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Abstract

Semi-supervised learning is drawing increasing attention in the era of big data, as
the gap between the abundance of cheap, automatically collected unlabeled data and
the scarcity of labeled data that are laborious and expensive to obtain is dramatically
increasing. In this paper, we first introduce a unified view of density-based clustering
algorithms. We then build upon this view and bridge the areas of semi-supervised clus-
tering and classification under a common umbrella of density-based techniques. We
show that there are close relations between density-based clustering algorithms and the
graph-based approach for transductive classification. These relations are then used as a
basis for a new framework for semi-supervised classification based on building-blocks
from density-based clustering. This framework is not only efficient and effective, but
it is also statistically sound. In addition, we generalize the core algorithm in our frame-
work, HDBSCAN*, so that it can also perform semi-supervised clustering by directly
taking advantage of any fraction of labeled data that may be available. Experimental
results on a large collection of datasets show the advantages of the proposed approach
both for semi-supervised classification as well as for semi-supervised clustering.

Keywords Semi-supervised classification · Semi-supervised clustering ·

Density-based clustering

1 Introduction

Semi-supervised learning algorithms tackle cases where a relatively small amount
of labeled data yet a large amount of unlabeled data is available for training
(Chapelle et al. 2006; Zhu and Goldberg 2009). We find examples of semi-supervised
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learning scenarios in various fields, such as email filtering, sound/speech recogni-
tion, text/webpage classification, and compound discovery, just to mention a few. For
instance, in areas such as biology, chemistry, and medicine, domain experts and lab-
oratory analyses may be required to label observations, thus only a small collection
of labeled data can usually be afforded, which may not be representative enough for
supervised learning to be applied (Batista et al. 2016).

Typically, semi-supervised learning algorithms are based on extensions of either
supervised or unsupervised algorithms by including additional information in the form
originally handled by the other learning paradigm. For instance, in semi-supervised
clustering, a collection of labeled observations can be used to guide the (otherwise
unsupervised) search for clustering solutions that better meet users’ prior expectations.
Labels in clustering only indicate whether observations are expected to be part of the
same cluster or different clusters, there is no one-to-one association between the unique
labels known to the user and the possible categories to be discovered in the data.
In semi-supervised classification, the classes are known in advance, and unlabeled
observations are used in addition to the labeled ones to improve on (the otherwise
supervised) classification performance.

Semi-supervised learning can be categorized into inductive and transductive learn-
ing. Inductive learning uses both labeled and unlabeled training data to generate a
model able to predict the labels for the unlabeled training data as well as for future
data to be labeled. Transductive learning predicts the labels of the unlabeled training
data only (from which a model may optionally be derived afterwards, if prediction
of new, unseen data objects is required). In transductive classification, which is the
focus of the first part of this paper, a large amount of unlabeled objects can be classi-
fied based on a small fraction of labeled objects, which is not representative enough
to successfully train a classifier in a traditional, fully supervised way. Label-based
semi-supervised clustering, which is the focus of the second part of this paper, is
intrinsically transductive in its nature. The main difference from transductive classi-
fication is that in clustering not necessarily all possible categories and their labels are
known in advance, so unlabeled objects may be assigned newly discovered labels that
are not present in the original training set.

In the case of semi-supervised classification, unlabeled data can help improve clas-
sification performance when there is a good match between the problem structure and
the model’s assumptions: “…there’s no free lunch. Bad matching of problem struc-

ture with model assumption can lead to degradation in classifier performance” (Zhu
2005). Different models of semi-supervised classification exist, relying on different
model assumptions (Zhu 2005). One of the major paradigms, clustering-based models,
follows the well-known cluster assumption of semi-supervised classification:

Assumption 1 (Cluster assumption; Chapelle et al. 2006) If points are in the same
cluster, they are likely to be of the same class.

This assumption is quite general and broad in scope as there are many possible interpre-
tations of “cluster”, under different clustering paradigms. An important, statistically
sound paradigm is density-based clustering (Kriegel et al. 2011), where clusters are
defined as high-density data regions separated by low-density regions. Under this
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paradigm, Assumption 1 is closely related to another common assumption in semi-
supervised classification:

Assumption 2 (Smoothness assumption; Chapelle et al. 2006) The label function is
smoother in high-density than in low-density regions…If two points in a high-density
region are close, then so should be their outputs (labels)…If, on the other hand, they
are separated by a low-density region, then their outputs need not be close.

According to Chapelle et al. (2006), in the context of classification and from a
density-based clustering perspective, Assumptions 1 and 2 are equivalent to each other
and can be read as “The decision boundary should lie in a low-density region (low

density separation)”. In spite of the obvious connections between these two areas,
however, the use of density-based clustering for semi-supervised classification has
been surprisingly overlooked in the literature. Many methods focus instead on the use
of graphs (as opposed to clusters) to model the notions of locality and connectivity of
the data (de Sousa et al. 2013). Such graph-based methods mostly rely on the following
model assumption:

Assumption 3 (Graph assumption; Zhu and Goldberg 2009) Class labels are “smooth”
with respect to the graph, so that they vary slowly, i.e., if two points are connected by
a strong edge, their labels tend to be the same.

In this paper we show that there is a strong relation between density-based clus-
tering methods and the graph-based approach for transductive classification, by first
establishing formal relationships between a number of key unsupervised and semi-
supervised clustering algorithms under a unified view of density-based clustering, then
establishing the links and interpretations of these algorithms from the perspective of
graph theory. Taking advantage of such a unified view, we then firstly introduce a
framework of density-based clustering for semi-supervised classification that brings
the three assumptions above (namely cluster, smoothness, and graph) under a com-
mon umbrella. In this context, we make the following initial contributions: (a) our
framework extends the state-of-the-art density-based hierarchical clustering algo-
rithm HDBSCAN* (Campello et al. 2015), originally proposed as an unsupervised
or (constraint-based) semi-supervised clustering algorithm, to perform transductive
classification from a small collection of pre-labeled data objects; (b) we show that,
in the context of transductive classification, other well-known density-based algo-
rithms for semi-supervised clustering can also be derived as particular cases, with
the advantage that our framework eliminates possible order-dependency and graph
re-computation issues of these algorithms, while being simpler and easier to interpret;
and (c) by combining building blocks from different algorithms, a number of novel
variants follow naturally from our framework, which, to the best of our knowledge,
have never been tried before.

We published the aforementioned contributions in a preliminary conference paper
(Gertrudes et al. 2018). The current paper is an extension of this preliminary publication
that expands our unified view of density-based methods from the semi-supervised
classification scenario to the label-based semi-supervised clustering scenario, where
labels for certain categories may be missing in the training set. As a novel contribution
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in this context, we extend HDBSCAN*, which plays a central role in our unified
view and framework for density-based classification, to also perform semi-supervised
clustering from a collection of pre-labeled data objects, rather than instance-level
pairwise constraints (as currently supported by the algorithm). The direct use of labels
can be shown to be both simpler and more effective. To that end, a new collection of
experiments focused on clustering has also been included as extended material in this
paper, in addition to the classification experiments from our preliminary publication
(Gertrudes et al. 2018).

The remainder of this paper is organized as follows: in Sect. 2 we discuss related
work that is close to our approach. In Sect. 3 we present our unified view of
density-based clustering algorithms that bridges between the areas of semi-supervised
clustering and classification. In Sect. 4 we introduce our framework for density-based
semi-supervised classification. In Sect. 5 we present our newly proposed strategy to
perform label-based semi-supervised clustering. In Sects 6 and 7 we discuss our exper-
iments and results, respectively. Finally, in Sect. 8 we conclude the paper and discuss
some future work.

2 Related work

In the context of semi-supervised classification, different categories of algorithms
have been described in the literature (Zhu 2005). Closer to our work are the clustering-

based and the graph-based approaches. Graph-based algorithms construct a graph with
vertices from both labeled and unlabeled objects. Generally, neighboring vertices are
connected by edges such that edge weights are proportional to some measure of local
connectivity strength (de Sousa et al. 2013). Once the neighborhood graph is built,
labels can be somehow transfered from labeled to unlabeled objects, e.g., using Markov
chain propagation techniques (Szummer and Jaakkola 2002) or regularized methods
based on the graph Laplacian (Zhao et al. 2006). The Laplacian SVM (LapSVM)
(Belkin et al. 2006) is related to the latter category and is a state-of-the-art algorithm
in the semi-supervised classification literature.

A well-known strategy for label propagation in graph-based semi-supervised clas-
sification is the use of a so-called harmonic function. In this context, a harmonic
function is a function that has the same values as the labels on the labeled data, and
satisfies the weighted average property on the unlabeled data, i.e., the value assigned
to each unlabeled object is the weighted average of the values of its neighbors. In
a binary classification problem, the class labels are coded, e.g., as {−1,+1}, and
these values are assigned to the vertices corresponding to the labeled objects. Each
remaining (unlabeled) object has its value determined as the average of the values of
its adjacent vertices in the neighborhood graph, weighted by the corresponding edge
weights. The resulting real values, which allow for different physical and probabilistic
interpretations, can be discretized back into {−1,+1} to achieve the final transductive
classification. A classic algorithm that follows this type of approach is the Gaussian
Field Harmonic Function (GFHF) (Zhu et al. 2003).

To address multi-class semi-supervised classification, Liu and Chang (2009) formu-
lated a constrained label propagation problem by incorporating class priors, leading
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to a simple closed-form solution. The algorithm, called Robust Multi-Class Graph
Transduction (RMGT), is an extension of the GFHF algorithm, which can be viewed
as a constrained optimization problem using a graph Laplacian as smoothness mea-
sure (de Sousa 2015). Both RMGT and GFHF, as well as the previously mentioned
LapSVM algorithm, are used as baseline for comparisons in our experimental evalu-
ation.

In contrast to graph-based methods, clustering-based algorithms for semi-supervised
classification perform label transduction based on the clustering structure of the data,
rather than by using an explicit graph (Zhu and Goldberg 2009). However, since cer-
tain clustering techniques are implicitly or explicitly built upon graphs and related
algorithms, there are connections between these two different paradigms of semi-
supervised learning, which are investigated in this paper. Of particular interest in our
context are density-based clustering methods (Kriegel et al. 2011), which are popular
in the data mining field as a statistically sound approach that has also been used for
semi-supervised classification, and has also been shown to have strong connections
with elements from graph theory (Campello et al. 2015). Two noticeable algorithms
in this context are HISSCLU (Böhm and Plant 2008) and Semi-Supervised DBSCAN
(SSDBSCAN) (Lelis and Sander 2009), both of which are built upon notions inher-
ited from two classic, widely used unsupervised density-based clustering algorithms,
namely, OPTICS (Ankerst et al. 1999) and DBSCAN (Ester et al. 1996).

SSDBSCAN (Lelis and Sander 2009), which has more recently also been extended
to the active learning scenario (Li et al. 2014), was in principle proposed as a semi-
supervised clustering method, which does not necessarily label all objects (as it would
normally be expected in transductive classification), but rather leave certain objects
unlabeled as noise, as usual (and meaningful) in density-based clustering applications.
Despite this, the algorithm explicitly relies on a classification assumption:

Assumption 4 (Classification assumption) There is at least one (possibly more)
labeled object from each class.

Unlike SSDBSCAN, HISSCLU (Böhm and Plant 2008) already includes an
extended label-propagation scheme that assigns a label from the training set to every
unlabeled object in the database. It further differs from SSDBSCAN in that it also
includes a preprocessing mechanism to widen the gap between nearby classes by
stretching distances between objects around class boundaries. This mechanism allows
HISSCLU to expand different class labels even within clusters that are formed by
more than one class (i.e., clusters of objects that are density connected but not pure in
their labels). SSDBSCAN, in contrast, makes the label consistency assumption:

Assumption 5 (Label consistency assumption) “Label consistency requires different
labels to belong to different clusters; under this assumption, a single class can still have
multiple modes [clusters or sub-clusters]; in other words, objects in different clusters
can have the same label, only in a single cluster the labels have to be the same.” (Lelis
and Sander 2009)

From this perspective, SSDBSCAN relies more strictly than HISSCLU on the
clustering assumption of semi-supervised classification (Assumption 1). Unlike
SSDBSCAN, which was originally proposed for the semi-supervised clustering task,
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HISSCLU can perform both semi-supervised classification and clustering. Both
remain state-of-the-art algorithms in the density-based literature, so they are also used
as baseline for comparisons in our experimental evaluation.

Apart from SSDBSCAN and HISSCLU, very few algorithms exist in the realm
of semi-supervised density-based clustering. Ruiz et al. (2007, 2010) proposed
C-DBSCAN, which is a modified version of DBSCAN designed to cope with instance-
level constraints. However, C-DBSCAN has the same limitation as DBSCAN in that it
uses a single, critical global density threshold determined by two user-defined param-
eters. In addition, the algorithm enforces constraints in a hard sense, i.e., clusters
under cannot-link constraints are not allowed to be formed and different clusters
under must-link constraints are forced to be merged. Hence, while satisfying the
user-provided constraints, the algorithm violates the implicit assumptions behind the
clustering model adopted, namely, the definitions of density connectivity and density-
based clusters.

An algorithm of particular interest that does not suffer from any of the above
limitations is HDBSCAN* (Campello et al. 2013a, 2015). Originally, HDBSCAN*
was proposed as a method for unsupervised or (constraint-guided) semi-supervised
density-based clustering. In this paper, HDBSCAN* is extended in two different ways:
first, it is extended to also perform semi-supervised classification via label propagation;
second, it is extended to perform semi-supervised clustering directly from labels, rather
than instance-level pairwise constraints.

In the following section we discuss in more detail fundamental concepts and
ideas underpinning the algorithms DBSCAN, OPTICS, SSDBSCAN, HISSCLU, and
HDBSCAN*, while establishing the links between these algorithms as well as their
connections with graph theory, which will be subsequently required to understand our
proposed unified approach for density-based semi-supervised clustering and classifi-
cation.

3 A unified view of density-based clustering algorithms

In this document, we adopt the following notations: X = {x1, x2, . . . , xn} is a dataset
with n data objects, xi . Some of the algorithms described in this paper assume that data
objects are points in a d-dimensional Euclidean space, i.e., xi ∈ R

d is a d-dimensional
feature vector with real-valued coordinates (xi = [xi1 · · · xid ]T). Others do not make
any assumptions about features and only require a measure of dissimilarity between
pairs of data objects, d(xi , x j ), in order to operate. This dissimilarity is assumed to be
a distance but not necessarily a metric. XL ⊂ X is a subset of the data objects for which
class labels are available, and class(xi ) is the class label of object xi ∈ XL . The subset
of unlabeled objects is denoted by XU , such that XL ∪ XU = X and XU = X \ XL .

3.1 DBSCAN*, DBSCAN, and OPTICS

A number of concepts used later in this work refer back to ideas and definitions from
DBSCAN (Ester et al. 1996), OPTICS (Ankerst et al. 1999), and related algorithms.
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We start describing DBSCAN*, which is a simplified version of DBSCAN defined in
terms of core and noise objects only (Campello et al. 2013a):

Definition 1 (Core and noise) An object x is called a core object w.r.t. ǫ ∈ R≥0 and
mpts ∈ N>0 if its ǫ-neighborhood (a ball of radius ǫ centered at x) contains at least
mpts many objects, i.e., if |Nǫ(x)| ≥ mpts, where Nǫ(x) = {xi ∈ X | d(x, xi ) ≤ ǫ}

and | · | stands for set cardinality. An object is called noise if it is not a core object.

Definition 2 (ǫ-reachable) Two core objects xi and x j are ǫ-reachable w.r.t. ǫ and mpts
if xi ∈ Nǫ(x j ) and x j ∈ Nǫ(xi ).

Definition 3 (Density-connected) Two core objects xi and x j are density-connected
w.r.t. ǫ and mpts if they are directly or transitively ǫ-reachable.

Definition 4 (Cluster) A cluster C w.r.t. ǫ and mpts is a non-empty maximal subset of
X such that every pair of objects in C is density-connected.

Like in DBSCAN, two parameters define a density threshold given by a minimum
number of objects, mpts, within a ball of radius ǫ centered at an object x. Clusters are
formed only by objects x satisfying this minimum density threshold (core objects).
Two such objects are in the same cluster if and only if they can reach one another
directly or through a chain of objects in which every consecutive pair is within each
other’s ǫ-neighborhood.

DBSCAN* is not only simpler, but it is also statistically more rigorous than the
original DBSCAN, as it strictly conforms with the classic principle of density-contour

clusters as defined by Hartigan (1975). The original DBSCAN relaxes this principle
by allowing some objects below the density threshold, called border objects, to be
incorporated into clusters. Specifically, a border object in DBSCAN is a non-core
object that lies within the ǫ-neighborhood of a core object. For convenience, here we
will formalize this notion by using the following definitions adapted from OPTICS
(Ankerst et al. 1999):

Definition 5 (Core distance) The core distance of an object xi ∈ X w.r.t. mpts, dcore(xi ),
is the distance from xi to its mpts-nearest neighbor (where the 1st-nearest neighbour
is by convention the query object itself, xi , the 2nd-nearest neighbour is thus the next
object closest to xi , and so on).

Definition 6 (Reachability distance) The (asymmetric) reachability distance from
an initial object xi to an end object xe w.r.t. mpts, dreach(xi , xe), is the largest
of the core distance of xi and the distance between xi and xe: dreach(xi , xe) =

max{dcore(xi ), d(xi , xe)}.

From Definition 5, it is clear that the core distance of an object x ∈ X is the
minimum value of the radius ǫ for which x is a core object (i.e., its density is above
the minimum density threshold). By definition, a border object xe in DBSCAN is not
a core object, which means ǫ < dcore(xe). Also by definition, a border object xe falls
within the ǫ-neighborhood of a core object, say xi , which means d(xi , xe) ≤ ǫ and,
since xi is core, ǫ ≥ dcore(xi ). From these inequalities, it follows that dcore(xe) > ǫ ≥
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max{dcore(xi ), d(xi , xe)}, and using Definition 6 a border object can then be defined
as:1

Definition 7 (Border object) An object xe ∈ X is called a border object w.r.t. ǫ and mpts
if dcore(xe) > ǫ and there exists another object xi ∈ X such that ǫ ≥ dreach(xi , xe).

The clusters in the original DBSCAN are the same as in DBSCAN*, augmented
with their corresponding border objects; all the other objects are labeled as noise by
both algorithms. From a graph perspective, it is straightforward to see that the clusters
in DBSCAN* (Definition 4) are the connected components of an undirected graph
where each core object is represented as a vertex and two vertices are adjacent if and
only if the corresponding core objects fall within each other’s ǫ-neighborhood (i.e., iff
they are ǫ-reachable—Definition 2). DBSCAN also includes border objects as vertices,
each of which is adjacent to a core object. For a border object xe, if there is more than
one core object xi satisfying Definition 7, the original DBSCAN makes xe adjacent
to one of those chosen randomly, but the choice can be made deterministically, e.g.,
the one that minimizes dreach(xi , xe) (or d(xi , xe) in case of ties).

Starting from an arbitrary object in the dataset, OPTICS (Ankerst et al. 1999) derives
an ordering (≺) of the data objects that implicitly encodes all possible DBSCAN
solutions for a given value of mpts. The algorithm does not require the radius ǫ to
produce such an ordering, which has the following property: given an object xq , the
smallest reachability distance to xq from any of its preceding objects is no greater
than the smallest reachability distance from any of its preceding objects to an object
succeeding xq , i.e.,

min
xp : xp≺xq

dreach(xp, xq) ≤ min
xo,xr :

xo≺xq≺xr

dreach(xo, xr ).

This property is important for two reasons: (a) it ensures that by plotting minxp : xp≺xq

dreach(xp, xq) for every object xq in the given order, the so-called OPTICS reachability

plot, density-based clusters and sub-clusters appear as valleys or “dents” in the plot;
and (b) if one wants to set a threshold ǫ, as a horizontal line cutting through the plot, it
is straightforward to show that DBSCAN clusters with radius ǫ correspond essentially
to the contiguous subsequences of the ordered points for which the plot is below the
threshold.

The OPTICS ordering and reachability plot can be easily achieved by keeping an
adaptable priority queue sorted by the smallest reachability distance from an object
outside the queue (already processed) to each object inside the queue. At each iteration,
the object with the smallest such distance (priority key) is removed from the queue
(processed), the reachability distances from that object to the objects inside the queue
are computed, and the queue is readjusted accordingly. From a graph perspective, this is
algorithmically analogous to Prim’s algorithm to compute a Minimum Spanning Tree
(MST), the only difference being that OPTICS operates on a directed graph where each

1 Please refer to the “Appendix” for a graphical illustration of border objects as well as other fundamental
definitions reviewed in this section, which will be subsequently used throughout the remainder of the
manuscript.
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pair of vertices (xp, xq ) is connected by a pair of unique edges, one in each direction,
whose weights are the corresponding reachability distances, i.e. dreach(xp, xq) and
dreach(xq , xp). The optional threshold ǫ to extract DBSCAN clusters corresponds to
pruning out from such a complete digraph any edge whose weight is larger than ǫ. The
strongly connected components of the resulting digraph (subsets of vertices mutually
reachable via directed paths) correspond to the DBSCAN* clusters with radius ǫ,
whereas the DBSCAN clusters additionally include vertices that are not part of any
of the strongly connected components, but are reachable from those (i.e., the border
objects).

3.2 SSDBSCAN

3.2.1 Conceptual approach

SSDBSCAN (Lelis and Sander 2009) is a semi-supervised algorithm that performs
semi-supervised clustering of an unlabeled dataset XU ⊂ X from a small fraction of
labeled data XL ⊂ X using a label expansion engine that is very similar to OPTICS.
Unlike OPTICS, however, SSDBSCAN circumvents the unnecessary complications
related to border objects and the asymmetric nature of the original reachability distance
in Definition 6 by using a symmetric version of it, which has been formally defined
as mutual reachability distance by Campello et al. (2013a, 2015):

Definition 8 (Mutual reachability distance) The mutual reachability distance between
two objects xi and x j in X w.r.t. mpts is defined as dmreach(xi , x j ) = max{dcore(xi ),

dcore(x j ), d(xi , x j )}.

The interpretation of this definition plays a fundamental role not only in SSDB-
SCAN but also more broadly here in our work: the mutual reachability distance is the
smallest value of the radius ǫ for which the corresponding pair of objects are still core
objects and are ǫ-reachable from each other (Definition 2). For a given mpts, ǫ estab-
lishes a density threshold that is inversely proportional to this radius, and the mutual
reachability distance is hence inversely proportional to the largest density threshold

for which the corresponding pair of objects is directly density-connected according to
Definition 3.

Conceptually, SSDBSCAN attempts to solve the following problem: for each unla-
beled object, xi ∈ XU , the goal is to assign xi the same label, class(x j ), as the object
x j ∈ XL that is the “closest” to xi from a density-connectivity perspective, if such
a labeling is possible, without violating the label consistency assumption (Assump-
tion 5). This assumption requires that objects with different labels have to reside in
disjunct density-based clusters following Definition 4 (w.r.t. the same mpts, but possi-
bly different ǫ values).

Let us provisionally put the label consistency assumption aside and first focus on
the primary goal, namely, what “closest to xi from a density-connectivity perspective”
means. In density-based clustering, this refers to the object that can reach out (or
be reached from) xi through a path along which the lowest density connection is as
high as possible (in other words, the weakest point in the connection is as strong as
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Fig. 1 SSDBSCAN label
assignment: in case (I), object xi

is assigned to x j2 (red star); in
case (II), xi is left unlabeled as
noise (Color figure online)

possible). Notice that, in light of Definition 8, this is equivalent to the path along
which the largest mutual reachability distance is as small as possible. From a graph
perspective, if objects are vertices and any two vertices are connected by an undirected
edge weighted by their mutual reachability distance, the goal is to find the path between
the unlabeled vertex xi in question and a labeled vertex x j along which the largest
edge is minimal. Given xi and any labeled candidate x j , this corresponds to the classic
minmax problem in graph theory, whose solution can be proven to be the path between
xi and x j along the minimum spanning tree (MST) of the graph. Hence, a preliminary
approach to label the set of unlabeled objects XU ⊂ X could be the following:

Definition 9 (Label propagation) Compute the MST of the dataset X in the trans-
formed space of mutual reachability distances, MSTr , find the largest MSTr edge
connecting each object xi ∈ XU to every object x j ∈ XL , and make class(xi ) =

class(x j ) where x j is the labeled object for which such a maximum edge is minimal.

From the density-based clustering perspective, however, there is a problem with this
approach. Let us consider two labeled objects, XL = {x j1, x j2}, such that class(x j1) �=

class(x j2) and x j2 is on the MSTr path between x j1 and an unlabeled object xi ∈ XU .
Now consider two possible scenarios:

– In the first scenario, the largest MSTr edge on the path between x j1 and xi , say 20,
is located on the sub-path between x j1 and the intermediate object, x j2. The largest
edge on the path between x j2 and xi is then smaller than 20, say 10 (Fig. 1-I).
In this case, it is safe to make class(xi ) = class(x j2) without violating the label
consistency assumption because any threshold ǫ ∈ [10, 20) can make xi density-
connected to x j2 (and, therefore, part of the same density-based cluster according
to Definition 4) but not to x j1.

– In the second scenario, the largest MSTr edge on the path between x j1 and xi , say
20, is located on the sub-path between x j2 and xi , whereas the largest edge on the
path between x j1 and x j2 is, say, 10 again (Fig. 1-II). In this case, the largest edge
on the path between xi and the two labeled objects in question is the same, yet
those two labeled objects have different labels. There is no threshold that can keep
xi density-connected to either x j1 or x j2 but not to both. The only way to split x j1
apart from x j2 is by a threshold ǫ < 10, but this also splits both x j1 and x j2 from
xi . SSDBSCAN handles this label inconsistency scenario by not labeling xi at all,
leaving it unclustered as noise.

3.2.2 Algorithmic approach

Algorithmically, SSDBSCAN does not pre-compute the MSTr . Instead, SSDBSCAN
runs an OPTICS search starting from each labeled object and assigning the corre-
sponding label temporarily to the unlabeled objects as they are found and processed
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by the OPTICS ordering traversal. However, this procedure, called label expansion,
uses the mutual reachability distance in Definition 8, rather than the original, asym-
metric version of OPTICS in Definition 6. The use of a symmetric distance makes
OPTICS algorithmically identical to Prim’s algorithm to compute MSTs. From this
perspective, SSDBSCAN dynamically builds an MST in the space of mutual reach-
ability distances, starting from each object x j1 ∈ XL and provisionally assigning
its label class(x j1) to the traversed unlabeled objects until an object x j2 ∈ XL with
a different label, class(x j2) �= class(x j1), is found. When such an object is found,
SSDBSCAN backtracks and only confirms the labels assigned to objects before the
largest edge on the path from x j1 to x j2, as these objects are “closer” to x j1 than to x j2
from a density-connectivity perspective, and they can be separated from those objects
beyond such a largest edge (including x j2) by any threshold ǫ smaller than this edge’s
weight.

SSDBSCAN stops when the label expansion procedure has been run from each
x j ∈ XL . Objects not labeled by any of the OPTICS initializations are left unclustered
as noise. These objects are those for which no density threshold exists that can make
them part of any cluster without incurring label inconsistency.

3.2.3 Shortcomings

SSDBSCAN has a number of shortcomings that will be addressed later in this work:

1. Order-dependency: If the MSTr is not unique, i.e., when there are different yet
equally optimal (minimum) spanning trees in the transformed space of mutual
reachability distances, some objects may end up with different labels depending
on the order of the various OPTICS traversals. The reason is that, for different
traversals, the implicit minimum spanning trees that are partially and dynamically
built from different starting vertices (labeled objects) may be different, and these
differences can be shown to possibly cause the algorithm to be order-dependent.
Order-dependency may also occur when there is more than one largest edge (i.e.,
a tie) on the sub-path of the MSTr between two labeled objects that have different
labels;

2. Re-computations: rather than pre-computing the MSTr , SSDBSCAN implicitly
and partially builds it from different starting vertices. Clearly, many portions of
the MSTr are likely to be recomputed multiple times, which is unnecessarily
inefficient from a computational point of view;

3. Noise and missing clusters: from a clustering perspective, the fact that some
objects are left unclustered as noise is expected, especially from a density-based
perspective. In SSDBSCAN, however, entire clusters may be left unclustered as
noise, typically when they do not contain any labeled object and are well-separated
from other clusters, closer to each other, containing objects with different labels,
such that the missed clusters cannot be reached at a density level without incur-
ring violations of the label consistency assumption (Assumption 5). This is why
SSDBSCAN assumes that there is “at least one (possibly more) labeled object
from each class” (Assumption 4), which is, however, a classification rather than
a clustering assumption. From a classification perspective, even when no cluster
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is missed, leaving a fraction of objects unlabeled as noise (typically global or
local outliers) may be undesired. This particular issue is not present in a related
algorithm, HISSCLU, which we discuss next.

3.3 HISSCLU

HISSCLU (Böhm and Plant 2008) can be seen as a semi-supervised version of OPTICS
that produces, instead of the original, purely unsupervised reachability plot, a colored
version of the plot where every unlabeled object of the dataset is assigned a class label
(i.e., a color) from the labeled set, XL ⊂ X. The colored plot provides a visual contrast
between the clustering structure, revealed as valleys and peaks following an OPTICS
ordering (≺), and the transductive classification, mapped as colors in the plot. The
main algorithm consists of two stages, a preprocessing stage and a label expansion

stage, as described next.

3.3.1 Preprocessing stage (label-based distance weighting)

Before any label expansion takes place, HISSCLU pre-computes a weight for each
pairwise distance d(xi , x j ) in the dataset. The resulting, weighted distances are used in
lieu of the original (e.g., Euclidean) distances in the subsequent steps of the algorithm,
namely, reachability distance computations and OPTICS-based label propagation.
Such a preprocessing stage is designed to widen the gap between nearby classes by
stretching distances between objects around class boundaries, thus allowing the algo-
rithm to expand different class labels even in situations where no natural boundaries of
low density between different classes exist. The mathematical and algorithmic details
are omitted here for the sake of compactness, but the basic intuition is the following:
a pair of objects (xp, xq) ∈ XL × XL for which class(xp) �= class(xq) establishes a
separating hyperplane that perpendicularly crosses the midpoint on the line segment
between these two objects (as points in an Euclidean space). A pair of objects (xi , x j )

on different sides of this hyperplane in the vicinity of xp and xq will have their distance
stretched by a multiplicative weight ≥ 1. The closer to the hyperplane, the greater the
weight (stretching). The maximum weight is a user-defined parameter, ρ ≥ 1 (ρ = 1
means no weighting). The weighting decays towards the minimum value 1 with an
increasing distance of the objects from the separating hyperplane. Objects “behind”
xp and xq in relation to the hyperplane are not affected (unitary weight). The shape
and rate of decay is controlled by a second parameter, ξ > 0 (ξ = 1 gives a parabolic
decrease, ξ > 1 gives a faster, bell-shaped decrease corresponding to a sharper “influ-
ence region” around the separating hyperplane, whereas 0 < ξ < 1 gives a more
square-shaped decrease, i.e., a wider influence region around the separating hyper-
plane). This mechanism allows HISSCLU to expand different class labels even within
clusters that are formed by more than one class, i.e., clusters of objects that are density
connected but not pure in their labels.
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Fig. 2 Label assignment in HISSCLU: object x2 is assigned to x1 (green square), whereas x3 and x4 are
assigned to x5 (red star) (Color figure online)

3.3.2 Label expansion stage

Conceptually, the transductive classification performed by HISSCLU is essentially
the label propagation procedure described in Definition 9, which also serves as a basis
for SSDBSCAN as previously discussed in Sect. 3.2. However, unlike SSDBSCAN,
HISSCLU does not make the label consistency assumption (Assumption 5), thus being
able to assign a label to every unlabeled object in XU ⊂ X. In other words, no object
is left unlabeled as noise.

But if noise is not an option, how does HISSCLU handle possible label inconsis-
tencies, which can be caused by ties w.r.t. the maximum MSTr edge (referred to in
the definition)? For instance, let us consider the illustrative example in Fig. 2, where
we have 5 data objects and the corresponding MSTr . The label propagation procedure
described in Definition 9 would arguably assign class(x2) = class(x1) (green square)
and class(x4) = class(x5) (red star). The middle point (x3), however, is undefined, as
there is a tie in the largest edge (10) from this point to objects with different labels.
In SSDBSCAN, this point should be left unlabeled (noise), because there is no den-
sity threshold that can keep it density-connected to either x1 or x2 but not to both.2

Differently, HISSCLU uses instead the 2nd largest edge to resolve the tie (then the
3rd if there is another tie, and so on). In our example, the 2nd largest edge is 9 (green
square) versus 5 (red star), thus class(x3) = class(x5) (red star).

Algorithmically, HISSCLU operates similarly to SSDBSCAN in the sense that it
also runs an OPTICS search starting from each labeled object in XL and assigning
labels temporarily to unlabeled objects as they are found by the OPTICS ordering
traversal. Unlike SSDBSCAN, however, the traversal does not stop and backtracks
once an object with a different label is found. More importantly, the OPTICS traversal
in HISSCLU occurs simultaneously from all labeled objects. To that end, the OPTICS
priority queue is initialized with every unlabeled object having its smallest reachability
distance from a labeled object, say x j ∈ XL , as its priority key, and class(x j ) as its
temporary label. This corresponds to initializing OPTICS from all objects in XL at the
same time, rather than from a single object. Each object xo removed from the queue is
processed and its temporary label becomes permanent. The reachability distance from
xo to every object xi still unprocessed inside the queue is computed, and whenever
xi is reached by a processed object xo with reachability distance smaller than xi ’s
current priority key, xi ’s key is updated, its temporary label is set to class(xo), and the
priority queue is rearranged accordingly. This procedure has been shown (Böhm and
Plant 2008) to ensure that the final labels respect the desired “min-max” reachability
notion, resolving ties in the maximum edge as described above. However, HISSCLU is
still subject to issues previously discussed in the context of SSDBSCAN (Sect. 3.2.3),

2 Algorithmically, however, x3 may in practice be labeled depending on how the tie is resolved in the
backtracking step of the label expansion procedure, and the final label may in this case be order-dependend.
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which relate to the fact that (possibly different) minimum spanning trees are built
partially and dynamically, rather than pre-computed.

3.3.3 Flat clustering extraction (k-clustering)

Like OPTICS, the reachability plot that results from HISSCLU encodes only visually
and implicitly a density-based clustering hierarchy. The colors in the plot, in turn,
represent a transductive classification of the data from the collection of pre-labeled
objects, rather than a clustering result. For scenarios where an explicit clustering
solution is desired, Böhm and Plant (2008) offer an optional, post-processing flat
clustering extraction stage of HISSCLU, called k-clustering, which essentially applies
an arbitrary global density threshold to perform a conventional horizontal cut through
the reachability plot, analogous to extracting DBSCAN solutions from OPTICS.

3.4 HDBSCAN*

HDBSCAN* (Campello et al. 2013a) is a hierarchical algorithm for unsupervised
density-based clustering, which has also been extended to perform hierarchy simpli-
fication and visualization, optimal non-hierarchical clustering, and outlier detection
(Campello et al. 2015). In the following we describe the core algorithm and extensions
that are relevant in our context.

3.4.1 Basic algorithm

Following Hartigan’s principles of density-contour clusters and trees (Hartigan 1975),
the core HDBSCAN* algorithm provides as a result a complete hierarchy composed
of all possible DBSCAN* clustering solutions (as defined in Sect. 3.1) for a given
value of mpts and an infinite range of density thresholds, ǫ ∈ [0,∞), in a nested (i.e.,
dendrogram-like) way. Key to achieving this is the following transformed proximity
graph (conceptual only, it does not need to be materialized) (Campello et al. 2013a,
2015):

Definition 10 (Mutual reachability graph) The mutual reachability graph is a com-
plete graph, Gmpts , in which the objects of X are vertices and the weight of each edge
is the mutual reachability distance (w.r.t. mpts) between the respective pair of objects.

Let Gmpts,ǫ ⊆ Gmpts be the graph obtained by removing all edges from Gmpts having
weights greater than some value of ǫ. From our previous discussions it is clear that
clusters according to DBSCAN* w.r.t. mpts and ǫ are the connected components of core
objects in Gmpts,ǫ , whereas the remaining objects are noise. This observation allows to
produce all DBSCAN* clusterings for any ǫ ∈ [0,∞) in a nested, hierarchical way
by removing edges in decreasing order of weight from Gmpts .

Notice that this is essentially the graph-based definition of the hierarchical Single-
Linkage algorithm (Jain and Dubes 1988), and therefore there is a conceptual
relationship between the algorithms DBSCAN* and Single-Linkage in the transformed

space of mutual reachability distances: the clustering obtained by DBSCAN* w.r.t.
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mpts and some value ǫ is identical to the one obtained by first running Single-Linkage
on the transformed space of mutual reachability distances (w.r.t. mpts), then, cutting
the resulting dendrogram at level ǫ of its scale, and treating all resulting singletons
with dcore > ǫ as noise. This suggests that we could implement a hierarchical version
of DBSCAN* by applying an algorithm that computes a Single-Linkage hierarchy on
the transformed space of mutual reachability distances.

One of the fastest ways to compute a Single-Linkage hierarchy is by using a divisive
algorithm that works by removing edges from a minimum spanning tree in decreasing
order of weights (Jain and Dubes 1988), here, corresponding to mutual reachability
distances, i.e., edges from the MSTr . HDBSCAN* augments the ordinary MSTr with
self-loops whose weights correspond to the core distance of the respective object
(vertex), to directly represent the level in the hierarchy below which an isolated object
is a noise object (dcore > ǫ), and above which it may be part of a cluster or a cluster on
its own, i.e., a dense singleton. In short, the core HDBSCAN* is as follows: the MSTr is
computed using some computationally efficient method (e.g. Prim’s), augmented with
self-edges, then edges are removed in decreasing order and the resulting connected
components are labeled as clusters. In case of ties, edges are removed simultaneously.

Notice that, unlike SSDBSCAN, which also makes use of the MSTr , HDBSCAN*
provides a hierarchical rather than a flat clustering solution, and unlike OPTICS and
HISSCLU, whose reachability plots only implicitly encode DBSCAN clustering solu-
tions for a given value of mpts and ǫ ∈ [0,∞), the corresponding hierarchical relations
in HDBSCAN* are explicit and readily available.

3.4.2 HDBSCAN* with all-points core distance

Campello et al. (2013a, 2015) showed that the parameter mpts, which is commonly
shared by all density-based algorithms previously discussed, corresponds to a classic
smoothing factor of a nonparametric, nearest neighbors density estimate. This param-
eter is not critical and can be useful to provide the user with fine-tuning control of
the results, e.g., by visual inspection of the clustering hierarchies or of the reacha-
bility plots. It can be removed though, if desired, basically by replacing the core and
mutual reachability distances in Definitions 5 and 8 with a parameterless alternative.
In particular, a parameterless version of HDBSCAN* was proposed (Moulavi 2014)
that is based on a new core distance of an object, which does not depend on its mpts-
neighborhood, but rather considers the dataset in a way that closer objects contribute
more to the density than farther objects do:

Definition 11 (All-points core distance) The all-points core-distance of a d-dimensional
point x of a dataset X with respect to all other n − 1 points in X, i.e., X\{x}, is defined
as (Moulavi 2014):

daptsCore(x) =

⎛

⎜

⎝

∑

xi ∈X\{x}
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1
d(x,xi )

)d
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Let us note that the all-points core distance is only meaningful for datasets as points
in a d-dimensional real vector space, as opposed to the original HDBSCAN* (as well
as DBSCAN, OPTICS, and SSDBSCAN) that can operate with any dataset for which
some type of pairwise distance between objects can be defined. HISSCLU shares the
same limitation when its preprocessing stage is required.

A summary table with the properties and assumptions of all the density-based
algorithms studied in this paper, including our new algorithms for semi-supervised
classification and clustering (to be introduced in Sects. 4 and 5, respectively), is pro-
vided in “Appendix”.

4 Unified framework for density-based classification

In the previous section, we elaborated how previous clustering and semi-supervised
clustering algorithms in the density-based clustering paradigm can all conceptually be
viewed as processing minimum spanning trees in a space of reachability distances, i.e.,
processing MSTs of a conceptual, complete graph where the nodes are the objects, and
the edge weights are the reachability distances between objects. These reachability
distances can be based on unmodified or modified (e.g., weighted, streched) distances
between objects.

In this section, we present a new framework for semi-supervised classification
by extending the HDBSCAN* clustering framework with additional, optional steps,
derived from “decoupled” building blocks of the algorithms discussed in Sect. 3, so that
these building blocks can be re-combined and applied in different ways. This will allow
us to study the performance gain of each building block and specify different instances
for semi-supervised classification—one can be considered a close approximation of
HISSCLU, and another one is a looser, but faster approximation, others are novel
variants that have not been investigated before.

4.1 The components of the framework (building blocks)

The building blocks for semi-supervised classification in our framework are the fol-
lowing:

1. The adopted definition of core and reachability distances: In our framework,
we will study both the standard definition of core-distance with the parameter mpts,
which has been adopted by all the algorithms discussed in Sect. 3 (Definition 5), as
well as the parameter-free all-points core distance (Definition 11). Given a notion
of core distance, we will only use the symmetric notion of mutual reachability
distance (Definition 8) as used by SSDBSCAN, DBSCAN*, and HDBSCAN*,
even though the “older” algorithms HISSCLU, DBSCAN, and OPTICS are based
on the asymmetric notion in Definition 6. The reason is that the mutual reachability
distance has a statistically more sound interpretation, is simpler and, in practice,
the difference in results tends not to be very noticeable.

2. MST computation in the space of mutual reachability distances: Recall from
Sect. 3 that SSDBSCAN and HISSCLU compute multiple MSTs “on-the-fly”,
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starting from labeled objects. Such an approach is inefficient and, from a con-
ceptual point of view, not necessary. It is obviously not necessary when the MST
of the conceptual, complete graph in the transformed space of mutual reacha-
bility distances is unique; then the same MST will just be re-computed multiple
times. But even when the MST is not unique, the different MSTs are in a sense
equivalent from the perspective of representing the inherent cluster structure of a
data set: none of them should lead to fundamentally different conclusions about
the density distribution of the dataset. Therefore, in our framework we explicitly
decouple the MST construction from the label expansion (as we have already
done conceptually in the discussion of the algorithms SSDBCAN and HISSCLU
in the previous section), and we will use HDSBCAN*’s efficient algorithm to
compute the “extended” MSTr as described in Sect. 3.4.

3. Label expansion: Given a computed graph MSTr , in our framework for semi-
supervised classification we implement a label expansion method on top of the
MSTr , similar to HISSCLU (see Sect. 3.3.2), but using the single MSTr computed
by HDBSCAN* to propagate the labels based on the path with the smallest largest
edge to a labeled object, resolving ties, possibly consecutively, by considering
the smaller of the next largest edge on the paths. This can be implemented by
starting with a “connected component” Ci for each pre-labeled object xi ∈ XL

that initially contains only xi . These connected components Ci are then iteratively
extended by traversing the MSTr in a way that ensures correctness of the final
result (Gertrudes et al. 2018). A detailed description of the algorithm alongside
with a pseudo-code is provided in “Appendix”.

Example: Figure 3 illustrates our label expansion with an example. Figure 3a displays
15 objects and their minimum spanning tree in the mutual reachability distance space
(MSTr ). To perform the label expansion, we initialize connected components with the
pre-labeled objects, C1 = {x1}, C2 = {x5}, C3 = {x9}, and C4 = {x13}.

(a) From all the components, the first edge to be analyzed is the one connecting x5
to x6 since it is the one with the lowest weight, 1.0, among all of the currently
“outgoing” edges of the current components. Since x6 is not labeled yet, it will
receive the label of C2 (i.e., class(x5)), x6 is added to C2, and since there is no
other edge incident to x6, no new outgoing edges are added.

(b) Then, the edges with the next largest edge weight, 1.5, connecting to C1, . . . , C4,
which are the edges connecting x1 to x3 and connecting x13 to x14, are selected.
The two edges connect to a different, not-yet-labeled object and thus x3 is labeled
with class(x1) and added to C1, while x14 is labeled with class(x13) and added to
C4.

(c) Two new unprocessed edges are now incident to C1, connecting x2 and x4 to x3,
with edge weights of 4.0 and 1.0, respectively; three new unprocessed edges are
now incident to C4, connecting x11, x12, and x15 to x14, with edge weights of 2.5,
4.0, and 2.0, respectively. The smallest edge weight of all the outgoing edges of
the current connected components is now 1.0 on the edge connecting x4 to x3.
Since x4 is unlabeled, it is labeled with class(x1) and added to C1, and the edge
connecting x4 to x5 is added to the outgoing edges of C1.
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(a) MSTr with 4 pre-labeled objects (XL = {x1, x5, x9, x13}) from 3
classes (red star, blue square and green triangle)

(b) Result of the label expansion

Fig. 3 Example of density-based label expansion (Color figure online)

(d) The now smallest edge weight of outgoing edges is 2.0 on the edges connecting
x9 to x8 and connecting x14 to x15. The two edges are incident to two different
unlabeled objects. Hence x8 is added to C3 (which currently had only x9 in it)
and receives its label, and x15 is added to C4 (currently with x13 and x14) and
receives its label; no new outgoing edges are incident to C4 but three new outgoing
edges are incident to C3: (x8, x7), (x8, x5), and (x8, x10), with corresponding edge
weights 1.0, 3.0, and 4.0.

(e) Next, the smallest edge weight of outgoing edges is now 1.0 on the edge (x8, x7);
x7 is added to C3 and receives its label, no new outgoing edges are incident to x7.
Similarly, x11 is added to C4 since its edge weight of 2.5 is the next smallest.

(f) After adding x11 to C4, C4 has a new outgoing edge, connecting x11 to x10, with
edge weight 4.0. Next, the smallest edge weight of outgoing edges is now 3.0 on
the edge between x5 and x8, outgoing from C2 as well as C3. This edge connects
two components with the same label. Hence C2 and C3 are merged into and
replaced by C2_3.

123



1912 J. C. Gertrudes et al.

(g) In the next step the smallest edge weight of outgoing edges is 4.0 on the edges
(x3, x2), outgoing from C1, (x8, x10), outgoing from C2_3, (x11, x10) outgoing
from C4, and (x14, x12), outgoing from C4. Similar to previous cases in which an
unlabeled object is connected to just one of the current components, x2 is labeled
and added to C1, and x12 is labeled and added to C4.

(h) The unlabeled object x10 is connected to two components with different class
labels. The smallest largest edge weight on paths to pre-labeled objects in both
C2_3 and C4 is 4.0, so the next (2nd) largest edge on all paths to pre-labeled
objects is considered, which are 2.0 on the path from x9 in C2_3 to x10, 3.0 on
the path from x5 in C2_3 to x10, and 2.5 on the path from x13 in C4 to x10. The
smallest of these is 2.0 from x9, hence x10 is added to C2_3 and obtains its label.

(i) In the last step, the edge (x4, x5) with edge weight 5.0 is ignored since it connects
two components with different class labels.

Figure 3b shows the final result.

4. Preprocessing: Label-based distance weighting: As an optional step, one may
want to compute weighted distances based on the labeled subset of the data, as
described in Sect. 3.3.1 for HISSCLU. We include such a step in our framework
that applies label-based distance weighting on all the pairwise distances before
computing core and reachability distances, as in HISSCLU. However, this step
can be computationally time consuming. As an approximation, we also propose
to apply distance weighting after the MSTr has been constructed, so that it only
needs to be applied to the mutual reachability distances of the edges in the MSTr .

4.2 The framework

The above building blocks can be combined in different ways to obtain different
and novel semi-supervised classification methods as instances of our framework,
through which we can study the contribution of each building block in an over-
all approach to semi-supervised classification. We denote different instances using
the notation HDBSCAN*(core-distance-definition, label-based-distance-weighting-
scheme), where core-distance-definition stands either for the standard core distance
definition, abbreviated by “cd”, or the all-points core distance, abbreviated by “ap”;
and label-based-distance-weighting-scheme stands for label-based distance weighting
of all pairwise distances, abbreviated as “wPWD”, or label-based distance weighting
of the MSTr edges, abbreviated as “wMST”; no weighting is denoted as “—”.

Figure 4 presents a schematic view of the instances of our framework for semi-
supervised classification, which we will study in the experimental evaluation. Each
branch in the diagram starts with a distance matrix as input and represents a differ-
ent algorithm. In the leftmost branch, label-based distance weighting on the pairwise
distances of the distance matrix is performed, standard core-distance is used, MSTr

is computed, and label expansion is performed. This algorithm is denoted by HDB-
SCAN*(cd,wPWD), and it is similar to HISSCLU, but it uses the symmetric, mutual
reachability distance rather than the old, asymmetric version, and relies only on a
single pre-computed MSTr . The third branch that uses standard core distance and
performs label-based distance weighting only on the MSTr edges can be considered
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Fig. 4 Unified framework of density-based algorithms for semi-supervised classification

an even looser but much faster approximation of HISSCLU. The other branches show
other methods, using alternatively the all-points core distance, and perform or omit
completely the two options for label-based distance weighting.

4.3 Complexity

The asymptotic complexity of instances of our framework is as follows. Given the
dataset X, computing the core or all-points-core distances and the construction of the
MSTr has an overall time complexity of O(n2) (this part is the same as HDBSCAN*).

The label expansion takes, in the worst case, O(n log n) time if the set of outgoing
edges of the connected components is maintained in a heap, with edge weights as
priority key.

– In the algorithms that apply the label-based weighting function to the entire
distance matrix—HDBSCAN*(cd,wPWD) and HDBSCAN*(ap,wPWD)—the
additional runtime is of the order O(n2 + |XL |n), where |XL | is the number
of pre-labeled objects: the first term is the number of distances that have to be
weighted, whereas the second term corresponds to the pre-computation of the ele-
ments required to compute any weight in constant time (following the optimized
approach of Böhm and Plant (2008)).
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– For the algorithms that apply the weighting function in the MSTr instead—
HDBSCAN*(cd,wMST) and HDBSCAN*(ap,wMST)—the additional runtime is
O(n +|XL |n) → O(|XL |n) since the MSTr has only n − 1 edges to be weighted.
Assuming |XL | ≪ n as usual in semi-supervised classification, the additional
runtime of this approach is O(n), in contrast to O(n2) of the original HISSCLU
weighting. The former becomes even more attractive when it is necessary to com-
pute the label expansion with different sets of labeled objects. In this case, it will
be necessary only to adapt the edges of the MSTr , instead of repeating the process
of computing the core distance (or the all-points core distance), and to compute
the MSTr in every different label configuration.

In total, the overall runtime complexity of the algorithms in the framework for
semi-supervised classification is hence O(n2). If pairwise distances are computed on
demand, it requires O(n) memory only.

5 Density-based semi-supervised clustering

When performing semi-supervised classification, all classes are known in advance,
pre-labeled objects from all of these classes are available, and all unlabeled objects
are in principle supposed to be labeled by the algorithm. In contrast, when the task
at hand is semi-supervised clustering, not all categories are necessarily known in
advance, which means that labels may not be available for some (unknown) classes
yet to be discovered, and part of the unlabeled objects may be left unclustered as noise.
In this case, the framework proposed in Sect. 4 is no longer suitable.

HDBSCAN* offers an optional post-processing method of its clustering hierarchy,
called FOSC, that can extract a flat clustering solution by performing local cuts through
the hierarchy in order to select a collection of non-overlapping clusters (and, possibly,
objects unclustered as noise) that is optimal according to a given unsupervised or semi-
supervised criterion. FOSC is unique in that it can perform non-horizontal cuts through
a hierarchy, which means that clusters can be extracted from different hierarchical
levels. In HDBSCAN*, this means that solutions composed of clusters at various
density levels can be obtained, which could not be obtained by a conventional, global
horizontal cut at a single hierarchical level. In the following we revisit FOSC as
this method plays a central role in our approach for density-based semi-supervised
clustering.

5.1 FOSC

FOSC (Framework for Optimal Extraction of Clusters) was proposed by Campello
et al. (2013b) as a general framework to perform optimal extraction of flat clustering
solutions from clustering hierarchies. In order to understand how the method operates
in HDBSCAN*, let us consider an example.
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Fig. 5 Illustrative dataset

Figure 5 shows a toy dataset with 22 objects. The complete clustering hierarchy
produced by HDBSCAN* with mpts = 3 is shown in Table 1,3 where rows corre-
spond to hierarchical levels (density thresholds for varied ǫ), columns correspond to
data objects, and entries contain cluster labels (“0” stands for noise). Notice that,
unlike traditional dendrograms, clusters can shrink and yet retain the same label when
individual objects (or spurious components with fewer than an optional, user-defined
minimum cluster size, mClSize) are disconnected from them becoming noise, as the
density threshold increases for decreasing values of ǫ (top-down the hierarchy). Only
when a cluster is divided into two non-spurious subsets of density-connected objects
the resulting subsets are deemed new clusters. This way, the complete hierarchy in
Table 1 can actually be represented as a simplified cluster tree where the root (C1)
is the “cluster” containing the whole dataset, which subdivides into two child nodes
corresponding to clusters C2 and C3, and these further subdivide into two sub-clusters
each (C4 and C5 from C2, C6 and C7 from C3).

Notice in Table 1 that objects belonging to a parent cluster do not necessarily
belong to any of its children, as they may become noise before a cluster splits. For
instance, objects x1, x2, x5, and x20 belong to C2 but not to C4 or C5. Technically,

3 HDBSCAN* is equipped with an optional parameter, mClSize, which allows the user to specify the
minimum size for a component to be considered a cluster, in such a way that components with fewer than
mClSize objects are disregarded as noise. This can significantly reduce the size of the resulting clustering
hierarchy. By default, HDBSCAN* uses mClSize = mpts, so in practice only mpts needs to be given as input
to the algorithm (Campello et al. 2013a, 2015). The result in Table 1 corresponds to mClSize = mpts = 3.
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each of these objects is assigned an individual node on its own in the cluster tree,
in this example all as descendants from C2.4 As we will see later, these singleton
nodes can only affect cluster extraction in the semi-supervised scenario, and only if
the corresponding objects are pre-labeled.

Figure 6 illustrates the cluster tree corresponding to the clustering hierarchy in
Table 1, along with all the information needed to run FOSC in various different unsu-
pervised and semi-supervised settings. Singleton nodes corresponding to noise objects
that are not pre-labeled are omitted for the sake of clarity, as they do not affect compu-
tations. Notice that the only singleton node displayed, as a dotted circle in Fig. 6b–e,
corresponds to object x1, which is assumed to be pre-labeled (represented as a red
cross). Thus it affects computations in the semi-supervised scenarios.

If clusters in the cluster tree can be properly assessed according to a suitable unsu-
pervised or semi-supervised measure of cluster quality, an optimal flat solution in
which objects are guaranteed not to belong to more than one cluster can be extracted
by FOSC. Formally, let {C1, . . . , Ck} be the set of all candidate clusters in the cluster
tree from which we want to extract a flat solution, P. Assume that there is an objective
function JT (P) that we want to maximize, such that JT can quantitatively assess the
quality of every valid candidate solution P. Functional JT (P) must be decomposable
according to two properties:5

1. Additivity: JT (P) must be written as the sum of individual components J (Ci ),
each of which is associated with a single cluster Ci of P;

2. Locality: Every component J (Ci ) must be computable locally to Ci , regardless
of what the other clusters that compose the candidate solution P are.

Due to the property of locality, the value J (Ci ) associated with every cluster in the
cluster tree can be computed beforehand, i.e., prior to the decision on which clusters
will compose the final solution to be extracted. These are the values illustrated below
each node in Fig. 6.

Due to the property of additivity, the objective function can be written as JT (P) =
∑

Ci ∈P J (Ci ), and the problem we want to solve is to choose a collection P of clusters
such that: (a) JT (P) is maximized; and (b) P is a valid flat solution, i.e., clusters and
their sub-clusters are mutually exclusive (no data object belongs to more than one
cluster). Mathematically, the optimization problem can be formulated as (Campello
et al. 2013b):

max
δ1,··· ,δk

k
∑

i=1

δi J (Ci )

s. t. δi ∈ {0, 1}, i = 1, . . . , k.
∑

j∈Ih

δ j = 1, ∀h such that Ch is a leaf node/cluster.

(1)

4 There is no such thing as a “rag bag cluster” because noise objects should not be seen as clustered with
each other, in spite of sharing a common label “0”.
5 Both properties could be seen as related to the “locality” property of clustering functions as introduced
by Ackerman et al. (2010).
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(a) Cluster tree and unsupervised
FOSC extraction with Stability.

(b) Cluster tree and semi-supervised
FOSC extraction with P

B3 .

(c) Cluster tree and semi-supervised
FOSC extraction with R

B3 .
(d) Cluster tree and semi-supervised
FOSC extraction with F

B3 .

(e) Cluster tree and FOSC extraction
with mixed Stability and F

B3 .

Fig. 6 HDBSCAN* cluster tree for the hierarchy in Table 1 and flat clustering extraction using FOSC: a

unsupervised extraction using Stability; b–d Labeled-based semi-supervised extraction using B3 Precision,
Recall, and F-Measure, respectively; e mixed case. The set of pre-labeled objects, XL , is represented using
colored symbols: x1 and x6 as red crosses, x8 as a green hash, x15 as a magenta triangle, and x18 as a
blue star. Singleton nodes corresponding to noise objects that are not pre-labeled are omitted as they do not
affect computations. Extracted clusters in each case are highlighted in bold (Color figure online)

where δi (i = 1, · · · , k) is an indicator function that denotes whether cluster Ci is
selected to be part of the solution (δi = 1) or not (δi = 0), and Ih is the set of
cluster indices on the path from any external node Ch up to the root C1. Note that the
constraints ensure that a single cluster is selected in any branch from the root to a leaf.

FOSC solves this problem taking advantage of the fact that, due to the locality
property of the cluster quality measure J , the partial selections made inside any subtree
remain optimal in the context of larger trees containing that subtree. This allows for
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a very efficient, globally optimal dynamic programming method that traverses the
cluster tree bottom-up starting from the leaves, comparing the quality of parent clusters
against the aggregated quality of the respective subtrees, carrying the optimal choices
upwards until the root is reached.

In Fig. 6a, notice that the sum of J (C4) = 3.23 and J (C5) = 3.41 (as well as the
hidden singleton nodes descending from C2, all of which have J value of zero) is equal
to 6.64, which is smaller than J (C2) = 7.28, hence C2 is temporarily selected while its
subtrees are discarded. Analogously, the aggregated value of J (C6) and J (C7) (1.4)
is compared against J (C3) = 7.67, which is larger, hence C3 is temporarily selected
whereas C6 and C7 are discarded. Now, the sum of J (C2) and J (C3) (14.95) is larger
than J (C1) = 6.67, hence C1 is discarded while C2 and C3 are retained. Since the
root has been reached, the final solution is P = {C2, C3}, with JT (P) = 14.95.

While many clustering quality criteria from the literature satisfy the additive prop-
erty, it is not easy to find criteria that satisfy the locality property required by FOSC.
In the original publication (Campello et al. 2013b), a criterion was introduced that is
based on the classic notion of cluster lifetime. The lifetime of a cluster in a clustering
dendrogram is basically the length of the dendrogram scale along which the cluster
exists (Jain and Dubes 1988). More prominent clusters persist longer across multiple
hierarchical levels, so they have a longer lifetime.

This concept has been adapted by Campello et al. (2013b) to account for the fact
that in certain hierarchies, including density-based hierarchies such as the one in
Table 1, not all data objects stay in the cluster during its whole lifetime, because some
objects become noise along the way. In other words, objects have different lifetimes
as part of a cluster. The unsupervised measure of Stability of a cluster as proposed
by Campello et al. (2013b) is the sum of the lifetimes of every object in that cluster,
J (Ci ) =

∑

x j ∈Ci
lifetime(x j ).

For example, in Table 1, cluster C4 appears bottom-up at level 0.61 (formed by
objects x12, x15, and x16) and disappears when it gets merged with cluster C5, giving
rise to C2 at level 1.22. Along this interval, another three objects join this cluster, at
levels 0.82 (x14), 0.98 (x13), and 1.00 (x3). Hence, its Stability is given by J (C4) =

3 ∗ (1.22 − 0.61) + (1.22 − 0.82) + (1.22 − 0.98) + (1.22 − 1.00) = 2.69.
To perform flat cluster extraction in an unsupervised way, HDBSCAN* uses FOSC

with the Stability criterion as described above, except that it replaces ǫ with 1
ǫ

in the
scale (which is therefore flipped) for the computation of lifetime. This makes Stability
more statistically sound in the density-based context as it becomes equivalent to the
concept of relative excess of mass of a cluster (Campello et al. 2015).6 In this case,
the Stability of cluster C4 in our example above would be computed as J (C4) = 3 ∗

(1/0.61−1/1.22)+(1/0.82−1/1.22)+(1/0.98−1/1.22)+(1/1.00−1/1.22) = 3.23.
These are precisely the values show below each cluster in Fig. 6a.

The Stability of any singleton node containing a noise object is defined as zero as
the lifetime of noise is undefined. This way, singleton nodes with noise do not directly
affect unsupervised cluster extraction. Indirectly though, larger amounts of noise in a
final solution P are indirectly penalized because noise objects do not add anything to
the Overall Stability of that solution.

6 It also makes it possible to compute Stability for the root, C1.
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FOSC can operate in a semi-supervised way if a suitable measure that takes into
account semi-supervision is provided. However, the existing method, currently used by
HDBSCAN*, is based on the maximization of the number of (soft, as preferences only)
should-link and should-not-link constraints that are satisfied in the extracted clusters
(Campello et al. 2013b, 2015). Obviously, given a collection of labeled objects, one can
produce constraints by creating should-link relations between pairs of objects with the
same label, and should-not-link relations between pairs of objects with different labels.
Nevertheless, there are two main disadvantages in working with pairwise constraints,
rather than directly with labels. The first one is the additional effort to generate the
constraints, which is actually unnecessary as we will discuss later (Sect. 5.2). Second,
as the number of different labels increase, so does the imbalance between the number
of should-not-link constraints and the number of should-link constraints that follow
from the labels, as the number of should-not-link constraints increases much stronger
with adding additional labels than the number of should-link constraints. Thus the
maximization of the number of constraints satisfied tends to be biased towards satis-
fying should-not-link relations, which may produce unexpected results. As a matter
of fact, it has been observed in the semi-supervised clustering literature that adding
constraints may possibly decrease the performance of clustering algorithms (Davidson
et al. 2006).

5.2 Label-based semi-Supervised FOSC

Here, we introduce a new semi-supervised quality measure for the optimal cluster
extraction procedure (FOSC) used by HDBSCAN* that operates directly with labels
rather than constraints. We also describe how this measure can be combined with the
unsupervised measure of cluster Stability (see Sect. 5.1) for optimal cluster extraction,
making the resulting combination effective irrespective of whether only part, all or
none of the clusters in the data are represented by labeled observations.

Our newly proposed semi-supervised measure of cluster quality is based on the B3

Precision and B3 Recall criteria originally proposed by Bagga and Baldwin (1998)
and subsequently studied by Amigó et al. (2009) in the context of an external cluster
validation index, called B3 (BCubed). These criteria take pairs of objects into account,
but they are computed individually for each pre-labeled object x ∈ XL . Specifically,
the B3 Precision of x measures the proportion of pre-labeled objects in the same cluster
as x that share the same class label as x, including x itself. B3 Recall measures the
proportion of objects with the same class label as x sharing the same cluster with x.

To compute B3 Precision and B3 Recall we consider only the set of pre-labeled
objects. Given an object x ∈ XL with class label class(x) and a cluster Ci containing
this object, the B3 Precision of x ∈ Ci can be formally defined as:

PB3(x, Ci ) =
|{x′ | x′ ∈ {Ci ∩ XL} ∧ class(x) = class(x′)}|

|{ x′ | x′ ∈ {Ci ∩ XL} }|
(2)
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Density-based semi-supervised clustering and classification 1921

Fig. 7 B3 Precision and B3 Recall of an object x j . Objects within the ellipse belong to the same cluster.
Red crosses and blue stars represent two different class labels. The example assumes that the whole set of
pre-labeled objects (XL , required to compute B3 Recall) is displayed. Unlabeled objects are represented
by black filled circles. Notice that any two objects with the same class label in the same cluster have the
same precision and recall (Color figure online)

and the B3 Recall of x ∈ Ci can be defined as:

RB3(x, Ci ) =
|{x′ | x′ ∈ {Ci ∩ XL} ∧ class(x) = class(x′)}|

|{x′ | x′ ∈ XL ∧ class(x) = class(x′)}|
(3)

Figure 7 illustrates these concepts for a pre-labeled object x j as part of a cluster
with eleven objects, seven of them pre-labeled, four of which share the same label as
x j . Obviously any two objects with the same class label in the same cluster share the
very same values of PB3 and RB3 , which allows fast computation.

As in traditional assessment of supervised classifiers, precision and recall capture
two different aspects of an outcome, one of which will be overlooked if a single
criterion is chosen. Just like the well-known F1-Measure in classification, a single
conservative index (hereafter called B3 F-Measure) can be obtained by combining
PB3 and RB3 taking their harmonic mean:

FB3(x, Ci ) =
2PB3(x, Ci ) · RB3(x, Ci )

PB3(x, Ci ) + RB3(x, Ci )
(4)

The B3 F-Measure in Eq. (4) can be used as a building block for an optimization
criterion to extract clusters from the HDBSCAN* hierarchy using FOSC. Specifically,
let {C1, . . . , Ck} be the set of all candidate clusters in a HDBSCAN* hierarchy of X

from which we want to extract a flat clustering solution in a semi-supervised way. The
goal is to maximize the Overall B3 F-Measure of the resulting solution, which is an
average B3 F-Measure over the pre-labeled objects as belonging to their respective
selected clusters:

OverallF
B3 =

1

|XL |

k
∑

i=1

⎛

⎝

∑

x∈{Ci ∩XL }

δi · FB3(x, Ci )

⎞

⎠ (5)
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where δi is the indicator function used by FOSC to determine whether or not (δi = 1
or δi = 0, respectively) cluster Ci is selected to be part of the optimal flat solution.

Notice that the Overall B3 F-Measure in Eq. (5) satisfies the properties of additivity

and locality required by FOSC. In fact, it can be easily decomposed as:

OverallF
B3 =

k
∑

i=1

δi · ω(Ci ) (6)

where

ω(Ci ) =
1

|XL |

⎛

⎝

∑

x∈{Ci ∩XL }

FB3(x, Ci )

⎞

⎠ (7)

The Overall B3 F-Measure is therefore a sum of individual components ω(Ci ) that
can be pre-computed independently for each candidate cluster in the cluster tree as it
depends solely on the information of the pre-labeled objects that belong to that cluster.

One could analogously define an Overall B3 Precision and Overall B3 Recall if
desired, which could also be decomposed in the same way. We omit the details here
as they follow closely and straightforwardly the development shown above.

Figure 6b, c, and d show the cluster tree for the hierarchy in Table 1 with the quality
value of each cluster individually assessed by the decomposed components of the Over-

all B3 Precision, Overall B3 Recall, and Overall B3 F-Measure as described above,
respectively, for a collection of 5 pre-labeled objects, XL = {x1, x6, x8, x15, x18}, with
4 different class labels (red cross, green hash, magenta triangle, and blue star).

The B3 Precision, B3 Recall, and B3 F-Measure for singleton nodes corresponding
to noise objects that are not pre-labeled (omitted for the sake of clarity) are undefined,
and they are set to zero so that these nodes do not affect computations. The singleton
node descendant from C2 containing x1, which is pre-labeled (red cross), does affect
computations in all semi-supervised scenarios, as shown in Fig. 6b, c, and d.

Figure 6b shows that B3 Precision has guided FOSC to extract the leaf nodes, as the
corresponding clusters tend to be purer in class labels. In contrast, B3 Recall has guided
FOSC to extract the root (Fig. 6c).7 This is not necessarily always the case, in particular
because there may be ties between the values of precision or recall of a cluster and that
of its sub-clusters. In the semi-supervised setting, the way FOSC resolves ties in the
values of the objective function involving different candidate solutions in a subtree is
by taking the solution that would be chosen in the unsupervised setting (Campello et al.
2013b). In HDBSCAN*, this means that ties in the semi-supervised cluster extraction
are decided using Stability (Campello et al. 2015). Notice that this is particularly
important when certain regions of the data, corresponding to entire subtrees of the
cluster tree, are not represented by labels at all, so decisions inside those subtrees can
only be made in an unsupervised way.

The B3 F-Measure provides a conservative (pessimistic) compromise between pre-
cision and recall, which in this particular example has led FOSC to extract the same

7 The root can be trivially removed from the set of candidate solutions in FOSC, if desired (Campello et al.
2013b).
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solution as B3 Precision (see Fig. 6b). In general, however, the solution extracted with
B3 F-Measure does not need to coincide with either B3 Precision or B3 Recall.

FOSC also allows cluster extraction by using an objective function that combines
the unsupervised and semi-supervised measures into a single function. In particular,
it has been shown in the original FOSC publication (Campello et al. 2015) that any
convex combination of objective functions that satisfy the properties of additivity
and locality required by the algorithm will also satisfy the property of additivity and
locality, and its decomposition into local components corresponding to each individual
cluster is given by the convex combination of the corresponding local components of
the original objective functions.

Here, we experiment with the average between Overall Stability (unsupervised) and
Overall B3 F-Measure (semi-supervised). Since the scales of these different objective
functions are different, they have to be normalized first. The B3 F-Measure ranges
within [0, 1], but Stability has no upper bound. In order to make the mixed measure
commensurable in this case, the Stability of individual clusters can be divided by the
overall value of Stability of the optimal flat solution that is extracted in the unsuper-
vised case (Campello et al. 2013b). For example, recall that the optimal unsupervised
solution in Fig. 6a has an Overall Stability of 14.95. We then divide the Stability of
each cluster by this value before taking the average with the corresponding value of
F-Measure. In our example, the result is shown in Fig. 6e.

Notice in Fig. 6e that, by combining both unsupervised and semi-supervised mea-
sures, FOSC has been able to extract a solution that is different from either case
(P = {C4, C5, C3}). In particular, since the Stability of C2 is not much higher than
that of its sub-clusters combined, the presence of pre-labeled objects with different
labels in that cluster has driven FOSC to choose the sub-clusters instead. Contrarily,
in spite of the presence of pre-labeled objects with different labels in C3, FOSC has
opted to keep this cluster rather than splitting it, because Stability strongly suggests
that this is a single cluster. Of course, if full priority is to be given to user-defined
labels, there is no point in using the mixed approach, and B3 F-Measure should be
used instead (Stability being only used to decide ties).

HDBSCAN* and FOSC take the so-called soft approach to semi-supervised clus-
tering (Basu et al. 2008), in which labels or constraints are (prior) user expectations
rather than hard constraints that must be enforced. The particular approach can be
interpreted as a strategy that gives priority to satisfy the implicit model assumptions
(density connectivity in the case of HDBSCAN*) when constructing the cluster hier-
archy, and then use external information provided by the user as preferences (rather
than hard requirements) to extract a flat solution (Campello et al. 2013b, 2015).

5.3 Complexity

For a given cluster tree containing k candidate clusters, each of which has an associated
quality measure that has been pre-computed, FOSC can be implemented in a very
efficient way with two traversals through the cluster tree, one bottom-up as previously
described and another one top-down just materializing the provisional selections. This
means that the complexity of the algorithm is O(k), i.e., linear w.r.t. the number
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of nodes in the tree, both in terms of running time and memory space (Campello
et al. 2013b). In simplified cluster trees such as those produced by HDBSCAN*, k is
typically much smaller than the number of data objects (k ≪ n). Even in an unlikely
scenario where a binary cluster split is observed at each of the n (maximum) possible
hierarchical levels, it follows that k = 2n − 1 and, therefore, FOSC is O(n) in the
worst-case (given a cluster tree and the corresponding values of cluster quality).

The unsupervised measure of Stability can be computed by HDBSCAN* “on-
the-fly”, i.e., as the hierarchical levels are iteratively computed, so Stability does
not increase the computational complexity of HDBSCAN*, which is O(n2) w.r.t.
runtime,8 except for a small constant factor. Likewise, it should be clear that B3

Precision, B3 Recall, and B3 F-Measure can be trivially computed for all candidate
clusters simultaneously to the construction of the hierarchy, by just keeping track of
the number of pre-labeled objects of each class in each cluster, which again can be
done without affecting the computational complexity of HDBSCAN*. Even in the
scenario where B3 Precision, B3 Recall, and B3 F-Measure are computed afterwards,
as a post-processing of the HDBSCAN* hierarchy, it is straightforward to compute
these measures for each cluster with a single pass through the hierarchical levels for
each pre-labeled object, updating the counts of the respective class label at each cluster
the object belongs to in the cluster tree. In this case, the additional post-processing cost
in the worst-case, where the clustering hierarchy has n levels, is O(n · |XL |), which
again, does not change the computational complexity of HDBSCAN* since |XL | < n

(typically |XL | ≪ n).

6 Experimental setup

In this section we describe the experimental setup for the assessment of our proposed
density-based methods for semi-supervised classification and for semi-supervised
clustering, both in terms of effectiveness as well as in terms of computational effi-
ciency. In Sect. 6.1 we describe the experimental setup for the classification scenario,
which refers to the methods discussed in Sect. 4. In Sect. 6.2 we describe the setup
for the clustering scenario, which refers to the methods described in Sect. 5. For the
sake of reproducibility, all our codes are made publicly available in Github.9

6.1 Semi-supervised classification

6.1.1 Performance measure

We report the macro-averaged F-measure, i.e., the average over all classes of the
harmonic mean between precision and recall for each class (Sokolova and Lapalme
2009). We compute the F-measure based only on those objects whose labels have not
been exposed to the semi-supervised classification algorithms for training.

8 It can be implemented in O(n) w.r.t. memory (Campello et al. 2015).
9 https://github.com/jadsoncastro/UnifiedView/wiki.
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Table 2 List of real datasets collected to perform the semi-supervised classification experiments

Dataset #obj #att #cl Distance

ACE ECFP4 (Sutherland et al. 2004) 114 1025 2 Tanimoto

ACE ECFP6 (Sutherland et al. 2004) 114 1025 2 Tanimoto

Analcatdata authorship (Vanschoren et al. 2013) 841 70 4 Cosine

Armstrong-v1 (de Souto et al. 2008) 72 1082 2 Cosine

Auto price (Vanschoren et al. 2013) 159 16 2 Euclidean

Bank note–Authentication (Vanschoren et al. 2013) 1372 5 2 Euclidean

Cardiotocography (Vanschoren et al. 2013) 2126 36 10 Euclidean

Chowdary (de Souto et al. 2008) 104 183 2 Cosine

Chcase Geyser1 (Vanschoren et al. 2013) 222 2 2 Euclidean

COX2 ECFP6 (Sutherland et al. 2004) 322 1025 2 Tanimoto

DHFR ECFP4 (Sutherland et al. 2004) 397 1025 2 Tanimoto

DHFR ECFP6 (Sutherland et al. 2004) 397 1025 2 Tanimoto

Diggle table (Vanschoren et al. 2013) 310 8 9 Euclidean

Fontaine ECFP4 (Fontaine et al. 2005) 435 1024 2 Tanimoto

Fontaine ECFP6 (Fontaine et al. 2005) 435 1024 2 Tanimoto

Gordon (de Souto et al. 2008) 181 1627 2 Cosine

Iris (Lichman 2013) 150 5 3 Euclidean

M1 ECFP4 (Gaulton et al. 2017) 769 1025 2 Tanimoto

M1 ECFP6 (Gaulton et al. 2017) 769 1025 2 Tanimoto

Mfeat-factors (Vanschoren et al. 2013) 2000 216 10 Euclidean

Mfeat-Karhunen (Vanschoren et al. 2013) 2000 65 10 Euclidean

Seeds (Lichman 2013) 210 8 3 Euclidean

Segmentation (Vanschoren et al. 2013) 2100 20 7 Euclidean

Semeion (Vanschoren et al. 2013) 1593 256 10 Cosine

Stock (Vanschoren et al. 2013) 950 10 2 Euclidean

Transplant (Vanschoren et al. 2013) 131 4 2 Euclidean

WDBC (Lichman 2013) 569 32 2 Euclidean

Wine (Lichman 2013) 178 13 3 Euclidean

Yeast galactose (Yeung et al. 2003) 205 81 4 Euclidean

6.1.2 Datasets

We use datasets with different characteristics (such as number of objects, number
of attributes, and number of classes) and from different domains (biology, text, and
broadly from the UCI machine learning repository (Lichman 2013)), requiring differ-
ent distance measures, as summarized in Table 2.

Some datasets required pre-processing. The datasets “ACE” (ACE ECFP4 and ACE
ECFP6), “COX2 ECPF6”, “DHFR” (DHFR ECFP4 and DHFR ECFP6), “Fontaine”
(Fontaine ECFP4 and Fontaine ECFP6) and “M1” (M1 ECFP4 and M1 ECFP6)
describe molecules utilized in the process of identifying relationships between chem-
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ical structure and biological activity (Rivera-Borroto et al. 2011). We transformed
the data with generatemd (a tool in the JChem framework, available at http://www.
chemaxon.com) into a set of binary attributes using two different configurations of the
Extended-Connectivity Fingerprints (ECFP), with the maximum diameter of the circu-
lar neighbors considered for each atom set to 4 and 6, resulting in ECFP4 and ECFP6,
respectively. We applied the Tanimoto dissimilarity to perform the experiments in
the new set of attributes. For the datasets “Auto price”, “Bank note–Authentication”,
“Stock”, and “Transplant” we used the Euclidean distance on the z-score normalized
data objects, which relates to Pearson correlation in the original data space.

6.1.3 Pre-labeled data subsets

For the semi-supervision, we selected labeled objects from the datasets randomly,
ensuring that there is at least one label from each class, repeating the random selec-
tion 30 times, thus resulting in 30 variants of each dataset for each percentage of
labeled objects. To study the influence of the amount of labeled data, we take different
percentages of labeled objects: 2%, 5%, 8%, and 10%.

6.1.4 Algorithms and parameters

The original implementation of HISSCLU has been provided by the authors. As further
competitors we included three semi-supervised classification approaches: the Gaus-
sian Field and Harmonic Function (GFHF) (Zhu et al. 2003), the Robust Multi-class
Graph Transduction (RMGT) (Liu and Chang 2009), and the Laplacian Support Vec-
tor Machine (LapSVM) (Belkin et al. 2006), for which implementations are available
from a former comparative study (de Sousa et al. 2013). Following the recommenda-
tions in that study, we construct a graph and weight matrix for the label propagation
in these algorithms as follows (de Sousa et al. 2013):

1. Compute the distance matrix using the dissimilarity function listed in Table 2;
2. Construct the graph using a symmetric version of the k-nearest neighbors graph.

The mutual k-nearest neighbors graph creates an edge between objects xi and x j

if and only if they are one of the k closest neighbors of each other.
3. Compute the weight matrix applying the radial basis function kernel (RBF ker-

nel):

K (xi , x j ) = exp

(

−d(xi , x j )
2

2σ 2

)

,

where σ is the kernel bandwidth parameter.

We set the bandwidth parameter as σ =

∑n
i=1 d

(

xi ,xik

)

3n
, following de Sousa et al. (2013),

where d(xi , xik
) denotes the distance between xi and its kth nearest neighbor xik

.
For the label propagation with algorithms GFHF and LapSVM in datasets with

multiple classes, we use the standard one-vs-all combination of the binary classifiers.
For HISSCLU, HDBSCAN*(cd,wPWD), HDBSCAN*(cd,wMST), HDBSCAN*

(ap,wPWD), and HDBSCAN*(ap,wMST) we set the parameters of the weighting
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function (to improve the separation between classes) as ρ = 50.0 and ξ = 5.0, which
were also used in the original HISSCLU publication (Böhm and Plant 2008). For
HDBSCAN*(ap,-), no parameter is required.

For the neighborhood size, we tested a smaller (mpts = k = 4) and a larger
choice (mpts = k = 15). The density-based semi-supervised classification algorithms
achieve better results on average with the smaller value (confirming observations in
previous studies (Campello et al. 2015; Lelis and Sander 2009; Böhm and Plant 2008)),
while GFHF, RMGT, and LapSVM show better performance on average with larger
neighborhood size (also confirming previous findings (de Sousa et al. 2013)). Hence,
to not give an unfair advantage to a class of algorithms, we run each of the algorithms
with the value that works better for them on average, mpts = 4 for the density-based
methods, and k = 15 for the other ones.

6.1.5 Statistical test for performance comparison

To analyze the overall results, we applied the two-step procedure described by Demšar
(2006). First, we applied the Friedman test (Friedman 1937) to examine whether there
is a significant difference between the results of the algorithms on collected datasets.
If the null hypothesis, assuming no significant difference between the algorithms, is
rejected at the given p-value, the Nemenyi posthoc test (Nemenyi 1963) is applied
to reveal which pairs of algorithms exhibit such differences. This test states that the
performance of two different algorithms is significantly different if the corresponding
average ranks differ by at least a Critical Difference (CD) value. In both tests, Friedman
test and Nemenyi posthoc procedure, we selected a significance level of 5% (α = 0.05).

6.1.6 Runtime experiments

The datasets for the runtime experiment were generated randomly using “animals.c”
(Lichman 2013). The program generates objects that have 72 attributes and that belong
to one of 4 classes. We generated 20,000 instances for this dataset, and extracted subsets
of size 100, 500, 1000, 5000, 10,000, and 15,000 instances, with an approximately
equal distribution of the classes. We select randomly 30 labeled objects, at least one
for each class, repeat the procedure 20 times, and present the mean runtime. We use
the same parameters as in the effectiveness experiments for all algorithms.

6.2 Semi-supervised clustering

6.2.1 Performance measures

In the semi-supervised clustering scenario, we report the results of our experiments
using the Adjusted Rand Index (ARI) (Hubert and Arabie 1985), which is a standard
external validation measure in the clustering literature (Jain and Dubes 1988). The
index has been computed here not using any of the objects belonging to the set of
pre-labeled objects. Noise objects are treated as singletons for the ARI computations.
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6.2.2 Datasets

For controlled experiments where we know the true probability distribution of clusters,
we use the benchmark collection of Handl and Knowles (2007),10 which contains
160 synthetic datasets with Gaussian and Ellipsoidal clusters. There are two sub-
collections, one containing 80 low dimensional datasets (2D and 10D) and the other
containing 80 high dimensional datasets (50D and 100D). The datasets have 4, 10, 20,
and 40 clusters with cluster sizes varying from 10 to 500 depending on the number of
clusters. For each combination of dimensionality and number of clusters there are 10
different datasets. We used Euclidean distance with this collection.

We also use real datasets from different domains. In particular, part of the datasets
considered in the semi-supervised classification scenario (Sect. 6.1) are reused here
in the semi-supervised clustering scenario. However, since classes as represented by
classification labels do not necessarily correspond to clusters from a density-based
perspective, we select only a subset of the datasets in Table 2 for which at least
one clustering algorithm (amongst our proposed methods or amongst our baseline
competitors) is able to achieve a solution with ARI of at least 0.50. This way, we
ensure that the comparisons involve datasets for which it is possible to recover at least
partially a clustering structure. The selected datasets are listed in Table 3.

For the sake of completeness, we also include an additional dataset collection as
well as additional individual datasets that have been used for clustering experiments
in the HDBSCAN* paper (Campello et al. 2015), some of which are not included
in Table 2. Specifically, datasets “Articles-1442-5” and “Articles-1442-80” consist of
high dimensional (Bag-of-Words) representations of text documents, originally used
by Naldi et al. (2011). These datasets are formed by 253 articles from 5 categories each,
represented by 4636 and 388 dimensions, respectively. We used Cosine similarity for
these datasets, as common in text analysis. Dataset “CellCycle-237” (Yeung et al.
2001) contains the expression levels of 237 genes, belonging to 4 known categories,
across 17 conditions/dimensions. For this dataset we used Euclidean distance with
z-score normalization of objects, which relates to Pearson correlation in the original
data space (the standard measure in gene-expression analysis). Dataset “Ecoli” is from
the UCI Repository (Lichman 2013), and contains 336 objects and 7 dimensions, with
8 classes. For this dataset we used Euclidean distance.

Finally, the “ALOI” collections in Table 3 consist of real datasets composed of
image features of images extracted from the Amsterdam Library of Object Images
(ALOI) (Geusebroek et al. 2005) and processed as described by Horta and Campello
(2012). These datasets were created by randomly selecting c ALOI image categories
as class (cluster) labels, 100 times for each c = 2, 3, 4, 5, then sampling (without
replacement), each time, 25 images from each of the c selected categories, resulting in
400 sets, each of which contains 2, 3, 4, or 5 classes (clusters) and 50, 75, 100, or 125
images (objects). The images were represented using 6 different image descriptors,
with 144, 88, 128, 5, 44, and 256 attributes, respectively. The datasets using the texture

statistics descriptor are denoted by “ALOI-TS88”, whereas “ALOI-PCA” stands for the
datasets with a 6-dimensional representation combining the first principal component

10 Available at http://personalpages.manchester.ac.uk/staff/Julia.Handl/generators.html.
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Table 3 List of datasets collected to perform the semi-supervised clustering experiments

Dataset #obj #att #cl Distance

Real

Articles-1442-5 Naldi et al. (2011) 253 4636 5 Cosine

Articles-1442-80 (Naldi et al. 2011) 253 388 5 Cosine

Bank note–Authentication (Vanschoren et al. 2013) 1372 5 2 Euclidean

Cardiotocography (Vanschoren et al. 2013) 2126 36 10 Euclidean

CellCycle-237 (Yeung et al. 2001) 237 17 4 Euclidean

Chowdary (de Souto et al. 2008) 104 183 2 Cosine

Diggle table (Vanschoren et al. 2013) 310 8 9 Euclidean

Ecoli (Lichman 2013) 336 7 8 Euclidean

Gordon (de Souto et al. 2008) 181 1627 2 Cosine

Iris (Lichman 2013) 150 5 3 Euclidean

Mfeat-factors (Vanschoren et al. 2013) 2000 216 10 Euclidean

Mfeat-Karhunen (Vanschoren et al. 2013) 2000 65 10 Euclidean

Seeds (Lichman 2013) 210 8 3 Euclidean

Segmentation (Vanschoren et al. 2013) 2100 20 7 Euclidean

Stock (Vanschoren et al. 2013) 950 10 2 Euclidean

WDBC (Lichman 2013) 569 32 2 Euclidean

Wine (Lichman 2013) 178 13 3 Euclidean

Yeast galactose (Yeung et al. 2003) 205 81 4 Euclidean

ALOI collections

ALOI PCA (Horta and Campello 2012) [50, 125] 6 [2, 5] Euclidean

ALOI 88 (Horta and Campello 2012) [50, 125] 88 [2, 5] Euclidean

Artificial collections

Gaussian (Handl and Knowles 2007) [200, 5000] [2, 10] [4, 40] Euclidean

Ellipsoid (Handl and Knowles 2007) [200, 5000] [50, 100] [4, 40] Euclidean

extracted from each of the six descriptors, using PCA. For both configurations, we
used Euclidean distance.

Note that the “real” datasets are individual datasets, while ALOI and Artificial are
sets of datasets. We will show summary results for each of the three categories (i.e.,
the collection of “real” datasets, the ALOI collections, and the articial collections)
separately.

6.2.3 Pre-labeled data subsets

In order to obtain the subset of pre-labeled objects, XL , we randomly selected labeled
objects from the datasets following two different strategies: (a) non-controlled random,
where we draw objects without replacement, but under no further constraints; and (b)
controlled random, where we ensure that a certain fraction of the class labels will (or
will not) be missing in XL .
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In the first, non-controlled random setting, it is possible that certain class labels
will not be represented in the resulting subset of pre-labeled objects, which represents
applications of semi-supervised clustering involving unknown categories yet to be
discovered. In this setting, we varied the percentage of pre-labeled objects as 0%
(unsupervised case, as a baseline), 1%, 2% and 5% of the data.

For the second, controlled random setting, we enforce that a fraction of the c class
labels in the ground truth will be missing in XL . We experiment and compare the
results with no classes missing (by ensuring that at least one object from each class
is selected), ⌈ c

2⌉ classes missing, and all c classes missing (unsupervised case). For
the first two cases, we varied the percentage of pre-labeled objects as 1%, 2% and
5% of the data. The results reported are averages over 50 random selections of the
pre-labeled objects, for each dataset.

Some of the algorithms used as baseline competitors in our experiments perform
semi-supervised clustering based on instance-level constraints, rather than on labels.
For these algorithms, we also produce a corresponding set of instance-level constraints
from each subset XL of pre-labeled objects randomly drawn in our experiments; all
possible pairwise constraints that hold in XL are generated as follows: (a) a should-
link constraint is created for each pair of objects with the same label in XL ; and (b)
a should-not-link constraint is created for each pair of objects with different labels in
XL . Note that using instance-level constraints requires special care for a fair evaluation
setup to not use information in the evaluation that has been implicitly exposed to the
learning procedure (Pourrajabi et al. 2014). We performed the evaluation accordingly.

6.2.4 Algorithms and parameters

We include again HISSCLU as a competitor using the code provided by the authors, but
now making use of the clustering extraction procedure described as a post-processing
routine in the original publication (Böhm and Plant 2008), called k-cluster extrac-
tion (see Sect. 3.3.3). We also include as competitor SSDBSCAN, using the original
code provided by Lelis and Sander (2009). We compare their original code against
our improved code, hereafter referred to as SSDBSCAN++, which takes advantage of
our density-based framework and runs the algorithm on top of a single, pre-computed
MSTr , in contrast to the original algorithm, which dynamically and partially builds
minimum spanning trees multiple times. As for the core algorithm in our framework,
HDBSCAN*, we compare our new clustering extraction strategies with the strategies
from the original publication (Campello et al. 2015), namely: unsupervised FOSC
extraction based on stability, semi-supervised FOSC extraction based on instance-level
pairwise constraints (unsupervised stability used to decide ties only), and the mixed
case involving a balanced combination of these two strategies. We will call these
competitors HDBSCAN*(UN), HDBSCAN*(CON), and HDBSCAN*(MixCON),
respectively. Our proposed, label-based counterparts to HDBSCAN*(CON) and HDB-
SCAN*(MixCON) are called hereafter HDBSCAN*(BC) and HDBSCAN*(MixBC),
respectively. The former performs semi-supervised FOSC extraction using the B3 F-
Measure, with the unsupervised criterion of stability being used to decide ties only;
the latter is the mixed case involving a balanced combination of these two criteria, as
discussed in Sect. 5.2.
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All these algorithms share as a common parameter the neighborhood size, mpts,
which has been set in the same way as previously described for the semi-supervised
classification experiments (Sect. 6.1). As for the additional parameters required by
HISSCLU, ρ and ξ , the setting previously adopted for the semi-supervised classifi-
cation experiments, which was particularly effective in stretching class boundaries in
that scenario, has shown not to be as effective in the clustering scenario. For this rea-
son, we performed preliminary experiments with several combinations of these two
parameters within the ranges ρ ∈ [1, 50] and ξ ∈ [0.5, 5.0], and selected ρ = 10.0
and ξ = 5.0 as the most effective choice for the clustering experiments. The only new
parameter used here, the value of k in HISSCLU’s k-cluster extraction routine, was
set as k = 0.2, which was also used by the authors in the original publication Böhm
and Plant (2008).

6.2.5 Statistical test and runtime experiments

For performance comparisons in the clustering scenario, we apply the same statistical
validation procedure as described in Sect. 6.1.5 for the classification scenario. Runtime
experiments follow the same experimental design as described in Sect. 6.1.6.

7 Results

In this section we describe and analyze the results of our experiments in the
semi-supervised classification (Sect. 7.1) and semi-supervised clustering (Sect. 7.2)
scenarios.

7.1 Semi-supervised classification results

7.1.1 Effectiveness

Figure 8 presents the distribution of the achieved quality over all datasets, separated by
the percentage of labeled objects used for training. A straightforward and unsurprising
observation is that all algorithms improve their performance with an increased amount
of training data, and most show also a reduced variance of quality over the datasets.
A noticeable exception to the reduced variance with larger amounts of training data
is HDBSCAN*(ap,wPWD); its variance actually increases with more training data. A
direct comparison with HDSBSCAN*(ap,wMST) and with HDBSCAN*(cd,wPWD)
suggests that the combination of the all-points core distance and the label-based dis-
tance weighting applied to the distance matrix becomes more susceptible to random
effects in the selection of labeled objects.

We see in general, that all variants have their strengths and weaknesses over the
different datasets and dataset variants. When establishing a ranking of the algorithms
and framework variants over the combined results (all datasets and all percentages of
labeled objects), the Friedman and the Nemenyi post hoc tests check for statistical
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Fig. 8 Quality of results obtained by the semi-supervised classification algorithms averaged over all datasets,
separated by different percentage of labeled objects

differences between the algorithms. Figure 9 visualizes the average ranks of the algo-
rithms along with the critical distance. We can identify two distinct groups without
statistical difference between the algorithms at confidence level α = 0.05.

The top group contains four density-based algorithms: HDBSCAN*(cd,wMST),
HDBSCAN*(cd,wPWD), HDBSCAN*(ap,wMST), and HISSCLU, together with two
traditional algorithms: RMGT and LapSVM. The critical distance indicates that the
differences in ranking within this group are not significant. The lower group (con-
sisting of two overlapping groups) comprises the HDBSCAN* variants without any
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CD

1 2 3 4 5 6 7 8 9 10

HDBSCAN*(cd,wMST)

RMGT
HDBSCAN*(cd,wPWD)

LapSVM
HDBSCAN*(ap,wMST)

HDBSCAN*(ap,wPWD)

GFHF
HDBSCAN*(cd,-)
HDBSCAN*(ap,-)

HISSCLU

Fig. 9 Average ranks and critical distance (CD) with statistical significance α = 0.05 according to the
Friedman test

label-based distance weighting, the variant HDBSCAN*(ap,wPWD) that we already
observed as having a larger variance of quality, and the last of the traditional competi-
tors, GFHF.

7.1.2 Efficiency

Figure 10 depicts the runtime behavior of the tested algorithms when increasing the
dataset size. Although comparisons of absolute runtime measurements are in our
favor here, they should not be considered conclusive, especially when using differ-
ent implementations (Kriegel et al. 2017). However, we can in fact observe that the
algorithms LapSVM, GFHF, and RMGT have a worse runtime behavior compared to
the density-based algorithms (note the log-log-scale of the plot). Among the density-
based algorithms, HISSCLU is clearly worse than all the variants of our framework.
Among our variants, applying weights on the complete distance matrix is again worse,
as expected. Note that applying the weighting on the MST instead barely manifests
itself in terms of runtime; compare HDBSCAN*(cd,-) versus HDBSCAN*(cd,wMST)
and HDBSCAN*(ap,-) versus HDBSCAN*(ap,wMST): in both pairs the difference is
hardly noticeable and is in the range of milliseconds. Applying weights on the distance
matrix results a more substantial change.

7.1.3 Overall summary of findings (classification)

In brief, as a very objective take-home message learnt from our semi-supervised clas-
sification experiments, Figs. 8, 9 and 10 suggest that HDBSCAN*(cd,wMST) and
HDBSCAN*(ap,wMST) possibly represent the best compromise between prediction
power and computational cost, as these algorithms have exhibited top performance
(Figs. 8, 9) in the representative collection of datasets used in our experiments, while
appearing as two of the fastest algorithms according to the runtime evaluation in
Fig. 10.
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Fig. 10 Runtime over dataset size (Color figure online)

7.2 Semi-supervised clustering results

7.2.1 Improved SSDBSCAN

We start by comparing the results of our improved implementation of SSDBSCAN,
called SSDBSCAN++, against the results of the original code provided by Lelis and
Sander (2009). The results averaged over each of the dataset collections in Table 3
are summarized in Table 4, for the non-controlled random scenario. The results in
Table 4 show that, by using a single pre-computed MSTr , our improved implementa-
tion achieves at least the same quality of results as the original implementation, if not
better (as highlighted in bold).

For the sake of compactness, we omit the results of the controlled random scenario,
but the conclusions are the same. For this reason, we will include only SSDBSCAN++
in the subsequent experiments.
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Table 4 ARI results (mean ±

standard deviation) of the
original SSDBSCAN
implementation and our
improved implementation,
SSDBSCAN++, in the
non-controlled random scenario
with different amounts of
pre-labeled objects

Collection SSDBSCAN SSDBSCAN++

1% pre-labeled obj.

Real 0.37 ± 0.08 0.39 ± 0.09

ALOI 0.05 ± 0.01 0.05 ± 0.01

Artificial 0.63 ± 0.01 0.66 ± 0.01

2% pre-labeled obj.

Real 0.45 ± 0.09 0.49 ± 0.09

ALOI 0.22 ± 0.01 0.22 ± 0.01

Artificial 0.73 ± 0.01 0.77 ± 0.01

5% pre-labeled obj.

Real 0.53 ± 0.08 0.59 ± 0.07

ALOI 0.58 ± 0.01 0.59 ± 0.01

Artificial 0.80 ± 0.02 0.84 ± 0.01

7.2.2 Effectiveness

Figure 11 shows the summarized results of the compared algorithms for the “Artifi-
cial” collection, under the non-controlled random setup, separated by the percentage
of labeled objects used for training. The first column (0%) corresponds to the unsu-
pervised case, which emphasizes two facts: (a) neither SSDBSCAN nor HISSCLU’s
k-cluster can operate in the absence of pre-labeled objects; and (b) in this scenario,
all HDBSCAN* semi-supervised variants, which resolve ties in an unsupervised way,
reduce to the unsupervised case (i.e., HDBSCAN*(UN)). As we move across the other
columns from 1 to 5%, it is clear that all semi-supervised algorithms benefit from
larger amounts of pre-labeled objects. However, unlike the semi-supervised variants
of HDBSCAN*, which operate reliably all across the board, SSDBSCAN and k-
cluster are unstable and provide competitive results only when using 5% of pre-labeled
objects. When comparing our proposed methods, HDBSCAN*(BC) and HDB-
SCAN*(MixBC), against their constraint-based counterparts, HDBSCAN*(CON) and
HDBSCAN*(MixCON), respectively, it is clear that, while HDBSCAN*(BC) and
HDBSCAN*(CON) produce very similar results, HDBSCAN*(MixBC) outperforms
HDBSCAN*(MixCON) in all scenarios.

A possible reason for SSDBSCAN and HISSCLU’s k-cluster being unstable and
producing poor results for smaller amounts of pre-labeled objects is that, in the non-
controlled random experimental setup, there is no guarantee that all class labels are
represented in the subset of pre-labeled objects, XL . To investigate this hypothesis,
in Fig. 12 we show the results for the controlled random setup, where we contrast
experiments where all c class labels in the ground truth are guaranteed to be represented
in XL , against experiments with the same amount of pre-labeled objects but only
approximately half of the c class labels allowed to be in XL . Notice that the extreme
case in which no class label in the ground truth is represented in XL corresponds to
the unsupervised case, shown in the first column of Fig. 11.
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Fig. 11 ARI results for the Artificial collection (non-controlled random scenario). Error bars denote 95%
confidence intervals for the mean of means within each dataset

Figure 12 confirms that, as expected, all algorithms are to some extent negatively
affected by class labels missing in XL . However, while all the HDBSCAN* variants,
including our proposed methods, are only slighted impacted, showing to be robust to
this important factor in practical clustering applications, SSDBSCAN and k-cluster
are strongly affected and show prominent drops in performance. Among the HDB-
SCAN* variants, it is noticeable that those variants that use the unsupervised criterion
to decide ties only (i.e., HDBSCAN*(CON) and our HDBSCAN*(BC)), are slightly
more sensitive to missing labels than the mixed variants, HDBSCAN*(MixCON) and
our HDBSCAN*(MixBC), which instead combine the semi-supervised and the unsu-
pervised criteria. For this reason, while HDBSCAN*(CON) and our HDBSCAN*(BC)
perform slightly better than HDBSCAN*(MixCON) and our HDBSCAN*(MixBC)
when no label in unrepresented, the opposite occurs when there are unrepresented
labels.

The results for the “ALOI” collection, under the non-controlled random experi-
mental setup, are shown in Fig. 13. The conclusions that can be drawn are similar to
those from the artificial collection (Fig. 11). The differences are: (a) semi-supervision
improves only slightly the results in the ALOI datasets. In fact, the difference
between the semi-supervised and the unsupervised results is only noticeable when
5% of pre-labeled objects are used; (b) there is a smaller variability in the average
results across different datasets (error bars are almost indistinguishable); (c) SSDB-
SCAN and k-cluster have now underperformed in all scenarios, even when 5% of
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Fig. 12 ARI results for the Artificial collection (controlled random scenario). Error bars denote 95% con-
fidence intervals for the mean of means within each dataset

pre-labeled objects are used; and (d) this time, the constraint-based mixed variant,
HDBSCAN*(MixCON), has also underperformed when only 1% or 2% of pre-labeled
objects have been used.

In order to investigate the cause for the underperformance of SSDBSCAN, k-
cluster, and HDBSCAN*(MixCON), we show the results for the controlled random
experiments in Fig. 14. While it is clear that the methods perform similarly when
all class labels are represented in XL , with SSDBSCAN outstanding to some extent,
the performances of SSDBSCAN, k-cluster, and HDBSCAN*(MixCON) (the latter
w.r.t. the 1% and 2% scenarios only) drop substantially when there are categories not
represented in XL .

The results for the “Real” collection, under the non-controlled random experi-
mental setup, are shown in Fig. 15. In this case, apart from the higher variability
in the results (due to summarizing over very different datasets), the conclusions are
essentially the same as those drawn from the artificial collection in Fig. 11. In par-
ticular, all semi-supervised algorithms benefit from larger amounts of pre-labeled
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Fig. 13 ARI results for the ALOI collection (non-controlled random scenario). Error bars denote 95%
confidence intervals for the mean of means within each dataset

objects, but while SSDBSCAN and k-cluster show superior results when using larger
amounts of pre-labeled objects (5%), which increases the chances that all or most
of the class labels are represented in XL , these two algorithms underperform when
smaller amounts are used (1%). When comparing our label-based methods, HDB-
SCAN*(BC) and HDBSCAN*(MixBC), against their constraint-based counterparts,
HDBSCAN*(CON) and HDBSCAN*(MixCON), respectively, the results are very
similar, but slightly higher for the label-based variants. When comparing the mixed
variants, HDBSCAN*(MixBC) and HDBSCAN*(MixCON), with their non-mixed
counterparts, HDBSCAN*(BC) and HDBSCAN*(CON), respectively, the non-mixed
variants, which use unsupervised evaluation only to decide ties, exhibit better results.
However, looking at the results for the controlled random setup, in Fig. 16, it is clear
that, similar to the artificial collection in Fig. 12, the negative impact of unrepresented
labels is more noticeable for the non-mixed variants. Their drop in performance when
changing from c (100%) to ⌈c/2⌉ (50%) represented labels is only less prominent than
SSDBSCAN’s and k-cluster’s.

When establishing a ranking of the algorithms over the combined results of each
collection separately (all datasets within the collection, all percentages of labeled
objects, and 50 random subsets of pre-labeled objects for each combination of these),
the Friedman and the Nemenyi post hoc tests check for statistical differences between
the algorithms. Figures 17, 18, and 19 visualize the average ranks of the algorithms
along with the critical distance of the test, for the collections Artificial, ALOI, and
Real, respectively.
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Fig. 14 ARI results for the ALOI collection (controlled random scenario). Error bars denote 95% confidence
intervals for the mean of means within each dataset

Some general conclusions based on the ranks are: (a) our proposed mixed vari-
ant, HDBSCAN*(MixBC), is the best ranked overall, in all three collections, with
statistical difference to all other algorithms in the ALOI collection and to all algo-
rithms but HDBSCAN*(CON) in the Artificial collection; and (b) when comparing our
proposed HDBSCAN*(BC) with its constraint-based non-mixed counterpart, HDB-
SCAN*(CON), the latter is better ranked in the collections Artificial and ALOI,
whereas the former is better ranked in the collection Real, but there is no statisti-
cal difference between these two variants in any of these cases.

7.2.3 Efficiency

Figure 20 depicts the runtime behavior of the tested algorithms. While SSDBSCAN
runs the fastest in absolute terms, the behavior of the HDBSCAN* variants is similar,
growing even slightly slower than SSDBSCAN in relative terms. In contrast, the
runtime of HISSCLU’s k-cluster grows very noticeably at a much faster rate (note the
log-log-scale). The different variants of HDBSCAN* are practically indistinguishable.
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Fig. 15 ARI results for the Real collection (non-controlled random scenario). Error bars denote 95%
confidence intervals for the mean of means within each dataset

7.2.4 Overall summary of findings (clustering)

SSDBSCAN and HISSCLU’s k-cluster provide competitive results only for “larger”
fractions of pre-labeled objects, where “large” has shown to be data-dependent and
cannot be known in advance. Besides, these algorithms perform poorly unless all class
labels are guaranteed to be represented in the subset of pre-labeled objects, which is
a classification assumption and not an adequate assumption in the semi-supervised
clustering scenario. If this assumption is met, then SSDBSCAN may be preferred as
a much faster alternative to k-cluster, but in the general case we do not recommend
either algorithm for semi-supervised clustering scenarios where there may be unknown
classes yet to be discovered and, accordingly, not represented by any pre-labeled object.
In these scenarios, we recommend one of the semi-supervised HDBSCAN* variants.

When comparing our proposed label-based variant HDBSCAN*(MixBC) with
its existing constraint-based counterpart HDBSCAN*(MixCON) from Campello
et al. (2015), our label-based version has systematically provided better results,
and has the advantage of working directly with labels. When comparing our label-
based non-mixed variant HDBSCAN*(BC) with its constraint-based counterpart
HDBSCAN*(CON) from Campello et al. (2015), all our results suggest that the per-
formances of these two methods are very close to each other, but the former has
the advantage of working directly with labels. In summary, irrespective of whether
a mixed or a non-mixed approach is used, there is no evidence to suggest that it is
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Fig. 16 ARI results for the Real collection (controlled random scenario). Error bars denote 95% confidence
intervals for the mean of means within each dataset

CD

1 2 3 4 5 6 7

HDBSCAN*(MixBC)
HDBSCAN*(CON)
HDBSCAN*(BC)

SSDBSCAN++

K-Cluster
HDBSCAN*(UN)

HDBSCAN*(MixCON)

Fig. 17 Average ranks and critical distance (CD) with statistical significance α = 0.05 according to the
Friedman test: Artificial collection (non-controlled random scenario)
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CD
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HDBSCAN*(MixBC)
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HDBSCAN*(CON)

SSDBSCAN++

K-Cluster
HDBSCAN*(MixCON)

HDBSCAN*(BC)

Fig. 18 Average ranks and critical distance (CD) with statistical significance α = 0.05 according to the
Friedman test: ALOI collection (non-controlled random scenario)
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HDBSCAN*(MixBC)
HDBSCAN*(BC)

HDBSCAN*(CON)

SSDBSCAN++
HDBSCAN*(UN)

K-Cluster
HDBSCAN*(MixCON)

Fig. 19 Average ranks and critical distance (CD) with statistical significance α = 0.05 according to the
Friedman test: Real collection (non-controlled random scenario)

worth the additional effort of producing pairwise constraints from labels (when these
are available), rather than working with labels directly as we propose.11 The mixed
approach, in particular our proposed HDBSCAN*(MixBC), has shown to be more
robust to unrepresented class labels, which led to a best rank performance overall
when compared to all other algorithms.

8 Conclusion

In this work, we first presented a unified view of density-based clustering algorithms
that gives rise to a framework of semi-supervised density-based classification. We
showed experimentally that several instances of the proposed framework can achieve
comparable or better quality than HISSCLU and other traditional methods from the
semi-supervised classification literature, namely RMGT, LapSVM, and GFHF, while
being computationally more efficient as well as interpretable from a density-based,
non-parametric viewpoint.

In addition, we extended HDBSCAN*, which plays a central role in our unified
view and framework for density-based classification, to also perform semi-supervised
clustering from a collection of pre-labeled data objects, rather than pairwise constraints
(as previously supported by the algorithm). The direct use of labels has been shown to

11 Please notice that this statement holds under the assumption that labels are available. In certain application
scenarios users will only be able or willing to provide pairwise constraints, and we are by no means
claiming that these constraints cannot be useful for clustering. The relevance of pairwise constraints in
semi-supervised clustering has been thoroughly investigated in the literature—e.g. see (Lampert et al.
2018) for a recent study in the realm of time-series.
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Fig. 20 Runtime over dataset size (Color figure online)

be both simpler and more effective. The results obtained in semi-supervised clustering
scenarios where one or more categories in the data are not represented in the collection
of pre-labeled objects are far superior than competitors from the literature, such as
HISSCLU and SSDBSCAN.

In future work, a possible line of research in the context of semi-supervised classifi-
cation is the use of the MSTr graph (as opposed to traditional graphs such as mutual k

nearest neighbors) in conjunction with other graph-based label propagation algorithms
from the literature. In the context of clustering, an interesting topic for investigation
is the problem of model selection in the semi-supervised scenario, namely, the direct
use of labels rather than constraints to guide the choice of the mpts parameter in HDB-
SCAN*.
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Appendix

Illustration of basic definitions

Figure 21 provides an illustration of the main concepts and definitions introduced in
Sect. 3 and used throughout the paper, for readers less familiar with density-based
data mining methods and algorithms.

Fig. 21 Graphical representation of fundamental density-based concepts and definitions (mpts = 4): a

a noise and a border object, xk and xm , are indicated for a given radius ǫ. The asymmetric reachability
distance between objects x j and xk , dreach(x j , xk ), which in this case coincides with the base distance
between these objects, is also indicated. The concept of density-connectivity between two objects, xi and
x j , based on the definition of (direct or transitive) ǫ-reachability between pairs of objects, is highlighted as a
red line. b the core distances of objects xa , xb , and xc are indicated. The symmetric (i.e., mutual) reachability
distance between objects xa and xb is given by the base distance between these objects, whereas the mutual
reachability distance between xb and xc is given by the core distance of xc (Color figure online)

Summary of algorithms and their main properties

A summary of the properties and assumptions of all the density-based algorithms
studied in this paper, including our new algorithms for semi-supervised classification
and clustering introduced in Sects. 4 and 5, is provided in Table 5.
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Label expansion algorithm

Given a graph MSTr pre-computed by HDBSCAN*, in our framework for semi-
supervised classification (Sect. 4) we implement a label expansion method on top of
the MSTr to propagate the labels based on the path with the smallest largest edge to
a labeled object, resolving ties, possibly consecutively, by considering the smaller of
the next largest edge on the paths (Gertrudes et al. 2018).

This can be implemented by starting with a “connected component” Ci for each pre-
labeled object xi ∈ XL that initially contains only xi . These connected components
Ci are then iteratively extended by traversing the MSTr in the following way. The
outgoing edges from each Ci in the MSTr are maintained in a sorted order, from
smallest to largest edge weight. Then, always the smallest edge weight of all such
edges (connecting to any of the Ci ) is determined, and all of those edges with this edge
weight are selected simultaneously. First, the selected edges that establish a connection
between the current connected components will be considered: components that have
the same label and are connected with selected edges will be merged into a single
connected component that replaces them, whereas selected edges between connected
components with different labels are ignored. Then, all objects xo ∈ XU that connect
to the selected edges and that have not been labeled yet will be considered in the
following cases:

1. only a single edge, i.e., a single current connected component Ci connects to
an object xo; in this case, xo and the corresponding edge are added to Ci and
class(xo) is set to class(Ci );

2. more than one edge, i.e., components Ci1 , . . . , Cim connect to object xo; in this
case, two sub-cases are possible:

(a) all the components connected to xo have the same label. In this sub-case all
these components (including xo and the corresponding edges) are merged into
a single component;

(b) the components connecting to xo have different labels. In this sub-case, the
algorithm determines the component Ci j

that has the smallest largest edge
(or, in case of ties, the smallest of the next largest edge, etc.) on a path to xo

from a pre-labeled object inside that component, xo and its edge are added
to Ci j

, class(xo) is set to class(Ci j
), and all other components connecting to

xo that have the same class label as class(Ci j
) are merged with Ci j

(other
components with different labels are not merged in this step, even if some of
them share a label).
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In both cases (a) and (b), the still unprocessed edges of the MSTr incident to xo (if
any) will be added to the sorted set of outgoing edges from the current components,
and the sorted set will be rearranged accordingly. If none of the selected edges in an
iteration fit into one of the above scenarios, simply the next smallest edge weight from
the sorted set is selected, and this process is repeated until all edges in the MSTr have
been processed (each edge will be processed once).12

The information of the smallest largest edge connecting a given unlabeled object xo

to one of the pre-labeled objects inside a given component Ci can be efficiently stored
in the objects themselves and expanded alongside with the labels. Let us suppose
that an object xo ∈ XU has just been added to component Ci via an edge (xo, xi )

connecting xo to xi ∈ Ci . Let wo,i be this edge’s weight, and let wi be the smallest
largest edge weight connecting xi to a pre-labeled object inside Ci (wi = 0 if xi itself
is pre-labeled, i.e., if xi ∈ XL ). Then, the smallest largest edge weight on the path from
xo to a pre-labeled object inside Ci can be stored in xo as wo = max{wi , wo,i }. These
values will be stored in objects in the frontier of the components as these components
grow. By doing this, the components Ci do not need to be materialized, they will be
implicitly encoded in the expanded labels.

Notice that, if an unlabeled object xo is simultaneously connected to more than one
component (cases (b)-i or (b)-ii above), say Ci and C j , via selected edges (xo, xi ) and
(xo, x j ) with weights wo,i = wo, j , then the value wo to be stored in xo will be the
smaller of max{wi , wo,i } and max{w j , wo, j } (i.e., the smallest largest edge weight
connecting xo to one of the pre-labeled objects either inside Ci or inside C j ). The
smaller of these values will also decide the label of xo in case class(Ci ) �= class(C j )

(i.e., case (b)-ii). In order to solve ties (max{wi , wo,i } = max{w j , wo, j }), instead of
keeping only the smallest largest edge weight stored in each object, we keep a sorted
list of the c largest weights on the respective paths, where c is a constant. This way,
we do not need to traverse the MSTr to decide which component has the smallest next
largest edge in case of ties. Only if c values are tied a traversal would be required. But
this is unlikely in practice, and it would mean that the label is highly undecided, so
breaking the tie randomly is nearly as accurate yet much faster. Since c is a constant
(we use c = 5 in our experiments), it does not affect the algorithm’s runtime or memory
complexity.

A simplified pseudo-code corresponding to the aforementioned label expansion
procedure is presented in Algorithms 1 and 2.

12 If a result equivalent to SSDBSCAN’s label assignments would be desired, the result of the label expan-
sion could be post-processed to remove propagated labels from objects that lead to label inconsistencies,
declaring them as Noise (see Sect. 3.2). However, since a label assignment for all x ∈ XU is required in the
context of semi-supervised classification, such a noise identification procedure will not be further discussed
here.
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Algorithm 1: Label-expansion
Data: M STr , XL

Result: Label assigned for each unlabeled vertex in M STr

Q := ∅ // Priority queue. It stores the outgoing edges from each

labeled object

for v ∈ XL do

// Add to Q the outgoing edges from each labeled object

U pdateEdgeList(v, M STr , Q);
end

while Q �= ∅ do

// Extract all the edges with the current minimum weight

E := Extract Min(Q);
for e ∈ E do

u := e.u // Outgoing vertex (unlabeled object)

U pdateLabel And Paths(u, e.weight, M STr ) // (Algorithm 2)

U pdateEdgeList(u, M STr , Q);
end

end

Algorithm 2: Update label and path of an unlabeled object
Data: u, weight , M STr

// Collect all the neighbors of u which already have a class and

are connected by the current minimum edge weight

A = Get Labeled Neighbors(u, weight, M STr );
cn = A[0] // cn: Closest neighbor

// If there is more than one labeled component connecting to u, we

have to compare the paths between these objects to select the

smallest one

if |A| > 1 then

// Update the closest neighbor, selecting the one with smallest

path

for v ∈ A do

// path is a vector with c values in decreasing order, which

represents the c highest values on a path between a vertex

and a pre labeled object. We use these values to decide

which of two paths has the smallest largest edge (or, in

case of a tie, the second smallest, etc.). Here, we use

the operator “<” to represent this comparison

if v.path < cn.path then

cn = v;
end

end

end

u.label := cn.label;
u.path := cn.path;
// Update the path stored in u, replacing the lowest value by

e.weight, if it is lower than e.weight

U pdatePath(u, e.weight);
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