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Abstract— This article presents a unified description of
numerical methods for solving electromagnetic field problems.
Traditionally, these methods are considered to be independent
and alternative ways of solving Maxwell’s equations or equations
derived therefrom. However, they all are projective approxima-
tions of the unknown solution by known expansion or basis func-
tions with unknown amplitude coefficients that are determined
using the so-called method of weighted residuals (MWR). This
common feature forms the proposed unifying framework that
may serve both as a systematic introduction to computational
electromagnetics and as a way to provide insight into the nature,
strengths, and limitations of the various algorithms used by
present and future field solvers. For convenience, the fundamental
equations and concepts of electromagnetics are summarized in
order to facilitate the demonstration of the unified approach.
Our aim is to provide students, designers, and researchers with
a framework for developing new numerical algorithms, to guide
users in the selection and application of electromagnetic design
tools, and to foster informed engineering judgment. This article
also serves as a review and summary of earlier theoretical works
reported in different places and at different times.

Index Terms— Basis function, expansion, inner product,
method of moments (MoM), method of weighted residu-
als (MWR), projective approximation, unification, weighting
function.

I. INTRODUCTION

THE existential challenges of the natural world have
compelled humans to explore the laws that govern its

structure and its evolution. This endeavor is not only motivated
by curiosity but also by the need to survive and the desire to
harness the forces of nature. It is a two-pronged effort: one
aims to comprehend the physical world as it is: the natural
sciences and their mathematical and experimental frameworks
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aim to understand nature and to predict the outcome of certain
actions and events. The other leverages the sciences, mathe-
matics, and experimentation to create new objects, systems,
and processes that do not exist in nature through engineering
design.

In all these activities, the key to success is the ability
to model the essential physical processes as accurately as
possible. A model can be conceptual, physical, mathematical,
or computational; the latter has emerged as the dominant, most
versatile, and powerful tool in modern engineering analysis
and design by virtue of digital computers. In electrical and
computer engineering, including microwave, millimeter-wave,
high-speed electronics, and computers, electromagnetic fields
are utilized to transmit and process information and power,
and they are fundamentally governed by Maxwell’s equations.
Though there are other tools to solve Maxwell’s equations,
numerical modeling is the most versatile, effective way, result-
ing in electromagnetic simulators or field solvers. Without
the field solvers, the evolution of analog and digital systems
toward ever higher clock rates, higher frequencies, larger
bandwidths, higher packaging density, and higher complexity
would be inconceivable. The ability to accurately model a
complete electromagnetic system is indispensable for rapid
product development, short time to market, and conformity
with susceptibility and emission standards.

This article will focus on the prevalent computational
models for solving electromagnetic problems. Its scope is to
present the existing methods, not in the traditional way as
a collection of distinct, unrelated paradigms, but rather as
a set of related methods with common central features yet
possessing individual properties suitable for solving a diverse
range of problems. It is hoped that this unified approach
will serve both as a systematic introduction to computational
methods in electromagnetics and as a way to provide insight
into the nature, strengths, and limitations of the algorithms
used by present and future field solvers, guide the selection
and application of electromagnetic design tools, develop new
numerical algorithms, and foster informed engineering judg-
ment. Moreover, this article can serve as a collocating review
and summary of earlier works reported previously.

A. Computational Electromagnetics

The theory and practice of solving electromagnetic field
problems on digital computers are known as computational
or numerical electromagnetics. Its purpose is to find solutions
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to Maxwell’s equations or equations derived from them that
satisfy all boundary and interface conditions, electromagnetic
properties of materials, and excitation conditions specified in a
given problem. All computational models are discretized and
thus yield only approximate solutions of Maxwell’s equations,
except in some special cases. Their accuracy depends on
several factors and usually converges with increasing computa-
tional expenditure. The convergence of a particular numerical
method is important when assessing the validity of simulation
results and will thus be addressed in this article.

B. Maxwell’s Equations and Equations Derived From Them

The first model of electromagnetic fields was developed by
Maxwell [1] over 150 years ago, restated in its present form by
Heaviside [2], and experimentally validated by Hertz [3]. It is
a purely mathematical model that has stood the test of time.
Unlike most other laws of classical physics, it requires no rela-
tivistic correction since the concept of magnetic force accounts
for the relativistic change of the electric force between moving
charges. However, it breaks down at the atomic scale, where
the laws of quantum electromagnetics prevail [4], [5].

Maxwell’s equations thus continue to be the foundation of
mainstream electrical and electronic engineering and computer
technology. They can be written in the well-known differential
form and are shown here for convenience [2]⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇ × E = −∂B
∂ t

∇ × H = ∂D
∂ t

+ J

∇ · D = ρ
∇ · B = 0.

(1)

While (1) is the set of the original electromagnetic field
equations, there exist other equations derived from (1). One
of the most well-known is the wave equation [6]⎧⎪⎪⎨⎪⎪⎩

∇2E − 1

c2

∂2E
∂ t2

= ∇ρ

ε
+ μ

∂J
∂ t

∇2H − 1

c2

∂2H
∂ t2

= −μ∇ × J
(2)

where ε and μ are the permittivity and permeability of solution
domain, respectively, c = 1/(με)1/2 is the constant speed of
light, and ∇ is the del operator (or Nabla operator). Another
well-known equation derived from (1) in the static limit of
putting all derivatives with respect to time to zero is Poisson’s
equation for the scalar electric potential ϕ (as a function of
the charge density distribution ρ)

∇2ϕ = −ρ

ε
, where ∇ϕ = −E (3)

which becomes Laplace’s equation when ρ = 0. Solutions
of (2) are also solutions of Maxwell’s equations, and (2)
can thus serve as the basis for a specialized computational
algorithm.

Whatever electromagnetic equation we choose as a starting
point for a computational model, the resulting numerical
method can be interpreted mathematically as a projective
approximation to the exact solution of Maxwell’s equations,
a concept for solving differential and integral equations (IEs)

that is backed by an extensive mathematical framework devel-
oped since the early 1900s [7]–[9]. The literature on this
subject is extensive. We can summarize here only the essential
concepts and ideas while referring the reader to the list of
specialized works on the various numerical techniques in the
bibliography (e.g., [10]).

C. Projective Approximation of Electromagnetic Solutions

The solutions of Maxwell’s equations are functions of
space and either time or frequency (see Section II). Their
projective representation is performed in function space, also
called “inner product space,” an abstract concept that is best
understood by analogy to the projection of a vector upon the
coordinates of Euclidian space [11], [12]. A function space is
spanned by known basis or expansion functions with unknown
coefficients. The solution strategy is to find the values of
these coefficients such that their resultant linear combination
or expansion approximates the exact solution as closely as
possible. This strategy is known as the method of weighted
residuals (MWR) and is the subject of Section III: it shows
that a computational model is a projective approximation in
the inner product space of the solution of an operator equation.
Section IV presents a unified view of the formulation of
numerical methods in terms of the MWR. Finally, Section V
summarizes and concludes the article.

II. SOLUTION DOMAINS

Electromagnetic phenomena occur naturally in space and
time. The original Maxwell equations (1) and (2) are formu-
lated in the time domain, and their solutions are functions of
space and time as well. However, it is more convenient to
project and solve an electromagnetic problem in a different
domain in many situations, such as the frequency domain or
the spectral domain. Since they are fundamental to this article,
they will be recalled here before entering the main subject.

A. Time Domain

Humans experience events and processes in the time
domain. There are several definitions of time. One which we
consider most relevant to this article is time as a continuous,
measurable quantity in which events occur in a sequence
progressing from the past through the present to the future.
In theory, the time domain ranges from an infinite past to an
infinite future. Mathematically, it is represented as −∞ ≤ t ≤
+∞ or t ∈ [−∞,+∞]. A finite time interval between t1
and t2 is more realistic, i.e., t1 ≤ t ≤ t2 or t ∈ [t1, t2]. Note
that in the real universe, time always evolves from the past to
the future, while in mathematical and computational models,
time can flow from the future to the past, which is known as
computational time reversal [13] and is part of the so-called
inverse methods [14].

B. Frequency Domain

A frequently used signal or function that is easy to generate
by electronic hardware is the time-harmonic signal of the form

gs(t) = As cos(ωt + ϕs). (4)
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Fig. 1. Graphical illustration of a time-harmonic or sinusoidal signal.

Three parameters define a sinusoidal signal (see Fig. 1): the
amplitude As , the angular frequency ω = 2π f , and the
phase ϕs (which determines the initial value of the signal).
Equation (5) can also be mathematically represented by a
complex number, often called phasor

gs(t) = Re
[
Ase

j(ωt+ϕs )
] = Re

⎡⎣Ase
jϕs︸ ︷︷ ︸

Phasor

e jωt

⎤⎦
= Re

⎡⎢⎣ Gs︸︷︷︸
phasor

e jωt

⎤⎥⎦ (5)

where the phasor Gs = Ase jϕs is a complex number, its
magnitude being the amplitude and the phase being the phase
of the sinusoidal signal.

Fourier has shown that a signal or a function of time
g(t) can be considered as a sum of many sinusoidal signals
of different frequencies like (4). The phasors of these sinu-
soidal signals are obtained through the well-known Fourier
transform [15]

G(ω) = F [g(t)] =
∫ +∞

−∞
g(t)e− jωt dt . (6)

It yields the amplitude and phase of the sinusoidal signal
component of g(t) at a specific angular frequency ω or a
specific temporal frequency f = ω/2π , respectively.

Once G(ω) is known (sometimes through measurements),
the original time-domain signal g(t) can be obtained through
the so-called Inverse Fourier transform

g(t) = F−1[G(ω)] = 1

2π

∫ +∞

−∞
G(ω)e+ jωt dω. (7)

Note that the upper integration limit is +∞ and the lower
integration limit −∞. It means that G(ω) of the entire
frequency spectrum needs to be known in theory to obtain
the corresponding time function.

The Fourier transform has many operational properties. The
most often used in computational electromagnetics are the
differential and integral operations

F
[

dn g(t)

dtn

]
= ( jω)nF [g(t)] = ( jω)n G(ω) (8)

F
[∫ t

−∞
g(τ )dτ

]
= G(ω)

jω
+ 1

2
G(0)δ(ω). (9)

They basically state that a time derivative is equivalent to
a multiplication by jω, and time integration is equivalent
to a division by jω in the frequency domain. For further
information on the Fourier transform, readers are referred to
the excellent book by Poularikas [15].

With the Fourier transform, electromagnetic problems can
be solved in the so-called frequency domain. Specifically,
we apply Fourier transform to the original Maxwell’s equa-
tions or their derived equations, and the resulting equations
are then the corresponding frequency-domain equations. For
instance, (2) becomes⎧⎪⎨⎪⎩

∇2E +
(ω

c

)2
E = ∇ρ

ε
+ jωμJ

∇2H +
(ω

c

)2
H = −μ∇ × J.

(10)

Equations (10) are called the Helmholtz equations. The dif-
ferential operations in time in (1) and (2) are now replaced by
simple arithmetic multiplication by jω, reducing the problem
complexity by one dimension.

On the other hand, the electromagnetic solutions to (10)
are valid at a specific frequency f or angular frequency
ω = 2πf . They represent the magnitude and the phase
of electromagnetic fields at that frequency. Such solutions
are the so-called frequency-domain solutions. To recover
the original time-domain electromagnetic fields or signals,
we need to know the frequency-domain solutions over
the entire frequency domain of ω ∈ [−∞,+∞] or
f ∈ [−∞,+∞] through either computations or measure-
ments so that we can apply the inverse Fourier transform
given in (7).

C. Spectral Domain

In Section II-B, we take the Fourier transform with respect
to time, i.e., we perform the integration with respect to time
t in (6). However, we can also apply the Fourier transform
in the spatial domain. For instance, if a signal g is dependent
on spatial coordinates of x , y, and z, i.e., g = g(x, y, z),
we can take its Fourier transforms with respect to the spatial
coordinates, for example, x . We have

G(kx , y, z) =
∫ +∞

−∞
g(x)e− jkx x dx (11)

where kx is the angular spatial frequency along the x-direction
(similar to ω in the frequency domain). fx = kx/2π is
the spatial frequency in the x-direction (similar to f but
measuring the number of spatial periods per unit length in the
x-direction). If we take the Fourier transform simultaneously
with respect to x , y, and z, we have

G
(
kx , ky, kz

) =
∫ +∞

−∞
g(x, y, z)e− j(kx x+kx y+kz z)dxdydz (12)

where kx , ky, and kz are the angular spatial frequencies along
the x-, y-, and z-directions, respectively. They are also referred
to as wave numbers or propagation constants in the literature.
Again, the properties of Fourier transform operations, such
as (8) and (9), apply.

Equations (11) and (12) are often called the signals or
electromagnetic fields in the spectral domain. We can then
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transform Helmholtz’s equations (10) into the spectral domain
by taking the Fourier transform with respect to the spatial
coordinates x and y. This results in the following equation:⎧⎪⎪⎨⎪⎪⎩

d2 Ẽ
dz2

+
[(ω

c

)2 − k2
x − k2

y

]
Ẽ = ∇ρ̃

ε
+ jωμ J̃

d2 H̃
dz2

+
[(ω

c

)2 − k2
x − k2

y

]
H̃ = −μ∇ × J̃

(13)

where Ẽ, H̃, ρ̃, and J̃ are the respective Fourier transforms
of E, H, ρ, and J . The advantage of (13) is that having
the original three partial derivatives in the equations is now
reduced to having one derivative, and (10) becomes an ordi-
nary differential equation (ODE). The disadvantage is that
to recover the solutions in the physical spatial domain of
(x , y, z), (13) needs to be solved over the entire domain of
kx ∈ [−∞,+∞] and ky ∈ [−∞,+∞] so that the inverse
Fourier transform can be carried out.

III. APPROXIMATION IN INNER PRODUCT

SPACE AND THE MWR

We mentioned in the introduction that numerical methods
do not, in general, yield mathematically exact solutions to
Maxwell’s equations due to their discretized nature. Instead,
they approximate the exact solutions as closely as possible
by following a procedure known as the method of weighted
residuals (MWR), which has been developed for solving linear
and nonlinear differential equations [16]. It involves two
consecutive steps. The first consists of expressing the unknown
solution as a sum of known (pre-selected) basis or expansion
functions with unknown expansion coefficients. The second
step determines these coefficients such that the approximation
is as close as possible to the accurate solution [11], [17], [18].

The expression of the unknown solution as a sum of
weighted basis functions is analogous to expressing a vector
as a sum of components obtained by its orthogonal projec-
tion onto the coordinate axes of a Euclidian vector space,
which involves forming the inner products of the vector with
the unit basis vectors. The vector space and, by analogous
extension to a function space, is thus referred to as an
inner product space [12], which is usually a Hilbert space
in electromagnetics.

In the following, we consider the properties of the inner
product space and the MWR for finding the coefficients that
yield approximations using the numerical methods used in
electromagnetics.

A. Inner Product Space

Consider a function space F whose elements are a set of
functions { fi | i = 1, 2, . . .}. An inner product space requires
that the inner product operation, denoted as 〈·, ·〉, on any
functions f1, f2, and f3 in F has the following four properties.

1) 〈 f1, f2〉 = 〈 f2, f1〉.
2) 〈 f1 + f2, f3〉 = 〈 f1, f3〉 + 〈 f2, f3〉 and 〈 f1, f2 + f3〉 =

〈 f1, f2〉 + 〈 f1, f3〉.
3) 〈 f1, α f2〉 = ᾱ〈 f1, f2〉 and 〈α f1, f2〉 = α〈 f1, f2〉.
4) 〈 f1, f1〉 is a non-negative number and 〈 f1, f1〉 = 0 if

and only if f1 = 0.

Here, the bar over the symbols is the conjugate operator. If the
function space is real, the bar sign can be removed since the
conjugate of a real function is the function itself.

Property 1) is the conjugate symmetry, property 2) is the
additivity, property 3) is the conjugate bilinearity, and property
4) is the positive definite property.

The inner product is most often defined as an integration
over a problem domain, although other forms of the inner
products may be used. The integration of two functions,
or their inner product, 〈 f1, f2〉 = ∫

� f1 f̄2d�, may also be
interpreted as the similarity between two functions, or a
measure of how much of f1 is contained in f2, or vice
versa. Note that the inner product should be in vector form
(e.g., integration of the dot product of two vectors) if two
functions are vectors, such as vector basis and weighting
functions.

B. Method of Weighted Residuals

Given the above properties of the inner product, the MWR
can be used to generate a wide range of numerical meth-
ods [19], [20]. In the following paragraphs, we will discuss the
MWR procedure, consisting of function expansion and deter-
mination of the unknown coefficients through the minimization
of the so-called residuals (with another function expansion).
A simple example will demonstrate the effectiveness of the
method.

Maxwell’s equations and their derivations such as (1), (2),
(10), or (13) can be generalized as follows:

Lu(r, t) − g(r, t) = 0, r ∈ � (14)

where L is either a differential or integral operator, u(r, t) is
an unknown signal or field function to be determined, g(r, t)
is a known source or excitation function, r is the radial vector
specifying the position, t is the time variable, and � is the
solution domain which can be a boundary contour, a surface,
or a 3-D volume. Note that for frequency domain solutions,
t is replaced with the angular frequency ω.

The first step in the MWR procedure is to approximate
the unknown solution u(r, t) with a trial function ũ(r, t) that
can be represented as the expansion of a pre-selected set of
basis functions {ϕn(r, t), n = 1, 2, 3, . . .}, as mentioned above.
Mathematically

u(r, t) ≈ ũ(r, t) =
N∑

n=1

anϕn(r, t) (15)

with an being the expansion coefficients, and provided that
Lϕn(r, t) forms a complete set in the range of L [21]– [23].
Equation (15) approximates the solution in a function space
spanned by the basis functions {ϕn(r, t), n = 1, 2, 3, . . .},
reducing the task of finding the unknown solution to deter-
mining the expansion coefficients.

We now define the residual error R(r, t) in (16); it is caused
by substituting the approximate solution or trial function
ũ(r, t) into the original operator equation (14)

Lũ(r, t) − g(r, t) = R(r, t), r ∈ �. (16)

The second step of the MWR procedure is to choose a set
of weighting (or testing) functions {wm(r, t), m = 1, 2, 3, . . .}
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to expand the residual function R(r, t) and then make the
resulting residual expansion coefficients equal to zero. That is,

〈R(r, t),wm(r, t)〉 = 0. (17)

The weighting functions {wm(r, t), m = 1, 2, 3, . . .} must
be in the range of L and must span the function space of
the source function g(r, t) as dictated by (16) [21]–[23].
If the weighting functions are chosen the same as the basis
functions, the method is called a Bubnov–Galerkin procedure.
If the basis and testing functions are different, it is called a
Petrov–Galerkin procedure.

Substitution of the approximating trial function (15) into
(17) and application of the properties of the inner product
yield

N∑
n=1

an〈Lϕn, wm〉 = 〈g, wm〉 (18)

which is a linear system of equations for the expansion coef-
ficients an . Once the an are found, the approximate solution is
obtained by (15) since both the expansion functions and their
coefficients are now known.

Further issues such as solution convergence, errors, and
computational expenditures will be discussed in Sections III-C
and III-D.

C. Convergence

As the approximate solution (15) is given in terms of
the basis functions, we must examine its convergence as the
number of expansion terms N tends toward infinity

ũ(r, t)|N→∞ = lim
N→∞

N∑
n=1

anϕn(r, t) = f (r, t) (19)

where the converged function f (r, t) may or may not be the
exact field solution u(r, t).

However, it is very challenging to develop necessary and
sufficient convergence conditions for (19) that are applicable
to all cases. Instead, we may be able to find specific conditions
that are useful for checking convergence.

One of the necessary conditions is that the expansion
coefficients an must be bounded

|an| < ∞ for all n, in particular, when n → ∞. (20)

Since (18) yields the expansion coefficients an , the so-called
“stability condition” can be derived from it. A specific math-
ematical form of the condition can only be derived on a case-
by-case basis, as shown below.

D. Errors and Numerical Dispersion

The solution error function defined as the difference
between the exact and the approximate solutions is

e(r, t) = ũ(r, t) − u(r, t) =
N∑

n=1

anϕn( r, t) − u(r, t). (21)

Furthermore

L[e(r, t)] = L[ũ(r, t) − u(r, t)]

= L[ũ(r, t)] − L[u(r, t)]

= g(r, t) + R(r, t) − g(r, t) = R(r, t). (22)

Application of (17) yields

〈L[e(r, t)], wm(r, t)〉 = 0. (23)

Suppose that L∗ is the adjoint of L. We then have

〈e(r, t), L∗wm(r, t)〉 = 0. (24)

Although (23) or (24) presents the equation for finding
the error function e(r, t), solving it is very challenging in
practice. Therefore, in most instances, numerical computations
are compared directly with analytical solutions (if available),
measurement results, or results obtained with other methods,
whichever is available.

Alternatively, a frequently used approach is to consider the
situation of source-free (J = 0 and ρ = 0), homogeneous,
free space. We then compare the propagation properties of
the analytical field solutions with the approximate solutions
obtained with the MWR in the frequency and spectral domains,
as described below.

1) Spectral Properties of the Analytical Solutions in Free
Space: In the source-free empty space, electromagnetic waves
obey the wave equation (2), with the right-hand side being
zero. We now apply the Fourier transform to (2) to time t and
spatial coordinates x , y, z, respectively (note the Cartesian
coordinates are taken for simplicity). We have{ (

k2
x + k2

y + k2
z − k2

)
Ẽ = 0(

k2
x + k2

y + k2
z − k2

)
H̃ = 0

(25)

where k = ω/c = ω(με)1/2 is the wavenumber and c =
1/(με)1/2 is the constant speed of light. Ẽ and H̃ are the
respective Fourier transforms of E and H . Solutions of these
equations for non-trivial Ẽ and H̃ values must satisfy

k2
x + k2

y + k2
z − k2 = 0 ⇒ k2

x + k2
y + k2

z = k2. (26)

The above equation is a sphere with the radius k in the k-space
spanned by kx, ky and kz . In spherical coordinates, we have⎧⎨⎩

kx = k cos φ sin θ
ky = k sin φ sin θ
kz = k cos θ.

(27)

Here, φ and θ are the propagation angles if the electromagnetic
wave is a plane wave.

Equation (26) represents the relationship between the spatial
frequencies kx, ky, kz and k for a constant propagation speed
c of the exact solution u(r, t). It is often called the analytical
dispersion relation.

For the approximate solutions obtained with the MWR
method, the dispersion relation is, in general, not a perfect
sphere of (26). It can be found by following this procedure.
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Apply the Fourier transform to the approximate solution
given by (15)

Ũ
(
kx, ky, kz, ω

) = F
[

N∑
n=1

anϕn(r, t)

]

=
N∑

n=1

anF [ϕn(r, t)]

=
N∑

n=1

an�n
(
kx , ky, kz, ω

)
(28)

where �n(kx, ky, kz, ω) = F [ϕn(r, t)] is the temporal and
spectral Fourier transform of the basis function ϕn(r, t).

Express the expansion coefficients an in terms of
Ũ(kx, ky, kz, ω) and �n(kx, ky, kz, ω) based on (28) and sub-
stitute the resulting expression into (23). The condition that
leads to a non-trivial solution of Ũ(kx, ky, kz, ω) is then the
dispersion of the MWR solution. We denote the condition
henceforth as

fd
(
kx, ky, kz, ω

) = 0. (29)

It depends on the expansion basis functions and weighting
functions chosen.

If we consider a plane wave, (27) is substituted into the
dispersion relation (29). We obtain

fd(k cos φ sin θ, k cos φ sin θ, k cos θ, ω) = 0. (30)

The above equation allows us to solve for k and the wave speed
v = ω/k for the approximate solution (15). v is usually a
function of the propagation angles (φ, θ ) and the frequency f ,
rather than the constant speed c of the analytical solution.

As mentioned before, the dispersion relation (30) of an
MWR solution is usually not a sphere, which implies that the
MWR solution is approximate. However, when the number
of the expansion terms N → +∞, (30) should approach
to being a sphere. If not, the approximate solution may not
converge to a physical electromagnetic field solution but to
some non-electromagnetic solutions, which are often called
spurious solutions or -modes [24], [25].

For example, the well-known finite-difference time-domain
(FDTD) method has the following numerical dispersion [26]:⎡⎣sin

(
kx �x

2

)
�x

⎤⎦2

+
⎡⎣sin

(
ky �y

2

)
�y

⎤⎦2

+
⎡⎣sin

(
kz�z

2

)
�z

⎤⎦2

=
⎡⎣sin

(
ω�t

2

)
c�t

⎤⎦2

(31)

where �x,�y,�z and �t are the discretization steps in the
x-, y-, z-, and t-direction, respectively. They are inversely
proportional to the number of the expansion terms N of (15).
When N → +∞, �x → 0,�y → 0,�z → 0, and
�t → 0, the above dispersion relation approaches the sphere
of the analytical solution (31). We can then say that the
FDTD equations represent approximate solutions of Maxwell’s
equations.

In short, the analytical estimation of the errors of MWR
solutions is quite challenging. In practice, the errors are eval-
uated on a case-by-case basis. Alternatively, spectral analysis

Fig. 2. (a) Typical rooftop function. (b) Trial function or approximate solution
that is the sum of the rooftop functions.

in the frequency domain can be employed. The dispersion
relationship between spatial frequencies, kx, ky, kz , and ω,
is first determined for the MWR solution, and the wave speed
v is found from (30) and compared with the analytical speed,
which is the constant speed of light c.

IV. UNIFIED VIEW OF NUMERICAL METHODS

With the above understanding and knowledge of the MWR,
we now present the unified view of the most commonly used
numerical methods in the following paragraphs. We divide
the methods into two main categories: the frequency domain
methods and the time-domain methods. Under each category,
we apply the MWR to formulate their equations.

A. Frequency Domain Methods

As mentioned before, frequency-domain methods solve
the Fourier-transformed time-domain electromagnetic field
equations. In this article, we will focus on some of the
best-known frequency-domain methods, namely, the finite dif-
ference method, the finite element method (FEM), the method
of moments (MoM), the IE method, and the meshless method.

1) Finite Difference Method: Consider a function u = u(ξ)
where ξ is a spatial coordinate (e.g., x). We need to find its
derivative du/dξ .

We employ the rooftop function ϕn(ξ), shown in Fig. 2(a),
as the expansion or basis function. The rooftop function has
the value of unity at its center point ξn and zero at its two edge
nodes. The trial function or approximate solution, as illustrated
in Fig. 2(b), can then be written as

u(ξ) ≈ ũ(ξ) =
N∑

n=1

anϕn(ξ) =
N∑

n=1

ũ(ξn)ϕn(ξ). (32)

Because the rooftop function has the value unity at its center
and zero at its edges, the associated expansion coefficient is
equal to the approximate solution at the point ξn : an = un(ξn).

Its derivative is then

du(ξ)

dξ
≈ dũ(ξ)

dξ
=

N∑
n=1

an
dϕn(ξ)

dξ
=

N∑
n=1

ũ(ξn)
dϕn(ξ)

dξ
(33)

which is the two-step pulse function depicted in Fig. 3.
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Fig. 3. (a) Derivative of the rooftop basis function. (b) Derivative of the the
trial function.

Fig. 4. Discretization in the FEM.

If we now choose the weighting function to be the Dirac
impulse function wm = δ(ξ − ξm+1/2) and evaluate its inner
product with (32), we get the approximate derivative

du(ξ)

dξ
|ξ=ξn+1/2 ≈ dũ(ξ)

dξ
|ξ=ξn+1/2

=
[

u(ξn)
dϕn(ξ)

dξ
+ u(ξn+1)

dϕn+1(ξ)

dξ

]
|ξ=ξ

n+ 1
2

= u(ξn+1) − u(ξn)

�ξ
. (34)

The above equation is precisely the same as the conventional
central finite-difference formulation [27].

2) Finite Element Method: The FEM can also be formulated
in terms of the MWR method. For convenience, let us consider
a 2-D case.

First, we divide the 2-D problem domain into triangular
patches called elements, as shown in Fig. 4.

Consider a typical eth element. It has three vertices with
coordinates (xi , yi) where i = 1, 2, 3. In the FEM, three
shape functions sei (x, y) are used to expand the fields⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

se1(x, y) = (x2 y3 − x3y2) + (y2 − y3)x + (x3 − x2)y

2A
se2(x, y) = (x3y1 − x1y3) + (y3 − y1)x + (x1 − x3)y

2A

se3(x, y) = (x1 y2 − x2 y1) + (y1 − y2)x + (x2 − x1)y

2A
(35)

where A is the area of the element (triangular patch)

A = 1

2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ (36)

Fig. 5. Shape functions of a triangular element. (a) Shape function Se1(x, y).
(b) Shape function Se2(x, y). (c) Shape function Se3(x, y).

sei (x, y, z) pertains to the i th vertex of the element which is
pictured in Fig. 5. It has Kronecker properties

sei (xl, yl) =
{

1, when l = i
0, when l �= i.

(37)

It states that the shape function has the values of unity at one
vertex and zero at any other two vertices, as shown in Fig. 5.

In the FEM, we use the shape functions as the basis
functions in each element. The approximate solution (15)
becomes

u(r, t) ≈ ũ(r, t) =
N∑

n=1

anϕn(r, t) =
Ne∑

e=1

3∑
i=1

aei sei (x, y) (38)

where ϕn(r, t) = sei (x, y), n = 3(e − 1) + i . e refers to
the element and i to the vertex. The projective approxima-
tion (38) then becomes the sum of the shape functions of
all the elements. By virtue of the Kronecker properties (39)
of the shape function, the expansion coefficients aei become
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Fig. 6. Charged strip with a unity potential.

aei = ũ(ri , ω) = ũ(xi , yi , ω), which are the approximate field
values at the element vertices.

We now substitute (38) into the operator equation and
obtain the residual. We then select suitable weighting functions
{wm(r, t), m = 1, 2, 3, . . .} to expand the residual function
and minimize the residual by forcing the residual expansion
coefficient to become zero. A frequent choice of the weighting
functions is Dirac impulse functions centered at the element
vertices

δ(xi , yi) = δ(x − xi)δ(y − yi)

=
{∞, when x = xi and y = yi

0, when x �= xi or y �= yi
(39)

with the property of∫ x+
i

x−
i

∫ y+
i

y−
i

δ(x, y)dxdy =
∫ x+

i

x−
i

∫ y+
i

y−
i

δ(x − xi)δ(y − yi)dxdy=1.

Another common choice of weighting function is the shape
function sei (x, y, z), resulting in Bubnov Galerkin’s method.

The reader can find more information about the FEM
for electromagnetic modeling in the existing large body of
literature, including [28]. Note that different notations are used
for the basis functions or shape functions in different reports.

3) Method of Moments: Harrington [29] wrote an excellent
book, Field Computation by Moment Methods, the classical
text still being used today. The MoM is traditionally applied to
the IEs that are derived from Maxwell’s equation. The solution
follows the two-step process of the MWR, as described in
Section II. Therefore, the MoM is a form of the MWR.
Readers are referred to published literature on the subject such
as [30].

4) Integral Equation Methods: The IE methods are popular
for solving open electromagnetic problems [31]. We can derive
many forms of the IEs from Maxwell’s equations, resulting
in many IE approaches. Some solve for the field quantities,
while others solve for the currents or charges [32]. As a
result, different IE methods may be best suited for different
structures, depending on the quantities to be solved.

For illustration purposes, consider a charged strip in the
static case (ω = 0), as shown in Fig. 6.

The following expression for the potential can be derived
from Maxwell’s equations:

φ(x, y) = 1

2πε

∫ +1

−1
qs
(
x ′) ln

1√
(x − x ′)2 + y2

dx ′ (40)

Fig. 7. Rectangular pulse functions are selected as basis functions.

where qs(x ′) is the unknown linear surface charge density of
the strip. φ(x, y) is the potential generated by the charged
strip.

Suppose the potential on the strip is 1 V. The boundary
condition for the potential function (40) is thus

φ(−1 ≤ x ≤ +1, y = 0) = 1.0. (41)

The operator equation (14) for the linear surface charge
density qs(x ′) then becomes

1

2πε

∫ +1

−1
qs
(
x ′) ln

1

|x − x ′|dx ′ − 1 = 0. (42)

Following the MWR procedure, we can find an approximate
solution for qs(x ′). Once qs(x ′) is obtained, we can find the
potential at any location (x , y) with (40). The electric field E
is then E = −∇φ(x, y).

Now let us define uniformly sampling points on the strip,
{x1, x2, . . . , xn, . . . , xN }, xn = −1+�x/2+(n−1)�x,�x =
2/N . N is the number of discrete sampling points. We then
choose rectangular pulse functions, ϕn(x) = Pn(x), centered
at the sampling points xn with the pulse width of �x = 2/N ,
as the basis functions (shown in Fig. 7).

Furthermore, we select the Dirac delta impulse function,
also centered at the sampling point xm , as the weighting
function, wm(x) = δ(x − xm), m = 1, 2, 3, . . . , N. After some
mathematical manipulations, we obtain the following system
of linear equations for the expansion coefficients an:

N∑
n=1

cmnan = 2πε, m = 1, 2, 3, . . . , N (43)

where

cmn = (xm − xn) ln

(
|xm − xn − �x

2
|/|xm − xn + �x

2
|
)

+�x

2
ln

(
1/|(xm − xn)

2 −
(

�x

2

)2

|
)

+ �x . (44)

With the solution of (43) for the expansion coefficients an,
we plot the approximate solutions for an increasing number
of sampling points N in Fig. 8.

The above example is a simple 1-D case. In a more general
case, an electric field IE (EFIE) [33] (or a magnetic field IE
MFIE [34]) in vector form is developed first from Maxwell’s
equations

L[E(r)] − g(r) = 0 (45)
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Fig. 8. Computed charge distribution for different numbers of expansion
terms.

where L is likely an integration operator similar to (42) but
in vector form. g is also a vector function.

We then follow the MWR process with the note that the
projection and expansion of (15) are now in vector form: the
basis and weighting functions and the inner product are all
vectors

u(r, ω) = E(r, ω) ≈ Ẽ(r, ω) =
N∑

n=1

anϕn(r, ω). (46)

For more details and more complex problems, readers are
referred to [31] and [35]–[37].

5) Spectral Domain Method: The spectral domain method
is a specialized numerical method that solves electromagnetic
problems in the spectral domain (as described in Sections II-C
and III-D). It can be efficiently applied to planar structures,
such as microstrip lines [38]. Starting with Helmholtz’s equa-
tion (10) in the frequency domain, an IE is derived with
current densities or charges being the unknown quantities
to be solved for. The current or charge densities are then
expanded in terms of the pre-selected basis functions with
unknown expansion coefficients. The MWR process is applied,
and a system of linear equations is obtained for the expansion
coefficients. The core of the spectral-domain method is that
the expansion coefficients are efficiently found through the
use of Green’s functions in the spectral (or spatial frequency)
domain rather than directly in the spatial domain. Chen and
Ney [19] present a good description of the spectral domain
method with the MWR (or MoM). Therefore, the spectral
domain method lies within the framework of the MWR. Note
that in formulating the expansion and computing the expan-
sion coefficients in the spectral domain, Parseval’s theorem
is applied to show the orthogonality of the basis function,
convergence, and integration limits. The details can be found
in [10] and [38].

6) Meshless Methods: Conventionally, numerical methods
are developed by discretizing a continuous solution domain
into small cells or geometrical shapes, often called mesh or
grid. For example, in a 2-D FEM, triangular meshes are used,
as discussed before. In a 3-D FEM, we use tetrahedral meshes.
In a 2-D finite difference method, we use a rectangular mesh,
and in a 3-D finite difference method, we use cuboid meshes.
Vertices of these meshes or grids must follow certain rules or
relationships to enable the discretization with numerical cells.

Fig. 9. Support domain of a point of interest and its surrounding nodes.

In contrast, meshless methods do not employ structured
meshes, as their name suggests [39], [40]. Instead, we first
choose spatial nodes located throughout a solution domain,
and then we select the basis functions that are centered at or
associated with these nodes. We now follow the MWR process
to obtain the meshless formulation. Fig. 9 shows an example.

In Fig. 9, we choose the spatial nodes, marked with +, in the
domain. We define a support domain of radius rmax centered
at a point of interest within which we project the solution in
terms of the radial and monomial basis functions as follows:

u ≈ ũ(r) =
N1∑

n=1

Rn(r)an +
N∑

n=N1+1

Pn(r)an (47)

where r = (x, y, z) are the coordinates of the point of interest
at which the field value u is to be approximated. Rn(r) is
a radial basis function, Pn(r) is a monomial basis function,
and an are the expansion coefficients. N1 is the number of
nodes in the support domain of r that determines the number
of radial basis functions used to find ũ(r). Very often, the
Gaussian function is adopted for the radial basis [41]. It is an
exponential function of distance with shape parameter α that
controls the decay rate

Rn(r) = e−α(|r−rn |/rmax)2
(48)

where |r −rn| = ((x − xn)
2 + (y − yn)

2 + (z − zn)
2)1/2, rn =

(xn, yn, zn) are the coordinates of the nth node within the
support domain of the point of interest r.

By forcing (47) to pass through every node in the support
domain, we can obtain the approximate fields at the nodes
within the support domain

u ≈ ũ(r) =
N1∑

n=1

Rn(r)an +
N∑

n=N1+1

Pn(r)an =
N1∑

n=1

ϕn(r)ũn

(49)

where ũn = ũ(r = rn) is the approximate field value at
the node rn within the support domain. ϕn(r) is the shape
function associated with rn, and it has the following Kronecker
property:
ϕn(r) =

{
1, at node rn (i.e., r = rn)
0, at other nodes (i.e., r = rm and m �= n).

(50)
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Fig. 10. Illustration of the node-based meshless method (top figure) and
its evolution into the FEM (middle figure) and the finite difference method
(bottom figure).

Once we establish the projective expansion of (49) and (50),
we can proceed with the MWR process and obtain the node-
based meshless method. A frequently used weighting function
used is the Dirac delta impulse function that is centered at the
nodes, respectively

wm(r) = δ(r − rm) =
{∞, when r = rm

0, when r �= rm .
(51)

More details about the meshless formulation can be found
in [39], [40], [42], and [43].

The node-based meshless method allows great flexibility in
the placement of the spatial nodes. As a result, arranging
them in a specific pattern can lead to a particular method
that we commonly know [44]. For instance, if we connect the
nodes with straight lines in a 2-D case, we will discretize the
solution domain into triangular patches. If we further employ
shape functions within the patches as the basis functions,
the meshless method becomes the FEM. If we arrange the
nodes on a rectangular grid and employ rooftop functions as
basis functions, we will obtain the finite-difference method.
Fig. 10 shows the evolution of the meshless method into the
FEM and the finite difference method. In other words, we can
use the node-based meshless method to generalize different
numerical methods and thus to serve as a unifying framework
for the derivation and characterization of a group of numerical
methods.

Note that in the above node-based meshless derivations,
scalar basis functions are considered for illustration simplicity.
In addition to the scalar functions, methods using vector
basis functions have been developed, for instance, the popular

edge FEM [28] (and references therein). Since these vector
basis functions can be associated with spatial nodes or grid
points directly or indirectly, the methods formulated with the
vector basis functions can be found as special cases of the
general node-based meshless method. In the case of the edge
FEM, on the surface, the vector basis functions are only
associated with the edges, but two ends of an edge are the
nodes. Therefore, every vector basis function, in reality, is also
associated with the nodes. If we consider the expansion at
a node as the combinations of the vector basis functions
of all the edges that are connected to the node, the edge
FEM is then the special case of the node-based FEM in the
vector form. In addition, the inner product is the dot product
of two vector functions. The expansion coefficients of the
vector basis functions are the unknown quantities to be found.
In other words, the node-based meshless method can be used
to develop the edge FEM with the special selection of the
basis functions and inner product.

B. Time-Domain Methods

As their name indicates, time-domain methods essentially
solve electromagnetic problems in the time domain. That is,
they are used to find approximate solutions to time-dependent
electromagnetic equations (16). Since frequency domain elec-
tromagnetic equations are the Fourier transform of the asso-
ciated time-domain electromagnetic equations, there exists a
corresponding frequency-domain method for every given time-
domain method and vice versa. As we have discussed the
finite-difference method, FEM, moment method, IE method,
and the meshless method in the frequency domain in
Section IV-A, we will discuss their time-domain counterparts
in Section IV-B. The names of these methods are the same
as those in Section IV-A but with the added “time-domain”
attribute. Moreover, we will discuss another powerful method,
the (time-domain) transmission-line-matrix (TLM) method,
that was developed originally in the time domain. Naturally,
there also exists a frequency-domain TLM method, which the
reader may further explore in [45].

There are two approaches to finding time-domain solutions:
one is to employ a frequency domain method, find the solution
in the frequency domain, and perform the inverse Fourier
transform to get the time-domain solution; the other is to
formulate and solve electromagnetic problems directly in the
time domain. The former is inefficient in general since the
inverse Fourier transform requires many frequency-domain
solutions over a vast frequency band. The latter is more
efficient since it solves the approximate time-domain solution
directly in a single computation run. We can then perform
the Fourier transform of the time-domain solution and obtain
the frequency-domain solution. In the following paragraphs,
we discuss the latter approach.

1) Finite-Difference Time-Domain Method: The FDTD
method is the counterpart of the finite difference method in the
frequency domain. It is formulated by directly applying (34)
to the time differential operator. More details of the derivation
of the FDTD method can be found in [26] and [46].

Note that (34) is the same central finite-difference opera-
tor that we conventionally derive from Taylor’s series [27].
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Fig. 11. Analogy between the transmission line and a plane way (or 1-D
problem).

However, in the context of the MWR, the field expansion
of (32) also presents the continuous field values at all spatial
points in addition to those at the nodes (or grid points). The
conventional finite-difference operator does not provide such
information. That is an important advantage of the unifying
MWR framework over the conventional approach.

2) Transmission Line Matrix Method: The TLM method
originates from the analogy between voltages and currents
in transmission lines and electric and magnetic fields in
space [47], [48]. It is well known that these voltages and
currents are governed by the telegrapher’s equations which
are of the same form as those describing electric and mag-
netic fields of a plane wave (typical for 1-D electromagnetic
problems). Therefore, we can exploit the correspondence
between transmission line parameters and the field quantities
to find field solutions by solving the telegrapher’s equation.
Fig. 11 shows the analogy between transmission line and plane
wave propagation. Using a transmission line model for solving
1-D electromagnetic field problems is advantageous because
most readers are familiar with transmission line formalism
and the equivalent circuit models commonly used to represent
transmission line networks.

While the model of Fig. 11 is 1-D, we can extend the
transmission line model to two and three spatial dimensions
by interconnecting the transmission lines to form spatial net-
works, resulting in the so-called 2-D [see Fig. 12(a)] [49] and
3-D [see Fig. 12(b)] TLM models [50]. The interconnection
points, called TLM nodes, are distributed over an entire
solution domain.

The TLM methods use Dirac delta voltage impulses to
sample the field quantities. A TLM simulation thus becomes a
rather simple propagation process involving individual pulses
traveling on the transmission lines linking two neighboring
TLM nodes and being scattered at the TLM nodes. The electric
and magnetic fields correspond directly to the impulse voltages
and currents at the nodes and on the transmission link lines.
Details of the TLM methods can be found in [48] and [51].

Although the TLM method was originally developed using
transmission line concepts, it is equivalent to the FDTD
method and can also be derived via the MWR [52], [53].
In other words, the unifying mathematical framework of the
MWR approach includes the TLM method as well.

3) Time-Domain Finite-Element Method: The time-domain
finite-element method (TD-FEM) is the FEM’s counterpart in

Fig. 12. Two- and three-dimensional TLM method. (a) Two-dimensional
TLM and (b) three-dimensional TLM.

the frequency domain. It is formulated by directly applying
(34) to the time differential operator in the formulations. Equa-
tion (34) is conventionally called the central finite-difference
operator but has been derived with the MWR in this article.
In the spatial domain, the TD-FEM conventionally applies
the MWR process like in its frequency-domain counterpart.
Therefore, the MWR is the unifying mathematical framework
of the TD-FEM. More details of the derivation of the TD-FEM
method can be found in [28] and [54].

The popular time-domain discontinuous Galerkin (DGTD)
methods are a special case of the FEMs, in which the function
space consists of piecewise continuous polynomials. These
polynomials are allowed to be completely discontinuous across
element interfaces. The DG methods can be regarded as the
most extreme case of nonconforming FEMs, that is, a one-
element one-domain scheme. DG was first proposed to solve
the hyperbolic equation encountered in neutron transport [55]
and was further developed by Cockburn and Shu [56]. Exten-
sive applications of DG methods can be found in electro-
magnetics, fluid dynamics, elastic wave modeling, etc. The
spirit of the DG method is to use the flux to relax the
continuity condition between adjacent elements. It has been
employed and applied in solving electromagnetic structure
problems [57]. Its formulation follows the FEM and therefore
falls into the framework of the MWR.

4) Time-Domain IE Methods: Time-domain integral equa-
tion (TDIE) methods can be considered as a specific appli-
cation of the MoM procedure to TDIEs at each time step.
Recognizing that the MoM is a significant element of the
unified framework of computational electromagnetics, TDIEs
belong to this framework as well. Bennett and Weeks [58] first
proposed the TDIE method in 1968 in the form of a marching-
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on-in-time (MOT) solution [59]. Using so-called Rao–Wilton–
Glisson (RWG) basis functions as spatial and temporal basis
functions facilitates the development of the MOT scheme [60].
The challenges are to overcome late-time instabilities and high
computational costs. The incorporation of implicit schemes
can remove the need to satisfy the Courant–Friedrichs–Lewy
(CFL) stability condition and mitigate the late-time instability
issue [61].

Let us consider the time-domain EFIE for the electro-
magnetic fields scattered by a perfectly electrically conduct-
ing (PEC) body with the enclosing surface S [62]

−n̂(r) × [
n̂(r) × ∂t Einc(r, t)

]
= −n̂(r) × {

n̂(r) × [
∂2

t A(r, t) + ∇∂t�(r, t)
]}

(52)

where n̂(r) is an outward directed unit vector normal to S,
∂t represents the time derivative, and A(r, t) and �( r, t) are
the vector and scalar potentials

{A(r, t),�(r, t)}
=
{∫∫

S

μJ
(
r’, t − R

c

)
4π R

ds′,−
∫∫

S

∫ t− R
c

0

∇′·J(r’,t ′)
4πεR dt ′ds′

}
.

(53)

Here, J(r, t) is the surface current density, R = |r − r’|
is the distance between the source point r’ and observation
point r, and c = 1/(εμ)1/2 is the speed of light.

To numerically solve the EFIE in the time domain, J(r, t)
is expanded with Ns Nt space–time basis functions

J(r, t) ∼=
Ns∑

k′=1

Nt∑
l′

Ik′ ,l′ Sk′ (r)T
(
t − l ′�t

)
(54)

where Ik′ ,l′ are unknown expansion coefficients, and �t =
β/ fmax is the time step with β being typically 0.02 ≤ β ≤ 0.1
for a given maximum frequency fmax. In general, the spatial
and temporal basis functions Sk′ (r) and T (t) are local; they
have non-zero values only within a specific range.

Applying a spatial Galerkin procedure at t = t j = j�t , the
following matrix equation is obtained:

Z0Il = Vinc
l −

l−1∑
l′=max(1,l−Ng)

Zl−l′ Il′

= Vinc
l − Vscat

l , l = 1, 2, . . . , Nt . (55)

The integer Ng is chosen in such a way that it approximates
the longest possible transit time of the field produced by
a temporal basis function across S. Detailed expressions of
vectors and matrix elements can be found in [62] and [63].

The above solution process follows the two-step MWR pro-
cedure. Different approaches have been researched to improve
the performance of the MOT scheme, including the following.

1) Improvement of temporal basis function T (t) (e.g., [64]).
2) Improvement of spatial basis functions Sk′ (r) (e.g., [65]).
3) Adoption of extension to different IEs (e.g., [66], [67]).
It should be highlighted that the MOT scheme requires

O(Nt N2
S ) operations and O(N2

S ) memory. Here, NS and Nt are
the number of spatial basis functions and the number of time
steps, respectively. Such high computational complexity and

memory requirements must be reduced for efficient simulation
of electrically large and complex problems.

5) Time-Domain Meshless Method: The time-domain mesh-
less method is the counterpart of the frequency-domain mesh-
less method described in Section IV-A6 [39], [40], [43]. The
only difference is that their finite-difference or numerical
integration counterparts replace the standard time-differential
or integral operators. Both operations can be viewed as the
result of applying the MWR process. In other words, the time-
domain meshless method can also be derived within the MWR
framework.

V. SUMMARY AND CONCLUSION

In this article, we present a unified theoretical framework
for numerical methods in electromagnetics. Each method
approximates the unknown electromagnetic solution by a sum
of weighted basis functions of a selected and method-specific
function space. The unknown coefficients must be determined
such that the difference (residual error) between the approxi-
mate and the exact solution is minimized. The residual error
is minimized by expanding it in the function space formed by
the weighting functions and making the expansion coefficients
zero.

We discussed the most common numerical methods and
described their derivation through the projection and residual
minimization processes. We also demonstrated the relation-
ships between frequency-domain and time-domain solutions,
the physical meaning of solution convergence (or numerical
stability), and error estimations. In particular, we demonstrated
that in the case of free-space problems, the numerical disper-
sion errors result from approximation errors in the spectral
domain.

To fully utilize a numerical method, one needs to know its
pros and cons. A paper by Sankaran [68] presents quite well
the advantages and disadvantages of various methods with an
extensive discussion of flexibility, accuracy, and computational
loads. To deal with computational expenses, many fast algo-
rithms have been developed; they accelerate solution processes
for modeling electrically large and complex problems [69];
they include multilevel fast multipole algorithm (MLFMA)
[70]–[72], fast direct solution methods [73], [74], graphics
processing unit (GPU) accelerated methods [75], [76], discon-
tinuous Galerkin (DG) methods [57], [77], domain decompo-
sition (DD) methods [78], and so on [79], [80]. Note that GPU
acceleration is not exclusively a matter of technology but also
requires a modification of the computational procedure and
implementation scheme to run on specialized hardware.

Furthermore, the “second-level” projection techniques for
reducing the dimensions of the solution spaces to achieve
fast computations and small computational load have been
developed, e.g., Krylov space [81]. Since this article focuses
on the fundamental formulation with the MWR or the first-
level projection, we do not elaborate on the details of the
various acceleration methods, which would unduly increase
the length of this article.

In summary, we have proposed a unified mathematical
framework that is shared by all current numerical methods
for solving Maxwell’s equations. Each numerical method
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developed so far employs its own specific set of basis func-
tions to expand the unknown solutions of a problem and
weighting or testing functions to project and then minimize
the residual error with the MWR. This unified view facili-
tates the understanding of various numerical methods and the
differences between them and provides a common and com-
prehensive methodology for presenting existing methods and
for developing new numerical methods (including multiphysics
modeling). Furthermore, we expect that the unified view will
lead to the creation of a unifying computational platform for
hybridizing all numerical methods.

This article is also intended to serve as a starting point for
further research on the unification of the numerical methods
with many questions that still need to be answered; for
instance, what are the conditions on the function spaces for
expanding the solutions and the residual functions? What are
the criteria for the convergence of the projection approxima-
tion? What are the proper forms of the inner product for
a specific electromagnetic problem? These questions are the
subjects of further research and reports.

Further references on the theories and applications of finite-
difference methods, meshless methods, projection methods,
and their implementations are also listed in references for the
benefit of readers who wish to research the subject of this
article in greater detail [80]–[90].
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