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A unified treatment of the non-relativistic and relativistic 
hydrogen atom I: the wavefunctions 
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Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4 

Received 26 June 1990 

Abstract. In this and the following two papers in this series i t  is shown how the radial 
pan of non-relativistic and relativiStic hydrogenic bound-state calculations involving the 
Greenfunctionscanbepresentedin aunified manner. Theangularpartofsuchcalculationa, 
being well understood, i s  performed in the standard way. In this, the first paper, it is shown 
how a suitable linear transformation of the two relativistic radial wavefunclions allows the 
pair of relativistic coupled differential equations to be written as two uncoupled second- 
order equations which are simple generalizations of the corresponding non.relativistic 
equation. This transformation is presented in a manner which allows far a simple extension 
to the Green function problem. The transformed relativistic wavefunctions are explicitly 
derived and the normalization is presented in a novel and simple way. A new derivation 
is given for the recursion relations lor bath non-relativistic and relativistic radial wavefunc- 
tions, some of which are new. There relations are required in the subsequent papers 

1. Introduction 

The importance of the part played by the Green functions in the analysis of spectro- 
scopic properties of hydrogenic ions hardly needs emphasizing [I]. Indeed the analysis 
of two-photon processes in such systems inevitably requires the calculation of matrix 
elements of the appropriate hydrogenic Green function. Although several non-rela- 
tivistic calculations employing the Schrodinger-Coulomb Green function (SCGF) have 
been performed over the years, the corresponding relativistic calculations have received 
considerably less attention. This is probably because in the standard representations 
both the Dirac-Coulomb wavefunction ( DCWF) and the Dirac-Coulomb Green function 
(DCGF) are rather hard to deal with: the angular dependence is given by four-component 
Dirac spinors, and the general radial dependence consists of terms involving several 
separate functions. 

Since relativistic calculations are of value, however, there has been a continuing 
interest in the development of approximate methods designed to circumvent the 
difficulties encountered in an exact treatment. Of the several approximate methods 
which have been used, probably the best known is the representation of the Green 
function by a variationally determined finite basis set [2]. Describing as it does the 
simplest relativistic atomic system, the Dirac equation for the hydrogen atom is of 
course completely soluble. We thus find ourselves in the curious situation wherein the 
methods being applied to problems one would expect to admit of exact analytical 
solutions are almost exclusively approximate. Thus relativistic hydrogenic two-photon 
processes such as two-photon bound-bound transitions, two-photon ionization, Raman 
scattering, and even the Lamb shift have been treated by various approximate techniques 
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even though there surely exist exact solutions. Similarly, exact calculations of relativistic 
second-order perturbation effects, requiring the use of the reduced Dirac-Coulomb 
Green function (RDCGF), are possible in many cases and yet have not been extensively 
analysed. 

In this series of papers [3,4] we attempt to remedy this situation by presenting a 
framework for the simplified treatment of calculations involving the relativistic DCGF 

and RDCGF. Our simplification consists in fact of a unification of the non-relativistic 
and relativistic calculations into one general form. Once the non-relativistic calculations 
have been performed, the way will be clear for a fully relativistic calculation. 

Powerful methods are currently available for the treatment of the angular part of 
specific calculations of matrix elements of the Green functions 151 and are, in our 
view, worth retaining. Our work then focuses almost exclusively on the radial properties 
of the Green functions, and indeed the unification of non-relativistic and relativistic 
theory is achieved for the radial functions. 

Our treatment of both the DCWF and the DCGF is entirely conventional at the outset, 
with the standard separation into an angular part (represented by four-component 
Dirac spinors) and a radial part [ 6 ] .  The radial part of the DCWF consists of two radial 
functions satisfying two coupled first-order differential equations, while that of the 
DCGF consists of four functions satisfying four coupled first-order differential equations. 
We have found simple linear transformations of the respective radial functions such 
that the transformed functions satisfy uncoupled second-order differential equations 
which are obvious generalizations of those satisfied by the radial part of the correspond- 
ing non-relativistic functions. The transformation also allows us to derive various 
properties of the radial DCWF and DCCF which are hidden in the standard representa- 
tion. Our analysis will be seen to be applicable to the reduced DCGF also. 

The transformation we rediscovered and which we present here was actually given 
for the wavefunctions many years ago by Infeld 171, though in a slightly different form. 
Infeld’s discovery, presented in the context of a study of the factorization method, 
seems to have been largely overlooked in the light of a rather different approach to 
the unification of relativistic and non-relativistic theories of hydrogenic ions. This 
approach, used by Martin and Glauber [8] to derive both the DCWF and DCGF, is 
based on the second-order Dirac equation, which, in contrast to Infeld’s second-order 
radial equations, is three dimensional. The solutions of the actual (first-order) equation 
are obtained from the solutions of the second-order equation by the application of a 
three-dimensional projection operator. Biedenharn [9] discovered a transformation of 
the second-order equation which decouples it into two non-relativistic-like equations, 
which are nonetheless still three dimensional. (Biedenharn’s work was concerned with 
the continuum wavefunctions; the application of his transformation to the bound states 
was given by Wong and Yeh [lo].) It was noticed only recently by Su 1 1 1 1  that 
Biedenharn’s transformation could be applied directly to the first-order three- 
dimensional Dirac equation with similar consequences. In  this respect Su comes closest 
of all to reproducing Infeld’s method. 

Our approach differs then in several respects from other attempts at a unified 
treatment of the non-relativistic and relativistic hydrogen atom. We retain the standard 
angular analysis, concentrating on unifying the radial part of the theory. Thus it is the 
calculation of radial matrix elements of the Green functions which is considerably 
simplified by our method. In  contrast, the approach based on the second-order Dirac 
equation requires a non-standard approach to the full three-dimensional integrals, and 
thus obscures the relatively simple angular analysis. 

R A Swainson and G W F Drake 
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We present our unified treatment in three papers [3,4]. This, the first paper, contains 
a detailed analysis of the wavefunctions and their recursion properties. Though much 
of the work presented here can be deduced from Infeld's paper we feel it important 
to reiterate the method for several reasons. First, Infeld's paper, not being directly 
concerned with the DCWFS is not specific enough for our purposes, which are directed 
towards applications of the theory. Our transformation of the D C W F ~  is slightly different 
from Infeld's, and since we generalize it in the subsequent papers on the Green 
functions, we feel it important to demonstrate the rationale behind its introduction in 
section 2. In appendix 1 we present a novel method of solving the second-order 
differential equation using Laplace transforms, which leads to a remarkably simple 
and largely algebraic treatment of the recursion relations satisfied by the radial 
wavefunctions, given in section 3, and also admits a simple generalization to the 
solution of the defining equation of the radial Green functions. The recursion relations 
will be found to be crucial to the ensuing work, particularly for our treatment of the 
reduced Coulomb Green functions. Finally, some aspects of the work such as the 
normalization integrals (appendix 2) differ markedly from Infeld's. (The normalization 
of Infeld's solution was given by Lin [12].) 

In the second paper of this series [3] we give a detailed analysis of the SCCF and 
DCGF, the latter treated using a generalization of the transformation of the radial 
wavefunctions given in the first paper. We include a comprehensive presentation of 
various representations of the two Green functions, and their recursion relations, matrix 
elements and recursion relations of matrix elements are also examined. 

We turn our attention to the reduced Green functions (RSCCF and RDCCF), the 
Green functions evaluated at an energy eigenvalue, in the third and final paper [4]. 
Our transformation of the radial functions is equally useful for the analysis of these 
special Green functions, required in the theory of second-order perturbations. Again 
we alSo discuss the matrix elements, as well as recursion relations of the functions and 
aheir n h r i x  elements. 

In a further paper we will demonstrate the utility of our method by presenting a 
c&nyiletely>analytical and exact calculation of the relativistic polarizability of hydro- 
genic ions. 

\ 

2. The Schrodinger- and Dirac-Coulomb equations 

The non-relativistic hydrogenic eigenfunctions JIE ( r )  and corresponding energy eigen- 
values E are found by solving the Schrodinger-Coulomb equation [61, 

[-" V 2 - - - E  f i 2  3 J I E ( r ) = 0  
2m amr 

subject to the boundary condition that JIE be a square integrable function, QE E L2(R1). 
(The scaled Bohr radius a is related to the Bohr radius a ,  by a = o , , / t )  As is well 
known, this equation is most naturally solved by transforming from Cartesian to 
spherical polar coordinates, in which system it is completely separable. In fact, introduc- 
ing the dimensionless 'generalized principal quantum number' U, defined by v2aL = 
-h2/2mE,  solutions to (2.1) are found to be of the form 

where the Y,,'s are spherical harmonics (we adopt Condon and Shortley's definitions 
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and phase conventions) and R,,,,  the radial part of the wavefunction, satisfies 

R A Swainson and G W F Drake 

[ 5 $ ( r2 $) -I=+---] 1 ( 1 + 1 )  2 I R J  r )  = O .  ar  u2a2 (2.3) 

subject to the conditions that 

rRUI E L2(R) and lim rRJ r )  = 0. (2.4) 

On solving this equation it is found that U = n = I +  1, 1 + 2 , .  . . , an integer, and thus 

Rnl( r )  = N,,(2 r /  an)' eC'""L;!;-, ( 2 r /  a n ) .  (2 .5 )  

[ I#E(r)12dr= [ r 2 R n l ( r ) 2 d r = l .  (2.6) 
J J o  

r - O  

We chose Nnr so as to normalize R, 
m 

Thus, taking note of the integral derived in appendix 2 (A2.2), we find 

NnI = (2/n'a3")J(n - I -  l ) ! / ( n  + I ) ! ,  (2.7) 
An arbitrary phase factor may be introduced into the normalization constants; the 
only effect will be different signs in the recursion relations. The Schrodinger-Coulomb 
waveiunctions are thus compieteiy determined by equation (2.5). 

Although several methods of solving (2 .3)  are known, in appendix 1 we briefly 
sketch a solution using the method of Laplace transforms which can be adapted usefully 
for the solution of the corresponding Green function problem [3]. This solution is 
noteworthy for two reasons. First, it is equally well applicable to equations with 
non-integral 'angular momentum' eigenvalues, such as will arise shortly in the context 
of the radiai Dirac-Couiomb wavefunctions. Secondiy, in the iapiace transformed 
space the differential equation to be solved is of first order and is thus relatively easy 
to deal with, once a particularly useful change of variables has been made. This solution 
is then very easily generalized to treat the defining radial differential equation of the 
Green functions, where we encounter an additional complication arising from the 
presence of a delta function. (See the following papers in this series [3,4].) 

iiie i c i a i i ~ i s i i ~  nyurug:crri~- crg~uiur~rru~ra 1'1 (WIIICII  W E  fiiui-coiiiponeiii 
spinors) and corresponding energy eigenvalues E are found by solving the Dirac- 
Coulomb equation [ 6 ] ,  

(2.8) 

subject to the boundary condition that E L(R') .  (Notation and special functions 
=sed in this p q e r  E X  defined in appendix 3.) .As with the Schrodinger-Cou!nmb 
equation, the natural method of solution is in spherical polar coordinates, though some 
modifications are required to take into account the four-component spinors. In keeping 
with the approach we have outlined in the introduction the present method of solution 
will follow the conventional separation into an angular and a radial part. 

-. ..,.A:..:..:. L..> .._._ :- -:--..'- ..-.. :._. I I _ \  i... L:"L 

[-ihca. v + p m c * -  a z h c l r -  E ] t / ~ ~ ( r )  = 0 

Defining [9] K = p ( Z .  L(8, $ ) + h )  (2.8) becomes 

1 r i ihc  a ic 
r ar r [ ((1. ;)[ -- - r + - f l K  +pmc'---E JIE(r,  8,4)= 0. (2.9) 

The total angular momentum operator, J (  8.4) = L( 8, $)+ h/2Z and K commute with 
the Dirac-Coulomb operator; there are therefore solutions of (2.9) which are eigenfunc- 
tions of J', J ,  and K, with eigenvalues h ' j ( j + l ) ,  hM and - h ~  respectively. The 
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allowed values, given the boundary conditions, are: j = f ,  $, . . . ; M = -j ,  - j + I , .  . . , + j ;  
K = +( j + t). 

In view of this, solutions of (2.9) can be chosen such that 

(2.10) 

where 

and the radial wavefunctions satisfy 

azi ic  ~ C K  hc d 
[ m c  r ] [ r r d r  

E f , ( r )+ ----I (2.12a) 

(2.12b) 

The integrability condition on 
and this is the main boundary condition we employ in solving (2.12a, b) .  In fact, 

now implies that l f i l  and I f 2 [  be square integrable, 

So far our treatment of the Dirac-Coulomb problem has been entirely conventional. 
In fact, throughout this work we shall be treating the angular part of the analysis in 
the standard manner. However, in our treatment of the radial part of the analysis we 
depart from the traditional route [ I ] .  Thus we will solve the two radial equations (2.12) 
in a manner which can be shown to be equivalent to that proposed by lnfeld [7]. Let 

(2.14) 

with X to be determined. Then 

(2.15a) 

and 

d r  
(2.1 5 b) 

aZ+ XK + x 
r d r  r x( Eo+ E )  + 

and, on eliminating a derivative from each equation in turn, 
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Here, E = E / h c  and E~ = mc2/ hc. Quite remarkably, if we now choose 

x = ( - K +  Y ) / d  (2.17) 

where y = m ,  one term in  each of the two equations drops out, and we are 
left with 

[ E O - -  ;] g l ( r ) +  [ - - + - - - ] g , ( r ) = O  a: 7-1  d 
r d r  

(2.180) 

(2.186) 

Finally, we eliminate g,  and g2 in turn from the equations to arrive at the form we desire: 

-+- d2 2 --__ d y ( y + l )  + - - - w ' ] g , ( r )  2 a Z ~  = o  
dr2  r d r  r2 r 

( 2 . 1 9 ~ )  

(2.196) 

where o =-. Solutions of (2.19) do not necessarily satisfy (2.18); the relative 
values of the normalization factors have to he chosen correctly. Thus equations (2.18) 
are, strictly speaking, equivalent to ( 2 . 1 9 ~ )  and (2.186) or (2.196) and (2.18a). 

Since L2(R) is a linear space the boundary conditions on g ,  and g, are the same 
as those on f ,  andf,. Thus: 

lim r g , ( r ) ,  r g 2 ( r ) = 0 .  (2.20) 
,-U rg , ,  L2@) 

Equations (2.190) and (2,196) are simply generalizations of the defining equation 
for the radial Schrodinger-Coulomb wavefunction, (2.3). The principal difference, of 
course, is that y ,  unlike I ,  is non-integral. However, as we show in appendix 1, this 
fact is not significant as far as the form of the solutions is concerned. Indeed, invoking 
at this point the theorem presented in appendix 1,  we can immediately state that the 
solutions to (2.190) and (2.196) are 

g y " ( r )  = N 1 ( 2 o N Y r ) '  exp(-roN,)L2,'_;'(20N,r) (2.21) 

g y x ( r )  = N2(20Nyr)y-'  exp(-roN,)lz,'-'(2wN.r). (2.22) 

With wNI =- we note that 

N = mZEN,/oN,- y (2.23) 

is necessarily an integer, and this leads straight to the well known expression for the 
relativistic energy eigenvalues: 

E = mc'/[l+ a'Z'/(N+ y ) z ] " 2 .  (2.24) 

(The negative root would render N negative and is therefore not applicable.) 
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Some care is required in calculating the normalization constants, N, and N 2 .  
Consideration of equation (2.186) at r=O leads to the following relationship between 
the two constants: 

Their absolute values are fixed by the normalization condition, 

(2.26) 

The general integrals implicit in (2.26) are calculated in appendix 2. Thus, substituting 
our solutions for g, a n d  g, into (2.26) gives 

K(K+ y )T(2y+N)  :(r+")(?Y+P;')?i',".':~2aL=(2y+N:hlA;,N2+(Y+ .".'),I';j= 1, 
Sy'N! o N y  K 

(2.27) 

Writing N, in terms of N2, and eliminating N from the term in square brackets noting 
(2.23) and 

N ( N + 2 y )  = ( K & P ! ~ -  ?&=)(K&F~.~+ Y E ~ ) / W : J ~  (2.28) 

leads us finally to 

NY" = Z W ~ ~ / ( E ~ ~ ) [ N ! ( E N ~ K  - y&,)/(r(2y+N)(K+ y))]'" 

NrK = - 2 w h , / ( ~ ~ J a Z ) [ ( N -  I ) ! ( K & ~ ? +  yEO)/(r(2?+ N +  1)(K + y))]'". 

(2.29) 

(2.30) 

The  solution when N = 0 requires special consideration. Clearly N, must vanish 
otherwise the 'Laguerre polynomial' L?T+', thought of as  a hypergeometric function, 
will be  non-terminating and  therefore will not satisfy the boundary conditions. When 
N = O  the energy is given by cor= E ~ Y / I K I  and consequently ( E " ~ K + E ~ Y ) =  

E~Y(K+IKI ) / IKI .  Thus for positive K, equation (2.25) implies that N,=O and the 
eigenkunction vanishes identically. In  this case then, only negative values of K are 
allowed. The normalization constants are then given by 

K 

IK1 

(2.31) 

-. I his completes the soiution oi the  Dirac-Couiomb equation. 
It is instructive to examine more closely the relationship between the radial 

wavefunctions we have just computed, and  the physical radial wavefunctions it was 
our  original aim to derive. Noting that 

X=-(K/IKI)J(K - Y ) / ( K + Y )  1 - x' = 2 y / (  K + y )  (2.32) 
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we can express (2 .14)  in terms of the total angular momentum j and y. Thus, when 
~ = ( j + f )  we find 

R A Swainson and G W F Drake 

f i = ( m g i +  c J + :  Y g ,  )T J + f + y / 2 y  

f, = -(- g ,  -m g 2 ) 4 G q / 2 y  

f 2 =  (m g , + m g 2 ) m / 2 y  (2.33) 

and when ~ = - ( j + $ )  

r )T (2.34) 

Notice that interchanging g,  and g, in both cases simply interchanges f, and f2. In 
view of the standard representations for the Dirac-Coulomb wavefunctions our result 
is seen to be in a particularly simple form. Perhaps the most interesting consequence 
of our solutions is that they admit an exceedingly straightforward treatment in the 
non-relativistic limit. In fact, in the limit as aZ+O only one or other of g,  and g, 
contributes in equations (2 .33) ,  (2.34) and their contribution is transparently the 
Schrodinger-Coulomb wavefunction. This we will now demonstrate. 

As is well known, the non-relativistic limit is equivalent to the limit as a Z + O ;  it 
is important to note, however, that E~ is not independent of aZ. In fact &,aZ = I /a .  
Thas the \,ariGas fac:o:s Gccu::ixg in the ”‘arefa“cGoxs gi;pn tc !olJ;e3t or&; in Gz are 

W k 7  e 1 / a (  N f 1.1) Y = I K /  I K I + Y = 2 1 K (  I K I - Y = ~ ~ Z ’ / ( Z ~ K I )  

I K I E N Y +  Yen- 2 1 K l / ( a a z )  ~ K / & N ~ -  Y&,=NN(N+~~K~)~Z/[~~~KI(N+~KI)~~ 
and l ~ 1 ~ - y ~ = a ~ Z ~  exactly. 

f2=(-81- J + 2  Y g, J + $ - Y / z Y .  

For K = ( K I ,  equations (2.33) become 

f i  = g , + a z / 2 / K l g 2  f 2 =  aZ/21Klg,+g,  (2.35) 

and 

N ,  = 2 / [  a3’2(N + IKI)’]J( N - 1)!/(2IKl+ N) ! 

N2 = N(N+21~l) / [a”’ l~ / (N + I K / ) ~ I J ( N -  1)!/(21~1+ N)! (az). (2 .36)  

n u s  to lowest order 

Examination of the angular part of the wavefunctions shows that we may put I K I  = I, 
and N = n - I where n and I are the non-relativistic quantum numbers. Thus, in the 
non-relativistic limit f , ( r )  = Rn!(r) and f2(r)  =0,  as we would expect. 

In the case when K = - 1 ~ 1  we proceed in an exactly similar manner. This time g, 
survives: 

f, = -CY2Z2/41K/2g, + aZ/21K/g2 (2.40)  

leads immediately to 

f2 = aZ/21Klg,  - CY2Z2/41Kl’g2 

Putting now / K I  = I +  1 and N = n - I -  1 gives the expected result once again: f , ( r )  = 
RJr)  andf2(r)  = O .  
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This now completes our brief, if unconventional survey of the Dirac-Coulomb 
equation. The solutions given above have been derived before in what seems to us to 
be less natural treatments. The method is related to the treatment utilizing the second- 
order Dirac equation [SI; the latter method treats the entire equation, however, whereas 
we have shown that the radial equations are all that we have to solve in a non-standard 
manner. Biedenharn [9] and later Wong and Yeh [lo] were able to simplify the 
second-order approach somewhat, and Su [ 111  solved the ordinary Dirac equation in 
a non-standard manner, but both of these treatments involve the entire Dirac equation. 
The preceding solution apparently noticed first by Weld  [SI and rediscovered by us 
in a slightly different form [ 11 seems to be preferable in view of its manifest transparency. 

3. Recursion relations and other properties of the Coulomb radial wavefunctions. 

In this section we present a derivation of various recursion relations of the Coulomb 
radial wavefunctions given in the form of raising and lowering operators of the 'angular 
momentum' and 'principal' quantum numbers. Since we actually give the relations for 
the general radial functions defined in appendix 1 ,  our results will be applicable to 
both the non-relativistic and relativistic radial functions, as well as to a wider class of 

be required in the subsequent papers [3,4]. Our analysis is performed on the Laplace 
transforms ofthe functions, which reduces much of the work involved to straightforward 
algebraic manipulations. We thus have a remarkably simply proof of the recursion 
relations of interest in and of itself. 

I n  appendix 1 we show that the Laplace transform, 6p[r*+'fV,(r, w ) ] ( p ) ,  where 

f..--*in-r i....,.l.,:-m thn 1 nn..e-re ..-I .,--- :-lo A l l  ef +Le --t-+:--- --a-a-+.d Lars ..,:11 
I Y . . ~ L . " . . I  ... ""."..fi L.... 'Y6"".* y".Jr.".rl .a,a.  -.a ". L11* .b.L(LL,",,> Y,C"C..LCY .II.L W B . 1  

./.,-, _. ~ 7 2 + I  fuA(r ,  w j = ( Y - A  - 1 j!/l t v +  A + i jr" e-.-L;:A:,(.Irw j (Xi) 
is 

and satisfies 

(3.3) 1 d ( ( p 2 - w 2 )  dp+2p(A + l ) - 2 w v  S , , ( p ;  w )  = O .  

The particularly simple form of S allows us to quickly derive various raising and 
lowering operators for A and U which will, in turn, lead to raising and lowering 
operators off:  

From (3.2j we see immeaiareiy that 

( P z - ~ 2 ) S " ~ ( P ; w ) = s " , - , ( P ;  w )  (3.4) 
which is a lowering operator for A. Let us now differentiate (3.4) with respect top. Then 

d 
= ( p' - w'j  - 

dP 

= -Z(Ap-wu)S, (p;  w )  (3.5) 

p ;  w ) + ZpS,, ( p ;  w )  

= [ 2 w v - 2 p ( A  + l)]S,,A(p; w)+2pS , . , (p ;  w )  
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where we have made use of (3.3) at the third step. Now, taking note of (3.4) again we 
have 

R A Swainson and G W F Drake 

= - 2 [ A 2 p 2 - ( ~ ~ ) 2 ] S , , , ( p ;  w )  

= - 2 A 2 [ w 2 S , ~ ( p ;  0) + S”A- , (P ;  w ) l  + 2 ( 0 ~ ) * S s , ( p ;  W )  

giving finally the following raising operator for A :  

S ~ ~ - , ( P ; W ) = ~ ( W ~ ) ’ ( - - ; ~ - ) S ~ ~ ( P ; W ) .  u 2 - A 2  (3.6) 

The raising and lowering operators for Y are only slightly more complicated. From 
(3.2) we see that 

The plan is now to raise the A - 1 to A in (3.8) and (3.9) making use of (3.6), this 
being facilitated by the fact that the differential operator does not depend on Y. 

Beginning with (3.8) we find 

3 = ( $ ) 2 A + 2  [ ( p  - w ) 2  ( ( p  + W Y )  + 2 ( p  - w ) ( A p +  w v )  

We now make repeated use of (3.3) to reduce terms in p’dldp and p’dldp to terms 
at most of the form pdldp. Then we arrive at a Y raising operator: 

S , , ( p ; w ) = ( V + A + l )  

(3.10) 

The same procedure applied to (3.9) gives a Y lowering operator just as quickly: 

S , , A ( p ;  w ) = ( v - A - l )  

( 3 . 1 1 )  
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Both (3.10) and (3.11) can be checked directly given the simple algebraic form of S. 
The recursion relations for fuA are given by the inverse Laplace transforms of (3.51, 

(3.6), (3.10) and (3.11) respectively: 

(3.12) 

(3.13) 

U + l  v [ ( v  + 1)  + r (: - w ) ] f u A (  r, w )  = ( U  + A + 1) 

[ ( v - 1) - r ($+ w)]fu, , (  r, U )  = ( U  - A - 1) 

(3.14) 

U - 1  v (- U r, - U - 1  w ) . (3.1 5 )  
U - 1  

We can now apply these ladder operators to the Schrodinger-Coulomb wavefunc- 
tions and to the Dirac-Coulomb wavefunctions. We begin with the radial Schrodinger- 
Coulomb wavefunctions. Since 

f d r ,  l / a n )  = ( -1 )"" (n2a" ' ) /2 (an/2) 'J (n  - I -  l ) ! / (n+I ) !  R",(r )  

we have the following relationships [13]: 

[ I (  $+e) - 1/a] Rn,( r )  = - l / u w  R , , - , (  r )  (3.16) 

[ I ( $ - q ) + l / o ]  R n , - , ( r ) = l / u w R n , ( r )  (3.17) 

[ ( n +  1)+ r ( 2 -  l / (an)) ]  R , J r ) = ( y ) 2 d ( n -  I ) (n+  1 1 1 )  R, , , ,  ( - r) (3.18) 

[(n - l ) - r ( $ +  l / ( n n ) ) ]  R , , ( r ) =  (?)*d(n+I)(n-l-I)  R, - , ,  ('i - r ) .  (3.19) 

In the relativistic case we have to be clear to distinguish normalization constants 
for different values of N. We begin by noting that 

. .  

where wNr =- and from which, noting (2.251, we find that (3.12) becomes 

which is just equation (2.18b), and (3.13) becomes 

which is equation ( 2 . 1 8 ~ ) .  Notice that the A raising and lowering operators do not 
change K ,  which appears under a root sign in y and is thus inaccessible; rather they 
interchange the roles of g ,  and gz. These recursion relations were first noted by lnfeld 
[7] and Biedenharn [9]. 
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The U raising and lowering operators appear in a somewhat more complicated 
form. We content ourselves with presenting the results, which are new: 

gy"(r)  = J N ( N  + 1 +2y)  Bk,DN,gyt'"(rCN,) (3.22) 

= J ( N - ~ ) ( N + ~ Y )  1 / ( B 2 N ~ , , o N - i , ) g y - ' " ( r / c N ~ ~ ~ )  (3.24) 
r I 1 \l 

[ ( N +  Y -  1)-r(2+wN,)]&"(r)  

(3.25) N - t r  = N J ( N + ~ Y ) / ( N - - I )  DN-i,/B)N-irg2 (r/CN-iv) 

where 

= ( E N J E N + B ~ ) ( N +  1 + Y)/(N+ Y )  C N ,  = WN J WN+ I I 

and 

D N , = [ ( K E N ~ + Y E D ) / ( K & N + , ~ +  YEo)]'". (3.26) 

It is interesting to note that the last four recursion relations can easily be shown to 
reduce to the non-relativistic ones in the limit aZ+O. 

We end this section with presenting some results which will be of use in the papers 
on the Green functions. By considering the function 

where k is an integer, and rearranging equations (3.11), (3.12), (3.13), we can derive 
the following formulae: 

A - ,wLZ*+l  ( r  e (2or))  r 

= -2w(k+h + I  - u)r*-' e-'"'L2*+' k (3.28) 

= ( k + h  + 1 - u)wrh e-"L2"+' k (2wr) 

+ ( k + I ) ( Z A + k + 1 ) / 2 r * - ' e - " L 2 ; ' ; ; ' ( 2 w r )  (3.29) 

(3.30) 

These last two general A raising and lowering operators will be extensively employed 
in our analysis of the reduced Green functions [4]. 
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Appendix 1. Solution of the generalized radial equation 

In this appendix we use the method of Laplace transforms to solve the general radial 
Schrodinger-Coulomb type equation which arises in our solution of both the non- 
relativistic and the relativistic Coulomb problem in section 2. Apart from its novelty, 
this method is easily generalized to allow for the solution of the corresponding general 
radial equation satisfied by the non-relativistic and transformed relativistic Green 
functions [3]. This latter equation is complicated by the presence of a delta function 
which, nonetheless, becomes quite manageable in the Laplace transformed space. The 
use of Laplace transform methods to derive the radial SCWF is not in itself new: indeed 
such techniques were used by Schrodinger in his first paper on the quantum mechanical 
hydrogen atom [14]. 

Specifically, in this appendix we prove that the solution of 

d' 2 d A(Af1) 2wu 

dr2 r d r  r' r 
-+----+--w2 (Al . l )  

(with A, w and U positive) subject to the boundary conditions 

and lim rf(r) = 0 (A1.2) 
,-0 

r f €  L'(R) 

is 

f ( r ) =  Nr* eCwLy-:',(2wr) (A1.3) 

with U - A - 1 a non-negative integer, and N an arbitrary constant. Here L: is a 
generalized Laguerre polynomial as defined in appendix 3. 

We begin our proof by considering a related function, 

h(r)  = r""f(r) (A1.4) 

which satisfies 

( r$-2A;+2wu-rw2 d 

The Laplace transform of h, 

H(p)=Iome-' ' 'h(r)dr 

satisfies the transformed equation 

d ( ( p 2 - w 2 )  d p + 2 p ( A  + 1)  -2wv 

where we have used the fact that h(0) = 0. Finally, the function 

G ( p )  = p 2 * + * H ( p )  

(AIS)  

(A1.6) 

(A1.7) 

(A1.8) 
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satisfies 

P 
(A1.9) 

This equation is most easily solved if we make the change of variables 

pu&@pfp I w)/2p (Al .  10) .. ' C  

so that 

(Al.11) 
d 

( d 1 - q )  d q + ( A  + 1)(1-2q)- 

which has the simple solution 

G ( q ) =  N"q"-'-'(l - q j - " - A - l  

Thus the Laplace transform of h is given by 

(A1.12) 

(A1.13) 

N' and N" are arbitrary constants. 
We can immediately deduce a condition on the magnitude of v. If v - A - 1 < 0, 

then the singularity of H ( p )  with greatest real part is at p=w,  and thus h ( r )  (and 
consequentlyf(r)) will behave as e"" as r approaches infinity [IS]. Since this would 
violate the integrability condition on 1; we deduce that v A + 1. Now 

H ( p ) = N '  ( 1-- ,YW) c ' - A - ' (  p + o ) - ' " - 2  

( A + l - v ) *  
= N ' E  (2w)"( p + w)-2n-2-n ( A l .  14) ,,=" n !  

a series which converges absolutely for p > o. Applying a simple extension of a theorem 
on Laplace transforms [16] we can immediately deduce that 

( A + l - v ) ,  h ( r )  = Nr2"' e 1  -'- (2wr)". 
n !r(2A + 2 +  n )  

(A1.15) 

I?--:,:--"-- ^^^ L^ .."-A A *  ^I_ .L^. I . , . . ,  L^L^ ,:I.- ^ r W  -. :..c..:...--> 
Id_llllll'lL1 o r ~ " , , , C , , , "  LlUW call uc UJCU LU >,,uw Ulnl ,a,,, UCII,a_YCJ I lhS 5 'l, """"Ly a11u 

is therefore not square integrable unless A + I - U is a negative integer. In  view of the 
definition of Laguerre polynomials given in appendix 3 the form o f f  given in  the 
theorem follows. 

Appendix 2. Calculation of some integrals required for the normalization of 
wavefunctions 

Several methods of obtaining these integrals are known [12]. However, the following 
are simple proofs requiring only a knowledge of Vandermonde's theorem (appendix 3) .  
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r (a ) r (a+i+i )  

r (a ) r (a+i+i )  
2F,(  - n ,  a + i + 1; a; 1) 

= r=0 i (;)(-l), r(a+i)  

= 4-0 i (;)(-lV r ( u + i )  ( - i - l ) J ( a ) *  

r(a)2(a +2n) 
r ( a + n )  n !. (A2.1) - - 

Hence 

lome-"xm[L:-'(x)]' dx = (a +2n)r (a  + n ) / n ! .  (A2.2) 

(ii) 

e-"x"'l,F,(-n; a; x ) , F , ( - n  + 1; a+2; x )  dx = -2  
r ( a ) r ( a + 2 )  

n !  (A2.3) lo- r ( a + n )  

(dme-"x"i'L::-l(x)L,':(x) d x =  - 2 r ( a  + n + l ) / n ! .  (A2.4) 

(iii) 

r(a + i )2  
r(a + 1 + n )  

e-"x",F,(-n; a+ 1; x)'dx = n!  (A2.5) lom 
lom eC"x"[L:(x)]' d x =  r ( a + n  + I ) / n ! .  (A2.6) 

The last two Laplace transforms were derived in exactly the same manner as the first, 
by expanding the confluent hypergeometric functions, integrating, and using Vander- 
monde's theorem once. 

Appendix 3. Notation and special functions 

Hypergeometric functions 

(a), = r ( a + n ) / r ( a )  
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Laguerre polynomials 

R A Swainson and G W F Drake 

r (a+ 
r(a+i)n! L , ( x )  = , F , ( - n ; a + l ; x )  

Dirac matrices 

..=(a O a  0 )  B = ( '  O) U = [ ( ;  A).(: 
0 -1 
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