time and frequency than is possible using conventional additive
techniques, and can preserve the temporal envelope of transient signals, even
in modified reconstruction, if the short-time phase information is properly
maintained [18]. Preserving phase is important for reproducing transients and
short-duration complex sounds having significant information in the temporal
envelope [26].

The phase reported by the short-time Fourier transform is referenced to the
geometrical center of the analysis window in time and frequency. For a sinu-
soid having instantaneous frequency equal to ωi(t) (which is assumed to be
slowly-varying with respect to time), the argument of the short-time Fourier
transform evaluated at t, ωi(t) will be precisely the phase of the sinusoid at
time t. If the short-time Fourier transform is evaluated at some nearby fre-
quency, ωi(t) + ǫ, then the argument will not be precisely the phase of the
sinusoid, because the transform is equivalent to the output of a bank of linear
phase bandpass filters. These filters have phase equal to zero at the center of
their passbands, so a sinusoid having frequency equal to the center frequency
of the filter will see no phase shift, but a sinusoid having frequency not equal
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Fig. 13. Reassigned spectral surface for the onset of an acoustic bass tone having
a sharp pluck and a fundamental frequency of approximately 73.4 Hz. The spec-
trogram was computed using a 65.7 ms Kaiser window with a shaping parameter
of 12.

to the center frequency of the filter (but still in the passband) will experience
a linear phase shift.

Frequency reassignment computes frequencies for discrete short-time Fourier
transform data that are equal to the instantaneous frequency of the dominant
component in the signal under analysis at each time and frequency at which
the transform is evaluated, and attributes the data to these reassigned frequen-
cies. Since the reassigned data represent energy in signal components having
frequencies that are not at the geometrical center of the analysis window, it
follows that the data is perturbed by a linear phase shift. This perturbation
is easy to correct, because the slope of the phase response of the transform
filters is known. In fact, since the phase is linear over the entire passband of
the filter (this is why the finite difference approximation to the derivative is
so accurate at points of significant energy, see section 6.1), the phase of reas-
signed short-time data can be corrected to agree with the reassigned frequency
by linear interpolation of the discrete short-time phase spectrum.

Similarly, data that is reassigned in time away from the geometrical center of
the analysis window needs to be corrected for the phase travel due to sinu-
soidal oscillation over the interval of time reassignment (that is, the interval
between the reassigned time and the temporal center of the analysis window).
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In order to account for this phase travel precisely, the frequency trajectory
must be known precisely. For many sounds, provided that the analysis win-
dow is not too long, the frequency can be assumed to be constant over the
time reassignment interval, so a shift by ω̂(t, ω) ·

[

t̂(t, ω) − t
]

is sufficient to
correct the phase of reassigned short-time data to agree with the reassigned
time (ω̂(t, ω) is the reassigned instantaneous frequency and t̂(t, ω) − t is time
reassignment interval).

9 Computation of Higher-Order Phase Derivatives

The method of reassignment uses the partial derivatives of spectral phase with
respect to time and frequency. Applications of higher-order partial derivatives
of spectral phase have been proposed as well. Nelson showed that higher-order
partial derivatives of phase could be approximated using cross-spectral sur-
faces [10,11], but did not discuss any applications beyond the estimation of
frequency slope, or chirp rate. Rihaczek [9] proposed that the second deriva-
tives of the spectral phase be used to estimate the optimal dimensions of the
time-frequency cells in a Gabor decomposition.

By methods similar to those described in Sections 6.2.1 and 6.2.2, it can be
shown that the second partial derivative of phase with respect to frequency
and time can be computed

∂2φ(t, ω)

∂ω2
= ℑ

{(

XT h(t, ω)X∗(t, ω)

|X(t, ω)|2

)2}

−ℑ

{

XT 2h(t, ω)X∗(t, ω)

|X(t, ω)|2

}

(111)

∂2φ(t, ω)

∂t2
= ℑ

{

XD2h(t, ω)X∗(t, ω)

|X(t, ω)|2

}

−ℑ

{(

XDh(t, ω)X∗(t, ω)

|X(t, ω)|2

)2}

(112)

where XT 2h(t, ω) is the short-time Fourier transform of x(t) computed using
a window hT 2(t) = t2h(t) and XD2h(t, ω) is the short-time Fourier transform
of x(t) computed using a window hD2(t) = d2

dt2
h(t).

We think that higher-order phase derivatives might be useful in computing
local estimates of time and frequency spread that will allow us to construct
more robust models of noisy sounds.

10 Conclusion

We have presented the theory of time-frequency reassignment in the context
of the spectrogram, the most commonly-used time-frequency representation
in speech and audio processing. Time-frequency reassignment sharpens blurry
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time-frequency data by relocating the data according to local estimates of
instantaneous frequency and group delay. This mapping to reassigned time-
frequency coordinates is very precise for signals that are separable in time and
frequency with respect to the analysis window. We have discussed methods for
computing reassigned times and frequencies in digital systems, and offered a
derivation of one popular and efficient method. We believe that many speech
and audio processing applications employing short-time spectral analysis could
benefit from the straightforward application of the method of reassignment,
and have discussed some examples from our own research. We further believe
that extensions to the method of reassignment to efficiently compute mixed
and higher-order spectral derivatives may provide a means of computing other
features of interest in speech and audio signal processing.
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