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ABSTRACT

A unified view of high-dimensional bridge
regression

Haolei Weng

In many application areas ranging from bioinformatics to imaging, we are inter-

ested in recovering a sparse coefficient β ∈ Rp in the high-dimensional linear model

y = Xβ + w, when the sample size n is comparable to or less than the dimension

p. One of the most popular classes of estimators is the `q-regularized least squares

(LQLS), a.k.a. bridge regression (Frank and Friedman, 1993; Fu, 1998), given by the

following optimization problem:

β̂(λ, q) ∈ arg min
β

1

2
‖y −Xβ‖2

2 + λ

p∑
i=1

|βi|q.

There have been extensive studies towards understanding the performance of the

best subset selection (q = 0), LASSO (q = 1) and ridge (q = 2), three widely known

estimators from the LQLS family. This thesis aims at giving a unified view of LQLS

for all the values of q ∈ [0,∞). In contrast to most existing works which obtain order-

wise error bounds with loose constants, we derive asymptotically exact error formulas

characterized through a series of fixed point equations. A delicate analysis of the fixed

point equations enables us to gain fruitful insights into the statistical properties of

LQLS across the entire spectrum of `q-regularization. Our work not only validates the

scope of folklore understanding of `q-minimization, but also provides new insights into

high-dimensional statistics as a whole. We will elaborate on our theoretical findings

mainly from parameter estimation point of view. At the end of the thesis, we briefly

mention bridge regression for variable selection and prediction.



We start by considering the parameter estimation problem and evaluate the per-

formance of LQLS by characterizing the asymptotic mean square error (AMSE)

limn→∞
1
p
‖β̂(λ, q) − β‖2

2. The expression we derive for AMSE does not have explicit

forms and hence is not useful in comparing LQLS for different values of q, or provid-

ing information in evaluating the effect of relative sample size n
p

or the sparsity level

of β. To simplify the expression, we first perform the phase transition (PT) analysis,

a widely accepted analysis diagram, of LQLS. Our results reveal some of the limita-

tions and misleading features of the PT framework. To overcome these limitations,

we propose the small-error analysis of LQLS. Our new analysis framework not only

sheds light on the results of the phase transition analysis, but also describes when

phase transition analysis is reliable, and presents a more accurate comparison among

different `q-regularizations.

We then extend our low noise sensitivity analysis to linear models without sparsity

structure. Our analysis, as a generalization of phase transition analysis, reveals a

clear picture of bridge regression for estimating generic coefficients β. Moreover, by a

simple transformation we connect our low-noise sensitivity framework to the classical

asymptotic regime in which n/p→∞, and give some insightful implications beyond

what classical asymptotic analysis of bridge regression can offer.

Furthermore, following the same idea of the new analysis framework, we are able

to obtain an explicit characterization of AMSE in the form of second-order expansions

under the large noise regime. The expansions provide us some intriguing messages.

For example, ridge will outperform LASSO in terms of estimating sparse coefficients

when the measurement noise is large.

Finally, we present a short analysis of LQLS, for the purpose of variable selec-

tion and prediction. We propose a two-stage variable selection technique based on

the LQLS estimators, and describe its superiority and close connection to parameter

estimation. For prediction, we illustrate the intricate relation between the tuning pa-

rameter selection for optimal in-sample prediction and optimal parameter estimation.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Objective and organization

Consider the linear regression problem where the goal is to estimate the parameter

vector β ∈ Rp from a set of n response variables y ∈ Rn, under the model y = Xβ+w.

This problem has been studied extensively in the last two centuries since Gauss and

Legendre developed the least squares estimate of β. The instability or high variance

of the least squares estimates led to the development of the regularized least squares.

One of the most popular regularization classes is the `q-regularized least squares

(LQLS), a.k.a. bridge regression (Frank and Friedman, 1993; Fu, 1998), given by the

following optimization problem:

β̂(λ, q) ∈ arg min
β

1

2
‖y −Xβ‖2

2 + λ

p∑
i=1

|βi|q. (1.1)

where q ∈ [0,∞) and λ > 0 is a tuning parameter. LQLS has been extensively

studied in the literature. In particular, one can prove the consistency of β̂(λ, q) under

the classical asymptotic analysis (p fixed while n → ∞) (Knight and Fu, 2000).

However, this asymptotic regime becomes irrelevant for high-dimensional problems

in which n is not much larger than p. Under this high-dimensional setting, if β does

not have any specific structure, we do not expect any estimator to perform well.
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One of the structures that has attracted attention in the last twenty years is the

sparsity, that assumes only k of the elements of β are non-zero and the rest are zero.

To understand the behavior of the estimators under structured linear model in high

dimension, a new asymptotic framework has been proposed in which it is assumed

that Xij
i.i.d.∼ N(0, 1/n), k, n, p → ∞ while n/p → δ and k/p → ε, where δ and ε are

fixed numbers (Donoho and Tanner, 2005b; Donoho et al., 2009; Amelunxen et al.,

2014; El Karoui et al., 2013; Bradic and Chen, 2015).

One of the main notions that has been widely studied in this asymptotic frame-

work, is the phase transition (Donoho and Tanner, 2005b; Donoho et al., 2009;

Amelunxen et al., 2014; STOJNIC, 2009). Intuitively speaking, phase transition

analysis assumes the error w equals zero and characterizes the value of δ above which

an estimator converges to the true β (in certain sense that will be clarified in the

following chapters). While there is always error in the response variables, it is be-

lieved that phase transition analysis provides reliable information when the errors are

small. In this thesis, we start by studying the phase transition diagrams of LQLS for

q ∈ [0,∞). Our analysis reveals several limitations of the phase transition analysis.

We will clarify these limitations in Chapter 2. We then propose a higher-order anal-

ysis of LQLS in the small-error regime. As will be explained in Chapter 2, our new

framework sheds light on the peculiar behavior of the phase transition diagrams, and

explains when we can rely on the results of phase transition analysis in practice.

The sparsity assumption of β can be easily violated in many applications. A more

realistic replacement is to assume β is approximately sparse, i.e., some elements of β

are very small. Under such a setting, all the asymptotic results we derived for sparse

coefficients may not hold any more. However, we will demonstrate in Chapter 3 that,

the limitations of phase transition analysis remain. We then perform a low-noise sen-

sitivity analysis as a generalization of phase transition scheme to better evaluate and

compare different LQLS estimators. Moreover, by a simple transformation we con-

nect our low-noise sensitivity framework to the classical asymptotic regime in which
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n/p→∞ and characterize how and when `q regularization techniques offer improve-

ments over ordinary least squares, and which regularizer gives the most improvement

when the sample size is large.

The small-error analysis enables us to have a more accurate evaluation and com-

parison for different LQLS estimators when the measurement noise w is small. How-

ever, the results can not carry over to settings with large noises. Motivated by this

concern, we further perform a second-order noise sensitivity analysis under large-error

regime. Our analysis discovers an intriguing phenomenon regarding the parameter es-

timation performance of LQLS: ridge is optimal among all the LQLS estimators. This

implies that in low signal-to-noise ratios, sparsity promoting regularization methods

like LASSO and best subset selection are inferior to ridge, even though the estimand

is sparse. We present a thorough comparison of LQLS for every value of q ≥ 0 in

Chapter 4.

If the primary interest lies on variable selection or prediction instead of parameter

estimation, how would the performance of LQLS estimators change? In Chapter 5

we scratch the surface of these two directions. For the former, we first propose a

two-stage variable selection technique with LQLS estimators used in the first stage.

It will be shown that the two-stage LASSO, one example of the proposed approach,

outperforms LASSO. More importantly, we establish the equivalence between the

variable selection comparison and parameter estimation comparison among different

LQLS’s. For the latter, we present some preliminary results regarding the tuning

parameter selection for optimal prediction.

1.2 The asymptotic framework

The main goal of this section is to formally introduce the high-dimensional asymptotic

framework under which we study LQLS throughout the thesis. We may write vectors

and matrices as β(p), X(p), w(p) to emphasize the dependence on the dimension of β.
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Similarly, we may use β̂(λ, q, p) as a substitute for β̂(λ, q). We first define a specific

type of a sequence known as a converging sequence. Our definition is borrowed from

other papers (Donoho et al., 2011; Bayati and Montanari, 2011, 2012) with some minor

modifications. Recall we have the linear regression model: y(p) = X(p)β(p) + w(p).

Definition 1.2.1. A sequence instances {β(p), X(p), w(p)} is called a converging

sequence if the following conditions hold:

1. n/p→ δ ∈ (0,∞), as n→∞.

2. The empirical distribution1 of β(p) ∈ Rp converges weakly to a probability mea-

sure fβ with bounded second moment. Further, 1
p
‖β(p)‖2

2 converges to the second

moment of fβ.

3. The empirical distribution of w(p) ∈ Rn converges weakly to a zero mean dis-

tribution with variance σ2
w. And, 1

n
‖w(p)‖2

2 → σ2
w.

4. The elements of X(p) are iid with distribution N(0, 1/n).

For each of the problem instances in a converging sequence, we solve the LQLS

problem (1.1) and obtain β̂(λ, q, p) as the estimator. The interest is to evaluate the

accuracy of this estimator. For different purposes such as parameter estimation and

variable selection, we will define different quantities to measure the performance of

LQLS in the following chapters.

1It is the distribution that puts a point mass 1/p at each of the p elements of the vector.
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Chapter 2

Overcoming the limitations of

phase transition via a second-order

low noise sensitivity analysis

2.1 Limitations of the phase transition and our so-

lution

In this section, we intuitively describe the results of phase transition analysis, its

limitations, and our new framework. Consider the class of LQLS estimators and

suppose that we would like to compare the performance of these estimators through

the phase transition diagrams. For the purpose of this section, we assume that the

vector β has only k non-zero elements, where k/p → ε with ε ∈ (0, 1). Since phase

transition analysis is concerned with w = 0 setting, it considers limλ→0 β̂(λ, q) which

is equivalent to the following estimator:

arg min
β
‖β‖qq,

subject to y = Xβ. (2.1)
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Below we informally state the results of the phase transition analysis. We will for-

malize the statement and describe in details the conditions under which this result

holds in the next section.

Informal Result 1. For a given ε > 0 and q ∈ [1,∞), there exists a number Mq(ε)

such that as p → ∞, if δ ≥ Mq(ε) + γ (γ > 0 is an arbitrary number), then (2.1)

succeeds in recovering β, while if δ ≤Mq(ε)− γ, (2.1) fails.1

The curve δ = Mq(ε) is called the phase transition curve of (2.1). While the phase

transition curves can be obtained with different techniques, such as statistical dimen-

sion framework proposed in Amelunxen et al. (2014), we will derive them as a simple

byproduct of our main results in the next section. We will show that Mq(ε) is given

by the following formula:

Mq(ε) =


1 if q > 1,

infχ≥0(1− ε)Eη2
1(Z;χ) + ε(1 + χ2) if q = 1,

ε if 1 > q ≥ 0,

(2.2)

where η1(u;χ) = (|u| − χ)+sign(u) denotes the soft thresholding function and Z ∼

N(0, 1). Before we proceed further let us mention some of the properties of M1(ε)

that will be useful in our later discussions.

Lemma 2.1.1. M1(ε) satisfies the following properties:

(i) M1(ε) is an increasing function of ε.

(ii) limε→0M1(ε) = 0.

(iii) limε→1M1(ε) = 1.

(iv) M1(ε) > ε, for ε ∈ (0, 1).

1Different notions of success have been studied in the phase transition analysis. We will mention

one notion later in this thesis.
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Proof. Define F (χ, ε) , (1−ε)Eη2
1(Z;χ)+ε(1+χ2). It is straightforward to verify that

F (χ, ε), as a function of χ over [0,∞), is strongly convex and has a unique minimizer.

Let χ∗(ε) be the minimizer. We write it as χ∗(ε) to emphasize its dependence on ε.

By employing the chain rule we have

dM1(ε)

dε
=

∂F (χ∗(ε), ε)

∂ε
+
∂F (χ∗(ε), ε)

∂χ
· dχ

∗(ε)

dε
=
∂F (χ∗(ε), ε)

∂ε

= 1 + (χ∗(ε))2 − Eη2
1(Z;χ∗(ε)) > 1 + (χ∗(ε))2 − E|Z|2

= (χ∗(ε))2 > 0,

which completes the proof of part (i). To prove (ii) note that

0 ≤ lim
ε→0

min
χ≥0

(1− ε)Eη2
1(Z;χ) + ε(1 + χ2)

≤ lim
ε→0

(1− ε)Eη2
1(Z; log(1/ε)) + ε(1 + log2(1/ε))

= lim
ε→0

2(1− ε)
∫ ∞

log(1/ε)

(z − log(1/ε))2φ(z)dz

= lim
ε→0

2(1− ε)
∫ ∞

0

z2φ(z + log(1/ε))dz

≤ lim
ε→0

2(1− ε)e−
log2(1/ε)

2

∫ ∞
0

z2φ(z)dz = 0,

where φ(·) is the density function of standard normal. Regarding the proof of part

(iii), first note that as ε→ 1, χ∗(ε)→ 0. Otherwise suppose χ∗(ε)→ χ0 > 0 (taking

a convergent subsequence if necessary). Since Eη2
1(Z;χ∗(ε)) ≤ E|Z|2 = 1, we obtain

lim
ε→1

F (χ∗(ε), ε) = 1 + χ2
0 > 1.

On the other hand, it is clear that

lim
ε→1

F (χ∗(ε), ε) ≤ lim
ε→1

F (0, ε) = 1.

A contradiction arises. Hence the fact χ∗(ε)→ 0 as ε→ 1 leads directly to

lim
ε→1

M1(ε) = lim
ε→1

F (χ∗(ε), ε) = 1.

Part (iv) is clear from the definition of M1(ε).
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Figure 2.1: Phase transition curves of LQLS for (i) q < 1: The red curve denotes

the phase transition of LQLS for any q ∈ [0, 1). (ii) q = 1: The blue curve exhibits

the phase transition of LASSO. Below this curve LASSO can “successfully” recover

β. (iii) q > 1: The magenta curve represents the phase transition of LQLS for any

q > 1. This figure is based on Informal Result 1 and will be carefully defined and

derived in Chapter 2.2.

Figure 2.1 shows Mq(ε) for different values of q. We observe several peculiar

features: (i) As is clear from both Lemma 2.1.1 and Figure 2.1, q = 1 requires much

fewer observations than all the values of q > 1 and much more observations than all

q ∈ [0, 1) for successful recovery of β. (ii) The values of the non-zero elements of β

do not have any effect on the phase transition curves. In fact, even the sparsity level

does not have any effect on the phase transition for q > 1. (iii) For every q > 1, the

phase transition of (2.1) happens at exactly the same value. So does every value of q

belonging to [0, 1).

These features raise the following question: how much and to what extent are

these phase transition results useful in applications, where at least small amount of

error is present in the response variables? For instance, intuitively speaking, we do

not expect to see much difference between the performance of LQLS for q = 1.01

and q = 1. However, according to the phase transition analysis, q = 1 outperforms
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q = 1.01 by a wide margin. In fact the performance of LQLS for q = 1.01 seems

to be closer to that of q = 2 than q = 1. The same reasoning goes for q = 1 and

q = 0.99. Also, in contrast to the phase transition implication, we may not expect

LQLS to perform the same for β with different values of non-zero elements. The main

goal of this chapter is to present a new analysis that will shed light on the misleading

features of the phase transition analysis. It will also clarify when and under what

conditions the phase transition analysis is reliable for practical guidance.

In our new framework, the variance σ2
w of the error w is assumed to be small. We

consider (1.1) with the optimal value of λ for which the asymptotic mean square error,

i.e., limp→∞
‖β̂(λ,q)−β‖22

p
, is minimized. We first obtain the formula for the asymptotic

mean square error (AMSE) characterized through a series of non-linear equations.

Since σw is assumed small, we then derive the second-order asymptotic expansions

for AMSE as σw → 0. As we will describe later, the phase transition of LQLS for

different values of q can be obtained from the first dominant term in the expansion.

More importantly, we will show that the second dominant term is capable of eval-

uating the importance of the phase transition analysis for practical situations and

also provides a much more accurate analysis of different bridge estimators. Here is

one of our main results, presented informally to clarify our claims. All the technical

conditions will be determined in Chapter 2.2.

Informal Result 2. If λ∗,q denotes the optimal value of λ, then for any q ∈ (1, 2),

δ > 1, and ε < 1

lim
p→∞

1

p
‖β̂(λ∗,q, q)− β‖2

2 =
σ2
w

1− 1/δ
− σ2q

w

δq+1(1− ε)2(E|Z|q)2

(δ − 1)q+1εE|G|2q−2
+ o(σ2q

w ),

where Z ∼ N(0, 1) and G is a random variable whose distribution is specified by the

non-zero elements of β. We will clarify this in the next section. Finally, the limit

notation we have used above is the almost sure limit.

As we will discuss in Chapter 2.2, the first term σ2
w

1−1/δ
determines the phase tran-
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sition. Moreover, we have further derived the second dominant term in the expansion

of the asymptotic mean square error. This term enables us to clarify some of the

confusing features of the phase transitions. Here are some important features of this

term: (i) It is negative. Hence, the AMSE that is predicted by the first term (and

phase transition analysis) is overestimated specially when q is close to 1. (ii) Fixing

q, the magnitude of the second dominant term grows as ε decreases. Hence, for small

values of σw all values of 1 < q < 2 benefit from the sparsity of β. Also, smaller

values of q seem to benefit more. (iii) Fixing ε and δ, the power of σw decreases

as q decreases. This makes the absolute value of the second dominant term bigger.

As q decreases to one, the order of the second dominant term gets closer to that of

the first dominant term and thus the predictions of phase transition analysis become

less accurate. We will present a more detailed discussion of the second order term

in Chapter 2.2. To show some more interesting features of our approach, we also

informally state a result we prove for LASSO.

Informal Result 3. Suppose that the non-zero elements of β are all larger than a

fixed number µ. If λ∗,q denotes the value of λ that leads to the smallest AMSE, and

if δ > M1(ε), then for q = 1

lim
p→∞

1

p
‖β̂(λ∗,q, q)− β‖2

2 =
δM1(ε)σ2

w

δ −M1(ε)
+O(exp(−µ̃/σ2

w)), (2.3)

where µ̃ is a constant that depends on µ.

As can be seen here, compared to other values of 1 < q < 2, q = 1 has smaller

first order term (according to Lemma 2.1.1), but much smaller (in magnitude) second

order term. The first implication of this result is that the first dominant term provides

an accurate approximation of AMSE. Hence, phase transition analysis in this case is

reliable even if small amount of noise is present; that is one of the main reasons why

the theoretically derived phase transition curve matches the empirical one for LASSO.

Furthermore, note that in order to obtain Informal Result 3, we have made certain



CHAPTER 2. OVERCOMING THE LIMITATIONS OF PHASE TRANSITION
VIA A SECOND-ORDER LOW NOISE SENSITIVITY ANALYSIS 11

assumption about the non-zero components of β. As will be shown in Chapter 2.2,

any violation of this assumption has major impact on the second dominant term.

2.2 A second-order low noise sensitivity analysis

2.2.1 Characterization of asymptotic mean square error

We define the asymptotic mean square error of LQLS estimators below to measure

their accuracy.

Definition 2.2.1. Let β̂(λ, q, p) be the sequence of solutions of LQLS for the con-

verging sequence of instances {β(p), X(p), w(p)}. The asymptotic mean square error

is defined as the almost sure limit of

AMSE(λ, q, σw) , lim
p→∞

1

p

p∑
i=1

|β̂i(λ, q, p)− βi(p)|2,

where the subscript i is used to denote the ith component of a vector.

Note that we have suppressed δ and fβ in the notation of AMSE for simplicity,

despite the fact that the asymptotic mean square error depends on them as well. In

the above definition, we have assumed that the almost sure limit exists. Under the

current asymptotic setting introduced in Chapter 1.2, the existence of AMSE can be

proved. We state the results for q ≥ 1 and 0 ≤ q < 1, respectively.

Theorem 2.2.2. Consider a converging sequence {β(p), X(p), w(p)}. For any given

q ∈ [1,∞), suppose that β̂(λ, q, p) is the solution of LQLS defined in (1.1). Then for

any pseudo-Lipschitz function2 ψ : R2 → R, almost surely

lim
p→∞

1

p

p∑
i=1

ψ
(
β̂i(λ, q, p), βi(p)

)
= EB,Z [ψ(ηq(B + σ̄Z; χ̄σ̄2−q), B)], (2.4)

2A function ψ : R2 → R is pseudo-Lipschitz of order k if there exists a constant L > 0 such

that for all x, y ∈ R2, we have |ψ(x) − ψ(y)| ≤ L(1 + ‖x‖k−1
2 + ‖y‖k−1

2 )‖x − y‖2. We consider

pseudo-Lipschitz functions with order 2 in this thesis.
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where B and Z are two independent random variables with distributions fβ and

N(0, 1), respectively; the expectation EB,Z(·) is taken with respect to both B and Z;

ηq(·; ·) is the proximal operator for the function ‖ · ‖qq3; and (σ̄, χ̄) is the unique pair

satisfying the following equations:

σ̄2 = σ2
ω +

1

δ
EB,Z [(ηq(B + σ̄Z; χ̄σ̄2−q)−B)2], (2.5)

λ = χ̄σ̄2−q
(

1− 1

δ
EB,Z [η′q(B + σ̄Z; χ̄σ̄2−q)]

)
, (2.6)

where η′q(·; ·) denotes the derivative of ηq with respect to its first argument.

The result for q = 1 has been proved in Bayati and Montanari (2012). The key

ideas of the proof for generalizing to q ∈ (1,∞) are similar to those of Bayati and

Montanari (2012). We describe the main proof steps in Chapter 2.5.4.

Theorem 2.2.3. Consider a special converging sequence {β(p), X(p), w(p)} where

the elements of β(p) are iid from fβ and the components of w(p) are iid from a zero-

mean distribution with variance σ2
w. For any given q ∈ [0, 1), suppose there exists a

random variable S such that |β̂1(λ, q)| < S for every value of p and E|S|2 <∞, then

under the assumptions of replica method (Rangan et al., 2012), almost surely

AMSE(λ, q, σw) = EB,Z [ηq(B + σ̄Z; χ̄σ̄2−q)−B]2, (2.7)

where B,Z, σ̄, χ̄, ηq(·; ·) are the same as in Theorem 2.2.2.

The proof, will be shown in Chapter 2.5.5, is a direct application of replica claim

in Rangan et al. (2012). The replica method is a widely accepted and powerful

heuristic method in statistical physics for analyzing large disordered systems (Mézard

et al., 1987). It has been adapted to attack theoretical problems in other fields

like compressed sensing (Rangan et al., 2012) and network analysis (Decelle et al.,

2011). Some of its important predictions have been rigorously proved (Bayati and

3Proximal operator of ‖ · ‖qq is defined as ηq(u;χ) , arg minz
1
2 (u − z)2 + χ|z|q. For further

information on these functions, refer to Chapter 2.5.3.
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Montanari, 2012; Mossel et al., 2015; Massoulié, 2014; Mossel et al., 2013). Theorem

2.2.3 relies on the replica assumptions. The validation of its full rigorousness remains

an open problem. Nevertheless, we are able to design an approximate message passing

algorithm for solving (1.1) with 0 ≤ q < 1, and rigorously show the asymptotic mean

square error of the output from the algorithm takes the same expression as in Theorem

2.2.3. Refer to Zheng et al. (2017) for the details.

Theorems 2.2.2 and 2.2.3 provide the first step in our analysis of LQLS. We first

calculate σ̄ and χ̄ from (2.5) and (2.6). Then, incorporating σ̄ and χ̄ in (2.7) yields

the asymptotic mean square error. Given the distribution fβ, the variance of the error

σ2
w, the number of response variables (normalized by the number of predictors) δ, and

the regularization parameter λ, it is straightforward to write a computer program to

find the solution of (2.5) and (2.6) and then compute the value of AMSE. However, it

is needless to say that this approach does not shed much light on the performance of

bridge regression estimates, since there are many factors involved in the computation

and each affects the result in a non-trivial fashion. In the rest of this chapter, we

would like to perform an analytical study on the solution of (2.5) and (2.6) and obtain

an explicit characterization of AMSE in the small-error regime.

2.2.2 Optimal tuning of λ

The performance of LQLS, as defined in (1.1), depends on the tuning parameter λ.

We consider the value of λ that gives the minimum AMSE. Let λ∗,q denote the value

of λ that minimizes AMSE given in (2.7). Then LQLS is solved with this specific

value of λ, i.e.,

β̂(λ∗,q, q, p) ∈ arg min
β

1

2
‖y −Xβ‖2

2 + λ∗,q‖β‖qq. (2.8)

Note that this is the best performance that LQLS can achieve in terms of the AMSE.

Theorems 2.2.2 and 2.2.3 enable us to evaluate this optimal AMSE of LQLS for every

q ∈ [0,∞). The key step is to compute the solution of (2.5) and (2.6) with λ = λ∗,q.
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Since λ∗,q has to be chosen optimally, it seemingly causes an extra complication for

our analysis. However, as we show in the following corollary, the study of Equations

(2.5) and (2.6) can be simplified to some extent.

Corollary 2.2.4. Suppose that β̂(λ∗,q, q, p) is the solution of LQLS defined in (2.8),

and the conditions in Theorems 2.2.2 and 2.2.3 hold for q ≥ 1 and 0 ≤ q < 1,

respectively. Then for any q ∈ [0,∞),

AMSE(λ∗,q, q, σw) = min
χ≥0

EB,Z(ηq(B + σ̄Z;χ)−B)2, (2.9)

where B and Z are two independent random variables with distributions fβ and

N(0, 1), respectively; and σ̄ is the unique solution of the following equation:

σ̄2 = σ2
ω +

1

δ
min
χ≥0

EB,Z [(ηq(B + σ̄Z;χ)−B)2]. (2.10)

The proof of Corollary 2.2.4 is shown in Chapter 2.5.6. Corollary 2.2.4 enables us

to focus the analysis on a single equation (2.10), rather than two equations (2.5) and

(2.6). The results we will present are mainly based on investigating the solution of

(2.10).

2.2.3 Second-order expansions of asymptotic mean square

error

Since we have been focused on the sparsity structure of β, in the rest of this chapter we

assume that the distribution, to which the empirical distribution of β ∈ Rp converges,

has the form

fβ(b) = (1− ε)δ0(b) + εg(b),

where δ0(·) denotes a point mass at zero, and g(·) is a generic distribution that does

not have any point mass at 0. Here, the mixture proportion ε ∈ (0, 1) is a fixed

number that represents the sparsity level of β. The smaller ε is, the sparser β will be.

The distribution g(b) specifies the values of non-zero components of β. We will use G
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to denote a random variable having such a distribution. We also use Z to represent

a standard normal. Since our results and proof techniques look very different for

0 ≤ q < 1, q = 1, q > 1, we study these cases separately.

2.2.3.1 Results for q > 1

Our first result is concerned with the optimal AMSE of LQLS for q > 1, when the

number of response variables is larger than the number of predictors p, i.e., δ > 1.

Theorem 2.2.5. Suppose ε ∈ (0, 1), δ > 1. For 1 < q < 2, if P(|G| ≤ t) = O(t) (as

t→ 0) and E|G|2 <∞, we have

AMSE(λ∗,q, q, σw) =
σ2
w

1− 1/δ
− δq+1(1− ε)2(E|Z|q)2

(δ − 1)q+1εE|G|2q−2
σ2q
w + o(σ2q

w ). (2.11)

For q = 2, if E|G|2 <∞ we have

AMSE(λ∗,q, q, σw) =
σ2
w

1− 1/δ
− δ3σ4

w

(δ − 1)3εE|G|2
+ o(σ4

w).

For q > 2, if E|G|2q−2 <∞ then

AMSE(λ∗,q, q, σw) =
σ2
w

1− 1/δ
− δ3ε(q − 1)2(E|G|q−2)2σ4

w

(δ − 1)3E|G|2q−2
+ o(σ4

w).

The proof of the result is presented in Chapter 2.5.7. There are several interesting

features of this result that we would like to discuss: (i) The second dominant term

of AMSE is negative. This means that the actual AMSE is smaller than the one

predicted by the first order term, especially for smaller values of q. (ii) Neither the

sparsity level nor the distribution of the non-zero components of β appear in the first

dominant term, i.e. σ2
w

1−1/δ
. As we will discuss later in this section, the first dominant

term is the one that specifies the phase transition curve. Hence, these calculations

show a peculiar feature of phase transition analysis we discussed in Chapter 2.1, that

the phase transition of q ∈ (1,∞) is neither affected by non-zero components of β or

the sparsity level. However, we see that both factors come into play in the second
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dominant term. (iii) For the fully dense coefficient, i.e. ε = 1, (2.11) may imply that

for 1 < q < 2,

AMSE(λ∗,q, q, σw) =
σ2
w

1− 1/δ
+ o(σ2q

w ).

Hence, we require a different analysis to obtain the second dominant term (with

different orders). We present a full discussion for non-sparse coefficients in Chapter

3. (iv) For ε < 1, the choice of q ∈ (1,∞) does not affect the first dominant term.

That is the reason why all the values of q ∈ (1,∞) share the same phase transition

curve. However, the value of q has a major impact on the second dominant term.

In particular, as q approaches 1, the order of the second dominant term in terms of

σw gets closer to that of the first dominant term. This means that in any practical

setting, phase transition analysis may lead to misleading conclusions. Specifically,

in contrast to the conclusion from phase transition analysis that q ∈ (1,∞) have

the same performance, the second order expansion enables us to conclude that, for

q ∈ (1, 2] the closer to 1 the value of q is, the better its performance will be. And

interestingly such monotonicity does not hold any more beyond q = 2. Our next

theorem discusses the AMSE when δ < 1.

Theorem 2.2.6. Suppose E|G|2 <∞, then for q > 1 and δ < 1,

AMSE(λ∗,q, q, 0) > 0. (2.12)

The proof of this theorem is presented in Chapter 2.5.8. Theorems 2.2.5 and 2.2.6

together show a notion of phase transition. For δ > 1, as σw → 0, AMSE = O(σ2
w),

and hence it will go to zero, while AMSE 9 0 for δ < 1. In fact, the phase transition

curve δ = 1 can be derived from the first dominant term in the expansion of AMSE.

If δ = 1, the first dominant term is infinity and there will be no successful recovery,

while it becomes zero when σw = 0 if δ > 1. A more rigorous justification can be

found in the proof of Theorems 2.2.5 and 2.2.6. Therefore, we may conclude that

the first order term contains the phase transition information. Moreover, the derived
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second order term offers us additional important information regarding the accuracy

of the phase transition analysis. To provide a comprehensive understanding of these

two terms, in Chapter 2.3 we will evaluate the accuracy of first and second order

approximations to AMSE through numerical studies.

2.2.3.2 Results for q = 1

So far we have studied the case q > 1. In this section, we study q = 1, a.k.a.

LASSO. In Theorems 2.2.5 and 2.2.6, we have characterized the behavior of LQLS

with q ∈ (1,∞) for a general class of G. It turns out that the distribution of G has

a more serious impact on the second dominant term of AMSE for LASSO. We thus

analyze it in two different settings. Our first theorem considers the distributions that

do not have any mass around zero.

Theorem 2.2.7. Suppose P(|G| > µ) = 1 with µ being a positive constant and

E|G|2 <∞, then for δ > M1(ε)4

AMSE(λ∗,1, 1, σw) =
δM1(ε)

δ −M1(ε)
σ2
w − |o

(
e

(M1(ε)−δ)µ̃2

2δσ2
w

)
|, (2.13)

where µ̃ is any positive constant smaller than µ.

The proof of Theorem 2.2.7 is given in Chapter 2.5.2. Different from the case for

LQLS with q ∈ (1,∞), we have not derived the exact analytical expression of the

second dominant term for LASSO. However, since it is exponentially small, the first

order term (or phase transition analysis) is sufficient for evaluating the performance

of LASSO in the small-error regime. This will be further confirmed by the numerical

studies in Chapter 2.3. Below is our result for the distributions of G that have more

mass around zero.

4Recall M1(ε) = infχ≥0(1− ε)Eη21(Z;χ) + ε(1 + χ2) with Z ∼ N(0, 1).
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Theorem 2.2.8. Suppose that P(|G| ≤ t) = Θ(t`) (as t → 0) with ` > 0 and

E|G|2 <∞, then for δ > M1(ε),

−|Θ(σ`+2
w )| & AMSE(λ∗,1, 1, σw)− δM1(ε)

δ −M1(ε)
σ2
w

& −|Θ(σ`+2
w )| ·

(
log log . . . log︸ ︷︷ ︸

m times

(1/σw)
)`/2

,

where m is an arbitrary but finite natural number.

The proof of this theorem can be found in Chapter 2.5.9. It is important to

notice the difference between Theorems 2.2.7 and 2.2.8. The first point we would

like to emphasize is that the first dominant terms are the same in both cases. The

second dominant terms are different though. Similar to LQLS for q > 1, the second

dominant terms are in fact negative. Hence, the actual AMSE will be smaller than

the one predicted by the first dominant term. Furthermore, note that the magnitude

of the second dominant term in Theorem 2.2.8 is much larger than that in Theorem

2.2.7. This seems intuitive. LASSO tends to shrink the parameter coefficients towards

zero, and hence, if the true β has more mass around zero, the AMSE will be smaller.

The more mass the distribution of G has around zero, the better the second order

term will be. Our next theorem discusses what happens if δ < M1(ε).

Theorem 2.2.9. Suppose that E|G|2 <∞. Then for δ < M1(ε),

AMSE(λ∗,1, 1, 0) > 0. (2.14)

The proof is presented in Chapter 2.5.10. Similarly as we discussed in Chapter

2.2.3.1, Theorems 2.2.7, 2.2.8 and 2.2.9 together imply the phase transition curve

of LASSO. Such information can be obtained from the first dominant term in the

expansion of AMSE as well.
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2.2.3.3 Results for 0 ≤ q < 1

Theorem 2.2.10. Suppose P(|G| > µ) = 1 with µ being a positive constant and

E|G|2 <∞, then for 0 < q < 1, δ > ε,

AMSE(λ∗,q, q, σw) =
εδ

δ − ε
σ2
w +

ε(4− 4q)2−qq2E|G|2q−2δ3−q

c4−2q
q (δ − ε)3−q

(log 1/σw)2−qσ4−2q
w

+o((log 1/σw)2−qσ4−2q
w ),

where cq = [2(1− q)]
1

2−q + q[2(1− q)]
q−1
2−q .

Theorem 2.2.11. Suppose P(|G| > µ) = 1 with µ = supv{v : P(|G| > v) = 1} > 0

and E|G|2 <∞, then for δ > ε,

AMSE(λ∗,0, 0, σw) =
εδ

δ − ε
σ2
w + o(e

−µ̃2

2σ2
w ),

where µ̃ is any constant that is smaller than µ
2

√
δ−ε
δ

.

The proof of Theorems 2.2.10 and 2.2.11 can be found in Chapters 2.5.11 and

2.5.12, respectively. There are again several interesting features of the above two

results that we would like to emphasize. (i) The first dominant term in the expansion

of AMSE is the same for 0 ≤ q < 1 and is smaller than that for LASSO. This

is consistent with the phase transition analysis we presented in Chapter 2.1. (ii)

The second dominant term is positive for 0 < q < 1. In other words, the AMSE

that is predicted by the first dominant term is smaller than the actual AMSE. Also,

ignoring the logarithmic factors, the second dominant terms is proportional to σ4−2q
w

for 0 < q < 1 and is exponentially small for q = 0. Hence, `0-regularization has

the best performance, and as q gets closer to 0, the performance gets better. (iii)

The above two theorems also reveal the impact of the distribution of the non-zero

components of β, i.e. G, on AMSE(λ∗,q, q, σw). Unlike the phase transition analysis,

to obtain the above results, we have made some assumptions on G. We believe that

the distribution of G has a major effect on the second dominant term for q = 0. We

leave a delicate analysis like Theorem 2.2.8 as a future work.
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Theorem 2.2.12. Suppose that E|G|2 <∞. Then for q ∈ [0, 1), δ < ε,

AMSE(λ∗,q, q, 0) > 0.

The proof is presented in Chapter 2.5.13. Theorems 2.2.10, 2.2.11 and 2.2.12 to-

gether fully characterize the phase transition diagram for 0 ≤ q < 1.

Remark: For 0 ≤ q < 1, the optimization problem (1.1) is non-convex and comput-

ing the global optimum β̂(λ, q) is NP-hard. Hence in addition to Theorems 2.2.10,

2.2.11 and 2.2.12 concerned with β̂(λ, q), an interesting and important problem is to

characterize the performance of some practical algorithms aimed for solving (1.1).

Towards that goal, we have proposed an approximate message passing algorithm for

(1.1) and given a comprehensive analysis of its statistical properties under different

initializations. Refer to Zheng et al. (2017) for all the relevant results.

2.3 Numerical experiments

The analysis of AMSE we presented in Chapter 2.2.3 is performed as σw → 0. For

such asymptotic analysis, it would be interesting to check the approximation accuracy

of the first and second order expansions of AMSE over a reasonable range of σw.

Towards this goal, this section performs several numerical studies to (i) evaluate

the accuracy of the first and second order expansions discussed in Chapter 2.2.3,

(ii) discover situations in which the first order approximation is not accurate (for

reasonably small noise levels) while the second order expansion is, and (iii) identify

situations where both first and second orders are inaccurate and propose methods for

improving the approximations. Chapters 2.3.1 and 2.3.2 study the performance of

LASSO and other bridge regression estimators with 1 < q ≤ 2 respectively.
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2.3.1 LASSO

One of the conclusions from Theorem 2.2.7 is that the first dominant term provides a

good approximation of AMSE for the LASSO problem when the distribution of G does

not have a large mass around 0. To test this claim we conduct the following numerical

experiment. We set the parameters of our problem instances in the following way:

1. δ can take any value in {1.1, 1.5, 2}.

2. ε can take values in {0.25, 0.7}.

3. σw ranges within the interval [0, 0.25].

4. the distribution of G is specified as g(b) = 0.5δ1(b) + 0.5δ−1(b), where δa(·)

denotes a point mass at point a.

We then use the formula in Corollary 2.2.4 to calculate AMSE(λ∗,1, 1, σw). Finally,

we compare AMSE(λ∗,1, 1, σw), computed numerically from (2.9) and (2.10), with its

first order approximation provided in Theorem 2.2.7. The results of this experiment

are summarized in Figure 2.2. As is clear in this figure, the first order expansion gives

a very good approximation for AMSE over a large range of σw.

2.3.2 Bridge regression estimators with 1 < q ≤ 2

In this numerical experiment, we would like to vary σw and see under what conditions

our first order or second order expansions can lead to accurate approximation of

AMSE for a wide range of σw. Throughout this section, we set the distribution of

G to g(b) = 0.5δ1(b) + 0.5δ−1(b), as we did in Chapter 2.3.1. We then investigate

different conditions by specifying various values of other parameters in our problem

instances. The expansion of AMSE for q > 1 is presented in Theorem 2.2.5. For

q ∈ (1, 2), recall the two terms in the expansion below

AMSE(λ∗,q, q, σw) =
σ2
w

1− 1/δ
− δq+1(1− ε)2(E|Z|q)2

(δ − 1)q+1εE|G|2q−2
σ2q
w + o(σ2q

w ). (2.15)



CHAPTER 2. OVERCOMING THE LIMITATIONS OF PHASE TRANSITION
VIA A SECOND-ORDER LOW NOISE SENSITIVITY ANALYSIS 22

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

σ
w

M
S

E

 

 

true value
first order approximation

(a)

0 0.05 0.1 0.15 0.2 0.25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

σ
w

M
S

E

 

 

true value
first order approximation

(b)

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

σ
w

M
S

E

 

 

true value
first order approximation

(c)

0 0.05 0.1 0.15 0.2 0.25
0

0.01

0.02

0.03

0.04

0.05

0.06

σ
w

M
S

E

 

 

true value
first order approximation

(d)

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

σ
w

M
S

E

 

 

true value
first order approximation

(e)

0 0.05 0.1 0.15 0.2 0.25
0

0.01

0.02

0.03

0.04

0.05

0.06

σ
w

M
S

E

 

 

true value
first order approximation

(f)

Figure 2.2: Plots of actual AMSE and its first-order approximations for (a) δ = 1.1

and ε = 0.7, (b) δ = 1.1 and ε = 0.25, (c) δ = 1.5 and ε = 0.7, (d) δ = 1.5 and

ε = 0.25, (e) δ = 2 and ε = 0.7, (f) δ = 2 and ε = 0.25.
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Figure 2.3: Plots of actual AMSE and its approximations for (a) δ = 5, ε = 0.7, q =

1.5, (b) δ = 4, ε = 0.7, q = 1.6, (c) δ = 5, ε = 0.6, q = 1.8.

We expect the first order term to present a good approximation over a reasonably

large range of σw, when the second order term is sufficiently small. According to the

analytical form of the second order term in (2.15), it is small if the following three

conditions hold simultaneously: (i) δ is not close to 1, (ii) ε is not small, and (iii) q

is not close to 1. Our first numerical result shown in Figure 2.3 is in agreement with

this claim. In this simulation we have set three different cases for δ, ε and q so that

they satisfy the above three conditions. The non-zero elements of β are independently

drawn from 0.5δ1(b) + 0.5δ−1(b). As demonstrated in this figure, the first order term

approximates AMSE accurately. Another interesting finding is that the second-order

expansion provides an even better approximation.

To understand the limitation of the first order approximation, we consider the

cases in which the second order term is large and suggests that at least the first order

approximation is not necessarily good. This happens when either δ decreases to 1, ε

decreases to 0 or q decreases to 1. The settings of our experiments and the results

are summarized below.

1. We keep q = 1.5 and ε = 0.7 fixed and study different values of δ ∈ {5, 2, 1.5, 1.1}.

Figure 2.4 summarizes the results of this simulation. As is clear in this figure

(and is consistent with the message of the second dominant term), as we decrease

δ the first order approximation becomes less accurate. The second order ap-
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Figure 2.4: Plots of actual AMSE and its approximations for q = 1.5, ε = 0.7 with

(a) δ = 5, (b) δ = 2, (c) δ = 1.5 and (d) δ = 1.1.

proximation in these cases is more accurate than the first order approximation.

However interestingly, the second order approximation becomes less accurate as

δ decreases too. These observations suggest that to have a good approximation

for the values of δ that are very close to 1, although the second order approx-

imation outperforms the first order, it may not be sufficient and higher order

terms are required. Such terms can be derived with strategies similar to the

ones we used in the proof of Theorem 2.2.5. Note that the insufficiency of the

second order expansion partially results from the wide range of σw ∈ [0, 0.25].

If we evaluate the approximation when σw is small enough, we will expect the

success of the second-order expansion.

2. In our second simulation, we fix δ = 5, ε = 0.4 and let q ∈ {1.8, 1.5, 1.1}. All

the simulation results are summarized in Figure 2.5. As we expected, the first
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Figure 2.5: Plots of actual AMSE and its approximations for δ = 5, ε = 0.4 with (a)

q = 1.8, (b) q = 1.5, and (c) q = 1.1.

order approximation becomes less accurate when q decreases. Furthermore, we

notice that when q is very close to 1 (check q = 1.1 in the figure), even the

second order approximation is not necessarily good. This again calls for higher

order approximation of the AMSE.

3. For the last simulation, we fix δ = 5, q = 1.8, and let ε ∈ {0.7, 0.5, 0.3, 0.1}. Our

simulation results are presented in Figure 2.6. We see that as ε decreases the first

order approximation becomes less accurate. The second order approximation

is always better than the first one. Moreover, we observe that when ε is very

close to 0 (check ε = 0.1 in the figure), even the second order approximation is

not necessarily sufficient. As we discussed in the previous two simulations, we

might need higher order approximation of the AMSE in such cases.

2.3.3 Discussion

Firstly, our numerical studies confirm that the first order term gives good approxi-

mations of AMSE for LASSO in the case where the distribution of non-zero elements

of β is bounded away from zero. Secondly, as the numerical results for 1 < q ≤ 2

demonstrate, while the second order approximation always improves over the first or-

der term and works well in many cases, in the following situations it may not provide
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Figure 2.6: Plots of actual AMSE and its approximations for δ = 5 and q = 1.8 with

(a) ε = 0.7, (b) ε = 0.5, (c) ε = 0.3, and (d) ε = 0.1.

very accurate evaluation of AMSE: (i) when δ is close to 1, (ii) ε is close to zero,

and (iii) q is close to 1. In such cases, the value of the second order term becomes

large and hence the approximation is only accurate for very small value of σw. The

remedy that one can propose is to derive higher order expansions. Such terms can be

calculated with the same strategy that we used to obtain the second dominant term.

2.4 Related works

2.4.1 Other phase transition analyses and n/p → δ asymp-

totic results

The asymptotic framework that we considered in this thesis evolved in a series of

papers by Donoho and Tanner (Donoho and Tanner, 2005b; Donoho, 2004, 2006b;

Donoho and Tanner, 2005a). This framework was used before on similar problems in
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engineering and physics (Guo and Verdú, 2005; Tanaka, 2002; Coolen, 2005). Donoho

and Tanner characterized the phase transition curve for LASSO and some of its vari-

ants. Inspired by this framework, many researchers started exploring the performance

of different algorithms or estimates under this asymptotic settings (STOJNIC, 2009;

Amelunxen et al., 2014; Thrampoulidis et al., 2016; El Karoui et al., 2013; Karoui,

2013; Donoho and Montanari, 2013; Donoho et al., 2013; Donoho and Montanari,

2015; Bradic and Chen, 2015; Donoho et al., 2011; Zheng et al., 2017; Rangan et al.,

2012; Krzakala et al., 2012; Bayati and Montanari, 2011, 2012).

Our work performs the analysis of LQLS under such asymptotic framework. Also,

we adopt the message passing analysis that was developed in a series of papers

(Donoho et al., 2011, 2009; Maleki, 2010; Bayati and Montanari, 2011, 2012). The

notion of phase transition we consider is similar to the one introduced in Donoho

et al. (2011). However, there are three major differences: (i) The analysis of Donoho

et al. (2011) is performed for LASSO, while we have generalized the analysis to any

LQLS with q ∈ [0,∞). (ii) The analysis of Donoho et al. (2011) is performed on the

least favorable distribution for LASSO, while here we characterize the effect of the

distribution of G on the AMSE as well. (iii) Finally, Donoho et al. (2011) is only

concerned with the first dominant term in AMSE of LASSO, while we derive the

second dominant term whose importance has been discussed in the last few sections.

Another line of research that has connections with our analysis for q ≥ 1 is pre-

sented in a series of papers (Oymak et al., 2013; Oymak and Hassibi, 2016; Thram-

poulidis et al., 2016). In Thrampoulidis et al. (2016) the authors have derived a

minimax formulation that (if it has a unique solution and is solved) can give an

accurate characterization of the asymptotic mean square error. Compared with The-

orem 2.2.2 in this thesis, that result works for more general penalized M-estimators,

while Theorem 2.2.2 holds for general pseudo-Lipschitz loss functions. Furthermore,

Oymak et al. (2013); Oymak and Hassibi (2016) proposed a geometric approach to

characterize limσ2
w→0

‖β̂−β‖22
σ2
w

. We can consider such result as the first-order expansion
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(or equivalently phase transition analysis) that we discussed in this chapter.

Several researchers have also worked on the analysis of LQLS for q < 1 (Kabashima

et al., 2009; Rangan et al., 2012; Stojnic, 2013; Wang et al., 2011). Both Wang et al.

(2011) and Stojnic (2013) performed phase transition analysis. The characterization

of phase transition curve in Stojnic (2013) is only accurate for the case q = 0. Also,

the analysis of Wang et al. (2011) is sharp only for δ → 1. Our work derives the

exact value of the curve for any value of 0 ≤ q < 1 and present accurate calculations

of AMSE in the presence of noise. Unlike the two papers, our analysis is based on

replica method and hence is not fully rigorous yet. Replica method has been employed

for studying (1.1) in Kabashima et al. (2009); Rangan et al. (2012) to derive the

fixed point equations that describe the performance of β̂(λ, q) (under the asymptotic

settings). To provide fair comparison of the performance of β̂(λ, q) among different

q ∈ [0, 1), one should analyze the fixed points of these equations under the optimal

tuning of the parameter λ. Such analysis is missing in both papers.

2.4.2 Other analysis frameworks

One of the first papers that compared the performance of penalization techniques is

Hoerl and Kennard (1970) which showed that there exists a value of λ with which

Ridge regression, i.e. LQLS with q = 2, outperforms the vanilla least squares estima-

tor. Since then, many more regularizers have been introduced to the literature each

with a certain purpose. For instance, we can mention LASSO (Tibshirani, 1996), elas-

tic net (Zou and Hastie, 2005), SCAD (Fan and Li, 2001), bridge regression (Frank

and Friedman, 1993), and more recently SLOPE (Bogdan et al., 2015). There has

been a large body of work on studying all these regularization techniques. We parti-

tion all the work into the following categories and explain what in each category has

been done about the bridge regression:

(i) Simulation results: One of the main motivations for our work comes from the

nice simulation study of the bridge regression presented in Fu (1998). This
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paper finds the optimal values of λ and q by generalized cross validation and

compares the performance of the resulting estimator with both LASSO and

ridge. The main conclusion is that the bridge regression can outperform both

LASSO and ridge. Given our results we see that if sparsity is present in β, then

smaller values of q perform better than ridge (in their second dominant term).

(ii) Asymptotic study: Knight and Fu (Knight and Fu, 2000) studied the asymptotic

properties of bridge regression under the setting where n→∞, while p is fixed.

They established the consistency and asymptotic normality of the estimates

under quite general conditions. Huang et al. (Huang et al., 2008) studied LQLS

for q < 1 under a high-dimensional asymptotic setting in which p grows with

n but is still assumed to be less than n. They not only derived the asymptotic

distribution of the estimators, but also proved LQLS has oracle properties in

the sense of Fan and Li (Fan and Li, 2001). They have also considered the

case p > n, and have shown that under partial orthogonality assumption on

X, bridge regression distinguishes correctly between covariates with zero and

non-zero coefficients. Note that under the asymptotic regime in this thesis,

both LASSO and the other bridge estimators have false discoveries (Su et al.,

2015) and possibly non-zero AMSE. Hence, they may not provide consistent

estimates. Finally, the performance of LASSO under a variety of conditions has

been studied extensively. We refer the reader to Bühlmann and Van De Geer

(2011) for the review of those results.

(iii) Non-asymptotic bounds: One of the successful approaches that has been em-

ployed for studying the performance of regularization techniques such as LASSO

is the minimax analysis (Bickel et al., 2009; Raskutti et al., 2011). We refer the

reader to Bühlmann and Van De Geer (2011) for a complete list of references

on this direction. In this minimax approach, a lower bound for the prediction

error or mean square error of any estimation technique is first derived. Then a
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specific estimate, like the one returned by LASSO, is considered and an upper

bound is derived assuming the design matrices satisfy certain conditions such

as restrictive eigenvalue assumption (Bickel et al., 2009; Koltchinskii, 2009),

restricted isometry condition (Candès, 2008), or coherence conditions (Bunea

et al., 2007). These conditions can be confirmed for matrices with iid subgaus-

sian elements. Based on these evaluations, if the order of the upper bound for

the estimate under study matches the order of the lower bound, we can claim

that the estimate (e.g. LASSO) is minimax rate-optimal. This approach has

some advantages and disadvantages compared to our asymptotic approach: (i)

It works under more general conditions. (ii) It provides information for any

sample size. The price paid in the minimax analysis is that the constants de-

rived in the results are usually not sharp and hence many schemes have similar

guarantees and cannot be compared to each other. Our asymptotic framework

looses the generality and in return gives sharp constants that can then be used

in evaluating and comparing different schemes as we did in this chapter. Along

similar directions, Koltchinskii (2009) has studied the penalized empirical risk

minimization with `q penalties for the values of q ∈ [1, 1 + 1
log p

] and has found

upper bounds on the excess risk of these estimators (oracle inequalities). Char-

trand and Staneva (2008) has employed the popular analysis tool,i.e., restricted

isometry property and derived a lower bound for the number of measurements

required by (1.1) to recover β accurately. Similar to minimax analysis, although

the results of these analyses enjoy generality, they suffer from loose constants

that impede an accurate comparisons of different bridge estimators.
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2.5 Proofs of the main results

2.5.1 Organization

This section contains all the proofs of the results that have not been covered in this

chapter. We outline the structure of this section to help readers find the materials

they are interested in. The organization is as follows:

1. Chapter 2.5.2 includes the proof of Theorem 2.2.7. Although some techniques

used in the proofs of the most important results including Theorems 2.2.5,

2.2.7, 2.2.8, 2.2.10 and 2.2.11 are quite different, the roadmap remains the

same. Hence we put ahead the proof of Theorem 2.2.7, the easiest one, and

suggest readers to first read it. Once this relatively simple proof is clear, the

other more complicated ones will be easier to read.

2. Chapter 2.5.3 covers several important properties of the proximal operator func-

tion ηq(u;χ). These properties will later be extensively used in the proofs.

3. Chapter 2.5.4 proves Theorem 2.2.2. This theorem characterizes the asymptotic

mean square error of LQLS estimators with q ∈ [1,∞).

4. Chapter 2.5.5 proves Theorem 2.2.3. This theorem characterizes the asymptotic

mean square error of LQLS estimators with q ∈ [0, 1).

5. Chapter 2.5.6 includes the proof of Corollary 2.2.4. Such corollary provides us

a simplified formula of asymptotic mean square error under optimal tuning.

6. Chapter 2.5.7 includes the proof of Theorem 2.2.5, one of the main results in this

chapter. The theorem derives the second-order expansion of AMSE(λ∗,q, q, σw)

for q ∈ (1,∞). We recommend interested readers to read the proof in Chapter

2.5.2 before Chapter 2.5.7.
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7. Chapter 2.5.8 contains the proof of Theorem 2.2.6. This theorem identifies the

necessary condition for successful recovery with q ∈ (1,∞). Phase transition is

implied by this theorem together with Theorem 2.2.5.

8. Chapter 2.5.9 proves Theorem 2.2.8. The proof of this theorem is along the same

lines as the proof of Theorem 2.2.7 presented in Chapter 2.5.2. We suggest the

reader to study that section before studying this one.

9. Chapter 2.5.10 proves Theorem 2.2.9. The proof is essentially the same as the

proof of Theorem 2.2.6. Since we do not repeat the detailed arguments, readers

may want to study Chapter 2.5.8 first.

10. Chapter 2.5.11 includes the proof of Theorem 2.2.10. The theorem derives the

second-order expansion of AMSE for q ∈ (0, 1).

11. Chapter 2.5.12 includes the proof of Theorem 2.2.11. The theorem derives the

second-order expansion of AMSE for q = 0.

12. Chapter 2.5.13 proves Theorem 2.2.12. This theorem identifies the necessary

condition for successful recovery with q ∈ [0, 1). The proof is similar to that of

Theorem 2.2.6. Since we do not repeat the arguments, we refer the reader to

Chapter 2.5.8.

2.5.2 Proof of Theorem 2.2.7

2.5.2.1 Roadmap of the proof

Since the proof of this result has several steps and is long, we lay out the roadmap of

the proof here to help readers navigate through the details. According to Corollary

2.2.4 (let us accept Corollary 2.2.4 for the moment; its proof will be fully presented

in Chapter 2.5.6), in order to evaluate AMSE(λ∗,1, 1, σw) as σw → 0, the crucial step
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is to characterize σ̄ from the following equation

σ̄2 = σ2
ω +

1

δ
min
χ≥0

EB,Z [(η1(B + σ̄Z;χ)−B)2]. (2.16)

To study (2.16), the key part is to analyze the term minχ≥0 EB,Z [(η1(B+σ̄Z;χ)−B)2].

A useful fact that we will prove in Chapter 2.5.2.4 can simplify the analysis of (2.16):

The condition δ > M1(ε) implies that σ̄ → 0, as σw → 0. Hence one of the main steps

of this proof is to derive the convergence rate of minχ≥0 EB,Z [(η1(B + σZ;χ)− B)2],

as σ → 0. Once we obtain that rate, we then characterize the convergence rate for σ̄

as σw → 0 from (2.16). Finally we connect σ̄ to AMSE(λ∗,1, 1, σw) based on Corollary

2.2.4, and derive the expansion for AMSE(λ∗,1, 1, σw) as σw → 0. We introduce the

following notations:

R(χ, σ) = E[(η1(B/σ + Z;χ)−B/σ)2], χ∗(σ) = arg min
χ≥0

R(χ, σ),

where we have suppressed the subscript B,Z in E for notational simplicity. According

to Mousavi et al. (2017), R(χ, σ) is a quasi-convex function of χ and has a unique

global minimizer. Hence χ∗(σ) is well defined. It is straightforward to confirm

min
χ≥0

EB,Z [(η1(B + σZ;χ)−B)2] = σ2R(χ∗(σ), σ).

Throughout the proof, we may write χ∗ for χ∗(σ) when no confusion is caused, and we

use F (g) to denote the distribution function of |G|. The rest of the proof of Theorem

2.2.7 is organized in the following way:

1. We first prove R(χ∗(σ), σ)→M1(ε), as σ → 0 in Chapter 2.5.2.2.

2. We further bound the convergence rate of R(χ∗(σ), σ) in Chapter 2.5.2.3.

3. We finally utilize the convergence rate bound derived in Chapter 2.5.2.3 to char-

acterize the convergence rate of σ̄ and then derive the expansion for AMSE(λ∗,1, 1, σw)

in Chapter 2.5.2.4.



CHAPTER 2. OVERCOMING THE LIMITATIONS OF PHASE TRANSITION
VIA A SECOND-ORDER LOW NOISE SENSITIVITY ANALYSIS 34

2.5.2.2 Proof of R(χ∗(σ), σ)→M1(ε), as σ → 0

Our goal in this section is to prove the following lemma.

Lemma 2.5.1. Suppose E|G|2 <∞, then limσ→0 χ
∗(σ) = χ∗∗ and

lim
σ→0

R(χ∗(σ), σ) = (1− ε)E(η1(Z;χ∗∗))2 + ε(1 + (χ∗∗)2),

where χ = χ∗∗ is the unique minimizer of (1− ε)E(η1(Z;χ))2 + ε(1 +χ2) over [0,∞),

and Z ∼ N(0, 1).

Proof. By taking derivatives, it is straightforward to verify that (1− ε)E(η1(Z;χ))2 +

ε(1+χ2), as a function of χ over [0,∞), is strongly convex and has a unique minimizer.

Hence χ∗∗ is well defined.

We first claim that χ∗(σn) is bounded for any given sequence σn → 0. Otherwise

there exists an unbounded subsequence χ∗(σnk) → +∞ with σnk → 0. Since the

distribution of G does not have point mass at zero and

η1(G/σnk + Z;χ∗(σnk)) = sign(G/σnk + Z)(|G/σnk + Z| − χ∗(σnk))+,

it is not hard to conclude that

|η1(G/σnk + Z;χ∗(σnk))−G/σnk | → +∞, a.s.

By Fatou’s lemma, we then have

R(χ∗(σnk), σnk) ≥ εE(η1(G/σnk + Z;χ∗(σnk))−G/σnk)2 → +∞. (2.17)

On the other hand, the optimality of χ∗(σnk) implies

R(χ∗(σnk), σnk) ≤ R(0, σnk) = 1,

contradicting the unboundedness in (2.17).

We next show the sequence χ∗(σn) converges to a finite constant, for any σn → 0.

Taking a convergent subsequence χ∗(σnk), due to the boundedness of χ∗(σn), the limit
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of the subsequence is finite. Call it χ̃. Note that

E(η1(G/σnk + Z;χ∗(σnk))−G/σnk)2

= 1 + E(η1(G/σnk + Z;χ∗(σnk))−G/σnk − Z)2 +

2EZ(η1(G/σnk + Z;χ∗(σnk))−G/σnk − Z).

Since η1(u;χ) = sign(u)(|u| − χ)+, we have the following three inequalities:

|η1(Z;χ∗(σnk))|2 ≤ |Z|2,

(η1(G/σnk + Z;χ∗(σnk))−G/σnk − Z)2 ≤ (χ∗(σnk))
2,

|Z(η1(G/σnk + Z;χ∗(σnk))−G/σnk − Z)| ≤ |Z|χ∗(σnk).

Furthermore, all the terms on the right hand side of the above inequalities are in-

tegrable. Therefore we can apply the Dominated Convergence Theorem (DCT) to

obtain

lim
nk→∞

R(χ∗(σnk), σnk)

= lim
nk→∞

(1− ε)E(η1(Z;χ∗(σnk)))
2 + εE(η1(G/σnk + Z;χ∗(σnk))−G/σnk)2

= (1− ε)E(η1(Z; χ̃))2 + ε(1 + χ̃2).

Moreover, since χ∗(σnk) is the optimal threshold value for R(χ, σnk),

lim
nk→∞

R(χ∗(σnk), σnk) ≤ lim
nk→∞

R(χ∗∗, σnk) = (1− ε)E(η1(Z;χ∗∗))2 + ε(1 + (χ∗∗)2)

Combining the last two limiting results, we can conclude χ̃ = χ∗∗. Since χ∗(σnk)

is an arbitrary convergent subsequence, this implies that the sequence χ∗(σn) con-

verges to χ∗∗ as well. This is true for any σn → 0, hence χ∗(σ) → χ∗∗, as σ → 0.

limσ→0R(χ∗(σ), σ) can then be directly derived.

2.5.2.3 Bounding the convergence rate of R(χ∗(σ), σ)

In Chapter 2.5.2.2 we have shown R(χ∗(σ), σ) → M1(ε) as σ → 0. Our goal in this

section is to bound the difference R(χ∗(σ), σ) −M1(ε). For that purpose, we first

bound the convergence rate of χ∗(σ).
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Lemma 2.5.2. Suppose P(|G| ≥ µ) = 1 with µ being a positive constant and E|G|2 <

∞, then as σ → 0

|χ∗(σ)− χ∗∗| = O(φ(−µ/σ + χ∗∗)),

where φ(·) is the density function of the standard normal.

Proof. Since χ = χ∗(σ) minimizes R(χ, σ), we have ∂R(χ∗(σ),σ)
∂χ

= 0, which gives the

following expression for χ∗(σ):

χ∗(σ) =
2(1− ε)φ(χ∗) + εEφ(χ∗ −G/σ) + εEφ(χ∗ +G/σ)

2(1− ε)
∫∞
χ∗
φ(z)dz + εE

∫∞
χ∗−G/σ φ(z)dz + εE

∫ −χ∗−G/σ
−∞ φ(z)dz

.

Letting σ go to zero on both sides in the above equation, we then obtain

χ∗∗ =
2(1− ε)φ(χ∗∗)

2(1− ε)
∫∞
χ∗∗

φ(z)dz + ε
,

where we have applied Dominated Convergence Theorem (DCT). To bound |χ∗(σ)−

χ∗∗|, we first bound the convergence rate of the terms in the expression of χ∗(σ). A

direct application of the mean value theorem leads to

φ(χ∗)− φ(χ∗∗) = (χ∗∗ − χ∗)χ̃φ(χ̃), (2.18)∫ ∞
χ∗

φ(z)dz −
∫ ∞
χ∗∗

φ(z)dz = (χ∗∗ − χ∗)φ( ˜̃χ), (2.19)

with χ̃, ˜̃χ being two numbers between χ∗ and χ∗∗. We now consider the other four

terms. By the condition P(|G| ≥ µ) = 1, we can conclude that for sufficiently small

σ

Eφ(χ∗ −G/σ) ≤ Eφ(χ∗ − |G|/σ) ≤ φ(µ/σ − χ∗), (2.20)

Eφ(χ∗ +G/σ) ≤ Eφ(χ∗ − |G|/σ) ≤ φ(µ/σ − χ∗). (2.21)

Moreover, it is not hard to derive

1− E
∫ ∞
χ∗−G/σ

φ(z)dz − E
∫ −χ∗−G/σ
−∞

φ(z)dz (2.22)

=

∫ ∞
0

∫ χ∗−g/σ

−χ∗−g/σ
φ(z)dzdF (g) ≤

∫ χ∗−µ/σ

−χ∗−µ/σ
φ(z)dz ≤ 2χ∗φ(µ/σ − χ∗),
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where to obtain the last two inequalities we have used the condition P(|G| ≥ µ) = 1

and the fact χ∗ − µ/σ < 0 for σ small enough. We are now in the position to bound

|χ∗(σ)− χ∗∗|. Define the following notations:

e1 , εE
∫ ∞
χ∗−G/σ

φ(z)dz + εE
∫ −χ∗−G/σ
−∞

φ(z)dz − ε,

e2 , εEφ(χ∗ −G/σ) + εEφ(χ∗ +G/σ),

S , 2(1− ε)φ(χ∗∗), T , 2(1− ε)
∫ ∞
χ∗∗

φ(z)dz + ε.

Using the new notations and Equations (2.18) and (2.19), we obtain

χ∗(σ) =
S + 2(1− ε)(χ∗∗ − χ∗)χ̃φ(χ̃) + e2

T + 2(1− ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1

, χ∗∗ =
S

T
.

Hence we can do the following calculations:

χ∗(σ)− χ∗∗ =
S + 2(1− ε)(χ∗∗ − χ∗)χ̃φ(χ̃) + e2

T + 2(1− ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1

− S

T

=
2(1− ε)(χ∗∗ − χ∗)χ̃φ(χ̃) + e2

T + 2(1− ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1

−

S(2(1− ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1)

T (T + 2(1− ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1)

=
2(1− ε)(χ∗∗ − χ∗)(χ̃φ(χ̃)− χ∗∗φ( ˜̃χ))

T + 2(1− ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1

+

e2 − χ∗∗e1

T + 2(1− ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1

. (2.23)

From (2.23) we obtain

(χ∗(σ)− χ∗∗)
(

1 +
2(1− ε)(χ̃φ(χ̃)− χ∗∗φ( ˜̃χ))

T + 2(1− ε)(χ∗∗ − χ∗(σ))φ( ˜̃χ) + e1

)
(2.24)

=
e2 − χ∗∗e1

T + 2(1− ε)(χ∗∗ − χ∗(σ))φ( ˜̃χ) + e1

.

Note that in the above expression we have χ̃ → χ∗∗ and ˜̃χ → χ∗∗ since χ∗(σ) →

χ∗∗. Therefore, we conclude that χ̃φ(χ̃) − χ∗∗φ( ˜̃χ) → 0 and (χ∗∗ − χ∗(σ))φ( ˜̃χ) →

0. Moreover, since (2.20), (2.21) and (2.22) together show both e1 and e2 go to 0
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exponentially fast, we conclude from (2.24) that (χ∗(σ) − χ∗∗)/σ → 0. This enables

us to proceed

lim
σ→0

|χ∗(σ)− χ∗∗|
φ(µ/σ − χ∗∗)

= lim
σ→0

|χ∗(σ)− χ∗∗|
φ(µ/σ − χ∗)

(a)
= lim

σ→0

|e2 − χ∗∗e1|
Tφ(µ/σ − χ∗)

(b)

≤ lim
σ→0

2ε(1 + χ∗(σ)χ∗∗)φ(µ/σ − χ∗)
Tφ(µ/σ − χ∗)

=
2ε(1 + (χ∗∗)2)

T
.

We have used (2.24) to obtain (a). We derived (b) by the following steps:

1. According to (2.22), |e1| ≤ 2εχ∗φ(µ/σ − χ∗).

2. According to (2.20) and (2.21), |e2| ≤ 2εφ(µ/σ − χ∗).

This completes the proof of Lemma 2.5.2.

The next step is to bound the convergence rate of R(χ∗(σ), σ) based on the con-

vergence rate of χ∗(σ) we have derived in Lemma 2.5.2.

Lemma 2.5.3. Suppose P(|G| ≥ µ) = 1 with µ being a positive constant and E|G|2 <

∞, then as σ → 0

|R(χ∗(σ), σ)−M1(ε)| = O(φ(µ/σ − χ∗∗)),

where φ(·) is the density function of the standard normal.

Proof. We recall the two quantities:

M1(ε) = (1− ε)E(η1(Z;χ∗∗))2 + ε(1 + (χ∗∗)2), (2.25)

R(χ∗(σ), σ) = (1− ε)E(η1(Z;χ∗))2 +

ε[1 + E(η1(G/σ + Z;χ∗)−G/σ − Z)2]

+2εEZ(η1(G/σ + Z;χ∗)−G/σ − Z). (2.26)

We bound |R(χ∗(σ), σ)−M1(ε)| by bounding the difference between the corresponding

terms in (2.26) and (2.25). From the proof of Lemma 2.5.2 we know e1 < 0 and e2 > 0.
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Hence (2.24) implies χ∗(σ) > χ∗∗ for small enough σ. We start with

|E(η1(Z;χ∗))2 − E(η1(Z;χ∗∗))2| (2.27)

= |E(η1(Z;χ∗)− η1(Z;χ∗∗))(η1(Z;χ∗) + η1(Z;χ∗∗))|

≤ E[|χ∗ − χ∗∗ + χ∗I(|Z| ∈ (χ∗∗, χ∗))| · |η1(Z;χ∗) + η1(Z;χ∗∗)|]
(a)

≤ 2(χ∗ − χ∗∗) · E|Z|+ 2χ∗E[I(|Z| ∈ (χ∗∗, χ∗))|Z|]

≤ 2(χ∗ − χ∗∗) · E|Z|+ 4χ∗(χ∗ − χ∗∗)χ̃φ(χ̃) = O(φ(µ/σ − χ∗∗)),

where we have used the fact |η1(u;χ)| ≤ |u| to obtain (a); χ̃ is a number between

χ∗(σ) and χ∗∗; and the last equality is due to Lemma 2.5.2. We next bound the

difference between E(η1(G/σ + Z;χ∗)−G/σ − Z)2 and (χ∗∗)2:

|(χ∗∗)2 − E(η1(G/σ + Z;χ∗)−G/σ − Z)2| (2.28)

≤ |(χ∗)2 − E(η1(G/σ + Z;χ∗)−G/σ − Z)2|+ |(χ∗∗)2 − (χ∗)2|.

To bound the two terms on the right hand side of (2.28), first note that

0 ≤ (χ∗)2 − E(η1(G/σ + Z;χ∗)−G/σ − Z)2

= E[I(|G/σ + Z| ≤ χ∗) · ((χ∗)2 − (G/σ + Z)2)]

≤ (χ∗)2

∫ ∞
0

∫ −g/σ+χ∗

−g/σ−χ∗
φ(z)dzdF (g)

(b)

≤ (χ∗)2

∫ −µ/σ+χ∗

−µ/σ−χ∗
φ(z)dz ≤ 2(χ∗)3φ(µ/σ − χ∗)

= O(φ(µ/σ − χ∗∗)), (2.29)

where (b) is due to the condition P(|G| ≥ µ) = 1, and the last equality holds since

(χ∗ − χ∗∗)/σ → 0 implied by Lemma 2.5.2. Furthermore, Lemma 2.5.2 yields

(χ∗)2 − (χ∗∗)2 = O(φ(µ/σ − χ∗∗)). (2.30)

Combining (2.28), (2.29), and (2.30), we obtain

|(χ∗∗)2 − E(η1(G/σ + Z;χ∗)−G/σ − Z)2| = O(φ(µ/σ − χ∗∗)). (2.31)
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Regarding the remaining term in R(χ∗(σ), σ), we can derive

0 ≤ EZ(G/σ + Z − η1(G/σ + Z;χ∗))

(c)
= E(1− ∂1η1(G/σ + Z;χ∗))

= P(|G/σ + Z| ≤ χ∗)
(d)
= O(φ(µ/σ − χ∗∗)). (2.32)

We have employed Stein’s lemma to obtain (c). Equality (d) holds due to (2.22).

Putting the results (2.27), (2.31), and (2.32) together finishes the proof.

2.5.2.4 Deriving the expansion of AMSE(λ∗,1, 1, σw)

In this section we utilize the convergence rate result of R(χ∗(σ), σ) from Chapter

2.5.2.3 to derive the expansion of AMSE(λ∗,1, 1, σw) in (2.13), and thus finish the

proof of Theorem 2.2.7. Towards that goal, we first prove a useful lemma.

Lemma 2.5.4. Let σ̄ be the solution to the following equation:

σ̄2 = σ2
ω +

1

δ
min
χ≥0

EB,Z [(η1(B + σ̄Z;χ)−B)2]. (2.33)

Suppose δ > M1(ε), then

lim
σw→0

σ2
w

σ̄2
=
δ −M1(ε)

δ
.

Proof. We first claim that E(η1(α+Z;χ)−α)2 is an increasing function of α, because

d

dα
E(η1(α + Z;χ)− α)2 = 2E(αI(|α + Z| ≤ χ)) ≥ 0.

Hence we obtain

E(η1(α + Z;χ)− α)2 ≤ lim
α→∞

E(η1(α + Z;χ)− α)2 = 1 + χ2. (2.34)

Inequality (2.34) then yields

R(χ, σ̄) = (1− ε)E(η1(Z;χ))2 + εE(η1(G/σ̄ + Z;χ)−G/σ̄)2

≤ (1− ε)E(η1(Z;χ))2 + ε(1 + χ2).
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Taking minimum over χ on both sides above gives us

R(χ∗(σ̄), σ̄) ≤M1(ε). (2.35)

Moreover, since σ̄ is the solution of (2.33), it satisfies

σ̄2 = σ2
w +

σ̄2

δ
R(χ∗(σ̄), σ̄). (2.36)

Combining (2.35) and (2.36) with the condition δ > M1(ε), we have

σ̄2 ≤ σ2
w

1−M1(ε)/δ
,

which leads to σ̄ → 0, as σw → 0. Then applying Lemma 2.5.1 shows

lim
σw→0

R(χ∗(σ̄), σ̄) = lim
σ̄→0

R(χ∗(σ̄), σ̄) = M1(ε).

Diving both sides of (2.36) by σ̄2 and letting σw → 0 finishes the proof.

To complete the proof of Theorem 2.2.7, first note that Corollary 2.2.4 tells us

AMSE(λ∗,1, 1, σw) = σ̄2R(χ∗(σ̄), σ̄), σ2
w = σ̄2 − σ̄2

δ
R(χ∗(σ̄), σ̄).

We then have

AMSE(λ∗,1, 1, σw)− δM1(ε)

δ −M1(ε)
σ2
w (2.37)

= σ̄2R(χ∗(σ̄), σ̄)− δM1(ε)

δ −M1(ε)
·
[
σ̄2 − σ̄2

δ
R(χ∗(σ̄), σ̄)

]
=

δ(R(χ∗(σ̄), σ̄)−M1(ε))

δ −M1(ε)
σ̄2 (a)

= O(σ̄2φ(µ/σ̄ − χ∗∗)),

where (a) is due to Lemma 2.5.3. Finally, since limσw→0
σ2
w

σ̄2 = δ−M1(ε)
δ

according to

Lemma 2.5.4, it is not hard to see

O(σ̄2φ(µ/σ̄ − χ∗∗)) = o(φ(µ̄/σ̄)) = o
(
φ
(√δ −M1(ε)

δ

µ̃

σw

))
, (2.38)

where µ̄ and µ̃ are any constants satisfying 0 ≤ µ̃ < µ̄ < µ. Results (2.37) and (2.38)

together close the proof of Theorem 2.2.7.

Remark: (2.35) and (2.37) together imply that the second dominant term of

AMSE(λ∗,1, 1, σw) is in fact negative.
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2.5.3 Preliminaries on ηq(u;χ)

This section is devoted to the properties of ηq(u;χ) defined as

ηq(u;χ) , arg min
z

1

2
(u− z)2 + χ|z|q. (2.39)

We start with some basic properties of these functions. Since the explicit forms of

ηq(u;χ) for q = 1 and 2 are known: η1(u;χ) = (|u| − χ)sign(u)I(|u| > χ), η2(u;χ) =

u
1+2χ

, we first focus our study on the case 1 < q < 2.

Lemma 2.5.5. ηq(u;χ) satisfies the following properties:

(i) u− ηq(u;χ) = χqsign(u)|ηq(u;χ)|q−1.

(ii) |ηq(u;χ)| ≤ |u|.

(iii) limχ→0 ηq(u;χ) = u and limχ→∞ ηq(u;χ) = 0.

(iv) ηq(−u;χ) = −ηq(u;χ).

(v) For α > 0, we have ηq(αu;α2−qχ) = αηq(u;χ).

(vi) |ηq(u;χ)− ηq(ũ, χ)| ≤ |u− ũ|.

Proof. To prove (i), we should take the derivative of 1
2
(u − z)2 + χ|z|q and set it to

zero. Proofs of parts (ii), (iii) and (iv) are straightforward and are hence skipped. To

prove (v), note that

ηq(αu;α2−qχ) = arg min
z

1

2
(αu− z)2 + χα2−q|z|q

= arg min
z

α2

2
(u− z/α)2 + χα2|z/α|q

= α arg min
z̃

1

2
(u− z̃)2 + χ|z̃|q = αηq(u;χ). (2.40)

(vi) is a standard property of proximal operators of convex functions (Parikh and

Boyd, 2014).
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In many proofs, we will be dealing with derivatives of ηq(u;χ). To simplify

the notations, we may use ∂1ηq(u;χ), ∂2
1ηq(u;χ), ∂2ηq(u;χ), ∂2

2ηq(u;χ) to represent

∂ηq(u,χ)

∂u
, ∂

2ηq(u,χ)

∂u2 , ∂ηq(u,χ)

∂χ
, ∂

2ηq(u,χ)

∂χ2 , respectively. Our next two lemmas are concerned

with differentiability of ηq(u;χ) and its derivatives.

Lemma 2.5.6. For every 1 < q < 2, ηq(u;χ) is a differentiable function of (u, χ)

for u ∈ R and χ > 0 with continuous partial derivatives. Moreover, ∂2ηq(u;χ) is

differentiable with respect to u, for any given χ > 0.

Proof. We start with the case u0, χ0 > 0. The goal is to prove that ηq(u;χ) is

differentiable at (u0, χ0). Since u0 > 0, ηq(u0;χ0) will be positive. Then Lemma 2.5.5

part (i) shows ηq(u0;χ0) must satisfy

ηq(u0;χ0) + χ0qη
q−1
q (u0;χ0) = u0. (2.41)

Define the function F (u, χ, v) = u − v − χqvq−1. Equation (2.41) says F (u, χ, v) is

equal to zero at (u0, χ0, ηq(u0;χ0)). It is straightforward to confirm that the derivative

of F (u, χ, v) with respect to v is nonzero at (u0, χ0, ηq(u0;χ0)). By implicit function

theorem, we can conclude ηq(u;χ) is differentiable at (u0, χ0). Lemma 2.5.5 part (iv)

implies that the same result holds when u0 < 0. We now focus on the point (0, χ0).

Since ηq(0, χ0) = 0, we obtain

∂1ηq(0;χ0) = lim
u→0

|ηq(u;χ0)|
|u|

≤ lim
u→0

|u|1/(q−1)

(χ0q)1/(q−1)|u|
= 0.

where the last inequality comes from (2.41). It is straightforward to see that the

partial derivative of ηq(u;χ) with respect to χ at (0, χ0) exists and is equal to zero as

well. So far we have proved that ηq(u, χ) has partial derivatives with respect to both

u and χ for every u ∈ R, χ > 0. We next show the partial derivatives are continuous.

For u 6= 0, the result comes directly from the implicit function theorem, because

F (u, χ, v) is a smooth function when v 6= 0. We now turn to the proof when u = 0.

By taking derivative with respect to u on both sides of (2.41), we obtain

∂1ηq(u;χ) + χq(q − 1)ηq−2
q (u;χ)∂1ηq(u;χ) = 1, (2.42)
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for any u, χ > 0. Moreover, it is clear from (2.41) that ηq(u;χ) → 0, as (u, χ) →

(0+, χ0). This fact combined with (2.42) yields

lim
(u,χ)→(0+,χ0)

∂1ηq(u;χ) = lim
(u,χ)→(0+,χ0)

1

1 + χq(q − 1)ηq−2
q (u;χ)

= 0.

Since ∂1ηq(u;χ) = ∂1ηq(−u;χ) implied by Lemma 2.5.5 part (iv), we conclude

lim
(u,χ)→(0,χ0)

∂1ηq(u;χ) = 0.

The same approach can prove that the partial derivative ∂2ηq(u;χ) is continuous at

(0, χ0). For simplicity we do not repeat the arguments.

We now prove the second part of the lemma. Because F (u, χ, v) is infinitely many

times differentiable in any open set with v 6= 0, implicit function theorem further

implies ∂2ηq(u;χ) is differentiable at any u 6= 0. The rest of the proof is to show its

differentiability at u = 0. This follows by noting ∂2ηq(0;χ) = 0, and

lim
u→0

∂2ηq(u;χ)

u

(a)
= lim

u→0

−q|ηq(u;χ)|q−1

|u|(1 + χq(q − 1)|ηq(u;χ)|q−2)

= lim
u→0

−(|u| − |ηq(u;χ)|)
χ|u|(1 + χq(q − 1)|ηq(u;χ)|q−2)

= 0,

where (a) is by taking derivative with respect to χ on both sides of (2.41), and the

last two equalities above are due to Lemma 2.5.5 part (i) and (iii).

Lemma 2.5.7. Consider a given χ > 0, then for every 1 < q < 3/2, ∂1ηq(u;χ) is a

differentiable function of u for u ∈ R with continuous derivative; for q = 3/2, it is

a weakly differentiable function of u; for 3/2 < q < 2, ∂1ηq(u;χ) is differentiable at

u 6= 0, but is not differentiable at zero.

Proof. As is clear from the proof of Lemma 2.5.6, the implicit function theorem

guarantees that ∂1ηq(u;χ) is differentiable at u 6= 0 with continuous derivative for

1 < q < 2. Hence we will be focused on u = 0. In the proof of Lemma 2.5.6, we have

derived

∂1ηq(u;χ) =
1

1 + χq(q − 1)|ηq(u;χ)|q−2
, for u 6= 0, (2.43)
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and ∂1ηq(0;χ) = 0. We thus know

∂2
1ηq(0;χ) = lim

u→0

1

u+ χq(q − 1)u|ηq(u;χ)|q−2
. (2.44)

Moreover, Lemma 2.5.5 part (i) implies

lim
u→0

u

χq|ηq(u;χ)|q−1sign(u)
= 1 + lim

u→0

|ηq(u;χ)|2−q

χq
= 1. (2.45)

For 1 < q < 3/2, (2.44) and (2.45) together give us

∂2
1ηq(0;χ) = lim

u→0

1

u+ χq(q − 1)u(|u|/(χq))
q−2
q−1

= 0.

We can also calculate the limit of ∂2
1ηq(u;χ) (this second derivative can be obtained

from (2.43)) as follows.

lim
u→0

∂2
1ηq(u;χ) = lim

u→0

−χq(q − 1)(q − 2)|ηq(u;χ)|q−3sign(u)

(1 + χq(q − 1)|ηq(u;χ)|q−2)3
= 0.

Therefore, ∂1ηq(u;χ) is continuously differentiable on (−∞,+∞) for 1 < q < 3/2.

Regarding 3/2 < q < 2, Similar calculations yield

lim
u→0+

∂2
1ηq(0;χ) = +∞, lim

u→0−
∂2

1ηq(0;χ) = −∞.

Finally to prove the weak differentiability for q = 3/2, we show ∂1ηq(u;χ) is a

Lipschitz continuous function on (−∞,+∞). Note that for u 6= 0,

|∂2
1ηq(u;χ)| = χq(q − 1)(2− q)|ηq(u;χ)|q−3

(1 + χq(q − 1)|ηq(u;χ)|q−2)3
≤ 8

9χ2
,

and ∂2
1ηq(0

+;χ) = −∂2
1(0−;χ) = 8

9χ2 . Mean value theorem leads to

|∂1ηq(u;χ)− ∂1ηq(ũ;χ)| ≤ 8

9χ2
|u− ũ|, for uũ ≥ 0.

When uũ < 0, we can have

|∂1ηq(u;χ)− ∂1ηq(ũ;χ)| = |∂1ηq(u;χ)− ∂1ηq(−ũ;χ)|

≤ 8

9χ2
|u+ ũ| ≤ 8

9χ2
|u− ũ|.

This completes the proof of the lemma.
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The next lemma presents some additional properties regarding the derivatives of

ηq(u;χ).

Lemma 2.5.8. For 1 < q < 2, the derivatives of ηq(u;χ) satisfy the following prop-

erties:

(i) ∂1ηq(u;χ) = 1
1+χq(q−1)|ηq(u;χ)|q−2 .

(ii) ∂2ηq(u;χ) = −q|ηq(u;χ)|q−1sign(u)

1+χq(q−1)|ηq(u;χ)|q−2 .

(iii) 0 ≤ ∂1ηq(u;χ) ≤ 1.

(iv) For u > 0, ∂2
1ηq(u;χ) > 0.

(v) |ηq(u;χ)| is a decreasing function of χ.

(vi) limχ→∞ ∂1ηq(u;χ) = 0.

Proof. Parts (i) (ii) have been derived in the proof of Lemma 2.5.6. Part (iii) is a

simple conclusion of part (i). Part (iv) is clear from the proof of Lemma 2.5.7. Part

(v) is a simple application of part (ii). Finally, part (vi) is an application of part(i)

of Lemma 2.5.8 and part (iii) of Lemma 2.5.5.

We next study ηq(u;χ) for the case 0 ≤ q < 1.

Lemma 2.5.9. Denote cq = [2(1 − q)]
1

2−q + q[2(1 − q)]
q−1
2−q . Then for 0 ≤ q < 1,

ηq(u;χ) = 0 if 0 ≤ u < cqχ
1

2−q , and the following holds when u > cqχ
1

2−q .

(i) ∂ηq(u;χ)

∂χ
=

−qηq−1
q (u;χ)

1+χq(q−1)ηq−2
q (u;χ)

.

(ii) ∂ηq(u;χ)

∂u
= 1

1+χq(q−1)ηq−2
q (u;χ)

.

(iii) u− ηq(u;λ) = qχηq−1
q (u;χ).

(iv) αηq(u;χ) = ηq(αu;α2−qχ) for α > 0.
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Lemma 2.5.9 implies that ηq(u;χ) has a jump at u = cqχ
1

2−q . We define that value:

η+
q (cqχ

1
2−q ;χ) = lim

u↘cqχ
1

2−q

ηq(u;χ).

Lemma 2.5.10. For 0 < q < 1, If |ηq(u;χ)| > 0, then |ηq(u;χ)| ≥ [2(1− q)]
1

2−qχ
1

2−q .

Proof. We refer to Zheng et al. (2017) for the complete proof of Lemmas 2.5.9 and

2.5.10.

2.5.4 Proof of Theorem 2.2.2

2.5.4.1 Roadmap of the proof

This section contains the proof of Theorem 2.2.2. The proof for LASSO (q = 1) has

been shown in Bayati and Montanari (2012). We aim to extend the results to q > 1.

We will follow similar proof strategy as the one proposed in Bayati and Montanari

(2012). However, as will be described later some of the steps are more challenging

for q > 1 (and some are easier). We only present the proof for 1 < q ≤ 2. Similar

arguments hold for q > 2. Motivated by Bayati and Montanari (2012) we construct an

approximate message passing (AMP) algorithm for solving LQLS. We then establish

an asymptotic equivalence between the output of AMP and the bridge regression

estimates. We finally utilize the existing asymptotic results from AMP framework to

prove Theorem 2.2.2. The rest of the material is organized as follows. In Chapter

2.5.4.2, we first prove the existence and uniqueness of the solution pair to (2.5) and

(2.6). In Chapter 2.5.4.3, we briefly review approximate message passing algorithms

and state some relevant results that will be used later in our proof. Chapter 2.5.4.4

collects two useful results to be applied in the later proof. We describe the main proof

steps in Chapter 2.5.4.5.
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2.5.4.2 Solution of the fixed point equations

Lemma 2.5.11. For any positive values of λ, δ, σw > 0, any random variable B with

finite second moment, and any q ∈ [1, 2], there exists a unique pair (σ̄, χ̄) that satisfies

both (2.5) and (2.6).

To prove the above result we we pursue the following two main steps:

1. We first show the existence of the solution. In order to do that, we first study the

solution of Equation (2.5), and demonstrate that for any χ ∈ (χmin,∞) (χmin

is a constant we will clarify later), there exists a unique σχ such that (σχ, χ)

satisfies (2.5). We then show that by varying χ over (χmin,∞), the range of the

value of the following term

χσχ
2−q(1− 1

δ
EB,Z [η′q(B + σχZ;χσ2−q

χ )]
)

covers the number λ from Equation (2.6). That means Equations (2.5) and

(2.6) share at least one common solution pair (σχ, χ).

2. We then prove the uniqueness of the solution. The key idea is to apply Theorem

2.2.2 to evaluate the asymptotic loss of the LQLS estimates under two different

pseudo-Lipschitz functions. These two quantities determine the uniqueness of

both σχ and χ in the common solution pair (σχ, χ). Note that we have denoted

this unique pair by (σ̄, χ̄).

Before we start the details of the proof, we present Stein’s lemma (Stein, 1981)

that will be used several times in the proof.

Lemma 2.5.12. Let g : R → R denote a weakly differentiable function. If Z ∼

N(0, 1) and E|g′(Z)| <∞, we have

E(Zg(Z)) = E(g′(Z)),

where g′ denotes the weak-derivative of g.
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We first define a function that is closely related to Equation (2.5):

Rq(χ, σ) , EB,Z [ηq(B/σ + Z;χ)−B/σ]2. (2.46)

Note that we have used the same definition for LASSO in Chapter 2.5.2. Here we

adopt a general notation Rq(χ, σ) to represent the function defined above for any

q ∈ [1, 2].

Lemma 2.5.13. For 1 ≤ q ≤ 2, Rq(χ, σ) is a decreasing function of σ > 0.

Proof. We consider four different cases: (i) q = 1, (ii) q = 2, (iii) 1 < q ≤ 3/2, (iv)

3/2 < q < 2.

(i) q = 1: Since R1(χ, σ) is a differentiable function of σ, we will prove this case

by showing that ∂R1(χ,σ)
∂σ

< 0. We have

∂R1(χ, σ)

∂σ
= − 2

σ2
E [B(I(|B/σ + Z| > χ)− 1)(η1(B/σ + Z;χ)−B/σ)]

= − 2

σ2
E
[
I(|B/σ + Z| ≤ χ)(B2/σ)

]
< 0.

The first equality above is due to Dominated Convergence Theorem.

(ii) q = 2: Since η2(u;χ) = u
1+2χ

, we have

∂R2(χ, σ)

∂σ
= − 8χ2E|B|2

(1 + 2χ)2σ3
< 0.

(iii) 1 < q ≤ 3/2: The strategy for this case is similar to that of the last two cases.

We show that the derivative ∂Rq(χ,σ)

∂σ
< 0.

∂Rq(χ, σ)

∂σ

(a)
= 2E

[
(ηq(B/σ + Z;χ)−B/σ)(∂1ηq(B/σ + Z;χ)− 1)(−B/σ2)

]
= 2E

[
(ηq(B/σ + Z;χ)−B/σ − Z)(∂1ηq(B/σ + Z;χ)− 1)(−B/σ2)

]
+2E

[
Z(∂1ηq(B/σ + Z;χ)− 1)(−B/σ2)

]
. (2.47)

To obtain Equality (a), we have used Dominated Convergence Theorem (DCT);

We employed Lemma 2.5.5 part (vi) to confirm the conditions of DCT. Our goal
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is to show that the two terms in (2.47) are both negative. Regarding the first

term, we first evaluate it by conditioning on B = b for a given constant b > 0

(note that B and Z are independent):

EZ [(ηq(b/σ + Z;χ)− b/σ − Z)(∂1ηq(b/σ + Z;χ)− 1)]

(b)
=

∫ +∞

−∞
(ηq(z;χ)− z)(∂1ηq(z;χ)− 1)φ(z − b/σ)dz

=

∫ ∞
0

(ηq(z;χ)− z)(∂1ηq(z;χ)− 1)φ(z − b/σ)dz +∫ 0

−∞
(ηq(z;χ)− z)(∂1ηq(z;χ)− 1)φ(z − b/σ)dz

(c)
=

∫ ∞
0

(ηq(z;χ)− z)(∂1ηq(z;χ)− 1)(φ(z − b/σ)− φ(z + b/σ))dz
(d)
> 0,

where φ(·) is the density function of standard normal; (b) is obtained by a change

of variables; (c) is due to the fact ∂1ηq(−z;χ) = ∂1ηq(z;χ) implied by Lemma

2.5.5 part (iv); (d) is based on the following arguments: According to Lemmas

2.5.5 part (ii) and Lemma 2.5.8 part (iii), ηq(z;χ) < z and ∂1ηq(z;χ) < 1 for

z > 0. Moreover, φ(z − b/σ)− φ(z + b/σ) > 0 for z, b/σ > 0. Hence we have

EZ
[
(ηq(b/σ + Z;χ)− b/σ − Z)(∂1ηq(b/σ + Z;χ)− 1)(−b/σ2)

]
< 0.

Similarly we can show the above inequality holds for b < 0. It is clear that the

term on the left hand side equals zero when b = 0. Thus we have proved the

first term in (2.47) is negative. Now we should discuss the second term. Again

we condition on B = b for a given b > 0:

EZ [Z(∂1ηq(b/σ + Z;χ)− 1)]
(e)
= E(∂2

1ηq(b/σ + Z;χ))

=

∫ ∞
0

[∂2
1ηq(z;χ)(φ(z − b/σ)− φ(z + b/σ))]dz > 0. (2.48)

Equality (e) is the result of Stein’s lemma, i.e. Lemma 2.5.12. Note that

the weak differentiability condition required in Stein’s lemma is guaranteed by

Lemma 2.5.7. To obtain the last inequality, we have used Lemma 2.5.8 part
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(iv) and the fact that φ(z − b/σ) − φ(z + b/σ) > 0 for z, b/σ > 0. Hence we

obtain that

EZ
[
Z(∂1ηq(b/σ + Z; τ)− 1)(−b/σ2)

]
< 0.

The same approach would work for b < 0, and clearly the left hand side term

of the above inequality equals zero for b = 0. We can therefore conclude the

second term in (2.47) is negative as well.

(iv) 3/2 < q < 2: The proof of this case is similar to the last one. The only difference

is that the proof steps we presented in (2.48) may not work, due to the non-

differentiability of ∂1ηq(u;χ) for q > 3/2 as shown in Lemma 2.5.7. Our goal

here is to use an alternative approach to prove: EZ [Z(∂1ηq(b/σ + Z;χ)− 1)] >

0 for b > 0. We have

EZ [Z(∂1ηq(b/σ + Z;χ)− 1)] =

∫ ∞
−∞

z(∂1ηq(b/σ + z;χ)− 1)φ(z)dz

=

∫ ∞
0

z(∂1ηq(b/σ + z;χ)− ∂1ηq(b/σ − z;χ))φ(z)dz

=

∫ ∞
0

z(∂1ηq(|b/σ + z|;χ)− ∂1ηq(|b/σ − z|;χ))φ(z)dz, (2.49)

where the last equality is due to the fact ∂1ηq(u;χ) = ∂1ηq(|u|;χ) for any u ∈ R.

Since |b/σ − z| < |b/σ + z| for z, b/σ > 0 and according to Lemma 2.5.8 part

(iv), we obtain

∂1ηq(|b/σ + z|;χ)− ∂1ηq(|b/σ − z|;χ) > 0. (2.50)

Combining (2.49) and (2.50) completes the proof.

Lemma 2.5.13 paves our way in the study of the solution of (2.5). Define

χmin = inf
{
χ ≥ 0 :

1

δ
E(η2

q (Z;χ)) ≤ 1
}
, (2.51)

where Z ∼ N(0, 1). The following corollary is a conclusion from Lemma 2.5.13.
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Corollary 2.5.14. For a given 1 ≤ q ≤ 2, Equation (2.5):

σ2 = σ2
ω +

1

δ
EB,Z [(ηq(B + σZ;χσ2−q)−B)2], σw > 0

has a unique solution σ = σχ for any χ ∈ (χmin,∞), and does not have any solution

if χ ∈ (0, χmin).

Proof. First note that since σw > 0, σ = 0 is not a solution of (2.5). Hence we can

equivalently write Equation (2.5) in the following form:

1 =
σ2
w

σ2
+

1

δ
Rq(χ, σ) , F (σ, χ). (2.52)

According to Lemma 2.5.13, F (σ, χ) is a strictly decreasing function of σ over (0,∞).

We also know that F (σ, χ) is a continuous function of σ from the proof of Lemma

2.5.13. Moreover, it is straightforward to confirm that

lim
σ→0

F (σ, χ) =∞, lim
σ→∞

F (σ, χ) =
1

δ
E(η2

q (Z;χ)). (2.53)

Thus Equation (2.5) has a solution (the uniqueness is automatically guaranteed by

the monotonicity of F (σ, χ)) if and only if 1
δ
E(η2

q (Z;χ)) < 1. Recall the definition of

χmin given in (2.51). Since E(η2
q (Z;χ)) is a strictly decreasing and continuous function

of χ, 1
δ
E(η2

q (Z;χ)) < 1 holds if χ ∈ (χmin,∞) and fails when χ ∈ (0, χmin).

Corollary 2.5.14 characterizes the existence and uniqueness of solution for Equa-

tion (2.5). Our next goal is to prove that (2.5) and (2.6) share at least one common

solution. Our strategy is: among all the pairs (σχ, χ) that satisfy (2.5), we show that

at least one of them satisfies (2.6). We do this in the next few lemmas.

Lemma 2.5.15. Let δ < 1. For each value of χ ∈ (χmin,∞), define σχ as the value

of σ that satisfies (2.5). Then,

lim
χ→∞

χσ2−q
χ

(
1− 1

δ
E[∂1ηq(B + σχZ;χσ2−q

χ )]

)
= ∞, (2.54)

lim
χ→χ+

min

χσ2−q
χ

(
1− 1

δ
E[∂1ηq(B + σχZ;χσ2−q

χ )]

)
= −∞.
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Proof. We first show that

lim
χ→∞

σ2
χ = σ2

w +
E|B|2

δ
, lim

χ→χ+
min

σχ =∞. (2.55)

For the first part, we only need to show σ2
χk
→ σ2

w + E|B|2
δ

for any sequence

χk → ∞. For that purpose, we first prove σχ = O(1). Otherwise, there exists a

sequence χn →∞ such that σχn →∞. Because

(ηq(B/σχn + Z;χn)−B/σχn)2 ≤ 2(B/σχn + Z)2 + 2B2/σ2
χn ≤ 6B2 + 4Z2

for large enough n, we can apply Dominated Convergence Theorem (DCT) to conclude

lim
n→∞

Rq(χn, σχn) = E lim
n→∞

[ηq(B/σχn + Z;χn)−B/σχn ]2 = 0.

On the other hand, since the pair (σχn , χn) satisfies (2.5) we obtain

lim
n→∞

Rq(χn, σχn) = lim
n→∞

δ
(
1− σ2

w

σ2
χn

)
= δ.

This is a contradiction. We next consider any convergent subsequence {σχkn} of

{σχk}. The facts σxk ≥ σw and σχk = O(1) imply σχkn → σ∗ ∈ (0,∞). Moreover,

since

(ηq(B + σχknZ;χknσ
2−q
χkn

)−B)2 ≤ 6B2 + 5(σ∗)2Z2,

when n is large enough. We can apply DCT to obtain,

(σ∗)2 = lim
n→∞

σ2
χkn

= σ2
w +

1

δ
E lim
n→∞

(ηq(B + σχknZ;χknσ
2−q
χkn

)−B)2 = σ2
w +

EB2

δ
.

Thus, we have showed any convergent subsequence of {σ2
χk
} converges to the same

limit σ2
w + EB2

δ
. Hence the sequence converges to that limit as well.

Regarding the second part in (2.55), if it is not the case, then there exists a

sequence χn → χ+
min such that σχn = O(1). Equation (2.52) shows,

1 =
σ2
w

σ2
χn

+
1

δ
Rq(χn, σχn)

(a)

≥ σ2
w

σ2
χn

+
1

δ
Rq(χn,∞) =

σ2
w

σ2
χn

+
1

δ
E(η2

q (Z;χn)),
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where (a) is due to Lemma 2.5.13. From the definition of χmin in (2.51), it is clear

that 1
δ
E(η2

q (Z;χmin)) = 1 when δ < 1. Hence letting n→∞ on the both sides of the

above inequaitiy leads to 1 ≥ Ω(1) + 1, which is a contradiction.

We are in position to derive the two limiting results in (2.54). To obtain the

first one, note that σ2
χ → σ2

w + E|B|2
δ

, as χ → ∞. Therefore, Lemma 2.5.8 part (vi)

combined with DCT gives us

lim
χ→∞

E∂1ηq(B + σχZ;χσ2−q
χ ) = 0.

The first result of (2.54) can then be trivially derived. Regarding the second result,

we have showed that as χ→ χ+
min, σχ →∞. We also have

E∂1ηq(B + σχZ;χσ2−q
χ )

(b)
=

1

σχ
E(Zηq(B + σχZ;χσ2−q

χ ))

(c)
= E(Zηq(B/σχ + Z;χ)),

where (b) holds by Lemma 2.5.12 and (c) is due to Lemma 2.5.5 part (v). Hence

lim
χ→χ+

min

E∂1ηq(B + σχZ;χσ2−q
χ )

= lim
χ→χ+

min

E(Zηq(B/σχ + Z;χ)) = E(Zηq(Z;χmin))

(d)
= E(η2

q (Z;χmin)) + χminqE(|ηq(Z;χmin)|q)

= δ + χminqE(|ηq(Z;χmin)|q),

where (d) is the result of Lemma 2.5.5 part (i). We thus obtain

lim
χ→χ+

min

(
1− 1

δ
E∂1ηq(B + σχZ;χσ2−q

χ )

)
= −1

δ
χminqE|ηq(Z;χmin)|q. (2.56)

Combining (2.56) and the fact that χmin > 0, σχ →∞ finishes the proof.

Lemma 2.5.16. Let δ ≥ 1. For each value of χ ∈ (χmin,∞), define σχ as the value

of σ that satisfies (2.5). Then,

lim
χ→∞

χσ2−q
χ

(
1− 1

δ
E[∂1ηq(B + σχZ;χσ2−q

χ )]

)
= ∞, (2.57)

lim
χ→χ+

min

χσ2−q
χ

(
1− 1

δ
E[∂1ηq(B + σχZ;χσ2−q

χ )]

)
= 0.
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Proof. The exactly same arguments presented in the proof of Lemma 2.5.15 can be

applied to prove the first result in (2.57). We now focus on the proof of the second

one. Since E|∂1ηq(B + σχZ;χσ2−q
χ )| ≤ 1, our goal will be to show χσ2−q

χ = o(1), as

χ→ 0+ (note that χmin = 0 when δ ≥ 1).

We first consider the case δ > 1. To prove χσ2−q
χ = o(1), it is sufficient to show

σχ = O(1). Suppose this is not true, then there exists a sequence χn → 0 such that

σχn →∞. Recall that (χn, σχn) satisfies (2.5):

σ2
χn = σ2

w +
1

δ
E(ηq(B + σχnZ;χnσ

2−q
χn )−B)2. (2.58)

Dividing both sides of the above equation by σ2
χn and letting n→∞ yields 1 = 1

δ
< 1,

which is a contradiction.

Regarding the case δ = 1, we first claim that σχ → ∞, as χ → 0. Otherwise,

there exists a sequence χn → 0 such that σχn → σ∗ ∈ (0,∞). However, taking the

limit n→∞ on both sides of (2.58) gives us (σ∗)2 = σ2
w + (σ∗)2 where contradiction

arises. Hence, if we can show χσ2
χ = O(1), then χσ2−q

χ = o(1) will be proved. Starting

from (2.58) (replacing χn by χ) with δ = 1, we can have for q ∈ (1, 2]

0 = σ2
w + σ2

χE(ηq(B/σχ + Z;χ)−B/σχ − Z)2 +

2σ2
χEZ(ηq(B/σχ + Z;χ)−B/σχ − Z)

(a)
= σ2

w + χσ2
χ · E(χq2|ηq(B/σχ + Z;χ)|2q−2)︸ ︷︷ ︸

A

+

χσ2
χ · E

−2q(q − 1)|ηq(B/σχ + Z;χ)|q−2

1 + χq(q − 1)|ηq(B/σχ + Z;χ)|q−2︸ ︷︷ ︸
B

,

where to obtain (a) we have used Lemma 2.5.5 part (i), Lemma 2.5.8 part (i) and

Lemma 2.5.12. Therefore we obtain

χσ2
χ = −σ2

w · (A+B)−1. (2.59)

Because σχ →∞ as χ→ 0, it is easily seen that

lim
χ→0+

A = 0, lim inf
χ→0+

|B| ≥ 2q(q − 1)E|Z|q−2. (2.60)
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Combining results (2.59) and (2.60) we can conclude that χσ2
χ = O(1). Finally for

the case q = 1, we do similar calculations and have

|A| = 1

χ
E(ηq(B/σχ + Z;χ)−B/σχ − Z)2 ≤ χ→ 0,

|B| = 2

χ
P (|B/σχ + Z| ≤ χ)→ 4√

2π
.

This completes the proof.

According to the results presented in Lemmas 2.5.15 and 2.5.16, if the function

χσ2−q
χ

(
1 − 1

δ
E[∂1ηq(B + σχZ;χσ2−q

χ )]
)
, is continuous with respect to χ ∈ (χmin,∞),

then we can conclude that Equations (2.5) and (2.6) share at least one common

solution pair. To confirm the continuity, it is straightforward to employ implicit

function theorem to show σχ is continuous about χ. Moreover, According to Lemma

2.5.6, ∂1ηq(u;χ) is also a continuous function of its arguments.

The proof of uniqueness is motivated by the idea presented in Bayati and Mon-

tanari (2012). Suppose there are two different solutions denoted by (σχ1 , χ1) and

(σχ2 , χ2), respectively. By applying Theorem 2.2.2 (in the next section we will prove

the result of Theorem 2.2.2 holds for any solution pair) with ψ(a, b) = (a − b)2, we

have

AMSE(λ, q, σw) = E[ηq(B + σχ1Z;χ1σ
2−q
χ1

)−B]2

(a)
= δ(σ2

χ1
− σ2

w),

where (a) is due to (2.5). The same equations hold for the other solution pair (σχ2 , χ2).

Since they have the same AMSE, it follows that σχ1 = σχ2 . Next we choose a different

pseudo-Lipschitz function ψ(a, b) = |a| in Theorem 2.2.2 to obtain

lim
p→∞

1

p

p∑
i=1

|β̂i(λ, q, p)| = E|ηq(B + σχ1Z;χ1σ
2−q
χ1

)|

= E|ηq(B + σχ2Z;χ2σ
2−q
χ2

)| = E|ηq(B + σχ1Z;χ2σ
2−q
χ1

)|

Since E|ηq(B + σχ1Z;χ)|, as a function of χ ∈ (0,∞), is strictly decreasing based on

Lemma 2.5.8 part (v), we conclude χ1 = χ2.
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2.5.4.3 Approximate message passing algorithms

For a function f : R → R and a vector v ∈ Rm, we use f(v) ∈ Rm to denote the

vector (f(v1), . . . , f(vm)). Recall ηq(u;χ) is the proximal operator for the function

‖ · ‖qq. We are in the linear regression model setting: y = Xβ + w. To estimate β,

we adapt the AMP algorithm in Maleki (2010) to generate a sequence of estimates

βt ∈ Rp, based on the following iterations (initialized at β0 = 0, z0 = y):

βt+1 = ηq(X
T zt + βt; θt),

zt = y −Xβt +
1

δ
zt−1〈∂1ηq(X

T zt−1 + βt−1; θt−1)〉, (2.61)

where 〈v〉 = 1
p

∑p
i=1 vi denotes the average of a vector’s components and {θt} is a

sequence of tuning parameters specified during the iterations. A remarkable phe-

nomenon about AMP is that the asymptotics of the sequence {βt} can be character-

ized by one dimensional parameter, known as the state of the system. The following

theorem clarifies this claim.

Theorem 2.5.17. Let {β(p), X(p), w(p)} be a converging sequence and ψ : R2 → R

be a pseudo-Lipschitz function. For any iteration number t > 0,

lim
p→∞

1

p

p∑
i=1

ψ(βt+1
i , βi) = E[ψ(ηq(B + τtZ; θt), B)], a.s.,

where B ∼ fβ and Z ∼ N(0, 1) are independent and {τt}∞t=0 can be tracked through

the following recursion (τ 2
0 = σ2 + 1

δ
E|B|2):

τ 2
t+1 = σ2

w +
1

δ
E[ηq(B + τtZ; θt)−B]2, t ≥ 0. (2.62)

Proof. According to Lemma 2.5.5 part (vi), ηq(u;χ) is a Lipschitz continuous function

of u. We can then directly apply Theorem 1 in Bayati and Montanari (2011) to

complete the proof.

Equation (2.62) is called state evolution. Theorem 2.5.17 demonstrates that the

general asymptotic performance of {βt} is sharply predicted by the state evolution.
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From now on, we will consider the AMP estimates {βt} with θt = χτ 2−q
t in (2.61). The

positive constant χ is the solution of (2.5) and (2.6). Note we have proved in Chapter

2.5.4.2 that the solution exists. We next present a useful lemma that characterizes

the convergence of {τt}. Recall the definition in (2.51):

χmin = inf
{
χ ≥ 0 :

1

δ
E(η2

q (Z;χ)) ≤ 1
}
.

Lemma 2.5.18. For any given χ ∈ (χmin,∞), the sequence {τt}∞t=0 generated from

(2.62) with θt = χτ 2−q
t converges to a finite number as t→∞.

Proof. Denote H(τ) = σ2
w + 1

δ
E[ηq(B + τZ;χτ 2−q) − B]2. According to Corollary

2.5.14, we know H(τ) = τ 2 has a unique solution. Furthermore, since H(0) > 0 and

H(τ) < τ 2 when τ is large enough, it is straightforward to confirm the result stated

in the above lemma.

Denote τt → τ∗ as t→∞. Lemma 2.5.18 and (2.62) together yield

τ 2
∗ = σ2

w +
1

δ
E[ηq(B + τ∗Z;χτ 2−q

∗ )−B]2. (2.63)

This is the same as Equation (2.5). We hence see the connection between AMP

estimates and bridge regression. The main part of the proof for Theorem 2.2.2 is to

rigorously establish such connection. In particular we will show the sequence {βt}

converges (in certain asymptotic sense) to β̂(λ, q) as t → ∞ later on. Towards that

goal, we present the next theorem that shows asymptotic characterization of other

quantities in the AMP algorithm.

Theorem 2.5.19. Define wt , 1
δ
〈∂1ηq(X

T zt−1 +βt−1;χτ 2−q
t−1 )〉. Under the conditions

of Theorem 2.5.17, we have almost surely

(i) lim
t→∞

lim
p→∞

‖βt+1−βt‖22
p

= 0.

(ii) lim
t→∞

lim
p→∞

‖zt+1−zt‖22
p

= 0.

(iii) lim
p→∞

‖zt‖22
n

= τ 2
t .
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(iv) lim
p→∞

wt = 1
δ
E[∂1ηq(B+τt−1Z;χτ 2−q

t−1 )], where B,Z are the same random variables

as in Theorem 2.5.17.

Proof. All the results for q = 1 have been derived in Bayati and Montanari (2012).

We here generalize them to the case 1 < q ≤ 2. Since the proof is mostly a direct

modification of that in Bayati and Montanari (2012), we only highlight the differ-

ences and refer the reader to Bayati and Montanari (2012) for detailed arguments.

According to the proof of Lemma 4.3 in Bayati and Montanari (2012), we have almost

surely

lim
p→∞

‖zt+1 − zt‖2
2

p
= lim

p→∞

‖βt+1 − βt‖2
2

p

= E[ηq(B + Zt; τ
2−q
t χ)− ηq(B + Zt−1; τ 2−q

t−1 χ)]2,

where (Zt, Zt−1) is jointly zero-mean gaussian, independent from B ∼ fβ, with covari-

ance matrix defined by the recursion (4.13) in Bayati and Montanari (2012). From

Lemma 2.5.6, we know ηq(u;χ) is a differentiable function over (−∞,+∞)× (0,∞).

Hence we can apply mean value theorem to obtain

E[ηq(B + Zt; τ
2−q
t χ)− ηq(B + Zt−1; τ 2−q

t−1 χ)]2

≤ E[∂1ηq(a; b) · (Zt − Zt−1) + ∂2ηq(a; b) · (τ 2−q
t − τ 2−q

t−1 )χ]2

≤ 2E[(∂1ηq(a; b))2 · (Zt − Zt−1)2] + 2E[(∂2ηq(a; b))2 · (τ 2−q
t − τ 2−q

t−1 )2χ2]
(a)

≤ 2E[(Zt − Zt−1)2] + 2(τ 2−q
t − τ 2−q

t−1 )2χ2q2E|a|2q−2,

where (a, b) is a point on a line that connects the two points (B + Zt, τ
2−q
t χ) and

(B + Zt−1, τ
2−q
t−1 χ); we have used Lemma 2.5.5 part (ii) and Lemma 2.5.8 part (i)(ii)

to obtain (a). Note that Lemma 2.5.18 implies the second term on the right hand

side of the last inequality goes to zero, as t → ∞. Regarding the first term, we can

follow similar proof steps as for Lemma 5.7 in Bayati and Montanari (2012) to show

E(Zt − Zt−1)2 → 0, as t→∞.

The proof of part (iii) is the same as that of Lemma 4.1 in Bayati and Montanari

(2012). We do not repeat the proof here. For (iv), Lemma F.3(b) in Bayati and
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Montanari (2012) implies the empirical distribution of {((XT zt−1 + βt−1)i, βi)}pi=1

converges weakly to the distribution of (B + τt−1Z,B). Since the function J(y, z) ,

∂1ηq(y;χτ 2−q
t−1 ) is bounded and continuous with respect to (y, z) according to Lemma

2.5.5 part (i) and Lemma 2.5.6, (iv) follows directly from the Portmanteau theorem.

2.5.4.4 Two useful theorems

In this section, we refer to two useful theorems that have also been applied and cited

in Bayati and Montanari (2012). The first one is regarding the limit of the singular

values of random matrices taken from Bai and Yin (1993).

Theorem 2.5.20. (Bai and Yin, 1993). Let X ∈ Rn×p be a matrix having i.i.d.

entries with EXij = 0,EX2
ij = 1/n. Denote by σmax(X), σmin(X) the largest and

smallest non-zero singular values of X, respectively. If n/p→ δ > 0, as p→∞, then

lim
p→0

σmax(X) =
1√
δ

+ 1, a.s.,

lim
p→0

σmin(X) =
∣∣∣ 1√
δ
− 1
∣∣∣, a.s.

The second theorem establishes the relation between `1 and `2 norm for vectors

from random subspace, showed in Kashin (1977).

Theorem 2.5.21. (Kashin, 1977). For a given constant 0 < v ≤ 1, there exists a

universal constant cv such that for any p ≥ 1 and a uniformly random subspace V of

dimension p(1− v),

P
(
∀β ∈ V : cv‖β‖2 ≤

1
√
p
‖β‖1

)
≥ 1− 2−p.

2.5.4.5 The main proof steps

As mentioned before we will use similar arguments as the ones shown in Bayati and

Montanari (2012). To avoid redundancy, we will not present all the details and
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rather emphasize on the differences. We suggest interested readers going over the

proof in Bayati and Montanari (2012) before studying this section. Similar to Bayati

and Montanari (2012), we start with a lemma that summarizes several structural

properties of LQLS formulation. Define F(β) , 1
2
‖y −Xβ‖2

2 + λ‖β‖qq.

Lemma 2.5.22. Suppose β, r ∈ Rp satisfy the following conditions:

(i) ‖r‖2 ≤ c1
√
p

(ii) F(β + r) ≤ F(β)

(iii) ‖∇F (β)‖2 ≤
√
pε

(iv) sup0≤µi≤1

∑p
i=1 |βi + µiri|2−q ≤ pc2

(v) 0 < c3 ≤ σmin(X), where σmin(X) is defined in Theorem 2.5.20

(vi) ‖r‖‖2
2 ≤ c4

‖r‖‖21
p

. The vector r‖ ∈ Rp is the projection of r onto ker(X)5

Then there exists a function f(ε, c1, c2, c3, c3, c4, λ, q) such that

‖r‖2 ≤
√
pf(ε, c1, c2, c3, c4, λ, q).

Moreover, f(ε, c1, c2, c3, c4, λ, q)→ 0 as ε→ 0.

Proof. First note that

∇F(β) = −XT (y −Xβ) + λq(|β1|q−1sign(β1), . . . , |βp|q−1sign(βp))
T .

5It is the nullspace of X defined as ker(X) = {β ∈ Rp | Xβ = 0}.
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Combining it with Condition (ii) we have

0 ≥ F(β + r)−F(β)

=
1

2
‖y −Xβ −Xr‖2

2 + λ‖β + r‖qq −
1

2
‖y −Xβ‖2

2 − λ‖β‖qq

=
1

2
‖Xr‖2

2 − rTXT (y −Xβ) + λ(‖β + r‖qq − ‖β‖qq)

=
1

2
‖Xr‖2

2 + rT∇F(β) + λ

p∑
i=1

(|βi + ri|q − |βi|q − qri|βi|q−1sign(βi))

(a)

≥ 1

2
‖Xr‖2

2 + rT∇F(β) +
λq(q − 1)

2

p∑
i=1

|βi + µiri|q−2r2
i , (2.64)

where (a) is obtained by Lemma 2.5.23 that we will prove shortly and {µi} are

numbers between 0 and 1. Note that we can decompose r as r = r‖ + r⊥ such that

r‖ ∈ ker(X), r⊥ ∈ ker(X)⊥. Accordingly Condition (v) yields c2
3‖r⊥‖2

2 ≤ ‖Xr⊥‖2
2.

This fact combined with Inequality (2.64) implies

c2
3

2
‖r⊥‖2

2 ≤
1

2
‖Xr⊥‖2

2 =
1

2
‖Xr‖2

2 ≤ −rT∇F(β) ≤ ‖r‖2 · ‖∇F(β)‖2 ≤ c1pε,

where the last inequality is derived from Condition (i) and (iii). Hence we can obtain

‖r⊥‖2
2 ≤

2c1pε

c2
3

.

Our next step is to bound ‖r‖‖2
2. By Cauchy-Schwarz inequality we know

p∑
i=1

|ri| =

p∑
i=1

√
|βi + µiri|2−q ·

√
r2
i |βi + µiri|q−2,

≤

√√√√ p∑
i=1

|βi + µiri|2−q ·

√√√√ p∑
i=1

r2
i |βi + µiri|q−2.

So

p∑
i=1

r2
i |βi + µiri|q−2 ≥ ‖r‖2

1∑p
i=1 |βi + µiri|2−q

. (2.65)

Combining Inequality (2.64) and (2.65) gives us

‖r‖2
1 ≤
−2rT∇F(β)

λq(q − 1)
·

p∑
i=1

|βi + µiri|2−q
(b)

≤ 2c1c2ε

λq(q − 1)
p2,
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where we have used Conditions (i), (iii), and (iv) to derive (b). Using the upper bounds

we obtained for ‖r‖2
1 and ‖r⊥‖2

2, together with Condition (vi), it is straightforward

to verify the following chains of inequalities

‖r‖‖2
2 ≤

c4

p
‖r‖‖2

1 ≤
2c4

p
(‖r‖2

1 + ‖r⊥‖2
1) ≤ 2c4

p
(‖r‖2

1 + p‖r⊥‖2
2)

≤ 2c4

p
·
( 2c1c2ε

λq(q − 1)
p2 +

2c1ε

c2
3

p2
)

=
( 4c1c2c4

λq(q − 1)
+

4c1c4

c2
3

)
· εp.

We are finally able to derive

‖r‖2
2 = ‖r‖‖2

2 + ‖r⊥‖2
2 ≤

( 4c1c2c4

λq(q − 1)
+

4c1c4

c2
3

+
2c1

c2
3

)
· εp.

This completes the proof.

Note that Lemma 2.5.22 is a non-asymptotic and deterministic result. It sheds

light on the behavior of the cost function F(β) around its global minimum. Suppose

β + r is the global minimizer (a reasonable assumption according to Condition (ii)),

and if there is another point β having small function value (indicated by its gradient

from Condition (iii)), then the distance ‖r‖2 between β and the optimal solution

β + r should also be small. This interpretation should not sound surprising, since we

already know F(β) is a strictly convex function. However, Lemma 2.5.22 enables us

to characterize this property in a precise way, which is crucial in the high dimensional

asymptotic analysis. Based on Lemma 2.5.22, we will set β + r = β̂(λ, q), β = βt and

then verify all the conditions in Lemma 2.5.22 to conclude ‖r‖2 = ‖β̂(λ, q)− βt‖2 is

small. In particular that small distance will vanish as t → ∞, thus establishing the

asymptotic equivalence between β̂(λ, q) and βt. We perform the analysis in a sequel

of lemmas and Proposition 2.5.27.

Lemma 2.5.23. Given a constant q satisfying 1 < q ≤ 2, for any x, r ∈ R, there

exists a number 0 ≤ µ ≤ 1 such that

|x+ r|q − |x|q − rq|x|q−1sign(x) ≥ q(q − 1)

2
|x+ µr|q−2r2. (2.66)
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Proof. Denote fq(x) = |x|q. When q = 2, since f2(x) is a smooth function over

(−∞,+∞), we can apply Taylor’s theorem to obtain (2.66). For any 1 < q < 2, note

that f ′′q (0) =∞, hence Taylor’s theorem is not applicable to all the values of x ∈ R.

We prove the inequality above in separate cases. First observe that if (2.66) holds for

any x > 0, r ∈ R, then it is true for any x < 0, r ∈ R as well. It is also straightforward

to confirm that when x = 0, we can always choose µ = 1 to satisfy Inequality (2.66)

for any r ∈ R. We therefore focus on the case x > 0, r ∈ R.

a. When x + r > 0, since fq(x) is a smooth function over (0,∞), we can apply

Taylor’s theorem to obtain (2.66).

b. If x+r = 0, choosing µ = 0, Inequality (2.66) is simplified to (q−1)xq ≥ q(q−1)
2

xq,

which is clearly valid.

c. When x+ r < 0, we consider two different scenarios.

i. First suppose −x−r ≥ x. We apply (2.66) to the pair −r−x and x. Then

we know there exists 0 ≤ µ̃ ≤ 1 such that

|x+ r|q − |x|q ≥ q(q − 1)

2
|µ̃(−x− r) + (1− µ̃)x|q−2(2x+ r)2

−(2x+ r)q|x|q−1

It is also straightforward to verify that there is 0 ≤ µ ≤ 1 so that µ(x +

r) + (1− µ)x = −µ̃(−x− r)− (1− µ̃)x. Denote

g(y) =
q(q − 1)

2
|µ̃(−x− r) + (1− µ̃)x|q−2y2 + q|x|q−1y.

If we can show g(−2x− r) ≥ g(r), we can obtain the Inequality (2.66). It

is easily seen that the quadratic function g(y) achieves global minimum at

y0 =
−1

q − 1
|x|q−1|µ̃(−x− r) + (1− µ̃)x|2−q ≤ −1

q − 1
|x| < −x.

Moreover, note that −2x − r ≥ 0, r < 0 and they are symmetric around

y = −x, hence g(−2x− r) ≥ g(r).
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ii. Consider 0 < −x− r < x. We again use (2.66) for the pair −x−−r and

x to obtain

|x+ r|q − |x|q ≥ q(q − 1)

2
|µ̃(x+ r)− (1− µ̃)x|q−2(2x+ r)2

−(2x+ r)q|x|q−1 ≥ (−2x− r)q|x|q−1 +
q(q − 1)

2
|x|q−2(2x+ r)2.

Denote h(y) = q(q−1)
2
|x|q−2y2 +q|x|q−1y. If we can show h(−2x−r) ≥ h(r),

Inequality (2.66) will be established with µ = 0. Since h(x) achieves

global minimum at y0 = −1
q−1
|x| < −x and −2x − r > r, we can get

h(−2x− r) ≥ h(r).

The next lemma is similar to Lemma 3.2 in Bayati and Montanari (2012). The

proof is adapted from there.

Lemma 2.5.24. Let {β(p), X(p), w(p)} be a converging sequence. Denote the solution

of LQLS by β̂(λ, q), and let {βt}t≥0 be the sequence of estimates generated from the

AMP algorithm. There exists a positive constant C s.t.

lim
t→∞

lim
p→∞

‖βt‖2
2

p
≤ C, a.s.,

lim sup
p→∞

‖β̂(λ, q)‖2

p
≤ C, a.s.

Proof. To show the first inequality, according to Theorem 2.5.17 and Lemma 2.5.18,

choosing a particular pseudo-Lipschitz function ψ(x, y) = x2 we obtain

lim
t→∞

lim
p→∞

‖βt‖2
2

p
= EB,Z [ηq(B + τ∗Z;χτ 2−q

∗ )]2 <∞, a.s.,

where B ∼ fβ and Z ∼ N(0, 1) are independent. For the second inequality, first note

that since β̂(λ, q) is the optimal solution we have

λ‖β̂(λ, q)‖qq ≤ F(β̂(λ, q)) ≤ F(0) =
1

2
‖y‖2

2

=
1

2
‖Xβ + w‖2

2 ≤ ‖Xβ‖2
2 + ‖w‖2

2 ≤ σ2
max(X)‖β‖2

2 + ‖w‖2
2. (2.67)



CHAPTER 2. OVERCOMING THE LIMITATIONS OF PHASE TRANSITION
VIA A SECOND-ORDER LOW NOISE SENSITIVITY ANALYSIS 66

We then consider the decomposition β̂(λ, q) = β̂(λ, q)⊥ + β̂(λ, q)‖, where β̂(λ, q)⊥ ∈

ker(X)⊥ and β̂(λ, q)‖ ∈ ker(X). Since ker(X) is a uniformly random subspace with

dimension p(1 − δ)+, we can apply Theorem 2.5.21 to conclude that, there exists a

constant c(δ) > 0 depending on δ such that the following holds with high probability,

‖β̂(λ, q)‖2
2 = ‖β̂(λ, q)‖‖2

2 + ‖β̂(λ, q)⊥‖2
2 ≤
‖β̂(λ, q)‖‖2

1

c(δ)p
+ ‖β̂(λ, q)⊥‖2

2

≤ 2‖β̂(λ, q)⊥‖2
1 + 2‖β̂(λ, q)‖2

1

c(δ)p
+ ‖β̂(λ, q)⊥‖2

2

≤ 2‖β̂(λ, q)‖2
1

c(δ)p
+

2 + c(δ)

c(δ)
‖β̂(λ, q)⊥‖2

2. (2.68)

Moreover, Hölder’s inequality combined with Inequality (2.67) yields

‖β̂(λ, q)‖1

p
≤

(
‖β̂(λ, q)‖qq

p

)1/q

≤

(
σ2

max(X)‖β‖2
2 + ‖w‖2

2

λp

)1/q

. (2.69)

Using the results from (2.68) and (2.69), we can then upper bound ‖β̂(λ, q)‖2
2:

‖β̂(λ, q)‖2
2

p

(a)

≤ 2

c(δ)

(
σ2

max(X)‖β‖2
2 + ‖w‖2

2

λp

)2/q

+
2 + c(δ)

pc(δ)σ2
min(X)

‖Xβ̂(λ, q)⊥‖2
2.

To obtain (a) we have used the fact ‖Xβ̂(λ, q)⊥‖2
2 ≥ σ2

min(X)‖β̂(λ, q)⊥‖2
2. We can

further bound

‖Xβ̂(λ, q)⊥‖2
2

(b)

≤ 2‖y −Xβ̂(λ, q)‖2
2 + 2‖y‖2

2

(c)

≤ 4‖y‖2
2

(d)

≤ 8σ2
max(X)‖β‖2

2 + 8‖w‖2
2.

(b) is due to the simple fact Xβ̂(λ, q)⊥ = Xβ̂(λ, q); (c) and (d) hold since ‖y −

Xβ̂(λ, q)‖2
2 ≤ 2F(β̂(λ, q)) and inequalities in (2.67). Combining the last two chains

of inequalities we obtain with probability larger than 1− 2−p

‖β̂(λ, q)‖2
2

p
≤ 2

c(δ)

(
σ2

max(X)‖β‖2
2 + ‖w‖2

2

λp

)2/q

+
16 + 8c(δ)

c(δ)σ2
min(X)

· σ
2
max(X)‖β‖2

2 + ‖w‖2
2

p
.

Finally, because both σmin(X) and σmax(X) converge to non-zero constants by

Theorem 2.5.20 and (β,X,w) is a converging sequence, the right hand side of the

above inequality converges to a finite number.
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Lemma 2.5.25. Let {β(p), X(p), w(p)} be a converging sequence. Denote the solution

of LQLS by β̂(λ, q), and let {βt}t≥0 be the sequence of estimates generated from the

AMP algorithm.There exists a positive constant C̃ s.t.

lim sup
t→∞

lim sup
p→∞

sup
0≤µi≤1

∑p
i=1 |µiβ̂i(λ, q) + (1− µi)βti |2−q

p
< C̃, a.s.

Proof. For any given 0 ≤ µi ≤ 1, it is straightforward to see

|µiβ̂i(λ, q) + (1− µi)βti |2−q ≤ max{|β̂i(λ, q)|2−q, |βti |2−q} ≤ |β̂i(λ, q)|2−q + |βti |2−q.

Hence using Hölder’s inequality gives us

sup
0≤µi≤1

1

p

p∑
i=1

|µiβ̂i(λ, q) + (1− µi)βti |2−q

≤ 1

p

p∑
i=1

|β̂i(λ, q)|2−q +
1

p

p∑
i=1

|βti |2−q ≤
(1

p

p∑
i=1

|β̂i(λ, q)|2
) 2−q

2
+
(1

p

p∑
i=1

|βti |2
) 2−q

2
.

Applying Lemma 2.5.24 to the above inequality finishes the proof.

The next lemma is similar to Lemma 3.3 in Bayati and Montanari (2012). The

proof is adapted from there.

Lemma 2.5.26. Let {β(p), X(p), w(p)} be a converging sequence. Let {βt}t≥0 be the

sequence of estimates generated from the AMP algorithm. We have

lim
t→∞

lim
p→∞

‖∇F(βt)‖2
2

p
= 0, a.s.

Proof. Recall the AMP updating rule (2.61):

βt = ηq(X
T zt−1 + βt−1; τ 2−q

t−1 χ).

According to Lemma 2.5.5 part (i) we know βt satisfies

XT zt−1 + βt−1 = βt + τ 2−q
t−1 χq(|βt1|q−1sign(βt1), . . . , |βtp|q−1sign(βtp))

T .

The rule (2.61) also tells us

zt = y −Xβt + wtz
t−1,
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where wt is defined in Theorem 2.5.19. Note

∇F(βt) = −XT (y −Xβt) + λq(|βt1|q−1sign(βt1), . . . , |βtp|q−1sign(βtp))
T .

We can then upper bound ∇F(βt) in the following way:

1
√
p
‖∇F(βt)‖2 =

1
√
p
‖ −XT (y −Xβt) + λ(τ 2−q

t−1 χ)−1XT zt−1 + βt−1 − βt‖2

=
1
√
p
‖ −XT (zt − wtzt−1) + λ(τ 2−q

t−1 χ)−1(XT zt−1 + βt−1 − βt)‖2

≤ λ‖βt−1 − βt‖2

τ 2−q
t−1 χ

√
p

+
‖XT (zt−1 − zt)‖2√

p
+
|λ+ τ 2−q

t−1 χ(wt − 1)| · ‖XT zt−1‖2

τ 2−q
t−1 χ

√
p

≤ λ‖βt−1 − βt‖2

τ 2−q
t−1 χ

√
p

+
σmax(X)‖zt−1 − zt‖2√

p
+
σmax(X)|λ+ τ 2−q

t−1 χ(wt − 1)| · ‖zt−1‖2

τ 2−q
t−1 χ

√
p

.

By Lemma 2.5.18, Theorem 2.5.19 part (i)(ii) and Theorem 2.5.20, it is straightfor-

ward to confirm that the first two terms on the right hand side of the last inequality

vanish almost surely, as p → ∞, t → ∞. For the third term, Lemma 2.5.18 and

Theorem 2.5.19 part (iii)(iv) imply

lim
t→∞

lim
p→∞

|λ+ τ 2−q
t−1 χ(wt − 1)| · ‖zt−1‖2

τ 2−q
t−1 χ

√
p

=

√
δτ∗

τ 2−q
∗ χ

∣∣∣λ− τ 2−q
∗ χ

(
1− 1

δ
Eη′q(B + τ∗Z; τ 2−q

∗ χ)
)∣∣∣ = 0, a.s.

To obtain the last equality, we have used Equation (2.6).

We are in position to prove the asymptotic equivalence between AMP estimates

and bridge regression.

Proposition 2.5.27. Let {β(p), X(p), w(p)} be a converging sequence. Denote the

solution of LQLS by β̂(λ, q), and let {βt}t≥0 be the sequence of estimates generated

from the AMP algorithm. We then have

lim
t→∞

lim
p→∞

1

p
‖β̂(λ, q)− βt‖2

2 = 0, a.s. (2.70)
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Proof. We utilize Lemma 2.5.22. Let β + r = β̂(λ, q), β = βt. If this pair of β

and r satisfies the conditions in Lemma 2.5.22, we will have
‖r‖22
p

= ‖β̂(λ,q)−βt‖2
p

being

very small. In the rest of the proof, we aim to verify that the conditions in Lemma

2.5.22 hold with high probability and establish the connection between the iteration

numbers t and ε in Lemma 2.5.22.

a. Condition (i) follows from Lemma 2.5.24:

lim
t→∞

lim sup
p→∞

‖r‖2√
p
≤ lim sup

p→∞

‖β̂(λ, q)‖2√
p

+ lim
t→∞

lim
p→∞

‖βt‖2√
p
≤ 2
√
C, a.s.

b. Condition (ii) holds since β̂(λ, q) is the optimal solution of F(β).

c. Condition (iii) holds by Lemma 2.5.26. Note that ε→ 0, as t→∞.

d. Condition (iv) is due to Lemma 2.5.25.

e. Condition (v) is the result of Theorem 2.5.20.

f. Condition (vi) is a direct application of Theorem 2.5.21.

Note all the claims made above hold almost surely as p→∞; and ε→ 0 as t→∞.

Hence the result (2.70) follows.

Based on the results from Theorem 2.5.17, Lemma 2.5.18 and Proposition 2.5.27,

we can use exactly the same arguments as in the proof of Theorem 1.5 from Bayati

and Montanari (2012) to finish the proof of Theorem 2.2.2. Since the arguments are

straightforward, we do not repeat it here.

2.5.5 Proof of Theorem 2.2.3

First note that

1

p
E‖β̂(λ, q)− β‖2

2 =
1

p
E

N∑
j=1

(β̂j(λ, q)− βj)2

= E(β̂1(λ, q)− β)2,
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where the last equality is due to the symmetry of the problem. Furthermore, note

that according to the Replica claim (Rangan et al., 2012), (β̂1(λ, q), β1) converges in

distribution to (ηq(B + σ̄Z; χ̄σ̄2−q), B), where (σ̄, χ̄) satisfies (2.5) and (2.6). Hence,

by employing the continuous mapping theorem (for convergence in distribution), we

conclude that (β̂1(λ, q) − β1)2 converges to (ηq(B + σ̄Z; χ̄σ̄2−q) − B)2 in distribu-

tion. Note that convergence in distribution implies convergence of expectations if

and only if the sequence of random variables is asymptotically uniformly integrable

(See Chapter 2 of Van der Vaart (2000) for more information). According to square

integrability assumption, (β̂j(λ, q) − βj)2 is asymptotically uniformly integrable and

hence E(β̂j(λ, q)− βj)2 → E(ηq(B + σ̄Z; χ̄σ̄2−q)−B)2.

2.5.6 Proof of Corollary 2.2.4

We prove the result for q ∈ [1, 2]. The proof for other cases follows similarly. Accord-

ing to Theorem 2.2.2, the key of proving Corollary 2.2.4 is to analyze the following

equations:

σ2 = σ2
ω +

1

δ
E[(ηq(B + σZ;χσ2−q)−B)2], (2.71)

λ∗,q = χσ2−q(1− 1

δ
E[η′q(B + σZ;χσ2−q)]

)
, (2.72)

where λ∗,q = arg minλ≥0 AMSE(λ, q, σw). We present the main result in the following

lemma.

Lemma 2.5.28. For every 1 ≤ q ≤ 2 and a given optimal tuning λ∗,q, there exists

a unique solution pair (σ̄, χ̄) that satisfies (2.71) and (2.72). Furthermore, σ̄ is the

unique solution of

σ2 = σ2
w +

1

δ
min
χ≥0

E(ηq(B + σZ;χ)−B)2, (2.73)

and

χ̄ ∈ arg min
χ≥0

E[(ηq(B + σ̄Z;χσ̄2−q)−B)2]. (2.74)
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Proof. The first part of this lemma directly comes from Lemma 2.5.11. We focus on

the proof of the second part. Recall the definition of Rq(χ, σ) in (2.46). Define

Gq(σ) ,
σ2
w

σ2
+

1

δ
min
χ≥0

Rq(χ, σ).

Then (2.73) is equivalent to Gq(σ) = 1. We first show that Gq(σ) is a strictly

decreasing function of σ over (0,∞). For any given σ1 > σ2 > 0, we can choose χ1, χ2

such that

χ1 = arg min
χ≥0

E(ηq(B/σ1 + Z;χ)−B/σ1)2,

χ2 = arg min
χ≥0

E(ηq(B/σ2 + Z;χ)−B/σ2)2.

Applying Lemma 2.5.13 we have

Rq(χ1, σ1) = min
χ≥0

Rq(χ, σ1) ≤ Rq(χ2, σ1) ≤ Rq(χ2, σ2) = min
χ≥0

Rq(χ, σ2).

Hence we obtain that Gq(σ1) < Gq(σ2). We next show

lim
σ→0

Gq(σ) =∞, lim
σ→∞

Gq(σ) < 1. (2.75)

The first result in (2.75) is obvious. To prove the second one, we know

lim
σ→∞

Gq(σ) ≤ lim
σ→∞

σ2
w

σ2
+

1

δ
Rq(χ, σ) =

1

δ
Eη2

q (Z;χ),

for any given χ ≥ 0. Choosing a sufficiently large χ completes the proof for the

second inequality in (2.75). Based on (2.75) and the fact that Gq(σ) is a strictly

decreasing and continuous function of σ over (0,∞), we can conclude (2.73) has a

unique solution. Call it σ∗, and denote

χ∗ ∈ arg min
χ≥0

E[(ηq(B + σ∗Z;χ(σ∗)2−q)−B)2].

Note that χ∗ may not be unique. Further define

λ∗ = χ∗(σ∗)2−q
(

1− 1

δ
E[∂1ηq(B + σ∗Z;χ∗(σ∗)2−q)]

)
.
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It is straightforward to see that the pair (σ∗, χ∗) satisfies (2.5) and (2.6) with λ = λ∗.

According to Theorem 2.2.2, we obtain

AMSE(λ∗, q, σw) = δ((σ∗)2 − σ2
w). (2.76)

Also we already know for the optimal tuning λ∗,q

AMSE(λ∗,q, q, σw) = δ(σ̄2 − σ2
w) ≤ AMSE(λ∗, q, σw).

Therefore σ̄ ≤ σ∗. On the other hand,

σ̄2 = σ2
w +

1

δ
E(ηq(B + σ̄Z; χ̄σ̄2−q)−B)2

≥ σ2
w +

1

δ
min
χ≥0

E(ηq(B + σ̄Z;χ)−B)2 = σ̄2 ·Gq(σ̄).

Thus Gq(σ̄) ≤ 1 = Gq(σ
∗). Since Gq(σ) is a strictly decreasing function, we then

obtain σ̄ ≥ σ∗. Consequently, we conclude σ̄ = σ∗. Finally we claim (2.74) has to

hold. Otherwise,

AMSE(λ∗,q, q, σw) = E(ηq(B + σ̄Z; χ̄σ̄2−q)−B)2

> min
χ≥0

E(ηq(B + σ̄Z;χ)−B)2 = E(ηq(B + σ∗Z;χ∗)−B)2

= AMSE(λ∗, q, σw),

contradicts the fact that λ∗,q is the optimal tuning.

Remark: Lemma 2.5.28 leads directly to the result of Corollary 2.2.4. Further-

more, from the proof of Lemma 2.5.28, we see that if E[(ηq(B + σZ;χσ2−q) − B)2],

as a function of χ, has a unique minimizer for any given σ > 0, then χ̄ = χ∗. That

means the optimal tuning value λ∗,q is unique. Mousavi et al. (2017) has proved that

E[(ηq(B + σZ;χσ2−q) − B)2] is quasi-convex and has a unique minimizer for q = 1.

We conjecture that it is true for q ∈ (1, 2] as well and leave it for future research.
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2.5.7 Proof of Theorem 2.2.5

2.5.7.1 Roadmap of the proof

Different from the result of Theorem 2.2.7 for LASSO that bounds the second order

term in AMSE(λ∗,1, 1, σw), Theorem 2.2.5 characterizes the precise analytical expres-

sion of the second dominant term for AMSE(λ∗,q, q, σw) with q ∈ (1,∞). However,

the idea of this proof is similar to the one for Theorem 2.2.7, though the detailed

proof steps are more involved here. We suggest interested readers first going over

the proof of Theorem 2.2.7 in Chapter 2.5.2 and then this section so that both the

proof idea and technical details are smoothly understood. Recall the definition we

introduced in (2.46):

Rq(χ, σ) = E(ηq(B/σ + Z;χ)−B/σ)2,

where Z ∼ N(0, 1) and B with the distribution fβ(b) = (1 − ε)δ0(b) + εg(b) are

independent. Define

χ∗q(σ) = arg min
χ≥0

Rq(χ, σ). (2.77)

According to Lemma 2.5.6, it is straightforward to show Rq(χ, σ) is a differentiable

function of χ. It is also easily seen that

lim
χ→∞

Rq(χ, σ) =
E|B|2

σ2
, lim

χ→0
Rq(χ, σ) = 1.

Therefore, the minimizer χ∗q(σ) exists at least for sufficiently small σ. If it is not

unique, we will consider the one having smallest value itself. As like the proof of

Theorem 2.2.7, the key is to characterize the convergence rate for Rq(χ
∗
q(σ), σ) as

σ → 0. After having that convergence rate result, we can then obtain the convergence

rate for σ̄ from Equation (2.10) and finally derive the expansion of AMSE(λ∗,q, q, σw)

based on Corollary 2.2.4. We organize our proof steps as follows:

1. We first characterize the convergence rate of χ∗q(σ) in Chapter 2.5.7.2.
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2. We then obtain the convergence rate of Rq(χ
∗
q(σ), σ) in Chapter 2.5.7.3.

3. We finally derive the second-order expansion for AMSE(λ∗,q, q, σw) in Chapter

2.5.7.4.

As a final remark, once we show the proof for q ∈ (1, 2), since η2(u;χ) = u
1+2χ

has a nice explicit form, the proof for q = 2 can be easily derived. We hence skip it

for simplicity. The proof for the case q > 2 can be significantly simplified due to the

specific range of q. We also do not repeat it here. Refer to Wang et al. (2017) for the

complete proof.

2.5.7.2 Characterizing the convergence rate of χ∗q(σ)

The goal of this section is to derive the convergence rate of χ∗q(σ) as σ → 0. We

will make use of the fact that χ = χ∗q(σ) is the minimizer of Rq(χ, σ), to first show

χ∗q(σ) → 0 and then obtain the rate χ∗q(σ) ∝ σ2q−2. This is done in the following

three lemmas.

Lemma 2.5.29. Let χ∗q(σ) denote the minimizer of Rq(χ, σ) as defined in (2.77).

Then for every b 6= 0 and z ∈ R,

|ηq(b/σ + z;χ∗q(σ))| → ∞, as σ → 0.

Proof. Suppose this is not the case. Then there exist a value of b 6= 0, z ∈ R and a

sequence σk → 0, such that |ηq(b/σk+z;χ∗q(σk))| is bounded. Combined with Lemma

2.5.5 part (i) we obtain

χ∗q(σk) =
|b/σk + z| − |ηq(b/σk + z;χ∗q(σk))|

q|ηq(b/σk + z;χ∗q(σk))|q−1
= Ω

( 1

σk

)
. (2.78)

We next show that the result (2.78) implies for any other b̃ 6= 0 and z̃ ∈ R, |ηq(b̃/σk +

z̃;χ∗q(σk))| is bounded as well. From Lemma 2.5.5 part (i) we know

|b̃/σk + z̃| = |ηq(b̃/σk + z̃;χ∗q(σk))|+ χ∗q(σk)q|ηq(b̃/σk + z̃;χ∗q(σk))|q−1.(2.79)
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If |ηq(b̃/σk+z̃;χ∗q(σk))| is unbounded, then the right hand side of equation (2.79) (take

a subsequence if necessary) has the order larger than 1/σk. Hence (2.79) can not hold

for all the values of k. We thus have reached the conclusion that |ηq(b/σk+z;χ∗q(σk))|

is bounded for every b 6= 0 and z ∈ R. Therefore,

|ηq(G/σk + Z;χ∗q(σk))−G/σk| → ∞ a.s., as k →∞,

where G has the distribution g(·). We then use Fatou’s lemma to obtain

Rq(χ
∗
q(σk), σk) ≥ εE|ηq(G/σk + Z;χ∗q(σk))−G/σk|2 →∞.

On the other hand, since χ∗q(σk) minimizes Rq(χ, σk),

Rq(χ
∗
q(σk), σk) ≤ Rq(0, σk) = 1.

Such contradiction completes the proof.

Lemma 2.5.29 enables us to derive χ∗q(σ)→ 0 as σ → 0. We present it in the next

lemma.

Lemma 2.5.30. Let χ∗q(σ) denote the minimizer of Rq(χ, σ) as defined in (2.77).

Then χ∗q(σ)→ 0 as σ → 0.

Proof. First note that

Rq(χ, σ) = (1− ε)E(ηq(Z;χ))2 + εE(ηq(G/σ + Z;χ)−G/σ − Z)2 +

2εEZ(ηq(G/σ + Z;χ)−G/σ − Z) + ε

(a)
= (1− ε)E(ηq(Z;χ))2 + εχ2q2E|ηq(G/σ + Z;χ)|2q−2 +

2εE(∂1ηq(G/σ + Z;χ)− 1) + ε

(b)
= (1− ε)E(ηq(Z;χ))2 + εχ2q2E|ηq(G/σ + Z;χ)|2q−2 +

2εE
(

1

1 + χq(q − 1)|ηq(G/σ + Z;χ)|q−2
− 1

)
+ ε. (2.80)

We have employed Lemma 2.5.5 part (i) and Lemma 2.5.6 to obtain (a); (b) is due to

Lemma 2.5.8 part (i). According to Lemma 2.5.29, |ηq(G/σ + Z;χ∗q(σ))| → ∞ a.s.,
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as σ → 0. Hence, if χ∗q(σ) 9 0, the second term in (2.80) (with χ = χ∗q(σ)) goes off

to infinity, while the other terms remain finite, and consequently Rq(χ
∗
q(σ), σ)→∞.

This is a contradiction with the fact Rq(χ
∗
q(σ), σ) ≤ Rq(0, σ) = 1.

So far we have shown χ∗q(σ)→ 0 as σ → 0. Our next lemma further characterizes

the convergence rate of χ∗q(σ).

Lemma 2.5.31. Suppose P(|G| ≤ t) = O(t) (as t → 0) and E|G|2 < ∞. Then for

q ∈ (1, 2) we have

lim
σ→0

χ∗q(σ)

σ2q−2
=

(1− ε)E|Z|q

εqE|G|2q−2
.

Proof. We first claim that χ∗q(σ) = Ω(σ2q−2). Otherwise there exists a sequence

σk → 0 such that χ∗q(σk) = o(σ2q−2
k ). According to Lemma 2.5.32 (we postpone

Lemma 2.5.32 since it deals with Rq(χ, σ)),

lim
k→∞

Rq(χ
∗
q(σk), σk)− 1

σ2q−2
k

= 0.

On the other hand, by choosing χ(σk) = Cσ2q−2
k with C = (1−ε)E|Z|q

εqE|G|2q−2 , Lemma 2.5.32

implies that

lim
k→∞

Rq(χ(σk), σk)− 1

σ2q−2
k

< 0,

which contradicts with the fact that χ∗q(σk) is the minimizer of Rq(χ, σk). Moreover,

this choice of C shows that for sufficiently small σ there exists χ(σ) such that

Rq(χ
∗
q(σ), σ) ≤ Rq(χ(σ), σ) < Rq(0, σ) = 1.

That means χ∗q(σ) is a non-zero finite value. Hence it satisfies
∂Rq(χ∗q(σ),σ)

∂χ
= 0. From

now on we use χ∗ to denote χ∗q(σ) for notational simplicity. That equation can be
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detailed out as follows:

0 = (1− ε)Eηq(Z;χ∗)∂2ηq(Z;χ∗) + εE(ηq(G/σ + Z;χ∗)−G/σ)∂2ηq(G/σ + Z;χ∗)

(a)
= (1− ε)E −q|ηq(Z;χ∗)|q

1 + χ∗q(q − 1)|ηq(Z;χ∗)|q−2︸ ︷︷ ︸
H1

+εE(Z∂2ηq(G/σ + Z;χ∗))︸ ︷︷ ︸
H2

+εχ∗ E
q2|ηq(G/σ + Z;χ∗)|2q−2

1 + χ∗q(q − 1)|ηq(G/σ + Z;χ∗)|q−2︸ ︷︷ ︸
H3

, (2.81)

where we have used Lemma 2.5.5 part (i) and Lemma 2.5.8 part (ii) to obtain (a).

We now analyze the three terms H1, H2 and H3, respectively. According to Lemma

2.5.30, we have that ηq(Z;χ∗) → Z as σ → 0. Lemma 2.5.5 part (ii) enables us to

bound the expression inside the expectation of H1 by q|Z|q. Hence we can employ

Dominated Convergence Theorem (DCT) to obtain

lim
σ→0

H1 = −qE|Z|q. (2.82)

For the term H3, we first note that

lim
σ→0

ηq(G+ σZ;σ2−qχ∗) = G,

|ηq(G+ σZ;σ2−qχ∗)| ≤ |B|+ σ|Z|.

We also know that |ηq(G/σ + Z;χ∗)| → ∞, a.s. by Lemma 2.5.29. We therefore can

apply DCT to conclude

lim
σ→0

H3

σ2−2q
= E lim

σ→0

q2|ηq(G+ σZ;σ2−qχ∗)|2q−2

1 + χ∗q(q − 1)|ηq(G/σ + Z;χ∗)|q−2
= q2E|G|2q−2.(2.83)

We now study the remaining term H2. According to Lemma 2.5.6, ∂2ηq(G/σ+Z;χ∗)

is differentiable with respect to its first argument. So we can apply Lemma 2.5.12 to

get

H2 = q(1− q)E |ηq(G/σ + Z;χ∗)|q−2

(1 + χ∗q(q − 1)|ηq(G/σ + Z;χ∗)|q−2)3︸ ︷︷ ︸
J1

+q2(1− q)E χ∗|ηq(G/σ + Z;χ∗)|2q−4

(1 + χ∗q(q − 1)|ηq(G/σ + Z;χ∗)|q−2)3︸ ︷︷ ︸
J2

.
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It is straightforward to see that

J1 ≤ E
1

|ηq(G/σ + Z;χ∗)|2−q + χ∗q(q − 1)
,

J2 ≤ E
1/(q(q − 1))

|ηq(G/σ + Z;χ∗)|2−q + χ∗q(q − 1)
.

We would like to prove H2 → 0 by showing

lim
σ→0

E
1

|ηq(G/σ + Z;χ∗)|2−q + χ∗q(q − 1)
= 0. (2.84)

Note that DCT may not be directly applied here, because the function inside the

expectation cannot be easily bounded. Alternatively, we prove (2.84) by breaking

the expectation into different parts and showing each part converges to zero. Let α1

be a number that satisfies ηq(α1;χ∗) = (χ∗)
1

2−q , α2 = (χ∗)
1
2 , and α3 a fixed positive

constant that does not depend on σ. Denote the distribution of |G| by F (g). Note

the following simple fact about α1 according to Lemma 2.5.5 part (i):

α1 = ηq(α1;χ∗) + χ∗qηq−1
q (α1;χ∗) = (q + 1)(χ∗)

1
2−q .

So α1 < α2 < α3 when σ is small. Define the following three nested intervals:

Ii(x) , [−x− αi,−x+ αi], i = 1, 2, 3.

With these definitions, we start the proof of (2.84). We have

E
1

|ηq(G/σ + Z;χ∗)|2−q + χ∗q(q − 1)

=

∫ ∞
0

∫
z∈I1(g/σ)

1

|ηq(g/σ + z;χ∗)|2−q + χ∗q(q − 1)
φ(z)dzdF (g) +∫ ∞

0

∫
z∈I2(g/σ)\I1(g/σ)

1

|ηq(g/σ + z;χ∗)|2−q + χ∗q(q − 1)
φ(z)dzdF (g) +∫ ∞

0

∫
z∈I3(b/σ)\I2(g/σ)

1

|ηq(g/σ + z;χ∗)|2−q + χ∗q(q − 1)
φ(z)dzdF (g) +∫ ∞

0

∫
R\I3(b/σ)

1

|ηq(g/σ + z;χ∗)|2−q + χ∗q(q − 1)
φ(z)dzdF (g)

, G1 +G2 +G3 +G4,
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where φ(·) is the density function of standard normal. We now bound each of the

four integrals in (2.85) respectively.

G1 ≤
∫ ∞

0

∫
z∈I1(g/σ)

1

χ∗q(q − 1)
φ(z)dzdF (g)

≤ 2α1φ(0)

χ∗q(q − 1)
≤ 2(q + 1)(χ∗)

1
2−qφ(0)

χ∗q(q − 1)
→ 0, as σ → 0.

The last step is due to the fact that χ∗ → 0 by Lemma 2.5.30. For G2 we have

G2 ≤
∫ ∞

0

∫
z∈I2(g/σ)\I1(g/σ)

1

|ηq(g/σ + z;χ∗)|2−q
φ(z)dzdF (g)

(b)

≤
∫ ∞

0

∫
z∈I2(g/σ)\I1(g/σ)

1

χ∗
φ(z)dzdF (g)

≤
∫ σ log(1/σ)

0

∫
z∈I2(g/σ)\I1(g/σ)

1

χ∗
φ(z)dzdF (g) +∫ ∞

σ log(1/σ)

∫
z∈I2(g/σ)\I1(g/σ)

1

χ∗
φ(z)dzdF (g)

≤ P(|G| ≤ σ log(1/σ))
2φ(0)α2

χ∗
+

2φ(log(1/σ)− α2)α2

χ∗

= P(|G| ≤ σ log(1/σ))
2φ(0)

(χ∗)1/2
+

2φ(log(1/σ)− α2)

(χ∗)1/2

(c)

≤ O(1) · σ2−q log(1/σ) +O(1) · φ((log(1/σ))/2)

σq−1
→ 0, as σ → 0.

In the above derivations, (b) is because

|ηq(g/σ + z;χ∗)| ≥ ηq(α1;χ∗) = (χ∗)1/(2−q) for z /∈ I1(g/σ).

To obtain (c), we have used the condition P(|G| ≤ σ log(1/σ)) = O(σ log(1/σ)) and

the result χ∗ = Ω(σ2q−2) we proved at the beginning. Regarding G3,

G3 ≤
∫ ∞

0

∫
z∈I3(g/σ)\I2(g/σ)

1

|ηq(α2;χ∗)|2−q
φ(z)dzdF (g)

≤
∫ σ log 1/σ

0

∫
z∈I3(g/σ)\I2(g/σ)

1

|ηq(α2;χ∗)|2−q
φ(z)dzdF (g)

+

∫ ∞
σ log 1/σ

∫
z∈I3(g/σ)\I2(g/σ)

1

|ηq(α2;χ∗)|2−q
φ(z)dzdF (g)
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≤ P(|G| ≤ σ log(1/σ))
2φ(0)α3

|ηq(α2;χ∗)|2−q
+

2φ(log(1/σ)− α3)α3

|ηq(α2;χ∗)|2−q
(d)

≤ O(1) · σq2−3q+3 log(1/σ) +O(1) · φ((log(1/σ))/2)

σ(q−1)(2−q) → 0, as σ → 0.

The calculations above are similar to those for G2. In (d) we have used the following

result:

lim
σ→0

ηq(α2;χ∗)

(χ∗)1/2
= lim

σ→0

ηq((χ
∗)1/2;χ∗)

(χ∗)1/2
= lim

σ→0
ηq(1; (χ∗)q/2) = 1.

Finally we can apply DCT to obtain

lim
σ→0

G4 = E lim
σ→0

I(|G/σ + Z| > α3)

|ηq(G/σ + Z;χ∗)|2−q + χ∗q(q − 1)
= 0.

We have finished the proof of limσ→0H2 = 0. This fact together with (2.81), (2.82)

and (2.83) gives us

lim
σ→0

χ∗

σ2q−2
=
−(1− ε)H1 − εH2

εH3/σ2−2q
=

(1− ε)E|Z|q

εqE|G|2q−2
.

2.5.7.3 Characterizing the convergence rate of Rq(χ
∗
q(σ), σ)

Having derived the convergence rate of χ∗q(σ) in Chapter 2.5.7.2, we aim to obtain the

convergence rate for Rq(χ
∗
q(σ), σ) in this section. Towards that goal, we first present

a useful lemma.

Lemma 2.5.32. Suppose P(|G| ≤ t) = O(t) (as t → 0) and E|G|2 < ∞. If χ(σ) =

Cσ2q−2 with a fixed number C > 0, then for 1 < q < 2 we have

lim
σ→0

Rq(χ(σ), σ)− 1

σ2q−2
= −2C(1− ε)qE|Z|q + εC2q2E|G|2q−2. (2.85)

Moreover, if χ(σ) = o(σ2q−2) then

lim
σ→0

Rq(χ(σ), σ)− 1

σ2q−2
= 0. (2.86)
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Proof. We first focus on the case χ(σ) = Cσ2q−2. According to (2.80),

Rq(χ, σ)− 1 = (1− ε)E(η2
q (Z;χ)− Z2)︸ ︷︷ ︸
R1

+ εχ2q2E|ηq(G/σ + Z;χ)|2q−2︸ ︷︷ ︸
R2

−2εχq(q − 1)E
|ηq(G/σ + Z;χ)|q−2

1 + χq(q − 1)|ηq(G/σ + Z;χ)|q−2︸ ︷︷ ︸
R3

.

Now we calculate the limit of each of the terms individually. We have

R1 = (1− ε)E(ηq(Z;χ) + Z)(ηq(Z;χ)− Z)

(a)
= −(1− ε)E(ηq(Z;χ) + Z)(χq|ηq(Z;χ)|q−1sign(Z))

= −(1− ε)χq(E|ηq(Z;χ)|q + E|Z||ηq(Z;χ)|q−1),

where (a) is due to Lemma 2.5.5 part (i). Hence we obtain

lim
σ→0

R1

σ2q−2
= −C(1− ε)q lim

σ→0
(E|ηq(Z;χ)|q + E|Z||ηq(Z;χ)|q−1) (2.87)

= −2C(1− ε)qE|Z|q.

The last equality is by Dominated Convergence Theorem (DCT). For R2,

lim
σ→0

R2

σ2q−2
= lim

σ→0

εχ2q2E|ηq(G/σ + Z;χ)|2q−2

σ2q−2
(2.88)

= εC2q2 lim
σ→0

E|ηq(G+ σZ;χσ2−q)|2q−2

= εC2q2E|G|2q−2.

Regarding the term R3, we would like to show that if χ(σ) = O(σ2q−2), then

lim
σ→0

χ

σ2q−2
E

1

|ηq(G/σ + Z;χ)|2−q + χq(q − 1)
= 0. (2.89)

Define α1 = 1 if 1 < q < 3/2 and α1 = σ2q−3+c if 3/2 ≤ q < 2, where c > 0 is a

sufficiently small constant that we will specify later. Let F (g) be the distribution

function of |G| and α2 > 1 a fixed constant. So α1 < α2 for small σ. Define the

following two nested intervals

Ii(x) , [−x− αi,−x+ αi], i = 1, 2.
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Then the expression in (2.89) can be written as

χ

σ2q−2
E

1

|ηq(G/σ + Z;χ)|2−q + χq(q − 1)

=
χ

σ2q−2

∫ ∞
0

∫
z∈I1(g/σ)

1

|ηq(g/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (g) +

χ

σ2q−2

∫ ∞
0

∫
z∈I2(g/σ)\I1(g/σ)

1

|ηq(g/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (g) +

χ

σ2q−2

∫ ∞
0

∫
R\I2(g/σ)

1

|ηq(g/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (g)

, G1 +G2 +G3.

We will bound each of the three integrals above. The idea is similar as the one

presented in the proof of Lemma 2.5.31. For the first integral,

G1 ≤ χ

σ2q−2

∫ ∞
0

∫ −g/σ+α1

−g/σ−α1

1

χq(q − 1)
φ(z)dzdF (g)

≤ χ

σ2q−2

∫ σ log 1/σ

0

∫ −g/σ+α1

−g/σ−α1

1

χq(q − 1)
φ(z)dzdF (g)

+
χ

σ2q−2

∫ ∞
σ log 1/σ

∫ −g/σ+α1

−g/σ−α1

1

χq(q − 1)
φ(z)dzdF (g)

(b)

≤ P(|G| ≤ σ log 1/σ)
2α1φ(0)

q(q − 1)σ2q−2
+

2α1φ(log 1/σ − α1)

q(q − 1)σ2q−2

≤ O(1) · σc log(1/σ)
α1

σ2q−3+c
+O(1) · α1φ((log 1/σ)/2)

σ2q−2

(c)→ 0, as σ → 0.

To obtain (b), we have used the following inequalities when σ is small:∫ −g/σ+α1

−g/σ−α1

φ(z)dz ≤ 2φ(0)α1, for g ≤ σ log(1/σ),∫ −g/σ+α1

−g/σ−α1

φ(z)dz ≤ 2α1φ(log(1/σ)− α1), for g > σ log(1/σ).
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The limit (c) holds due to the choice of α1. Regarding the second term G2,

G2 ≤ χ

σ2q−2

∫ ∞
0

∫
z∈I2(g/σ)\I1(g/σ)

1

|ηq(g/σ + z;χ)|2−q
φ(z)dzdF (g)

=
χ

σ2q−2

∫ σ log 1/σ

0

∫
z∈I2(g/σ)\I1(g/σ)

1

|ηq(g/σ + z;χ)|2−q
φ(z)dzdF (g)

+
χ

σ2q−2

∫ ∞
σ log 1/σ

∫
z∈I2(g/σ)\I1(g/σ)

1

|ηq(g/σ + z;χ)|2−q
φ(z)dzdF (g)

(d)

≤ χ

σ2q−2

∫ σ log 1/σ

0

∫
z∈I2(g/σ)\I1(g/σ)

1

|ηq(α1;χ)|2−q
φ(z)dzdF (g)

+
χ

σ2q−2

∫ ∞
σ log 1/σ

∫
z∈I2(g/σ)\I1(g/σ)

1

|ηq(α1;χ)|2−q
φ(z)dzdF (g)

(e)

≤ P(|G| ≤ σ log 1/σ)
2α2φ(0)χ

σ2q−2|ηq(α1;χ)|2−q
+

2α2φ(log 1/σ − α2)χ

σ2q−2|ηq(α1;χ)|2−q
(f)

≤ O(1) · σc log(1/σ)
1

α2−q
1 σc−1

+O(1) · φ((log 1/σ)/2)

α2−q
1

(g)→ 0, as σ → 0,

where (d) is due to the fact |ηq(g/σ+z;χ)| ≥ ηq(α1;χ) for z /∈ I1(g/σ); The argument

for (e) is similar to that for (b); (f) holds based on two facts:

1. limσ→0
ηq(α1;χ)

α1
= limσ→0 ηq(1;αq−2

1 χ) = 1, since αq−2
1 χ → 0. This is obvious for

the case α1 = 1. When α1 = σ2q−3+c, we have αq−2
1 χ = O(1) · σ2q2+(c−5)q+4−2c

and 2q2 + (c− 5)q + 4− 2c > 0 if c is chosen small enough.

2. P(|G| ≤ σ log 1/σ) = O(σ log 1/σ). This is one of the conditions.

And finally (g) works as follows: it is clear that σc log(1/σ) 1

α2−q
1 σc−1

goes to zero

when α1 = 1; when α1 = σ2q−3+c, we can sufficiently small c such that αq−2
1 σ1−c =

σ2q2+(c−7)q+7−3c = o(1). For the third integral G3, we are able to invoke DCT to

obtain

lim
σ→0

G3 = O(1) · lim
σ→0

E
I(|G/σ + Z| > α2)

|ηq(G/σ + Z;χ)|2−q + χq(q − 1)
= 0.

Note that DCT works because for small σ

I(|G/σ + Z| > α2)

|ηq(G/σ + Z;χ)|2−q + χq(q − 1)

≤ I(|G/σ + Z| > α2)

|ηq(G/σ + Z;χ)|2−q
≤ 1

|ηq(α2;χ)|2−q
≤ 1

|ηq(α2; 1)|2−q
.
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We hence have showned that

lim
σ→0

R3

σ2q−2
= 0. (2.90)

Combining the results (2.87), (2.88), and (2.90) establishes (2.85).

To prove (2.86), first note that (2.90) has been derived in the general setting

χ(σ) = O(σ2q−2). Moreover, we can use similar arguments to show for χ(σ) =

o(σ2q−2),

lim
σ→0

R1

σ2q−2
= lim

σ→0

R2

σ2q−2
= 0.

This completes the proof.

We are in position to derive the convergence rate of Rq(χ
∗
q(σ), σ).

Lemma 2.5.33. Suppose P(|G| ≤ t) = O(t) (as t → 0) and E|G|2 < ∞. Then for

q ∈ (1, 2) we have

lim
σ→0

Rq(χ
∗
q(σ), σ)− 1

σ2q−2
= −(1− ε)2(E|Z|q)2

εE|G|2q−2
.

Proof. According to Lemma 2.5.31, choosing C = (1−ε)E|Z|q
εqE|G|2q−2 in Lemma 2.5.32 finishes

the proof.

2.5.7.4 Deriving the expansion of AMSE(λ∗,q, q, σw)

According to Corollary 2.2.4 we know

AMSE(λ∗,q, q, σw) = σ̄2 ·Rq(χ
∗
q(σ̄), σ̄), (2.91)

where σ̄ satisfies the following equation:

σ̄2 = σ2
w +

σ̄2

δ
Rq(χ

∗
q(σ̄), σ̄). (2.92)

Since χ∗q(σ̄) minimizes Rq(χ, σ̄) we obtain

Rq(χ
∗
q(σ̄), σ̄) ≤ Rq(0, σ̄) = 1.
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Therefore, under the condition δ > 1,

σ̄2 ≤ σ2
w +

1

δ
σ̄2 ⇒ σ̄2 ≤ δ

δ − 1
σ2
w, (2.93)

which implies that σ̄ → 0 as σw → 0. Accordingly, we combine Equation (2.92) with

the fact Rq(χ
∗
q(σ̄), σ̄)→ 1 as σ̄ → 0 from Lemma 2.5.33 to conclude

lim
σw→0

σ2
w

σ̄2
= lim

σ̄→0

σ2
w

σ̄2
= lim

σ̄→0

(
1− 1

δ
Rq(χ

∗
q(σ̄), σ̄)

)
=
δ − 1

δ
. (2.94)

We now derive the expansion of AMSE(λ∗,q, q, σw) presented in (2.11). From (2.91)

and (2.92) we can compute that

AMSE(λ∗,q, q, σw)− σ2
w

1−1/δ

σ2q
w

=
σ̄2Rq(χ

∗
q(σ̄), σ̄)− 1

1−1/δ
· (σ̄2 − σ̄2

δ
Rq(χ

∗
q(σ̄), σ̄))

σ2q
w

=
σ̄2δ(Rq(χ

∗
q(σ̄), σ̄)− 1)

σ2q
w (δ − 1)

=
σ̄2q

σ2q
w

· δ

δ − 1
·
Rq(χ

∗
q(σ̄), σ̄)− 1

σ̄2q−2
.

Letting σw → 0 on both sides of the above equation and using the results from (2.94)

and Lemma 2.5.33 completes the proof.

2.5.8 Proof of Theorem 2.2.6

From (2.91) and (2.92) we see that

AMSE(λ∗,q, q, σw) = δ(σ̄2 − σ2
w).

Hence Theorem 2.2.6 can be proved by showing

lim
σw→0

σ̄ > 0.

For that purpose we first prove the following under the condition E|G|2 <∞.

lim
σ→0

Rq(χ
∗
q(σ), σ) = 1. (2.95)

When q = 2, Rq(χ
∗
q(σ);σ) admits a nice explicit expression and can be easily shown

to converge to 1. For 1 < q < 2, since χ∗q(σ) is the minimizer of Rq(χ, σ) we know

Rq(χ
∗
q(σ), σ) ≤ Rq(0, σ) = 1,
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hence lim supσ→0Rq(χ
∗
q(σ), σ) ≤ 1. On the other hand, (2.80) gives us

Rq(χ
∗
q(σ), σ) ≥ (1− ε)E(ηq(Z;χ∗))2 − ε

+2εE
(

1

1 + χ∗q(q − 1)|ηq(G/σ + Z;χ∗)|q−2

)
where we have used χ∗ to denote χ∗q(σ) for simplicity. Based on Lemmas 2.5.29 and

2.5.30, we can apply Fatou’s lemma to the above inequality to obtain lim infσ→0Rq(χ
∗
q(σ), σ) ≥

1.

Next it is clear that

lim
σ→∞

Rq(χ
∗
q(σ), σ) ≤ lim

σ→∞
lim
χ→∞

Rq(χ, σ) = 0. (2.96)

We now consider an arbitrary convergent sequence σ̄n → σ∗. We claim σ∗ 6= 0.

Otherwise Equation (2.92) tells us

Rq(χ
∗
q(σ̄n), σ̄n) < δ < 1,

and letting n → ∞ above contradicts (2.95). Now that σ∗ > 0 we can take n → ∞

in (2.92) to obtain

Rq(χ
∗
q(σ
∗), σ∗) = δ < 1.

According to Lemma 2.5.13, it is not hard to confirm Rq(χ
∗
q(σ), σ) is a strictly de-

creasing and continuous function of σ. Results (2.95) and (2.96) then imply that σ∗

is the unique solution to Rq(χ
∗
q(σ), σ) = δ. Since this is true for any sequence, we

have proved limσw→0 σ̄ exists and larger than zero.

2.5.9 Proof of Theorem 2.2.8

2.5.9.1 Roadmap

Theorem 2.2.8 differs from Theorem 2.2.7 in that the order of the second dominant

term of AMSE(λ∗,1, 1, σw) becomes polynomial (ignore the logarithm term) when the

distribution of G has mass around zero. However, the proof outline remains the same.
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We hence stick to the same notations used in the proof of Theorem 2.2.7. In particular,

R(χ, σ), χ∗(σ) represent Rq(χ, σ), χ∗q(σ) with q = 1, respectively. We characterize the

convergence rate of χ∗(σ) in Chapter 2.5.9.2, and bound the convergence rate of

R(χ∗(σ), σ) in Chapter 2.5.9.3. After we characterize R(χ∗(σ), σ), the rest of the

proof is similar to that in Chapter 2.5.2.4. We therefore do not repeat it here.

2.5.9.2 Bounding the convergence rate of χ∗(σ)

Lemma 2.5.34. Suppose P(|G| ≤ t) = Θ(t`) with ` > 0 (as t→ 0) and E|G|2 <∞,

then for sufficiently small σ

αmσ
` ≤ χ∗(σ)− χ∗∗ ≤ βmσ

` ·

√√√√log log . . . log︸ ︷︷ ︸
m times

(
1

σ

)`

,

where m > 0 is an arbitrary integer number, αm, βm > 0 are two constants depending

on m, and χ∗∗ is the unique minimizer of (1− ε)E(η1(Z;χ))2 + ε(1 +χ2) over [0,∞).

Proof. According to Lemma 2.5.1, χ∗(σ) → χ∗∗ as σ → 0. To characterize the

convergence rate, we follow the same line of proof that we presented for Lemma 2.5.2

and adopt the same notations. For simplicity we do not detail out the entire proof

and instead highlight the differences. The key difference is that neither e1 or e2 are

exponentially small in the current setting. We now start by bounding e2. Let F (g)

be the distribution function of |G| and define

logm(a) , log log . . . log︸ ︷︷ ︸
m times

(a).
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Given an integer m > 0 and a constant c > 0, we then have

Eφ(χ∗ − |G|/σ)

=
m−1∑
i=1

∫ cσ(logm−i(1/σ))1/2

cσ(logm−i+1(1/σ))1/2

φ(χ∗ − g/σ)dF (g) +

∫ cσ(logm(1/σ))1/2

0

φ(χ∗ − g/σ)dF (g) +

∫ ∞
cσ(log(1/σ))1/2

φ(χ∗ − g/σ)dF (g)

≤
m−1∑
i=1

φ(c(logm−i+1(1/σ))1/2 − χ∗) · P(|G| ≤ cσ(logm−i(1/σ))1/2) +

φ(0) · P(|G| ≤ cσ(logm(1/σ))1/2) + φ(c(log(1/σ))1/2 − χ∗). (2.97)

The condition P(|G| ≤ t) = Θ(t`) leads to

m−1∑
i=1

φ(c(logm−i+1(1/σ))1/2 − χ∗) · P(|G| ≤ cσ(logm−i(1/σ))1/2)

≤ e(χ∗)2/2

√
2π

m−1∑
i=1

e−(c2 logm−i+1(1/σ))/4 ·Θ(σ`(logm−i(1/σ))`/2)

= O(1) ·
m−1∑
i=1

σ`(logm−i(1/σ))`/2−c
2/4,

where we have used the simple inequality e−(a−b)2/2 ≤ e−b
2/4 · ea2/2. It is also clear

that

φ(c(log(1/σ))1/2 − χ∗) ≤ 1√
2π
e(χ∗)2/2 · σc2/4.

Therefore, by choosing a sufficiently large c we can conclude that the dominant term

in (2.97) is φ(0)P(|G| ≤ cσ(logm(1/σ))1/2) = Θ(σ`(logm(1/σ))`/2). Furthermore,

choosing a fixed constant C > 0 we have the following lower bound

Eφ(χ∗ + |G|/σ) ≥
∫ Cσ

0

φ(χ∗ + g/σ)dF (g) ≥ φ(C + χ∗) · P(|G| ≤ Cσ) = Θ(σ`).

Because

Eφ(χ∗ + |G|/σ) ≤ Eφ(χ∗ ±G/σ) ≤ Eφ(χ∗ − |G|/σ),

We are able to derive

Θ(σ`) ≤ Eφ(χ∗ ±G/σ) ≤ Θ(σ`(logm(1/σ))`/2).
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As a result we obtain the bound for e2:

Θ(σ`) ≤ e2 ≤ Θ(σ`(logm(1/σ))`/2) (2.98)

To bound e1, recall that

e1 = −εE
∫ −G/σ+χ∗

−G/σ−χ∗
φ(z)dz = −2εχ∗Eφ(aχ∗ −G/σ),

where |a| ≤ 1 depends on G. We can find two positive constants C1, C2 > 0 such that

for small σ

C1Eφ(χ∗ + |G|/σ) ≤ Eφ(aχ∗ −G/σ) ≤ C2Eφ(χ∗ − |G|/σ).

Hence we have

Θ(σ`) ≤ −e1 ≤ Θ(σ`(logm(1/σ))`/2). (2.99)

Based on the results from (2.98) and (2.99) and Equation (2.24), we can use similar

arguments as in the proof of Lemma 2.5.2 to conclude

Θ(σ`) ≤ χ∗(σ)− χ∗∗ ≤ Θ(σ`(logm(1/σ))`/2).

2.5.9.3 Bounding the convergence rate of R(χ∗(σ), σ)

Lemma 2.5.35. Suppose P(|G| ≤ t) = Θ(t`) with ` > 0 (as t→ 0) and E|G|2 <∞,

then for sufficiently small σ

−βmσ` ·

√√√√log log . . . log︸ ︷︷ ︸
m times

(
1

σ

)`

≤ R(χ∗(σ), σ)−M1(ε) ≤ −αmσ`,

where m > 0 is an arbitrary integer number and αm, βm > 0 are two constants

depending on m.
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Proof. We recall the two quantities:

M1(ε) = (1− ε)E(η1(Z;χ∗∗))2 + ε(1 + (χ∗∗)2)

R(χ∗(σ), σ) = (1− ε)E(η1(Z;χ∗))2 + ε(1 + E(η1(G/σ + Z;χ∗)−G/σ − Z)2)

+2εEZ(η1(G/σ + Z;χ∗)−G/σ − Z).

Since χ∗(σ) is the minimizer of R(χ, σ),

R(χ∗(σ), σ)−M1(ε) ≤ R(χ∗∗, σ)−M1(ε)

= ε[E(η1(G/σ + Z;χ∗∗)−G/σ − Z)2 − (χ∗∗)2] +

2εEZ(η1(G/σ + Z;χ∗∗)−G/σ − Z)
(a)

≤ −2εEI(|G/σ + Z| ≤ χ∗∗)
(b)

≤ −Θ(σ`). (2.100)

To obtain (a), we have used Lemma 2.5.12 and the fact |η1(u;χ) − u| ≤ χ. (b) is

due to the similar arguments for bounding e1 in Lemma 2.5.34. To derive the lower

bound for R(χ∗(σ), σ)−M1(ε), we can follow the same reasoning steps as in the proof

of Lemma 2.5.3 and utilize the bound we derived for |χ∗(σ)− χ∗∗| in Lemma 2.5.34.

We will obtain

|R(χ∗(σ), σ)−M1(ε)| ≤ Θ(σ`(logm(1/σ))`/2). (2.101)

Putting (2.100) and (2.101) together completes the proof.

2.5.10 Proof of Theorem 2.2.9

The proof of Theorem 2.2.9 is essentially the same as that of Theorem 2.2.6. We do

not repeat the details. Note that the key argument limσ→0R(χ∗(σ), σ) = M1(ε) has

been shown in Lemma 2.5.1.

2.5.11 Proof of Theorem 2.2.10

Similarly as in the proof of Theorems 2.2.5, we would like to derive the convergence

rate of Rq(χ
∗
q(σ), σ). We first characterize the convergence rate of χ∗q(σ).
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Lemma 2.5.36. Suppose E|G|2 < ∞, then for 0 < q < 1, χ∗q(σ) → ∞ and

χ∗q(σ)σ2−q → 0, as σ → 0.

Proof. If χ∗q(σ)σ2−q 9 0, then there exists a sequence σk → 0 and a constant c > 0

such that χ∗q(σk)σ
2−q
k ≥ c, for all k. Choose a convergent subsequence {σkn} and

denote limkn→∞ χ
∗
q(σkn)σ2−q

kn
= α ≥ c (note α can be +∞). Fatou’s lemma gives

lim inf
kn→∞

E(ηq(B + σknZ;σ2−q
kn

χ∗q(σkn))−B)2

≥ E lim inf
kn→∞

(ηq(B + σknZ;σ2−q
kn

χ∗q(σkn))−B)2

≥ Emin((ηq(B;α)−B)2, B2) > 0

Hence, we have

lim inf
kn→∞

E(ηq(B/σkn + Z;χ∗q(σkn))−B/σkn)2

= lim
kn→∞

1

σ2
kn

lim inf
kn→∞

E(ηq(B + σknZ;σ2−q
kn

χ∗q(σkn))−B)2 = +∞,

which implies lim infkn→∞Rq(χ
∗
q(σkn), σkn) = +∞. However, since χ∗q(σkn) is the

optimal thresholding value, it holds that Rq(χ
∗
q(σkn), σkn) ≤ Rq(0, σkn) = 1, for every

kn. This is a contradiction. Similarly, if χ∗q(σ) 9 ∞, there exists a sequence σk →

0 and a finite constant α ≥ 0 such that χ∗q(σk) → α. We can apply Dominated

Convergence Theorem (DCT) to obtain,

lim
k→∞

Rq(χ
∗
q(σk), σk) = (1− ε)Eη2

q (Z;α) + ε > ε. (2.102)

On the other hand, since χ∗q(σk) is the optimal thresholding value, we have

lim
k→∞

Rq(χ
∗
q(σk), σk) ≤ lim

k→∞
Rq(β, σk) = (1− ε)Eη2

q (Z; β) + ε,

for any finite β. Letting β →∞ on both sides of the above inequality yields

lim
k→∞

Rq(χ
∗
q(σk), σk) ≤ ε,

which contradicts (2.102).
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Lemma 2.5.37. Suppose P(|G| > µ) = 1 with µ being a fixed positive number and

E|G|2 <∞, then for every 0 < q < 1,

lim
σ→0

σ2−2q

(χ∗q(σ))
2q−1
2−q φ(cq(χ∗q(σ))

1
2−q )

=
(1− ε)cq(η+

q (cq; 1))2

εq2(2− q)E|G|2q−2
,

where φ(·) is the density function of a standard normal.

Proof. Let F (g) denote the distribution function of |G|. We first decompose Rq(χ, σ).

Rq(χ, σ) = 2(1− ε)
∫ ∞
cqχ

1
2−q

η2
q (z;χ)φ(z)dz︸ ︷︷ ︸

R1

+ ε

∫ ∞
µ

∫ ∞
− g
σ

+cqχ
1

2−q
(ηq(

g

σ
+ z;χ)− g

σ
)2φ(z)dzdF (g)︸ ︷︷ ︸

R2

+ ε

∫ ∞
µ

∫ ∞
g
σ

+cqχ
1

2−q
(ηq(−

g

σ
+ z;χ) +

g

σ
)2φ(z)dzdF (g)︸ ︷︷ ︸

R3

+ ε

∫ ∞
µ

∫ −g/σ+cqχ
1

2−q

− g
σ
−cqχ

1
2−q

g2

σ2
φ(z)dzdF (g)︸ ︷︷ ︸

R4

. (2.103)

From the proof of Lemma 2.5.36, it is straightforward to see that χ∗q(σ) is non-zero

and finite. Since χ = χ∗q(σ) is the optimal thresholding value, we conclude that χ∗q(σ)

satisfies
∂Rq(χ∗q(σ),σ)

∂χ
= 0. For notational simplicity, below we may write χ for χ∗q(σ).

Now we analyze the partial derivative of the four terms in (2.103) separately. For the

first term,

∂R1

∂χ
=
−2(1− ε)cqχ

q−1
2−q

2− q
(η+
q (cqχ

1
2−q ;χ))2φ(cqχ

1
2−q )

−4(1− ε)q
∫ ∞
cqχ

1
2−q

ηqq(z;χ)

1 + χq(q − 1)ηq−2
q (z;χ)

φ(z)dz, (2.104)

where we have used Lemma 2.5.9 part (i). We now compare the order of the two

terms on the right hand side of the above equality. According to Lemma 2.5.10, we

can conclude that 1 +χq(q− 1)ηq−2
q (z;χ) is bounded away from zero, for z ≥ cqχ

1
2−q .
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Hence, combining with the fact |ηq(z;χ)| ≤ |z|, we obtain there exists a positive

constant C such that∣∣∣ ∫ ∞
cqχ

1
2−q

ηqq(z;χ)

1 + χq(q − 1)ηq−2
q (z;χ)

φ(z)dz
∣∣∣ ≤ C

∫ ∞
cqχ

1
2−q

zqφ(z)dz

(i)
= Ccq−1

q χ
q−1
2−qφ(cqχ

1
2−q ) + C

∫ ∞
cqχ

1
2−q

(q − 1)zq−2φ(z)dz

≤ Ccq−1
q χ

q−1
2−qφ(cqχ

1
2−q ) + C(q − 1)cq−2

q χ−1

∫ ∞
cqχ

1
2−q

φ(z)dz

(ii)

≤ O(χ
q−1
2−qφ(cqχ

1
2−q )) +O(χ

q−3
2−qφ(cqχ

1
2−q )) = O(χ

q−1
2−qφ(cqχ

1
2−q )).

We have used integration by parts to obtain (i). Regarding (ii), we have used the tail

approximation
∫∞
t
φ(z)dz ∼ 1

t
φ(t), as t → ∞. Now we discuss the order of the first

term in (2.104). Since η+
q (cqχ

1
2−q ;χ) = χ

1
2−q η+

q (cq; 1) from Lemma 2.5.9 part (iv), we

know the first term is of order χ
q+1
2−qφ(cqχ

1
2−q ). Hence we can conclude that

lim
σ→0

∂R1

∂χ
/(χ

q+1
2−qφ(cqχ

1
2−q )) =

−2(1− ε)cq(η+
q (cq; 1))2

2− q
. (2.105)

For the last term R4, we can do the following calculations:

∂R4

∂χ
= E

[ε|G|2cqχ q−1
2−q

σ2(2− q)
(φ(−G/σ + cqχ

1
2−q ) + φ(−G/σ − cqχ

1
2−q ))

]
≤ 2εcqχ

q−1
2−q

σ2(2− q)
E[|G|2φ(cqχ

1
2−q − |G|/σ)] ≤ 2εcqτ

q−1
2−q

σ2(2− q)
φ(cqχ

1
2−q − µ/σ)E|G|2,

where the last inequality is due to the fact |G|/σ ≥ µ/σ � cqχ
1

2−q from Lemma

2.5.36. Making use of µ/σ � cqχ
1

2−q again, it is straightforward to confirm that

lim
σ→0

φ(−µ/σ + cqχ
1

2−q )

σ2φ(cqχ
1

2−q )
= 0.

Therefore we conclude

lim
σ→0

∂R4

∂χ
/(χ

q+1
2−qφ(cqχ

1
2−q )) = 0. (2.106)



CHAPTER 2. OVERCOMING THE LIMITATIONS OF PHASE TRANSITION
VIA A SECOND-ORDER LOW NOISE SENSITIVITY ANALYSIS 94

We now discuss the calculation of ∂R2

∂χ
.

∂R2

∂χ
=
−εcq
2− q

χ
q−1
2−q

∫ ∞
µ

(η+
q (cqχ

1
2−q ;χ)− g/σ)2φ(−g/σ + cqχ

1
2−q )dF (g) +

2ε

∫ ∞
µ

∫ ∞
−g/σ+cqχ

1
2−q

(ηq(g/σ + z;χ)− g/σ − z)∂2ηq(g/σ + z;χ)φ(z)dzdF (g)

+2ε

∫ ∞
µ

∫ ∞
−g/σ+cqχ

1
2−q

z∂2ηq(g/σ + z;χ)φ(z)dzdF (g)

=
−εcq
2− q

χ
q−1
2−q

∫ ∞
µ

(η+
q (cqχ

1
2−q ;χ)− g/σ)2φ(−g/σ + cqχ

1
2−q )dF (g)︸ ︷︷ ︸

S1

+

2εχq2

∫ ∞
µ

∫ ∞
−g/σ+cqχ

1
2−q

η2q−2
q (g/σ + z;χ)

1 + χq(q − 1)ηq−2
q (g/σ + z;χ)

φ(z)dzdF (g)︸ ︷︷ ︸
S2

+

−2εq

∫ ∞
µ

∫ ∞
−g/σ+cqχ

1
2−q

ηq−1
q (g/σ + z;χ)

1 + χq(q − 1)ηq−2
q (g/σ + z;χ)

zφ(z)dzdF (g)︸ ︷︷ ︸
S3

,

where we have used Lemma 2.5.9 part (i)(iii) in the above derivations. We then

analyze the above three terms separately. For S3, integration by parts combined with

Lemma 2.5.9 part (i) gives

S3 =
−2εq(η+

q (cqχ
1

2−q ;χ))q−1

1 + χq(q − 1)(η+
q (cqχ

1
2−q ;χ))q−2

∫ ∞
µ

φ(− g
σ

+ cqχ
1

2−q )dF (g)︸ ︷︷ ︸
T1

+

−2εq(q − 1)

∫ ∞
µ

∫ ∞
− g
σ

+cqχ
1

2−q

ηq−2
q (g/σ + z;χ)

(1 + χq(q − 1)ηq−2
q (g/σ + z;χ))2

φ(z)dzdF (g)︸ ︷︷ ︸
T2

+

2εq2(q − 1)(q − 2)χ

∫ ∞
µ

∫ ∞
− g
σ

+cqχ
1

2−q

η2q−4
q (g/σ + z;χ)

(1 + χq(q − 1)ηq−2
q (g/σ + z;χ))3

φ(z)dzdF (g)︸ ︷︷ ︸
T3

.

Choosing a positive constant 0 < v < µ, we write

T2

σ2−q = −2εq(q − 1)

∫ ∞
µ

∫ − g
σ

+ v
σ

− g
σ

+cqχ
1

2−q

σq−2ηq−2
q (g/σ + z;χ)

(1 + χq(q − 1)ηq−2
q (g/σ + z;χ))2

φ(z)dzdF (g)

−2εq(q − 1)E

[
1(Z + |G|/σ > v/σ)ηq−2

q (|G|+ σZ;σ2−qχ)

(1 + χq(q − 1)ηq−2
q (|G|/σ + Z;χ))2

]
. (2.107)
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It is clear that when u > cqχ
1

2−q , there exists a positive constant C0 such that 1 +

χq(q − 1)ηq−2
q (u;χ) > C0 > 0. Also since ηq(u;χ) is a non-decreasing function of

u > 0, we can obtain ∣∣∣∣∣1(Z + |G|/σ > v/σ)ηq−2
q (|G|+ σZ;σ2−qχ)

(1 + χq(q − 1)ηq−2
q (|G|/σ + Z;χ))2

∣∣∣∣∣
≤ (C2

0)−1ηq−2
q (v;σ2−qχ) ≤ C−2

0 ηq−2
q (v; 1),

for sufficiently small σ. Because σ2−qχ→ 0, as σ → 0 from Lemma 2.5.36, we get

lim
σ→0

1(Z + |G|/σ > v/σ)ηq−2
q (|G|+ σZ;σ2−qχ)

(1 + χq(q − 1)ηq−2
q (|G|/σ + Z;χ))2

= lim
σ→0

1(σZ + |G| > v)ηq−2
q (|G|+ σZ;σ2−qχ)

(1 + σ2−qχq(q − 1)ηq−2
q (|G|+ σZ;σ2−qχ))2

= |G|q−2.

We can then use Dominated Convergence Theorem (DCT) to conclude

lim
σ→0

E
1(Z + |G|/σ > v/σ)ηq−2

q (|G|+ σZ;σ2−qχ)

(1 + χq(q − 1)ηq−2
q (|G|/σ + Z;χ))2

= E|G|q−2. (2.108)

Moreover, we can use similar arguments to obtain as σ → 0∣∣∣∣∣
∫ ∞
µ

∫ − g
σ

+ v
σ

− g
σ

+cqχ
1

2−q

σq−2ηq−2
q (g/σ + z;χ)

(1 + χq(q − 1)ηq−2
q (g/σ + z;χ))2

φ(z)dzdF (g)

∣∣∣∣∣
≤ C−2

0 χ−1(η+
q (cq; 1))q−2σq−2

∫ ∞
µ

∫ −g/σ+v/σ

−g/σ+cqχ
1

2−q
φ(z)dzdF (g)

≤ C−2
0 χ−1(η+

q (cq; 1))q−2σq−2(v/σ − cqχ
1

2−q )φ(−µ/σ + v/σ)→ 0, (2.109)

where the last inequality uses the fact that g > µ and∫ −g/σ+v/σ

−g/σ+cqχ
1

2−q
φ(z)dz < (v/σ − cqχ

1
2−q )φ(−g/σ + v/σ).

Putting together (2.107), (2.108) and (2.109) gives us

lim
σ→0

T2

σ2−q = −2εq(q − 1)E|G|q−2.

Since T3 and S2 take similar forms as T2, we can follow similar steps to derive,

lim
σ→0

T3

σ4−2qχ∗q(σ)
= 2εq2(q − 1)(q − 2)E|G|2q−4, (2.110)

lim
σ→0

S2

σ2−2qχ∗q(σ)
= 2εq2E|G|2q−2. (2.111)
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Furthermore, by applying Lemma 2.5.36, it is not hard to see

lim
σ→0

σq−2T1 = 0, lim
σ→0

σq−2S1 = 0. (2.112)

Combing the results regarding T1, T2 and T3 we have

lim
σ→0

σq−2S3 = lim
σ→0

σq−2T1 + lim
σ→0

σq−2T2 + lim
σ→0

T3

σ4−2qχ∗q(σ)
· χ∗q(σ)σ2−q

= −2εq(q − 1)E|G|q−2. (2.113)

Collecting (2.110), (2.112) and (2.113) together, we obtain the order of ∂R2

∂χ
,

lim
σ→0

∂R2

∂χ
/(σ2−2qχ∗q(σ)) = 2εq2E|G|2q−2. (2.114)

From Equation (2.103), we observe that R3 is only different from R2 by a sign of g,

hence we can follow the same arguments presented for analyzing ∂R2/∂χ. We only

highlight the differences for calculating T2/σ
2−q (we are using the same notations):

1. limσ→0
1(Z−|G|/σ>v/σ)ηq−2

q (−|G|+σZ;σ2−qχ)

(1+χq(q−1)ηq−2
q (−|G|/σ+Z;χ))2

= 0,

2.
∣∣∣ ∫∞µ ∫ g/σ+v/σ

g/σ+cqχ
1

2−q

σq−2ηq−2
q (−g/σ+z;χ)

(1+χq(q−1)ηq−2
q (−g/σ+z;χ))2

φ(z)dzdF (g)
∣∣∣

≤ C−2
0 χ−1ηq−2

q (cq; 1)σq−2(v/σ − cqχ
1

2−q )φ(µ/σ + cqχ
1

2−q ) = o(1) .

Therefore, we can obtain limσ→0
T2

σ2−q = 0 and conclude

lim
σ→0

∂R3

∂χ
/(σ2−2qχ∗q(σ)) = 0. (2.115)

We combine the results from (2.103), (2.105), (2.106), (2.114), and (2.115) to have

lim
σ→0

σ2−2qχ∗q(σ)2εq2E|G|2q−2(2− q)
[
(χ∗q(σ))

q+1
2−qφ(cq(χ

∗
q(σ))

1
2−q )2(1− ε)cq(η+

q (cq; 1))2
]−1

= 1.

Simplifying the above equality completes the proof.

Lemma 2.5.38. Suppose P(|G| > µ) = 1 with µ being a fixed positive number and

E|G|2 <∞, then for 0 < q < 1 as σ → 0,

Rq(χ
∗
q(σ), σ) = ε+ εq2E|G|2q−2(χ∗q(σ))2σ2−2q + o((χ∗q(σ))2σ2−2q).
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Proof. We will use the same notation that was introduced in (2.103), and analyze the

four terms respectively. Regarding R2, we have

R2 − ε = ε

∫ ∞
µ

∫ ∞
−g/σ+cqχ

1
2−q

(ηq(g/σ + z;χ)− g/σ − z)2φ(z)dzdF (g)︸ ︷︷ ︸
Q1

+ ε

∫ ∞
µ

∫ ∞
−g/σ+cqχ

1
2−q

2z(ηq(g/σ + z;χ)− g/σ − z)φ(z)dzdF (g)︸ ︷︷ ︸
Q2

−ε
∫ ∞
µ

∫ −g/σ+cqχ
1

2−q

−∞
z2φ(z)dzdF (g)︸ ︷︷ ︸

Q3

According to Lemma 2.5.9 part (iii),

Q1 = εq2χ2

∫ ∞
µ

∫ ∞
− g
σ

+cqχ
1

2−q
η2q−2
q (

g

σ
+ z;χ)φ(z)dzdF (g).

Using the same analysis of T2 as in the proof of Lemma 2.5.37, it is clear that

lim
σ→0

χ−2σ2q−2Q1 = εq2E|G|2q−2.

Regarding Q2, using integration by parts and Lemma 2.5.9 part (ii) we obtain

Q2 = 2ε(η+
q (cqχ

1
2−q ;χ)− cqχ

1
2−q )

∫ ∞
µ

φ(−g/σ + cqχ
1

2−q )dF (g)

− 2ε

∫ ∞
µ

∫ ∞
− g
σ

+cqχ
1

2−q

χq(q − 1)ηq−2
q (u/σ + z;χ)

1 + χq(q − 1)ηq−2
q (g/σ + z;χ)

φ(z)dzdF (g).

We can directly see the first term on the right hand side of the above equation is

bounded by O(χ
1

2−qφ(µ/(2σ))). By using the same technique applied for analyzing

T2, we then know the second term is of order χσ2−q. Hence we obtain

lim
σ→0

χ−1σq−2Q2 = 2εq(1− q)E|G|q−2.

We now analyze Q3. A simple integration by parts yields,

Q3 = −ε
∫ ∞
µ

(g/σ − cqχ
1

2−q )φ(g/σ − cqχ
1

2−q )dF (g)− ε
∫ ∞
µ

∫ ∞
g/σ−cqχ

1
2−q

φ(z)dzdF (g).
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Using the fact that
∫∞
t
φ(z)dz ∼ 1

t
φ(t) and µ/σ − cqχ

1
2−q → +∞, we can derive∫ ∞

µ

(g/σ − cqχ
1

2−q )φ(g/σ − cqχ
1

2−q )dF (g) ≤
∫ ∞
µ

(g/σ)φ(g/(2σ))dF (g) ≤ φ(µ/(2σ))E|G|,

and∫ ∞
µ

∫ ∞
g/σ−cqχ

1
2−q

φ(z)dzdF (g) ≤
∫ ∞
µ/σ−cqχ

1
2−q

φ(z)dz ≤ O(1/(µ/σ − cqχ
1

2−q )φ(µ/σ − cqχ
1

2−q )).

It is then straightforward to confirm that limσ→0 χ
−1σq−2Q3 = 0. Combing the results

about Q1, Q2 and Q3 we obtain

lim
σ→0

χ−2σ2q−2(R2 − ε) = εq2E|G|2q−2. (2.116)

Noticing that R2 and R3 take similar forms, the preceding arguments can be easily

adapted to show

lim
σ→0

χ−2σ2q−2R3 = 0. (2.117)

Regarding R4, we first derive an upper bound in the following way:

R4 = ε

∫ ∞
µ

∫ −g/σ+cqχ
1

2−q

−g/σ−cqχ
1

2−q

g2φ(z)

σ2
dzdF (g) ≤ 2εcqχ

1
2−qσ−2

∫ ∞
µ

g2φ(−g/σ + cqχ
1

2−q )dF (g)

≤ 2εcqχ
1

2−qσ−2φ(−µ/σ + cqχ
1

2−q )E|G|2.

The fact that σ2−qχ→ 0, as σ → 0 leads to

lim
σ→0

χ−2σ2q−2R4 = 0. (2.118)

We finally analyze R1. A simple integration by parts gives us

2(1− ε)
∫ ∞
cqχ

1
2−q

η2
q (z;χ)φ(z)dz = −2(1− ε)

∫ ∞
cqχ

1
2−q

η2
q (z;χ)

z
dφ(z) = (2.119)

2(1− ε)
η2
q (cqχ

1
2−q ;χ)

cqχ
1

2−q
φ(cqχ

1
2−q ) + 2(1− ε)

∫ ∞
cqχ

1
2−q

2zηq(z;χ)∂1ηq(z;χ)− η2
q (z;χ)

z2
φ(z)dz.
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Since |ηq(z;χ)| ≤ |z|, we can bound the second integral in (2.119):∣∣∣∣∣
∫ ∞
cqχ

1
2−q

2zηq(z;χ)∂1ηq(z;χ)− η2
q (z;χ)

z2
φ(z)dz

∣∣∣∣∣ ≤
∫ ∞
cqχ

1
2−q

2

|1 + χq(q − 1)ηq−2
q (z;χ)|

φ(z)dz

+

∫ ∞
cqχ

1
2−q

φ(z)dz
(1)

≤
∫ ∞
cqχ

1
2−q

2

C
φ(z)dz +

∫ ∞
cqχ

1
2−q

φ(z)dz ≤ (2C−1 + 1)

∫ ∞
cqχ

1
2−q

φ(z)dz

≤ O(χ
1
q−2φ(cqχ

1
2−q )),

where (1) is due to Lemma 2.5.10. It is then clear that the dominant term in (2.119)

is the first term and

lim
σ→0

R1

χ
1

2−qφ(cqχ
1

2−q )
=

2(1− ε)(η+
q (cq; 1))2

cq
. (2.120)

The results (2.116), (2.117), (2.118), (2.120) together with Lemma 2.5.37 finish the

proof.

We are in the position to derive the expansion in Theorem 2.2.10. According to

Corollary 2.2.4,

AMSE(λ∗,q, q, σw) = σ̄2Rq(χ
∗
q(σ̄), σ̄), σ̄2 = σ2

w +
σ̄2Rq(χ

∗
q(σ̄), σ̄)

δ
. (2.121)

First of all, implicit function theorem shows that σ̄ is a continuous function of σw.

Since σ̄ = 0 when σw = 0, we obtain σ̄ → 0 as σw → 0. Equation (2.121) combined

with Lemma 2.5.38 yields

lim
σw→0

σ̄2

σ2
w

=
δ

δ − ε
. (2.122)

We now characterize the following limit:

lim
σw→0

AMSE(λ∗,q, q, σw)− δε
δ−εσ

2
w

σ4−2q
w (χ∗q(σ̄))2

(a)
= lim

σw→0

σ̄2δ(Rq(χ
∗
q(σ̄), σ̄)− ε)

σ4−2q
w (χ∗q(σ̄))2(δ − ε)

(b)
=

δ

δ − ε
· lim
σ̄→0

Rq(χ
∗
q(σ̄), σ̄)− ε

(χ∗q(σ̄))2σ̄2−2q
· lim
σ̄→0

σ̄4−2q

σ4−2q
w

(c)
=
εq2E|G|2q−2δ3−q

(δ − ε)3−q , (2.123)

where (a) is due to (2.121), (b) holds since σ̄ → 0 as σw → 0, and (c) is obtained

from (2.122) and Lemma 2.5.38. Our next step is to show χ∗q(σ̄) ∼ χ∗q(σw). Based on
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Lemma 2.5.37 we obtain

lim
σw→0

σ̄2−2q

(χ∗q(σ̄))
2q−1
2−q φ(cq(χ∗q(σ̄))

1
2−q )
·

(χ∗q(σw))
2q−1
2−q φ(cq(χ

∗
q(σw))

1
2−q )

σ2−2q
w

= 1.

It combined with (2.122) gives us

lim
σw→0

(χ∗q(σw))
2q−1
2−q φ(cq(χ

∗
q(σw))

1
2−q )

(χ∗q(σ̄))
2q−1
2−q φ(cq(χ∗q(σ̄))

1
2−q )

=
(

1− ε

δ

)1−q
,

which implies

lim
σw→0

[2q − 1

2− q
log

χ∗q(σw)

χ∗q(σ̄)
−
c2
q

2
(χ∗q(σw)2/(2−q) − χ∗q(σ̄)2/(2−q))

]
= (1− q) log(1− ε/δ).

Since χ∗q(σw), χ∗q(σ̄) → ∞ as σw → 0 from Lemma 2.5.36, dividing both sides of the

above equality by χ∗q(σw)2/(2−q) yields

lim
σw→0

χ∗q(σw)

χ∗q(σ̄)
= 1. (2.124)

Finally, taking logarithm and diving by (χ∗q(σw))
2

2−q on both sides of the equality in

Lemma 2.5.37 leads to

lim
σw→0

(χ∗q(σw))
2

2−q

log 1
σw

=
4(1− q)

c2
q

. (2.125)

Putting (2.123), (2.124) and (2.125) together completes the proof.

2.5.12 Proof of Theorem 2.2.11

The roadmap of the proof is similar to that of Theorem 2.2.10. We characterize

the convergence rate of χ∗q(σ) and derive the asymptotic formula for Rq(χ
∗
q(σ), σ) in

Lemma 2.5.39 and Lemma 2.5.40, respectively.

Lemma 2.5.39. Suppose E|G|2 < ∞ and P(|G| > µ) = 1, where µ = supv{v :

P(|G| > v) = 1} > 0. Then for q = 0,

lim
σ→0

√
χ∗q(σ)σ =

µ

2cq
.
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Proof. By using the same arguments presented in the proof of Lemma 2.5.36, we can

obtain χ∗q(σ) → ∞, as σ → 0. Now we consider an arbitrarily convergent sequence

σk → 0, as k →∞, and show
√
χ∗q(σk)σk → µ/(2c0). Denote limk→∞

√
χ∗q(σk)σk = α.

For notational simplicity, below we may write χ for χ∗q(σ). Suppose α > µ/c0, then

by Fatou’s lemma, we have

lim inf
k→∞

E(η0(G/σk + Z;χ)−G/σk)2 ≥ lim inf
k→∞

E[1(|G+ σkZ| ≤ c0
√
χσk)G

2/σ2
k] =∞.

On the other hand, R0(χ, σk) ≤ R0(0, σk) = 1. This is a contradiction. Hence it holds

that α ≤ µ/c0. Next we aim to show α ≤ µ/(2c0). Since η0(u;χ) = u1(|u| > c0
√
χ),

it is straightforward to confirm the following

R0(χ, σ) = 2(1− ε)
[
c0
√
χφ(c0

√
χ) +

∫ ∞
c0
√
χ

φ(z)dz
]

︸ ︷︷ ︸
R1

+ εE

[(
c0
√
χ− |G|

σ

)
φ
(
c0
√
χ− |G|

σ

)
︸ ︷︷ ︸

R2

+

∫ ∞
c0
√
χ− |G|

σ

φ(z)dz

]

+ εE

[(
c0
√
χ+
|G|
σ

)
φ
(
c0
√
χ+
|G|
σ

)
+

∫ ∞
c0
√
χ+
|G|
σ

φ(z)dz

]
︸ ︷︷ ︸

R3

+ εE
∫ c0

√
χ− |G|

σ

−c0
√
χ− |G|

σ

|G|2

σ2
φ(z)dz︸ ︷︷ ︸

R4

. (2.126)

Moreover, it is clear that χ∗q(σk), the optimal thresholding value, is finite and non-zero,

and hence we have
∂R0(χ∗q(σk),σk)

∂χ
= 0, i.e.,

∂R1

∂χ
+
∂R2

∂χ
+
∂R3

∂χ
+
∂R4

∂χ
= 0, (2.127)
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where we can calculate the partial derivatives as follows6

∂R1

∂χ
= (ε− 1)c3

0

√
χφ(c0

√
χ),

∂R2

∂χ
=
−εc0

2
√
χ
E
[(
c0
√
χ− |G|/σk

)2
φ
(
c0
√
χ− |G|/σk

)]
,

∂R3

∂χ
=
−εc0

2
√
χ
E
[(
c0
√
χ+ |G|/σk

)2
φ
(
c0
√
χ+ |G|/σk

)]
,

∂R4

∂χ
=

εc0

2
√
χσ2

k

E
{
|G|2

[
φ
(
c0
√
χ− |G|/σk

)
+ φ
(
c0
√
χ+ |G|/σk

)]}
.

With a few more steps of calculations we obtain as σk → 0,

∂R2

∂χ
+
∂R3

∂χ
+
∂R4

∂χ
=
−εc2

0

2σk
E
[
(c0
√
χσk − 2|G|)φ

(
c0
√
χ− |G|/σk

)]
+
−εc2

0

2σk
E
[(
c0
√
χσk + 2|G|)φ

(
c0
√
χ+ |G|/σk

)]
∝ 1

σk
E
[
|G|φ

(
c0
√
χ− |G|/σk

)]
.

Hence, dividing both sides of (2.127) by
√
χφ(c0

√
χ) and letting k →∞ shows

0 < lim
k→∞

E
[
|G|exp

(
|G|(−|G|+ 2σkc0

√
χ)/(2σ2

k)
)]
<∞. (2.128)

If α > µ/(2c0), we will see

E
[
|G|exp

(
|G|(−|G|+ 2σkc0

√
χ)/(2σ2

k)
)]

≥ E
[
|G|exp

(
|G|(−|G|+ 2σkc0

√
χ)/(2σ2

k)
)
· 1(|G| < 2αc0)

]
→ +∞.

We have used Fatou’s lemma to obtain the last limit. Obviously the inequality above

contradicts (2.128). Thus we obtain the upper bound µ/(2c0) for α. Finally we would

like to derive α ≥ µ/(2c0). Note that since α ≤ µ/(2c0), it is not hard to show that

when k is large,

∂R4

∂χ
≤ εc0E|G|2√

χσ2
k

φ(c0
√
χ− µ/σk) = O

(
(
√
χσ2

k)
−1φ(c0

√
χ− µ/σk)

)
.

Based on the inequality above, we can further obtain∣∣∣∣∣∂R2

∂χ
+
∂R3

∂χ
+
∂R4

∂χ

∣∣∣∣∣ ≤ O
(
(
√
χσ2

k)
−1φ(c0

√
χ− µ/σk)

)
. (2.129)

6The condition E|G|2 <∞ enables us to apply dominated convergence theorem to exchange the

differentiation and expectation in the calculation of the partial derivatives.
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Now suppose α < µ/(2c0), then it follows that

1
√
χσ2

k

φ
(
c0
√
χ− µ

σk

)
· 1
√
χφ(c0

√
χ)

=
1

χσ2
k

exp
(µ(µ− 2c0σk

√
χ)

−2σ2
k

)
= o(1).

However, this fact combined with (2.129) implies that if we divide both sides of

Equation (2.127) by
√
χφ(c0

√
χ) and letting k →∞, we would get

(ε− 1)c3
0 = 0,

which is a contradiction. Above all we have proved that for an arbitrarily convergent

sequence σk → 0,
√
χ∗q(σk)σk → µ/(2c0), as k →∞. This completes the proof.

Lemma 2.5.40. Suppose E|G|2 < ∞ and P(|G| > µ) = 1, where µ = supv{v :

P(|G| > v) = 1} > 0. Then for q = 0, as σ → 0

Rq(χ
∗
q(σ), σ) = ε+O

(√
χ∗q(σ)φ(c0

√
χ∗q(σ))

)
.

Proof. We adopt the same notations from the proof of Lemma 2.5.39. Then,

Rq(χ
∗
q(σ), σ)− ε = R1 + (R2 − ε) +R3 +R4.

Based on the result that
√
χ∗q(σ)σ → µ

2c0
in Lemma 2.5.39, from (2.126) we can obtain

R1 = O
(√

χ∗q(σ)φ(c0

√
χ∗q(σ))

)
,

R2 − ε = O
(
E
[
|G|/σφ

(
c0

√
χ∗q(σ)− |G|/σ

)])
,

R3 = O
(
E
[
|G|/σφ

(
c0

√
χ∗q(σ) + |G|/σ

)])
.

Regarding R4, it holds that

R4 = εE
[
|G|2/σ2 ·

(∫ ∞
|G|/σ−c0

√
χ∗q(σ)

φ(z)dz −
∫ ∞
|G|/σ+c0

√
χ∗q(σ)

φ(z)dz
)]

≤ εE
[
|G|2/σ2 ·

∫ ∞
|G|/σ−c0

√
χ∗q(σ)

φ(z)dz
]

≤ εE
[
|G|/σ · φ(|G|/σ − c0

√
χ∗q(σ)) · |G|/(|G| − c0σ

√
χ∗q(σ))

]
≤ O

(
E
[
|G|/σ · φ(|G|/σ − c0

√
χ∗q(σ))

])
.
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Furthermore, (2.128) shows us that

E
[
|G|/σφ(|G|/σ − c0

√
χ∗q(σ))

]
· 1√

χ∗q(σ)φ(c0

√
χ∗q(σ))

= O(1).

Putting together what we have derived so far closes the proof.

Based on Lemmas 2.5.39 and 2.5.40, it is straightforward to obtain the following

result:

Rq(χ
∗
q(σ), σ) = ε+ o(φ(µ̃σ−1)).

The expansion of AMSE(λ∗,0, 0, σw) can be derived accordingly as we did for 0 < q <

1. We do not repeat the arguments.

2.5.13 Proof of Theorem 2.2.12

The proof of Theorem 2.2.12 is similar to that of Theorem 2.2.6. We hence skip it

for brevity.
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Chapter 3

Low noise analysis without sparsity

In Chapter 2, we have discussed the limitations of phase transition diagrams and

performed a second-order low noise sensitivity analysis to resolve such issue. The

fundamental condition underlying all the preceding analyses is the sparsity of the

coefficient β. However, exact sparsity might be a stringent requirement from practical

point of view. A more realistic assumption is that β is approximately sparse, i.e., it

has many elements of small values. Then how would the bridge regression estimators

behave? As we shall see in this chapter, phase transition analysis is not sufficient

to characterize the performance of LQLS estimators, and instead we present the low

noise sensitivity analysis, as a generalization of the phase transition, to provide a more

accurate view of LQLS for estimating non-sparse β. To simplify the presentation, we

focus our analysis on the case 1 ≤ q ≤ 2.

3.1 Introduction

3.1.1 Objective

Phase transition analysis (PT) studies the asymptotic mean square error (AMSE)

‖β̂(λ, q)−β‖2
2/p under the asymptotic setting p→∞ and n/p→ δ. Then, it considers

w = 0 and calculates the smallest δ for which infλ limp→∞ ‖β̂(λ, q) − β‖2
2/p = 0. In
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this chapter, we consider situations in which β is not exactly sparse. As is intuitively

expected and will be discussed later in the chapter, the phase transition analysis

implies that for every 1 ≤ q ≤ 2, if δ > 1, then infλ limp→∞ ‖β̂(λ, q)− β‖2
2/p = 0 and

if δ < 1, then infλ limp→∞ ‖β̂(λ, q)−β‖2
2/p 6= 0. This simple application of PT reveals

some of the limitations of the phase transition analysis:

1. Phase transition analysis is concerned with w = 0, and when β is not sparse,

LQLS with different values of q have the same phase transition at δ = 1. The

same phase transition happens for ordinary least squares (OLS). Hence, it is

not clear whether regularization can improve the performance of OLS and if

it does, which regularizer is the best. We expect the choice of regularizer to

matter when we add some noise to the measurements.

2. Phase transition diagram is not sensitive to the magnitude distribution of the

elements of β. Again, intuitively speaking, this seems to have a major impact on

the performance of different estimators when the noise is present in the system.

Following the same idea presented in Chapter 2, we perform a second-order low

noise sensitivity analysis to overcome the limitations. This framework has the follow-

ing two main advantages over the phase transition analysis:

1. It reveals certain phenomena that are important in applications and are not

captured by PT analysis. For instance, one immediately sees the impact of the

regularizer and the magnitude distribution of the elements of β on the AMSE.

Furthermore, these relations are expressed explicitly and can be interpreted

easily.

2. It provides a bridge between the phase transition analysis proposed in com-

pressed sensing, and the classical large sample-size asymptotics (n/p → ∞).

We will discuss some of the implications of this connection for the classical

asymptotics in Chapter 3.3.
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To demonstrate the above claims we use the low-noise sensitivity analysis to ad-

dress the following questions:

1. When β is not sparse, does LASSO outperform LQLS with q ∈ (1, 2]? Which

LQLS performs the best?

2. What is the impact of the distribution of the elements of β on AMSE of LQLS

estimators?

3.1.2 Related works

The works most related to ours are Donoho (2006a); Candes and Tao (2006); Candes

and Plan (2011). In the first two papers, the authors considered non-sparse β with the

constraint that ‖β‖q ≤ R or the ith largest component |β|(i) decays as i−α(α > 0). The

papers derived optimal (up to logarithmic factor) upper bounds on the mean square

error of LASSO. However, we characterize the performance of LASSO for a generic

β and derive conditions under which LASSO outperforms other bridge estimators.

Also, we should emphasize that thanks to our asymptotic settings, unlike these two

papers we are able to derive exact expressions of AMSE with sharp constants. Finally,

Candes and Plan (2011) studied a fixed signal β and obtained an oracle inequality

for ‖β̂(λ, 1)− β‖2, with the tuning λ chosen as an explicit function of p. While their

results are more general than ours, the bounds suffer from loose constants and are

not sufficient to provide sharp comparison of LASSO with other LQLS. Moreover, the

tuning parameter λ in our case is set to the optimal one that minimizes the AMSE for

every LQLS, which further paves our way for accurate comparison between different

LQLS.

The performance of LQLS with q ≥ 0 under classical asymptotic setting where p

is fixed and n → ∞ is studied in Knight and Fu (2000). The author obtained the
√
n convergence of LQLS estimates and derived the asymptotic distributions. His

results can be used to calculate the AMSE for LQLS with optimal tuning and show
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that they are all equal for q ∈ [1, 2]. However, we demonstrate in Chapter 3.3 that

by a second-order analysis, a more accurate comparison between the performances of

different LQLS is possible. In particular, LASSO will be shown to outperform others

for certain type of non-sparse coefficients.

3.2 Phase transition and a second-order noise sen-

sitivity analysis

Recall the asymptotic framework we introduced in Chapter 1.2. In the rest of this

chapter, we will assume fβ does not have any point mass at zero. We use the notation

B to denote a one dimensional random variable distributed according to fβ.

3.2.1 Phase transition

Suppose that there is no noise in the linear model, i.e., σw = 0. Our first goal in the

phase transition analysis is to find the minimum value of δ for which AMSE(λ∗,q, q, 0) =

0. Our next theorem characterizes the phase transition.

Theorem 3.2.1. Let q ∈ [1, 2]. If E|B|2 <∞, then we have

AMSE(λ∗,q, q, 0) =

> 0 if δ < 1,

= 0 if δ > 1.

The result can also be derived from several different frameworks including the

statistical dimension framework in Amelunxen et al. (2014). But we derive it as a

simple byproduct of our results in Chapter 3.2.2. So we do not discuss its proof here.

This result is not surprising. Since, none of the coefficients is zero, the exact recovery

is impossible if n < p. Also, note that when δ > 1 even the ordinary least squares is

capable of recovering β. Hence, the result of phase transition analysis does not provide

any additional information on the performance of different regularizers. It is not even
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capable of showing the advantage of regularization techniques over the standard least

squares algorithm. This is due to the fact that the result of Theorem 3.2.1 holds

only in the noiseless case. Intuitively speaking, in the practical settings where the

existence of the measurement noise is inevitable, we expect different LQLS to behave

differently. For instance, even though the coefficient under study is not sparse, when

fβ has a large mass around zero (it is approximately sparse), we expect the sparsity

promoting LASSO to offer better performance than the other LQLS. However, the

distribution fβ does not have any effect on the phase transition diagram. Motivated

by these concerns, in the next section, we investigate the performance of LQLS in the

noisy setting, and study their noise sensitivity when the noise level σw is small. The

new analysis will offer more informative answers.

3.2.2 Second-order noise sensitivity analysis of AMSE

As an immediate generalization of the phase transition analysis, we can study the

performance of different estimators in the presence of a small amount of noise. More

formally, we derive the asymptotic expansion of AMSE(λ∗,q, q, σw) for every q ∈ [1, 2],

when σw → 0. As will be discussed later, this generalization of phase transitions

presents a more delicate analysis of LQLS. We start with the study of AMSE for the

ordinary least squares (OLS). The result of OLS will be later used for comparison

purposes.

Corollary 3.2.2. Consider the region δ > 1. For the OLS estimate β̂(0, q), we have

AMSE(0, q, σw) =
σ2
w

1− 1/δ
.

We prove the above corollary in Chapter 3.4.2. Note that the proof we presented

there, has not used the independence of the noise elements that is often assumed in

the analysis of OLS. Now we can discuss LQLS with the optimal choice of λ. We

first consider the coefficients whose elements are bounded away from zero in Theorem

3.2.3 and then study other distributions in Theorem 3.2.5.
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Theorem 3.2.3. Consider the region δ > 1. Suppose that P(|B| > µ) = 1 with µ

being a positive constant and E|B|2 <∞. Then, for q ∈ (1, 2], as σw → 0

AMSE(λ∗,q, q, σw) =
σ2
w

1− 1/δ
− δ3(q − 1)2(E|B|q−2)2

(δ − 1)3E|B|2q−2
σ4
w + o(σ4

w),

and for q = 1, as σw → 0

AMSE(λ∗,q, q, σw) =
σ2
w

1− 1/δ
− |o(e−

µ̃2(δ−1)

δσ2
w )|,

where µ̃ is any positive number smaller than µ.

The proof can be found in Chapter 3.4.3. We observe that the first dominant

term in the expansion of AMSE(λ∗,q, q, σw) is exactly the same for all values of q,

including q = 1 and is equal to σ2
w/(1 − 1/δ). This is also the same as the AMSE

of the OLS. We may consider this term as the “phase transition” term, since it will

go to zero only when δ > 1. In a nutshell, the first term in the expansion provides

the phase transition information. However, we are able to derive the second order

term for AMSE(λ∗,q, q, σw). This term gives us what is beyond phase transition

analysis. The impact of the signal distribution fβ and the regularizer `q, that is

omitted in PT diagram, is revealed in the second order term. As a result, to compare

the performance of LQLS with different values of q in the low noise regime, we can

compare their second order terms.

First note that all the regularizers that are studied in Theorem 3.2.3 improve the

performance of OLS. When the distribution of the coefficients is bounded away from

0, no significant gain is obtained from LASSO since the second dominant term in the

expansion of AMSE is exponentially small. However, the rate of the second order

term exhibits an interesting transition from exponential to a polynomial decay when

q increases from 1. In fact, it seems that bridge regularizers with q > 1 offer more

substantial improvements over OLS. Even though LASSO is suboptimal, it is not

clear which value of q provides the best performance here. Among other LQLS with

q ∈ (1, 2], the optimality is determined by the constant involved in the second order
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term (they all have the same orders). To simplify our discussions, define

Cq =
(q − 1)2(E|B|q−2)2

E|B|2q−2
, q∗ = arg max

1<q≤2
Cq.

Then LQLS with q = q∗ will perform the best. To provide some insights on q∗, we

focus on a special family of distributions.

Lemma 3.2.4. Consider the two-point mixture |B| ∼ α∆µ1 + (1 − α)∆µ2 with 0 <

µ1 ≤ µ2, α ∈ (0, 1). Then q∗ = 2 when µ1 = µ2, and q∗ → 1 as µ2/µ1 →∞.

Proof. When µ1 = µ2, it is clear that Cq = (q − 1)2µ−2
1 and thus q∗ = 2. We now

consider 0 < µ1 < µ2. Denote κ = µ2/µ1. We can then write Cq as:

Cq =
(q − 1)2(αµq−2

1 + (1− α)µq−2
2 )2

αµ2q−2
1 + (1− α)µ2q−2

2

=
(q − 1)2(α + (1− α)κq−2)2

µ2
1(α + (1− α)κ2q−2)

.

Define q̄ = 1 + 1
log κ

. We would like to show that for any ε > 0, Cq̄ > max1+ε≤q≤2Cq

for κ large enough. That will give us q∗ ∈ (1, 1 + ε) and hence finishes the proof. To

show that, note that for any q ∈ [1 + ε, 2], κ ≥ 1,

Cq̄
Cq

=
(α + (1− α)κq̄−2)2

(α + (1− α)κq−2)2
· α + (1− α)κ2q−2

α + (1− α)κ2q̄−2
· (q̄ − 1)2

(q − 1)2

≥ α2 · α + (1− α)κ2ε

α + (1− α)e2
· (q̄ − 1)2 ≥ α2(1− α)

α + (1− α)e2
· κ2ε(log κ)−2 →∞.

Therefore, Cq̄ > max1+ε≤q≤2Cq when κ is sufficiently large.

Lemma 3.2.4 implies that ridge (q = 2) regularizer is optimal when the two-point

mixture components coincide, and the optimal value of q will shift towards 1 as the

ratio of the two points goes off to infinity. Intuitively speaking, one would expect

ridge to penalize large coefficients more aggressively than q < 2. Hence, in cases the

coefficient has a large dynamic range, ridge penalizes the large coefficient values more

and is not expected to outperform other values of q. Note that for the two-point

mixture coefficients, the optimal value of q can be arbitrarily close to 1, however

LASSO can never be optimal because its second order term is exponentially small.

We next study a more informative and interesting case where the distribution of β

has more mass around zero.
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Theorem 3.2.5. Consider the region δ > 1 and assume E|B|2 < ∞. For any given

q ∈ (1, 2), suppose that P(|B| ≤ t) = O(t2−q+ε) (as t → 0) with ε being any positive

constant, then as σw → 0

AMSE(λ∗,q, q, σw) =
σ2
w

1− 1/δ
− δ3(q − 1)2(E|B|q−2)2

(δ − 1)3E|B|2q−2
σ4
w + o(σ4

w).

For q = 2, as σw → 0

AMSE(λ∗,2, 2, σw) =
σ2
w

1− 1/δ
− δ3

(δ − 1)3E|B|2
σ4
w + o(σ4

w).

For q = 1, suppose that P(|B| ≤ t) = Θ(t`) with ` > 0, then as σw → 0

−|Θ(σ2`+2
w )| ·

(
log log . . . log︸ ︷︷ ︸

m times

(
1

σw

))`
. AMSE(λ∗,1, 1, σw)− σ2

w

1− 1/δ
. −|Θ(σ2`+2

w )|,

where m can be any natural number.

The proof is presented in Chapter 3.4.4. Note that the condition P(|B| ≤ t) =

O(t2−q+ε) for q ∈ (1, 2) is necessary otherwise the form E|B|q−2 appearing in the sec-

ond order term will be unbounded. We would like to make the following observations:

1. Compared to the results in Theorem 3.2.3, we see that the expansion of AMSE

for q ∈ (1, 2] in Theorem 3.2.5 remains the same for more general B, while the

rate of the second order term for LASSO changes to polynomial from exponen-

tial. That means LASSO is more sensitive to the distribution of β than other

LQLS.

2. The second order term of LASSO becomes smaller as ` decreases. It implies

that LASSO performs better when the probability mass of the coefficient concen-

trates more around zero. This can be well explained by the sparsity promoting

feature of LASSO;

3. As in the case P(|B| > µ) = 1, the first dominant term is the same for all

q ∈ [1, 2]. Hence we have to compare their second order term. For any



CHAPTER 3. LOW NOISE ANALYSIS WITHOUT SPARSITY 113

given q ∈ (1, 2], suppose P(|B| ≤ t) = Θ(t2−q+ε), then the second term of

AMSE(λ∗,q, q, σw) is of order σ4
w, while that of LASSO is Θ(σ6−2q+2ε

w ) (ignore

the logarithmic factor). Since both terms are negative, we can conclude LASSO

performs better than LQLS with that value of q when ε ∈ (0, q−1), and performs

worse when ε ∈ (q−1,∞). This observation has an important implication. The

behavior of the distribution of |B| around zero is the most important factor

in the comparison between LASSO and other LQLS. If the probability density

function (pdf) of B is zero at zero, then we should not use LASSO and when

it goes to infinity LASSO performs better than LQLS with q > 1 (at least for

those values of q for which our theorem is applicable).

4. Regrading the case where the pdf is finite at zero, our calculations of LASSO

are not sharp enough to give an accurate comparison between LASSO and other

LQLS. However, the comparison of LQLS for different values of q > 1 will shed

more light on the performance of different regularizers in this case. Hence,

we consider one of the most popular families of distributions and present an

accurate comparison among q ∈ (1, 2].

Lemma 3.2.6. Consider |B| with density function f(b) = ζ(τ, q0)e−τb
q0
1(0 ≤ b <

∞), where q0 ∈ (0, 2], τ > 0 and ζ(τ, q0) is the normalization constant. Then q∗ =

max(1, q0).

Proof. A simple integration by parts yields, for q ∈ (1, 2]

E|B|q−2 =

∫ ∞
0

ζ(τ, q0)bq−2e−τb
q0db =

τq0

q − 1

∫ ∞
0

ζ(τ, q0)bq+q0−2e−τb
q0db =

τq0E|B|q+q0−2

q − 1
.

Hence Cq = τ 2q2
0

(E|B|q+q0−2)2

E|B|2q−2 . We first consider q0 ∈ [1, 2], then

Cq = τ 2q0
[E(|B|q−1 · |B|q0−1)]2

E|B|2q−2

(a)

≤ τ 2q0E|B|2q0−2 = Cq0 ,

where (a) is due to Cauchy-Schwarz inequality. So we obtain q∗ = q0. Regrading the

case q0 ∈ (0, 1), let B′ be an independent copy of B. Then for any q ∈ [1, 2]

E|B|q+q0−2 − E|B|q−1E|B|q0−1 =
1

2
E(|B|q−1 − |B′|q−1)(|B|q0−1 − |B′|q0−1) ≤ 0.
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As a result, we can derive

Cq ≤ τ 2q0
(E|B|q+q0−2)2

(E|B|q−1)2
≤ τ 2q0E(|B|q0−1)2 = C1.

We can then conclude q∗ = 1 = max(1, q0).

As we discussed after Theorem 3.2.5, the shape of the coefficient distribution

around zero is the most important factor when it comes to the comparison of different

`q-regularizers. Lemma 3.2.6 indicates that among the distributions whose pdf exists

and is non-zero at zero, the tail behavior has an influence on the performance of

LQLS. In particular, LQLS with q = q0 ∈ (1, 2] is optimal for distributions with the

exponential decay tail e−τb
q0 . Since β̂(λ, q0) can be considered as the maximum a

posterior estimate (MAP), our result suggests that MAP offers the best performance

in the low noise regime (among the bridge estimators). This is in general not true.

See Zheng et al. (2017) for a counterexample in large noise cases. It is also interesting

to observe that as the tail becomes heavier than that of Laplacian distribution, the

optimal q∗ approaches 1. Again note, that this observation is consistent with the fact

that ridge often penalizes large coefficient values more aggressively than the other

estimators. Hence, if the tail of the distribution is light (like Gaussian distributions),

then ridge offers the best performance, otherwise, other values of q offer better results.

Based on Theorems 3.2.3, 3.2.5 and follow-up discussions, we are ready to sum-

marize the answers to the two questions we target in Chapter 3.1.1. In the high

signal-to-noise ratio regime, we can conclude that

1. How LASSO compares with other LQLS largely depends on the distribution

of the coefficient. The behavior of the distribution around zero is the most

important factor. When the probability density of the coefficient at zero is

finite, then the tail behavior of the distribution plays a role too.

2. LQLS with q ∈ (1, 2] outperforms LASSO when the distribution of the coeffi-

cient is bounded away from zero. For two-point mixture distributions, ridge is
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optimal if the two points overlap and the optimal q∗ approaches 1 as the two

points move away from each other. When B has probability mass around zero,

1 < q ≤ 2 can still beat LASSO if P(|B| ≤ t) = Θ(t2−q+ε) with ε > q − 1.

LASSO starts to outperform other values of q when ε ∈ (0, q − 1). For the

distribution with tail e−τb
q0 (1 < q0 ≤ 2), LQLS with q = q0 is optimal among

q ∈ (1, 2].

3.3 Implications for classical asymptotics

Our analysis so far has been focused on the high-dimensional setting in which n/p→

δ ∈ (0,∞). Furthermore, we assumed that the noise variance is small. At an intuitive

level this platform seems to be connected to the classical asymptotic framework that

has been studied in statistics extensively. In the classical asymptotics, it is assumed

that the signal-to-noise ratio of each observation is fixed and n/p → ∞. Note that

having more measurements is at the intuitive level equivalent to less noise. Hence, we

expect our low-noise sensitivity to have some implications for the classical asymptotics

too. Our goal below is to formalize this connection and explain the implications of

our low-noise analysis framework for the classical asymptotics.

Towards that goal, we will consider the scenarios where the sample size n is much

larger than the dimension p. Analytically, we let δ go to infinity and calculate the

expansions for AMSE in terms of large δ (similar to what we did in Chapter 3.2.2 for

low noise). In this section, we write AMSE(λ∗,q, q, δ) for AMSE(λ∗,q, q, σw) to make

it clear that the expansion is derived in terms of δ. Before getting to the results, we

should clarify an important issue. Recall the definition of a converging sequence in

Chapter 1.2. It is straightforward to confirm that the signal-to-noise ratio of each

measurement is SNR ∝ E|B|2
δσ2
w

. Hence if we take δ → ∞, SNR of each measurement

will go to zero and this is inconsistent with the classical asymptotic setting where the

SNR is in general assumed to be fixed. To fix this inconsistency, we will scale the
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noise term and consider a scaled linear model as follows,

y = Xβ +
w√
δ
, (3.1)

where {X, β, w} is the converging sequence specified in Chapter 1.2. With the SNR

remained a positive constant, this model is well aligned with the classical setting.

Again for comparison purposes we start with the ordinary least squares estimate.

Lemma 3.3.1. Consider the model (3.1) and OLS estimate β̂(0, q). Then as δ →∞,

AMSE(0, q, δ) =
σ2
w

δ
+
σ2
w

δ2
+ o(δ−2).

Proof. This lemma is a simple application of Corollary 3.2.2. Under model (3.1),

Corollary 3.2.2 shows that AMSE(0, q, δ) = σ2
w

δ−1
. As δ → ∞, the expansion can be

easily verified.

We now discuss the bridge estimators with q ∈ [1, 2].

Theorem 3.3.2. Consider the model (3.1). Suppose that P(|B| > µ) = 1 with µ

being a positive constant and E|B|2 <∞. Then for q ∈ [1, 2], as δ →∞,

AMSE(λ∗,q, q, δ) =
σ2
w

δ
+
σ2
w

δ2
· E|B|

2q−2 − (q − 1)2(E|B|q−2)2σ2
w

E|B|2q−2
+ o(δ−2).

The proof can be found in Chapter 3.4.5. Since both Theorems 3.2.3 and 3.3.2 are

concerned with coefficients that are bounded away from zero, we can compare their

results. Again all of the LQLS have the same first dominant term. However, in the

large sample regime, the second order term of LASSO is at the same order as that of

other LQLS. Interestingly, the comparison of the constant in the second order term

is consistent with that in the low noise case. Hence we obtain the same conclusions

for two-point mixture distributions. For instance, bridge with q ∈ (1, 2] outperforms

OLS and q = 2 is optimal when all the mass is concentrated at one point. See Lemma

3.2.4 for more information on the comparison of Cq.

We now discuss the implications of Theorem 3.3.2 for classical asymptotics. In

the classical setting where n→∞ and p is fixed, the performance of LQLS has been
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studied in Knight and Fu (2000). In particular the LQLS estimates were shown to

have the regular
√
n convergence. In our setting, we first let n/p→ δ and then δ →∞.

If we apply Theorem 2 in Knight and Fu (2000) to (3.1), a straightforward calculation

for the asymptotic variance will give us the first dominant term in AMSE(λ∗,q, q, δ).

In other words, the classical asymptotic result for LQLS in Knight and Fu (2000) only

provides the “first-order” information regarding mean square error, and it is the same

for all the values of q ∈ [1, 2] under optimal tuning. The virtue of our asymptotic

framework is to offer the second order term that can be used to evaluate and compare

LQLS more accurately. The same can be derived when coefficients have mass around

zero, as presented in the next theorem.

Theorem 3.3.3. Consider the model (3.1) and assume E|B|2 < ∞. For any given

q ∈ (1, 2), suppose that P(|B| ≤ t) = O(t2−q+ε) (as t → 0) with ε being any positive

constant, then as δ →∞,

AMSE(λ∗,q, q, δ) =
σ2
w

δ
+
σ2
w

δ2
· E|B|

2q−2 − (q − 1)2(E|B|q−2)2σ2
w

E|B|2q−2
+ o(δ−2),

for q = 2, as δ →∞,

AMSE(λ∗,q, q, δ) =
σ2
w

δ
+
σ2
w

δ2
· E|B|

2 − σ2
w

E|B|2
+ o(δ−2),

and for q = 1, suppose P(|B| ≤ t) = Θ(t`) with 0 < ` < 1, then as δ →∞,

−|Θ(δ−`−1)| ·
(

log log . . . log︸ ︷︷ ︸
m times

(
√
δ)
)`

. AMSE(λ∗,q, q, δ)−
σ2
w

δ
. −|Θ(δ−`−1)|,

where m can be any natural number.

The proof is presented in Chapter 3.4.6. Theorem 3.3.3 can be compared with

Theorem 3.2.5. Again we see that the expansion for q ∈ (1, 2] remains the same

for more general coefficients, while the second order term of LASSO becomes order-

wise smaller when coefficients put more mass around zero. For a given q ∈ (1, 2],

it is clear that LASSO outperforms this LQLS when P(|B| ≤ t) = Θ(t2−q+ε) with
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ε ∈ (0, q − 1). This implies that even in the case when n is much larger than p, if

the underlying coefficient has many elements of small values, `1 regularization will

improve the performance, which is characterized by a second order analysis that is

not available from the
√
n convergence result. Regrading the distributions with tail

e−τb
q0 , we see that the comparison among q ∈ (1, 2] in the low noise regime carries

over.

The fact that regularization can improve the performance of the maximum like-

lihood estimate (i.e., OLS in the context of linear regression with Gaussian noise),

seems to be contradictory with the classical results that imply MLE is asymptotically

optimal under mild regularity conditions. However, note that the optimality of MLE

is concerned with the asymptotic variance (equivalently the first order term) of the

estimate. Our results show that many estimators share that first order term, while

their actual performance might be different. Second dominant terms provide much

more accurate information in these cases.

3.4 Proofs of the main results

3.4.1 Notations and Preliminaries

Throughout the proofs, B will be a random variable having the probability measure

fβ that appears in the definition of the converging sequence, and Z will refer to a

standard normal random variable. We will also use φ(·) to denote the density function

of Z and F (b) to represent the cumulative distribution function of |B|. We further

define the following useful notations:

Rq(χ, σ) = E(ηq(B/σ + Z;χ)−B/σ)2, χ∗q(σ) = arg min
χ≥0

Rq(χ, σ), (3.2)

where B and Z are independent. Recall the proximal operator function ηq(u;χ).

Since we will be using ηq(u;χ) extensively in the later proofs, we present some useful

properties of ηq(u;χ) in the next lemma. Because ηq(u;χ) has explicit forms when
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q = 1, 2, we focus on the case 1 < q < 2. For notational simplicity we may use

∂if(x1, x2, . . .) to represent the partial derivative of f with respect to its ith argument.

Lemma 3.4.1. For q ∈ (1, 2), the function ηq(u;χ) satisfies the following properties.

(i) −ηq(u;χ) = ηq(−u;χ).

(ii) u = ηq(u;χ) + χq(q − 1)ηq(u;χ)sign(u).

(iii) αηq(u;χ) = ηq(αu;α2−qχ), for α > 0.

(iv) ∂ηq(u;χ)

∂u
= 1

1+χq(q−1)|ηq(u;χ)|q−2

(v) ∂ηq(u;χ)

∂χ
= −q|ηq(u;χ)|q−1sign(u)

1+χq(q−1)|ηq(u;χ)|q−2

(vi) The function ∂2ηq(u;χ) is differentiable with respect to u.

Proof. The proof has already been presented in Chapter 2.5.3.

We next write down the Stein’s lemma (Stein, 1981) that we will apply several

times in the proofs.

Stein’s lemma. Suppose the function f : R → R is weakly differentiable and

E|f ′(Z)| <∞, then

E(Zf(Z)) = Ef ′(Z).

3.4.2 Proof of Corollary 3.2.2

Since δ > 1, β̂(0, q) = (X ′X)−1Xy is well defined with probability 1 for sufficiently

large n. We first derive AMSE(λ, 2, σw) for the ridge estimate β̂(λ, 2) = (X ′X +

λI)−1X ′y, and then obtain the AMSE for OLS by letting λ → 0. According to

Theorem 2.2.2, it is known that for given λ > 0,

AMSE(λ, 2, σw) = δ(σ2 − σ2
w),

where σ is the solution to the following equation:

σ2 = σ2
w +

4χ2E|B|2 + σ2

δ(1 + 2χ)2
, λ = χ− χ

δ(1 + 2χ)
.
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After a few calculations we can obtain

AMSE(λ, 2, σw) =
δ(4χ2E|B|2 + σ2

w)

δ(1 + 2χ)2 − 1
, (3.3)

with χ =
1−δ+2λδ+

√
(δ−1−2λδ)2+8λδ2

4δ
. Clearly AMSE(λ, 2, σw) → σ2

w

1−1/δ
as λ → 0. We

now utilize that result to derive AMSE for OLS. According to the identity below

(X ′X + λI)−1 = (X ′X)−1 − λ (X ′X)−1(I + λ(X ′X)−1)−1(X ′X)−1︸ ︷︷ ︸
H

,

we have

1

p
‖β̂(0, q)− β‖2

2 −
σ2
w

1− 1/δ

=
1

p
‖β̂(λ, 2)− β‖2

2 −
σ2
w

1− 1/δ︸ ︷︷ ︸
J1

+
1

p
‖λHX ′y‖2

2︸ ︷︷ ︸
J2

+
2

p
〈β̂(λ, 2)− β, λHX ′y〉︸ ︷︷ ︸

J3

(3.4)

Let σmin(X) be the smallest non-zero singular values of X. It is not hard to confirm

‖HX ′Y ‖2 ≤ ‖HX ′Xβ‖2 + ‖HX ′w‖2 ≤
‖β‖2

λ+ σ2
min(X)

+
‖w‖2

(λ+ σ2
min(X))σ2

min(X)
.

Since σmin
a.s.→ 1 − 1√

δ
> 0 (Bai and Yin, 1993) and β, w belong to the converging

sequence defined in Chapter 1.2, we can conclude that J2 = O(λ2), a.s.. Moreover,

we obtain from (3.3) that almost surely

J1 =
δ(4χ2E|B|2 + σ2

w)

δ(1 + 2χ)2 − 1
− σ2

w

1− 1/δ

The results on J1, J2 imply that J3 = O(λ), a.s.. Further note that the term on the

left hand side of (3.4) does not depend on λ. Therefore by letting n → ∞ and then

λ→ 0 on both sides of (3.4) finishes the proof.

3.4.3 Proof of Theorem 3.2.3

3.4.3.1 Roadmap

Since the proof has several long steps, we lay out the roadmap to help readers navigate

through the details. According to Corollary 2.2.4, we know

AMSE(λ∗,q, q, σw) = σ̄2Rq(χ
∗
q(σ̄), σ̄), (3.5)
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where σ̄ is the unique solution of

σ̄2 = σ2
w +

σ̄2

δ
Rq(χ

∗
q(σ̄), σ̄). (3.6)

Note from the above equation that σ̄ is a function of σw. In the regime σw → 0,

we will show σ̄ → 0. This fact combined with (3.5) tells us that in order to derive

the second-order expansion of AMSE(λ∗,q, q, σw) as a function of σw, it is sufficient

to characterize the convergence rate of σ̄ as σw → 0 and Rq(χ
∗
q(σ), σ) as σ → 0. For

that purpose, we will first study the convergence rate of χ∗q(σ) as σ → 0, which will

then enables us to obtain the convergence rate of Rq(χ
∗
q(σ), σ). We then utilize that

result and (3.6) to derive the rate of σ̄ as σw → 0. We give the proof for 1 < q ≤ 2

and q = 1 in Chapters 3.4.3.2 and 3.4.3.3, respectively.

3.4.3.2 Proof for the case 1 < q ≤ 2

Due to the explicit form of η2(u;χ) = u
1+2χ

, all the results for q = 2 in this section

can be easily verified. We thus focus the proof on 1 < q < 2.

Lemma 3.4.2. Let χ∗q(σ) be the optimal threshold value as defined in (3.2). Then

χ∗q(σ)→ 0 as σ → 0.

Proof. The proof is essentially the same as the one for Lemma 2.5.30. Hence we do

not repeat the arguments here.

Lemma 3.4.3. For q ∈ (1, 2], suppose that P(|B| > µ) = 1 with µ being a positive

constant and E|B|2 <∞. Then as σ → 0

Rq(Cσ
q, σ) = 1 + (C2q2E|B|2q−2 − 2Cq(q − 1)E|B|q−2)σ2 + o(σ2),

where C is any fixed positive constant.

Proof. We aim to derive the convergence rate of Rq(χ, σ) when χ = Cσq. In this

proof, we may write χ to denote Cσq for notational simplicity. According to Lemma
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3.4.1 parts (ii)(iv) and Stein’s lemma, we have the following formula for Rq(χ, σ):

Rq(χ, σ)− 1 = E(ηq(B/σ + Z;χ)−B/σ − Z)2 + 2EZ(ηq(B/σ + Z;χ)−B/σ − Z)

= χ2q2E|ηq(B/σ + Z;χ)|2q−2︸ ︷︷ ︸
S1

−2χq(q − 1)E
|ηq(B/σ + Z;χ)|q−2

1 + χq(q − 1)|ηq(B/σ + Z;χ)|q−2︸ ︷︷ ︸
S2

. (3.7)

It is straightforward to confirm the following

lim
σ→0

S1

σ2
= lim

σ→0

χ2q2E|ηq(B/σ + Z;χ)|2q−2

σ2

= C2q2 lim
σ→0

E|ηq(B + σZ;χσ2−q)|2q−2 = C2q2E|B|2q−2. (3.8)

The last equality is obtained by Dominated Convergence Theorem (DCT). The con-

dition of DCT holds due to Lemma 3.4.1 part (ii). We now focus on analyzing S2.

We obtain

−S2

σ2
= 2Cσq−2q(q − 1)E

|ηq(B/σ + Z;χ)|q−2

1 + χq(q − 1)|ηq(B/σ + Z;χ)|q−2

= 2Cσq−2q(q − 1)E
1

|ηq(|B|/σ + Z;χ)|2−q + χq(q − 1)

= 2Cσq−2q(q − 1)

∫ ∞
µ

∫ −b/σ+µ/(2σ)

−b/σ−µ/(2σ)

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b)︸ ︷︷ ︸

T1

+ 2Cσq−2q(q − 1)

∫ ∞
µ

∫
R\[−b/σ−µ/(2σ),−b/σ+µ/(2σ)]

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b)︸ ︷︷ ︸

T2

.

We then consider T1 and T2 separately. For T1, we have

T1 ≤ 2Cσq−2q(q − 1)

∫ ∞
µ

∫ −µ/σ+µ/(2σ)

−µ/σ−µ/(2σ)

1

χq(q − 1)
φ(z)dzdF (b)

≤ 2σ−3µφ(µ/(2σ))→ 0, as σ → 0. (3.9)

Regarding T2, DCT enables us to conclude

lim
σ→0

T2 = lim
σ→0

2Cσq−2q(q − 1)E
1(Z /∈ [−|B|/σ − µ/(2σ),−|B|/σ + µ/(2σ)])

|ηq(|B|/σ + Z;χ)|2−q + χq(q − 1)

= lim
σ→0

2Cq(q − 1)E
1(Z /∈ [−|B|/σ − µ/(2σ),−|B|/σ + µ/(2σ)])

|ηq(|B|+ σZ;χσ2−q)|2−q + Cσ2q(q − 1)

= 2Cq(q − 1)E|B|q−2. (3.10)
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Note that DCT works here because for small enough σ, Lemma 3.4.1 parts (iv)(v)

implies

1(Z /∈ [−|B|/σ − µ/(2σ),−|B|/σ + µ/(2σ)])

|ηq(|B|+ σZ;χσ2−q)|2−q + Cσ2q(q − 1)
≤ 1

|ηq(µ/2;χσ2−q)|2−q
≤ 1

|ηq(µ/2; 1)|2−q
.

Combining (3.7), (3.8), (3.9) and (3.10) together completes the proof.

Lemma 3.4.3 shows that by choosing an appropriate χ for σ small enough, Rq(χ, σ)

is less than 1. This result will be used to show that χ∗q(σ) cannot converge to zero

too fast. We then utilize this fact to derive the exact convergence rate of χ∗q(σ). This

is done in the next lemma.

Lemma 3.4.4. Suppose that P(|B| > µ) = 1 with µ being a positive constant and

E|B|2 <∞, then for q ∈ (1, 2] we have as σ → 0

χ∗q(σ) =
(q − 1)E|B|q−2

qE|B|2q−2
σq + o(σq),

Rq(χ
∗
q(σ), σ) = 1− (q − 1)2(E|B|q−2)2

E|B|2q−2
σ2 + o(σ2).

Proof. Choosing χ = (q−1)E|B|q−2

qE|B|2q−2 · σq in Lemma 3.4.3, we have

lim
σ→0

Rq(χ, σ)− 1

σ2
= −(q − 1)2(E|B|q−2)2

E|B|2q−2
< 0. (3.11)

That means for sufficiently small σ

Rq(χ
∗
q(σ), σ) ≤ Rq(χ, σ) < 1 = Rq(0, σ).

Hence we can conclude that χ∗q(σ) > 0 when σ is small enough. Moreover, by a slight

change of arguments in the proof of Lemma 3.4.3 summarized below:

1. the fact χσ2−q = o(1) used several times in Lemma 3.4.3 still holds here

2. χσ2−q = o(1) and χ = o(σq) are sufficient to have S1 = o(σ2)

3. bounding the term T1 in (3.9) does not depend on χ

4. χσ2−q = o(1) and χ = o(σq) are sufficient to obtain T2 = o(1)
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we can show

lim
σ→0

Rq(χ, σ)− 1

σ2
= 0, (3.12)

for χ = O(exp(−c/σ)) with any fixed positive constant c. This implies that limσ→0 χ
∗
q(σ)·

ec/σ = +∞ for any c > 0. Otherwise there exists a sequence σn → 0 such that

χq(σn)ec/σn = O(1). This result combined with (3.11) and (3.12) contradicts with the

fact that χ = χ∗q(σ) is the minimizer of Rq(χ, σ). We will use the two aforementioned

properties of χ∗q(σ) we have showed so far in the following proof. For notational sim-

plicity, in the rest of the proof we may use χ to denote χ∗q(σ) whenever no confusion

is caused. Firstly since χ∗q(σ) is a non-zero finite value, it is a solution of the first

order optimality condition ∂Rq(χ,σ)

∂χ
= 0, which can be further written out as

0 = E((ηq(B/σ + Z;χ)−B/σ)∂2ηq(B/σ + Z;χ))

(a)
= E

−(ηq(B/σ + Z;χ)−B/σ − Z)q|ηq(B/σ + Z;χ)|q−1sign(B/σ + Z)

1 + χq(q − 1)|ηq(B/σ + Z;χ)|q−2

+E(Z∂2ηq(B/σ + Z;χ))

(b)
= χE

q2|ηq(B/σ + Z;χ)|2q−2

1 + χq(q − 1)|ηq(B/σ + Z;χ)|q−2︸ ︷︷ ︸
U1

−E
q(q − 1)|ηq(B/σ + Z;χ)|4−2q

(|ηq(B/σ + Z;χ)|2−q + χq(q − 1))3︸ ︷︷ ︸
U2

−χE q2(q − 1)|ηq(B/σ + Z;χ)|2−q

(|ηq(B/σ + Z;χ)|2−q + χq(q − 1))3︸ ︷︷ ︸
U3

. (3.13)

We have used Lemma 3.4.1 part (v) to derive (a). To obtain (b), we have used the

following steps:

1. We used Lemma 3.4.1 part (ii) to conclude that

ηq(B/σ + Z;χ)−B/σ − Z = −χq|ηq(B/σ + Z;χ)|q−1sign(B/σ + Z).

2. We used the expression we derived in Lemma 3.4.1 part (v) for ∂2ηq(B/σ+Z;χ)

and then employed Stein’s lemma to simplify E(Z∂2ηq(B/σ+Z;χ)). Note that

according to Lemma 3.4.1 part (vi), ∂2ηq(B/σ + Z;χ) is differentiable with

respect to its first argument and hence Stein’s lemma can be applied.



CHAPTER 3. LOW NOISE ANALYSIS WITHOUT SPARSITY 125

We now evaluate the three terms U1, U2 and U3 individually. Our goal is to show the

following:

(i) limσ→0 σ
2q−2U1 = q2E|B|2q−2.

(ii) limσ→0 σ
q−2U2 = q(q − 1)E|B|q−2.

(iii) limσ→0 σ
2q−4U3 = q2(q − 1)E|B|2q−4.

For the term U1, we can apply Dominated Convergence Theorem (DCT)

lim
σ→0

σ2q−2U1 = E lim
σ→0

q2|ηq(B + σZ;χσ2−q)|2q−2

1 + χσ2−qq(q − 1)|ηq(B + σZ;χσ2−q)|q−2
= q2E|B|2q−2.

We now derive the convergence rate of U2. We have

U2 =

∫ ∞
µ

∫ ∞
−∞

q(q − 1)|ηq(b/σ + z;χ)|4−2q

(|ηq(b/σ + z;χ)|2−q + χq(q − 1))3
φ(z)dzdF (b)

=

∫ ∞
µ

∫ − b
σ

+ µ
2σ

− b
σ
− µ

2σ

q(q − 1)|ηq(b/σ + z;χ)|4−2q

(|ηq(b/σ + z;χ)|2−q + χq(q − 1))3
φ(z)dzdF (b)︸ ︷︷ ︸

U21

+

∫ ∞
µ

∫
z /∈[− b

σ
− µ

2σ
,− b

σ
+ µ

2σ
]

q(q − 1)|ηq(b/σ + z;χ)|4−2q

(|ηq(b/σ + z;χ)|2−q + χq(q − 1))3
φ(z)dzdF (b)︸ ︷︷ ︸

U22

.(3.14)

First note that

σq−2U21 ≤ σq−2

∫ ∞
µ

∫ − b
σ

+ µ
2σ

− b
σ
− µ

2σ

q(q − 1)(µ/(2σ))4−2q

(χq(q − 1))3
φ(z)dzdF (b)

≤ µ5−2qφ(µ/(2σ))

σ7−3q24−2qχ3q2(q − 1)2
→ 0, as σ → 0, (3.15)

where the last step is due to the fact that limσ→0 χe
c/σ = +∞. To evaluate U22 we

first derive the following bounds for small enough σ

1(z /∈ [− b
σ
− µ

2σ
,− b

σ
+ µ

2σ
]) · q(q − 1)|ηq(b+ σz;χσ2−q)|4−2q

(|ηq(b+ σz;χσ2−q)|2−q + χσ2−qq(q − 1))3

≤ q(q − 1)

|ηq(µ/2;χσ2−q)|2−q
≤ q(q − 1)

|ηq(µ/2; 1)|2−q
.
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Hence we are able to apply DCT to obtain

lim
σ→0

σq−2U22 = q(q − 1)E|B|q−2. (3.16)

Combining (3.14), (3.15), and (3.16) proves the result (ii). We can use similar argu-

ments to show result (iii). Finally, we utilize the convergence results for U1, U2, U3

and Equation (3.13) to derive

lim
σ→0

χ

σq
= lim

σ→0

limσ→0 σ
q−2U2

limσ→0 σ2q−2U2 − limσ→0 σ2q−2U3

=
(q − 1)E|B|q−2

qE|B|2q−2
.

Now since we know the exact convergence order of χ∗q(σ), (3.11) shows the exact order

of Rq(χ
∗
q(σ), σ).

We are in position to derive the second-order expansion of AMSE(λ∗,q, q, σw) as

σw → 0 for q ∈ (1, 2]. According to Equation (3.6) and the fact that χ = χ∗q(σ̄)

minimizes Rq(χ, σ̄), it is clear that δ(σ̄2 − σ2
w) ≤ σ̄2Rq(0, σ̄) = σ̄2, which combined

with the condition δ > 1 implies σ̄ → 0 as σw → 0. This result further enables us to

conclude from (3.6):

lim
σw→0

σ̄2

σ2
w

=
δ

δ − 1
, (3.17)

where we have used Rq(χ
∗
q(σ̄), σ̄) → 1 from Lemma 3.4.4. We finally utilize Lemma

3.4.4, Equations (3.5), (3.6) and (3.17) to derive the expansion of AMSE(λ∗,q, q, σw)

in the following way:

σ−4
w

(
AMSE(λ∗,q, q, σw)− σ2

w

1− 1/δ

)
= σ−4

w

(
σ̄2Rq(χ

∗
q(σ̄), σ̄)− δ

δ − 1
(σ̄2 − 1

δ
σ̄2Rq(χ

∗
q(σ̄), σ̄))

)
=

δ

δ − 1
· σ̄

4

σ4
w

·
Rq(χ

∗
q(σ̄), σ̄)− 1

σ̄2
→ −δ

3(q − 1)2(E|B|q−2)2

(δ − 1)3E|B|2q−2
.

This completes the proof of Theorem 3.2.3 for q ∈ (1, 2].
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3.4.3.3 Proof for the case q = 1

Lemma 3.4.5. Suppose that P(|B| > µ) = 1 with µ being a positive constant and

E|B|2 <∞, then for q = 1 as σ → 0

χ∗q(σ) = O(φ(µ/σ)), Rq(χ
∗
q(σ), σ)− 1 = O(φ2(µ/σ)).

Proof. We first claim that χ∗q(σ) → 0 as σ → 0. Otherwise, there exists a sequence

σn → 0 such that χ∗q(σn) → C > 0 as n → ∞. And the limit C is finite. Suppose

this is not true, then since η1(u;χ) = sign(u)(|u| − χ)+ we can apply Fatou’s lemma

to conclude

lim inf
n→∞

Rq(χ
∗
q(σn), σn) ≥ E lim inf

n→∞
(η1(B/σn + Z;χ∗q(σn))−B/σn)2 = +∞,

contradicting with the fact Rq(χ
∗
q(σn), σn) ≤ Rq(0, σn) = 1. We now calculate the

following limit:

lim
n→∞

Rq(χ
∗
q(σn), σn) = lim

n→∞
E(η1(B/σn + Z;χ∗q(σn))−B/σn − Z)2

+2 lim
n→∞

EZ(η1(B/σn + Z;χ∗q(σn))−B/σn − Z) + 1 = C2 + 1.

The last step is due to Dominated Convergence Theorem (DCT). The condition of

DCT can be verified based on the fact |u−η1(u;χ)| ≤ χ. We can also choose a positive

constant C̃ smaller than C and use similar argument to obtain limn→∞Rq(C̃, σn) =

C̃2 + 1. That means Rq(C̃, σn) < Rq(χ
∗
q(σn), σn) when n is large enough. This is

contradicting with the fact χ = χ∗q(σn) minimizes Rq(χ, σn).

We next derive the following bounds:

Rq(χ, σ)− 1 = E(η1(B/σ + Z;χ)−B/σ − Z)2 + 2E(Z(η1(B/σ + Z;χ)−B/σ − Z))

(a)
= E(η1(B/σ + Z;χ)−B/σ − Z)2 + 2E(∂1η1(B/σ + Z;χ)− 1)

(b)

≤ χ2 − 2E
∫ −B/σ+χ

−B/σ−χ
φ(z)dz

(c)
= χ2 − 4χEφ(−B/σ + αχ).

To obtain (a) we used Stein’s lemma; note that η1(u;χ) is a weakly differentiable

function of u. Inequality (b) holds since |η1(u;χ)− u| ≤ χ. Equality (c) is the result
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of the mean value theorem and hence |α| ≤ 1 is dependent on B. From the above

inequality, it is straightforward to verify that if we choose χ = 3e−1Eφ(
√

2B/σ), then

Rq(χ
∗
q(σ), σ) ≤ Rq(χ, σ) < 1 = Rq(0, σ), (3.18)

for small enough σ. This means the optimal threshold χ∗q(σ) is a non-zero finite value.

Hence it is a solution to
∂Rq(χ∗q(σ),σ)

∂χ
= 0, which further implies (from now on we use

χ∗ to represent χ∗q(σ) for simplicity):

χ∗ =
Eφ(χ∗ −B/σ) + Eφ(χ∗ +B/σ)

E1(|Z +B/σ| ≥ χ∗)
≤ 2Eφ(χ∗ − |B|/σ)

E1(|Z +B/σ| ≥ χ∗)

≤ 2φ(χ∗ − µ/σ)

E1(|Z +B/σ| ≥ χ∗)
, (3.19)

where the last inequality holds for small values of σ due to the condition P(|B| > µ) =

1. Since E1(|Z + B/σ| ≥ χ∗)→ 1, as σ → 0 and φ(χ∗ − µ/σ) ≤ φ(µ/(
√

2σ))e(χ∗)2/2,

from (3.19) we can first conclude χ∗ = o(σ), which in turn (use (3.19) again) implies

χ∗ = O(φ(µ/σ)).

We now turn to analyzing Rq(χ
∗, σ):

Rq(χ
∗, σ)− 1 = E(η1(B/σ + Z;χ∗)−B/σ − Z)2 + 2E(∂1η1(B/σ + Z;χ∗)− 1)

≥ −2E1(|B/σ + Z| ≤ χ∗) ≥ −2

∫ −µ/σ+χ∗

−µ/σ−χ∗
φ(z)dz ≥ −4χ∗φ(µ/σ − χ∗)

(d)

≥ −8φ2(χ∗ − µ/σ)

E1(|Z +B/σ| ≥ χ∗)

(e)∼ −8φ2(µ/σ),

where (d) is due to (3.19) and (e) holds because E1(|Z + B/σ| ≥ χ∗) → 1 and

χ∗ = o(σ). This result combined with Rq(χ
∗, σ) − 1 < 0 from (3.18) finishes the

proof.

We are in position to derive the expansion of AMSE(λ∗,1, 1, σw). Similarly as in

the proof for q ∈ (1, 2], we can use Lemma 3.4.5 to derive (3.17) for q = 1. Then we

apply Lemma 3.4.5 again to obtain

AMSE(λ∗,1, 1, σw)− δ

δ − 1
σ2
w = σ̄2Rq(χ

∗
q(σ̄), σ̄)− δ

δ − 1
(σ̄2 − σ̄2Rq(σ

∗
q (σ̄), σ̄)/δ)

=
δσ̄2(Rq(χ

∗
q(σ̄), σ̄)− 1)

δ − 1
= o(exp(−µ̄2/σ̄2)) = o(exp(−µ̃2(δ − 1)/(δσ2

w))),
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where 0 < µ̃ < µ̄ < µ. This closes the proof.

3.4.4 Proof of Theorem 3.2.5

Similar to the proof of Theorem 3.2.3, we consider two cases, i.e. 1 < q ≤ 2 and

q = 1, and prove them separately. We will follow closely the roadmap illustrated in

Chapter 3.4.3.1.

3.4.4.1 Proof for the case 1 < q < 2

Again all the results in this section can be proved easily for q = 2. We will only

consider 1 < q < 2. Before we start the proof of our main result, we mention a simple

lemma that will be used multiple times in our proof.

Lemma 3.4.6. Let T (σ) and χ(σ) be two nonnegative sequences with the property:

χ(σ)T q−2(σ)→ 0, as σ → 0. Then,

lim
σ→0

ηq(T (σ), χ(σ))

T (σ)
= 1.

Proof. The proof is a simple application of scale invariance property of ηq, i.e, Lemma

3.4.1 part (iii). We have

lim
σ→0

ηq(T (σ), χ(σ))

T (σ)
= lim

σ→0
ηq(1;χ(σ)T q−2(σ)) = 1,

where the last step is the result of Lemma 3.4.1 part (ii).

Our first goal is to show that when χ = Cσq, then limσ→0
Rq(χ,σ)−1

σ2 is a negative

constant by choosing an appropriate C. However, since this proof is long, we break

it to several steps. These steps are summarized in Lemmas 3.4.7, 3.4.8, and 3.4.9.

Then in Lemma 3.4.10 we employ these three results to show that if χ = Cσq, then

lim
σ→0

R(χ, σ)− 1

σ2
= C2q2E|B|2q−2 − 2Cq(q − 1)E|B|q−2.
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Lemma 3.4.7. For any given q ∈ (1, 2), suppose that P(|B| < t) = O(t2−q+ε) (as

t→ 0) with ε being any positive constant, E|B|2 <∞ and χ = Cσq, where C > 0 is

a fixed number. Then we have

σq−2

∫ ∞
0

∫ −b
σ

+α

−b
σ
−α

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b)→ 0,

as σ → 0. Note that α is an arbitrary positive constant.

Proof. The main idea of the proof is to break this integral into several pieces and

prove that each piece converges to zero. Throughout the proof, we will choose ε small

enough to be in (0, q−1). Based on the value of q, we consider the following intervals.

First find the unique non-negative integer of m∗ such that

q ∈ [2− (ε/(ε+ q − 1))
1

m∗+1 , 2− (ε/(ε+ q − 1))
1
m∗ ).

Denote Snm(l) = lm + lm+1 + · · ·+ ln(m ≤ n). Now we define the following intervals:

I−1 =

[
− b
σ
− σq−ε

log( 1
σ
)
,− b

σ
+

σq−ε

log( 1
σ
)

]
,

Ii =

[
− b
σ
− σ

ε+q−1
q−1

(2−q)i− ε
q−1

(log(1/σ))S
i
0(2−q) ,−

b

σ
+

σ
ε+q−1
q−1

(2−q)i− ε
q−1

(log(1/σ))S
i
0(2−q)

]
, 0 ≤ i ≤ m∗,

Im∗+1 =

[
− b
σ
− 1

(log(1/σ))S
m∗+1
0 (2−q)

,− b
σ

+
1

(log(1/σ))S
m∗+1
0 (2−q)

]
,

Im∗+2 =

[
−b
σ
− α,− b

σ
+ α

]
. (3.20)

We see that for small enough σ, these intervals are nested: I−1 ⊂ I0 ⊂ I1 ⊂ . . . ⊂

Im∗+2. Further define

P−1 = σq−2

∫ ∞
0

∫
I−1

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b),

Pi = σq−2

∫ ∞
0

∫
Ii\Ii−1

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b), 0 ≤ i ≤ m∗ + 2.

Using these notations we have

σq−2

∫ ∞
0

∫ −b
σ

+α

−b
σ
−α

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b) =

m∗+2∑
i=−1

Pi. (3.21)
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Our goal is to show that Pi → 0 as σ → 0. Since these intervals have different forms,

we consider five different cases (i) i = −1, (ii) i = 0, (iii) 1 ≤ i ≤ m∗, (iv) i = m∗+ 1,

and (v) i = m∗ + 2 and for each case we show that Pi → 0. Let |I| denote the

Lebesgue measure of an interval I. For the first term, we have for a positive constant

C̃−1,

P−1 ≤ σq−2

∫ ∞
0

∫
I−1

1

χq(q − 1)
φ(z)dzdF (b) ≤ σq−2

∫ C̃−1σ
√

log(1/σ)

0

∫
I−1

1

χq(q − 1)
φ(z)dzdF (b)

+σq−2

∫ ∞
C̃−1σ
√

log(1/σ)

∫
I−1

1

χq(q − 1)
φ(z)dzdF (b)

≤
σq−2φ(0)|I−1|P(|B| ≤ C̃−1σ

√
log(1/σ))

χq(q − 1)
+
σq−2φ(C̃−1

√
log(1/σ)− σq−ε

log(1/σ)
)|I−1|

χq(q − 1)

≤ O(1)
σq−ε−2P(|B| ≤ C̃−1σ

√
log(1/σ))

log(1/σ)
+O(1)

σq−ε−2φ( C̃−1

2

√
log(1/σ))

log(1/σ)

≤ O(1)(log(1/σ))
−q+ε

2 +O(1)
σq−ε−2+C̃2

−1/8

log(1/σ)
→ 0, (3.22)

where we have used the condition P(|B| < t) = O(t2−q+ε) to obtain the last inequality

and the last statement holds by choosing C̃−1 large enough. We next analyze the term

P0. For a constant C̃0 > 0 we have

P0 ≤ σq−2

∫ ∞
0

∫
I0\I−1

1

|ηq(b/σ + z;χ)|2−q
φ(z)dzdF (b)

= σq−2

∫ C̃0σ
√

log(1/σ)

0

∫
I0\I−1

1

|ηq(b/σ + z;χ)|2−q
φ(z)dzdF (b)

+σq−2

∫ ∞
C̃0σ
√

log(1/σ)

∫
I0\I−1

1

|ηq(b/σ + z;χ)|2−q
φ(z)dzdF (b)

≤
σq−2φ(0)|I0|P(|B| < C̃0σ

√
log(1/σ))

η2−q
q

(
σq−ε

log(1/σ)
;χ
) +

σq−2φ
(
C̃0

√
log(1/σ)− σ

log(1/σ)

)
|I0|

η2−q
q

(
σq−ε

log(1/σ)
;χ
) .(3.23)

We have used the fact that |b/σ+ z| ≥ σq−ε

log(1/σ)
for z /∈ I−1 in the last step. Note that

according to Lemma 3.4.6, since ( σq−ε

log(1/σ)
)q−2χ ∝ σq

2−(1+ε)q+2ε(log(1/σ))2−q → 0, we

obtain

lim
σ→0

σq−ε

log(1/σ)

ηq(
σq−ε

log(1/σ)
;χ)

= 1.
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With the above result, it is clear that the second term of the upper bound in (3.23)

vanishes if choosing sufficiently large C̃0. Regarding the first term we know

σq−2|I0|P(|B| < C̃0σ
√

log(1/σ))

η2−q
q

(
σq−ε

log(1/σ)
;χ
) ∝ σq

2−(ε+2)q+3ε+1(log(1/σ))
ε+4−3q

2 = o(1).

Now we consider an arbitrary 1 ≤ i ≤ m∗ and show that Pi → 0. Similarly as

bounding P0 we can have

Pi ≤ σq−2

∫ C̃iσ
√

log(1/σ)

0

∫
Ii\Ii−1

1

|ηq(b/σ + z;χ)|2−q
φ(z)dzdF (b)

+σq−2

∫ ∞
C̃iσ
√

log(1/σ)

∫
Ii\Ii−1

1

|ηq(b/σ + z;χ)|2−q
φ(z)dzdF (b)

≤
σq−2φ(0)|Ii|P(|B| < C̃iσ

√
log(1/σ))

η2−q
q

(
σ
ε+q−1
q−1 (2−q)i−1− ε

q−1

(log(1/σ))S
i−1
0 (2−q)

;χ

)

+
σq−2φ

(
C̃i
√

log(1/σ)− σ
ε+q−1
q−1 (2−q)i− ε

q−1

(log(1/σ))S
i
0(2−q)

)
|Ii|

η2−q
q

(
σ
ε+q−1
q−1 (2−q)i−1− ε

q−1

(log(1/σ))S
i−1
0 (2−q)

;χ

) . (3.24)

We then use Lemma 3.4.6 to conclude for i ≥ 1

lim
σ→0

σ
ε+q−1
q−1 (2−q)i− ε(2−q)q−1

(log(1/σ))S
i
1(2−q)

η2−q
q

(
σ
ε+q−1
q−1 (2−q)i−1− ε

q−1

(log(1/σ))S
i−1
0 (2−q)

;χ

) = 1. (3.25)

The condition of Lemma 3.4.6 can be verified in the following:

(σ
ε+q−1
q−1

(2−q)i−1− ε
q−1 (log(1/σ))−S

i−1
0 (2−q))q−2χ ∝ σ−

ε+q−1
q−1

(2−q)i+ 2−q
q−1

ε+q(log(1/σ))S
i
1(2−q) = o(1),

where the last step is due to the fact that

−ε+ q − 1

q − 1
(2− q)i +

2− q
q − 1

ε+ q ≥ −ε+ q − 1

q − 1
(2− q) +

2− q
q − 1

ε+ q = 2q − 2 > 0.

Using the result (3.25), it is straightforward to confirm that if C̃i is chosen large



CHAPTER 3. LOW NOISE ANALYSIS WITHOUT SPARSITY 133

enough, the second term in (3.24) goes to zero. For the first term,

lim
σ→0

σq−2φ(0)|Ii|P(|B| < C̃iσ
√

log(1/σ))

η2−q
q

(
σ
ε+q−1
q−1 (2−q)i−1− ε

q−1

(log(1/σ))S
i−1
0 (2−q)

;χ

)
(a)
=O(1) · lim

σ→0

σq−2 σ
ε+q−1
q−1 (2−q)i− ε

q−1

(log(1/σ))S
i
0(2−q) σ

2−q+ε(log(1/σ))
2−q+ε

2

σ
ε+q−1
q−1 (2−q)i− ε(2−q)q−1

(log(1/σ))S
i
1(2−q)

= O(1) · lim
σ→0

(log(1/σ))
−q+ε

2 = 0,

where we have used (3.25) to obtain (a). So far we have showed limσ→0

∑m∗

i=−1 Pi = 0.

Our next step is to prove that Pm∗+1 → 0.

Pm∗+1 ≤ σq−2

∫ C̃m∗+1σ
√

log(1/σ)

0

∫
Im∗+1\Im∗

φ(z)

|ηq(b/σ + z;χ)|2−q
dzdF (b)

+σq−2

∫ ∞
C̃m∗+1σ

√
log(1/σ)

∫
Im∗+1\Im∗

φ(z)

|ηq(b/σ + z;χ)|2−q
dzdF (b)

≤
σq−2φ(0)|Im∗+1|P(|B| < C̃m∗+1σ

√
log(1/σ))

η2−q
q

(
σ
ε+q−1
q−1 (2−q)m∗− ε

q−1

(log(1/σ))S
m∗
0 (2−q)

;χ

)

+

σq−2φ

(
C̃m∗+1

√
log(1/σ)− 1

log(1/σ)S
m∗+1
0 (2−q)

)
|Im∗+1|

η2−q
q

(
σ
ε+q−1
q−1 (2−q)m∗− ε

q−1

(log(1/σ))S
m∗
0 (2−q)

;χ

) . (3.26)

Again based on (3.25) It is clear that if C̃m∗+1 is large enough, then the second term

in (3.26) goes to zero. We now show the first term goes to zero as well:

lim
σ→0

σq−2φ(0)|Im∗+1|P(|B| < C̃m∗+1σ
√

log(1/σ))

η2−q
q

(
σ
ε+q−1
q−1 (2−q)m∗− ε

q−1

(log(1/σ))S
m∗
0 (2−q)

;χ

)
(b)
= O(1) · lim

σ→0

σq−2 1

log(1/σ)S
m∗+1
0 (2−q)

σ2−q+ε(log(1/σ))
2−q+ε

2

σ
ε+q−1
q−1 (2−q)m∗+1− ε(2−q)q−1

(log(1/σ))S
m∗+1
1 (2−q)

= O(1) · lim
σ→0

σ
ε−(ε+q−1)(2−q)m

∗+1

q−1 (log(1/σ))
−q+ε

2
(c)
= 0,

where (b) holds from Lemma 3.4.6 and (c) is due to the condition we imposed on m∗

that ensures (2 − q)m∗+1 ≤ ε
ε+q−1

. The last remaining term of (3.21) is Pm∗+2. To
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prove Pm∗+2 → 0, we have

Pm∗+2 ≤ σq−2

∫ C̃m∗+2σ
√

log(1/σ)

0

∫
Im∗+2\Im∗+1

1

|ηq(b/σ + z;χ)|2−q
φ(z)dzdF (b)

+σq−2

∫ ∞
C̃m∗+2σ

√
log(1/σ)

∫
Im∗+2\Im∗+1

1

|ηq(b/σ + z;χ)|2−q
φ(z)dzdF (b).

By using the same strategy as we did for bounding Pi (0 ≤ i ≤ m∗ + 1), the second

integral above will go to zero as σ → 0, when C̃m∗+2 is chosen large enough. And the

first integral can be bounded by

σq−2φ(0)2αP(|B| ≤ C̃m∗+2σ
√

log(1/σ))

η2−q
q

(
1

log(1/σ)S
m∗+1
0 (2−q)

;χ

) (d)
= O(1)σε log(1/σ)(2−q+ε)/2+Sm

∗+2
1 (2−q) → 0,

where (d) holds by Lemma 3.4.6 and the condition of Lemma 3.4.6 can be easily

checked. This completes the proof.

Define

Iγ ,
[
− b
σ
− α

σ1−γ ,−
b

σ
+

α

σ1−γ

]
. (3.27)

In Lemma 3.4.7 we proved that:

σq−2

∫ ∞
0

∫ −b
σ

+α

−b
σ
−α

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b)→ 0.

In the next lemma, we would like to extend this result and show that in fact,

σq−2

∫ ∞
0

∫
Iγ

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b)→ 0.

Lemma 3.4.8. For any given q ∈ (1, 2), suppose the conditions in Lemma 3.4.7 hold.

Then for any fixed 0 < γ < 1,

σq−2

∫ ∞
0

∫
Iγ\Im∗+2

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b)→ 0,

as σ → 0. Note that Im∗+2 is defined in (3.20).



CHAPTER 3. LOW NOISE ANALYSIS WITHOUT SPARSITY 135

Proof. As in the proof of Lemma 3.4.7, we break the integral into smaller subintervals

and prove each one goes to zero. Consider the following intervals:

Ji =

[
− b
σ
− α

σ
ε

1+θ
Si0(1−ε) ,−

b

σ
+

α

σ
ε

1+θ
Si0(1−ε)

]
,

where θ > 0 is an arbitrarily small number and i is an arbitrary natural number.

Note that {Ji} is a sequence of nested intervals and Im∗+2 ⊂ J0. Our goal is to show

that the following integrals go to zero as σ → 0:

Q−1 , σq−2

∫ ∞
0

∫
J0\Im∗+2

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b)→ 0,

Qi , σq−2

∫ ∞
0

∫
Ji+1\Ji

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b)→ 0, i ≥ 0.

Define σ̃i , 1
α
σ

ε
1+θ
Si0(1−ε). Since |b/σ + z| ≥ α for z /∈ Im∗+2 we obtain

Q−1 ≤ σq−2

∫ ∞
0

∫
J0\Im∗+2

1

|ηq(α;χ)|2−q
φ(z)dzdF (b)

= σq−2

∫ σ
σ̃0

log(1/σ)

0

∫
J0\Im∗+2

1

|ηq(α;χ)|2−q
φ(z)dzdF (b)

+σq−2

∫ ∞
σ
σ̃0

log(1/σ)

∫
J0\Im∗+2

1

|ηq(α;χ)|2−q
φ(z)dzdF (b)

≤ σq−2

∫ σ
σ̃0

log(1/σ)

0

1

|ηq(α;χ)|2−q
dF (b) + σq−2

φ( log(1/σ)
σ̃0
− 1

σ̃0
)|J0|

|ηq(α;χ)|2−q
.

It is straightforward to notice that the second term above converges to zero. For the

first term, by the condition P(|B| < t) = O(t2−q+ε) we derive the following bounds

σq−2

∫ σ
σ̃0

log(1/σ)

0

1

|ηq(α;χ)|2−q
dF (b) ≤ O(1)σq−2(σσ̃−1

0 log(1/σ))2−q+ε

= O(1)σ
ε(q−1−ε+θ)

1+θ (log(1/σ))2−q+ε → 0.

Now we discuss the term Qi for i ≥ 0. Similarly as we bounded Q−1 we have

Qi ≤ σq−2

∫ σ
σ̃i+1

log(1/σ)

0

∫
Ji+1\Ji

1

|ηq( 1
σ̃i

;χ)|2−q
φ(z)dzdF (b)

+σq−2

∫ ∞
σ

σ̃i+1
log(1/σ)

∫
Ji+1\Ji

1

|ηq( 1
σ̃i

;χ)|2−q
φ(z)dzdF (b). (3.28)
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The second integral in (3.28) can be easily shown convergent to zero as σ → 0. We

now focus on the first integral.

σq−2

∫ σ
σ̃i+1

log(1/σ)

0

∫
Ji+1\Ji

1

|ηq( 1
σ̃i

;χ)|2−q
φ(z)dzdF (b)

≤ σq−2

|ηq( 1
σ̃i

;χ)|2−q
P
(
|B| ≤ σ

σ̃i+1

log(1/σ)
)

≤ O(1)
σε(log(1/σ))2−q+ε

|ηq( 1
σ̃i

;χ)|2−qσ̃2−q+ε
i+1

(a)
= O(1)

σε(log(1/σ))2−q+εσ̃2−q
i

σ̃2−q+ε
i+1

= O(1)σ
ε(θ+(q−1−ε)(1−ε)i+1)

1+θ (log(1/σ))2−q+ε = o(1).

We have used Lemma 3.4.6 to obtain (a). Above all we have showed that for any

given natural number i ≥ 0,

lim
σ→0

σq−2

∫ ∞
0

∫
Ji\Im∗+2

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b) = 0.

Now note that as i goes to infinity, the exponent of σ in the interval Ji goes to

ε
1+θ

(1 + (1− ε) + (1− ε)2 + . . .) = 1
1+θ

. So, by choosing small enough θ and sufficiently

large i we can make Iγ ⊂ Ji, hence completing the proof.

In the last two lemmas, we have been able to prove that for χ = Cσq,

σq−2

∫ ∞
0

∫
Iγ

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b)→ 0.

This result will be used to characterize the following limit

lim
σ→0

σq−2

∫ ∞
0

∫
R

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b).

Before that we mention a simple lemma that will be applied several times in our

proofs.

Lemma 3.4.9. For 1 < q < 2 we have

1

|ηq(u;χ)|2−q + χq(q − 1)
≤ 2

|u|2−q(q − 1)
.

Proof. It is sufficient to consider u > 0. We analyze two different cases:
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1. χ ≤ u2−q 1
2q

: According to Lemma 3.4.1 part (ii), since we know ηq(u;χ) ≤ u,

we have

ηq(u;χ) = u− χqηq−1
q (u;χ) ≥ u− χquq−1 ≥ u− u2−q 1

2q
qαq−1 =

u

2
.

Hence,

1

|ηq(u;χ)|2−q + χq(q − 1)
≤ 1

|ηq(u;χ)|2−q
≤ 22−q

u2−q ≤
2

(q − 1)u2−q .

2. χ ≥ u2−q 1
2q

:

1

|ηq(u;χ)|2−q + χq(q − 1)
≤ 1

χq(q − 1)
≤ 2

(q − 1)u2−q .

This completes our proof.

Now we can consider one of the main results of this section.

Lemma 3.4.10. For any given q ∈ (1, 2), suppose the conditions in Lemma 3.4.7

hold. Then for χ = Cσq we have

lim
σ→0

Rq(χ, σ)− 1

σ2
= C2q2E|B|2q−2 − 2Cq(q − 1)E|B|q−2.

Proof. We follow the same roadmap as in the proof of Lemma 3.4.3. Recall that

Rq(χ, σ)− 1 = χ2q2E|ηq(B/σ + Z;χ)|2q−2︸ ︷︷ ︸
S1

−2χq(q − 1)E
|ηq(B/σ + Z;χ)|q−2

1 + χq(q − 1)|ηq(B/σ + Z;χ)|q−2︸ ︷︷ ︸
S2

. (3.29)

The first term S1 can be calculated in the same way as in the proof of Lemma 3.4.3.

lim
σ→0

σ−2S1 = C2q2E|B|2q−2. (3.30)

We now focus on analyzing S2. First note that restricting |B| to be bounded away

from 0 makes it possible to follow the same arguments used in the proof of Lemma

3.4.3 to obtain,

lim
σ→0

E
1(|B| > 1)

|ηq(|B|+ σZ;Cσ2)|2−q + Cσ2q(q − 1)
= E|B|q−2

1(|B| > 1). (3.31)
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Hence we next consider the event |B| ≤ 1.

E
1(|B| ≤ 1)

|ηq(|B|+ σZ;Cσ2)|2−q + Cσ2q(q − 1)

=

∫ 1

0

∫ −b/σ+bc/(2σ)

−b/σ−bc/(2σ)

1

|ηq(b+ σz;Cσ2)|2−q + Cσ2q(q − 1)
φ(z)dzdF (b)︸ ︷︷ ︸

T1

+

∫ 1

0

∫
R\[−b/σ−bc/(2σ),−b/σ+bc/(2σ)]

1

|ηq(b+ σz;Cσ2)|2−q + Cσ2q(q − 1)
φ(z)dzdF (b)︸ ︷︷ ︸

T2

,

where c > 1 is a constant that we will specify later. We first analyze T2. Note that,

T2 = E
1(|B + σZ| ≥ |B|c/2, |B| ≤ 1)

|ηq(B + σZ;Cσ2)|2−q + Cσ2q(q − 1)
,

and

1(|B + σZ| ≥ |B|c/2, |B| ≤ 1)

|ηq(B + σZ;Cσ2)|2−q + Cσ2q(q − 1)

(a)

≤ 21(|B + σZ| ≥ |B|c/2)

(q − 1)|B + σZ|2−q
≤ |B|c(q−2)

2q−3(q − 1)
,

where (a) is due to Lemma 3.4.9. For any 1 < q < 2, it is straightforward to verify

that E|B|c(q−2) <∞ if c is chosen close enough to 1. We can then apply Dominated

Convergence Theorem (DCT) to obtain

lim
σ→0

T2 = E1(|B| ≥ |B|c/2, |B| ≤ 1)|B|q−2 = E|B|q−2
1(|B| ≤ 1). (3.32)

We now turn to bounding T1. According to Lemmas 3.4.7 and 3.4.8, we know

σq−2

∫ ∞
0

∫
Iγ

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b)→ 0,

where Iγ = [− b
σ
− α

σ1−γ ,− b
σ

+ α
σ1−γ ]. Define Iγc = [− b

σ
− bc

σ1−γ ,− b
σ

+ bc

σ1−γ ] and Ĩc =

[− b
σ
− bc

2σ
,− b

σ
+ bc

2σ
]. For 0 ≤ b ≤ 1, we get Iγc ⊆ Iγ for any given α > 1. Therefore,

T3 , σq−2

∫ 1

0

∫
Iγc

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b)→ 0.
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Hence to bound T1, it is sufficient to bound T1 − T3:

T1 − T3 = σq−2

∫ 1

0

∫
Ĩc\Iγc

1

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
φ(z)dzdF (b)

≤ σq−2

∫ 1

0

∫
Ĩc\Iγc

1

|ηq(bc/σ1−γ;χ)|2−q + χq(q − 1)
φ(z)dzdF (b)

(b)

≤ σq−2+(1−γ)(2−q)
∫ 1

0

∫
Ĩc\Iγc

2bc(q−2)

q − 1
φ(z)dzdF (b)

= σq−2+(1−γ)(2−q)
∫ C̃σ
√

log(1/σ)

0

∫
Ĩc\Iγc

2bc(q−2)

q − 1
φ(z)dzdF (b)︸ ︷︷ ︸

T4

+σq−2+(1−γ)(2−q)
∫ 1

C̃σ
√

log(1/σ)

∫
Ĩc\Iγc

2bc(q−2)

q − 1
φ(z)dzdF (b)︸ ︷︷ ︸

T5

,

where (b) is the result of Lemma 3.4.9 and C̃ is a positive constant. We first bound

T5 in the following:

T5 ≤
2σq−2+(1−γ)(2−q)

q − 1

∫ 1

C̃σ
√

log(1/σ)

bc(q−1)

σ
φ

(
b

2σ

)
dF (b) ≤ 2σq−3+(1−γ)(2−q)

q − 1
φ(C̃

√
log(1/σ)/2).

It is then easily seen that T5 goes to zero by choosing large enough C̃. For the

remaining term T4,

T4 ≤
2σq−3+(1−γ)(2−q)

q − 1

∫ C̃σ
√

log(1/σ)

0

bc(q−1)φ

(
b

2σ

)
dF (b)

≤ 2σq−3+(1−γ)(2−q)

q − 1
(C̃σ

√
log(1/σ))c(q−1)φ(0)P(|B| ≤ C̃σ

√
log(1/σ))

≤ O(1)σc(q−1)−γ(2−q)+1−q+ε(log(1/σ))(c(q−1)+2−q+ε)/2 → 0.

To obtain the last statement, we can choose γ close enough to zero and c close to 1.

Hence we can conclude T1 → 0 as σ → 0. This combined with the results in (3.31)

and (3.32) gives us

lim
σ→0
−σ−2S2 = 2Cq(q − 1)E

1

|ηq(|B|+ σZ;Cσ2)|2−q + Cσ2q(q − 1)
= 2Cq(q − 1)E|B|q−2.

The above result together with (3.30) finishes the proof.
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As stated in the roadmap of the proof, our first goal is to characterize the con-

vergence rate of χ∗q(σ). Towards this goal, we first show that χ∗q(σ) cannot be either

too large or too small. In particular, in Lemmas 3.4.11 and 3.4.12, we show that

χ∗q(σ) = O(σq−1) and χ∗q(σ) = Ω(σq). We then utilize such result in Lemma 3.4.14 to

conclude that χ∗q(σ) = Θ(σq).

Lemma 3.4.11. Suppose E|B|2 <∞, if χσ1−q =∞ and χ = o(1), then Rq(χ, σ)→

∞, as σ → 0.

Proof. Consider the formula of Rq(χ, σ) in (3.29). Since χ = o(1), it is straightforward

to apply Dominated Convergence Theorem to obtain

lim
σ→0

χ−2σ2q−2S1 = q2E|B|2q−2.

Because χ2σ2−2q →∞, we know S1 →∞. Also note

|S2| ≤ 2χq(q − 1) · 1

χq(q − 1)
= 2.

Hence, Rq(χ, σ)→∞.

Lemma 3.4.12. Suppose that the same conditions for B in Lemma 3.4.10 hold, if

χ = o(σq), then
Rq(χ, σ)− 1

σ2
→ 0, as σ → 0.

Proof. Consider the expression of Rq(χ, σ)− 1 in (3.29). First note that

lim
σ→0

S1

σ2
= lim

σ→0

χ2σ2−2qq2E|ηq(B + σZ;χσ2−q)|2q−2

σ2
= 0.

Now we study the behavior of S2. Recall that we defined I−1 =
[
− b
σ
− σq−ε

log( 1
σ

)
,− b

σ
+ σq−ε

log( 1
σ

)

]
and Iγ =

[
− b
σ
− α

σ1−γ ,− b
σ

+ α
σ1−γ

]
in (3.20) and (3.27), respectively. It is straightfor-

ward to use the same argument as for bounding P−1 in the proof of Lemma 3.4.7 (see

the derivations in (3.22)) to have

χ

σ2

∫ ∞
0

∫
I−1

φ(z)

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
dzdF (b) ≤ χ

σ2

∫ ∞
0

∫
I−1

φ(z)

χq(q − 1)
dzdF (b)→ 0.
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Moreover, since χ < Cσq for small enough σ, Lemma 3.4.1 part (v) implies

|ηq(b/σ + z;χ)| ≥ |ηq(b/σ + z;Cσq)|.

Therefore, as σ → 0

χ

σ2

∫ ∞
0

∫
Iγ\I−1

φ(z)

|ηq(b/σ + z;χ)|2−q
dzdF (b)

≤ χ

σq
· 1

σ2−q

∫ ∞
0

∫
Iγ\I−1

φ(z)

|ηq(b/σ + z;Cσq)|2−q
dzdF (b)→ 0,

where the last statement holds because of 1
σ2−q

∫∞
0

∫
Iγ\I−1

φ(z)
|ηq(b/σ+z;Cσq)|2−q dzdF (b)→ 0

that has already been shown in the proof of Lemmas 3.4.7 and 3.4.8. Above all we

have proved

χ

σ2

∫ ∞
0

∫
Iγ

φ(z)

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
dzdF (b)→ 0.

Based on the above result, we can easily follow the same derivations of bounding the

term T1 in the proof of Lemma 3.4.10 to conclude

lim
σ→0

χ

σ2

∫ 1

0

∫ −b/σ+bc/(2σ)

−b/σ−bc/(2σ)

φ(z)

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
dzdF (b) = 0. (3.33)

Furthermore, because χ = o(σq), the analyses to derive Equation (3.31) and bound

T2 in the proof of Lemma 3.4.10 can be adapted here and yield

lim
σ→0

χ

σ2

∫ ∞
1

∫ +∞

−∞

φ(z)

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
dzdF (b) = 0, (3.34)

lim
σ→0

χ

σ2

∫ 1

0

∫
R\[−b/σ−bc/(2σ),−b/σ+bc/(2σ)]

φ(z)

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
dzdF (b) = 0.

Putting results (3.33) and (3.34) together gives us

lim
σ→0

−S2

σ2
= lim

σ→0

2χq(q − 1)

σ2

∫ ∞
0

∫ ∞
−∞

φ(z)

|ηq(b/σ + z;χ)|2−q + χq(q − 1)
dzdF (b) = 0.

This finishes the proof.

Collecting the results from Lemmas 3.4.10, 3.4.11 and 3.4.12, we can upper and

lower bound the optimal threshold value χ∗q(σ) as shown in the following corollary.
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Corollary 3.4.13. Suppose the conditions for B in Lemma 3.4.10 hold. Then as

σ → 0, we have

χ∗q(σ) = Ω(σq), χ∗q(σ) = O(σq−1).

Proof. Since χ = χ∗q(σ) minimizes Rq(χ, σ), we know

Rq(χ
∗
q(σ), σ) ≤ Rq(0, σ) = 1, for any σ > 0, (3.35)

σ−1(Rq(χ
∗
q(σ), σ)− 1) ≤ σ−2(Rq(Cσ

q, σ)− 1) < −c, for small enough σ, (3.36)

where the last inequality is due to Lemma 3.4.10 with an appropriate choice of C, and

c is a positive constant. Note that we already know χ∗q(σ) = o(1). If χ∗q(σ) 6= O(σq−1),

Lemma 3.4.11 will contradict with (3.35). If χ∗q(σ) 6= Ω(σq), Lemma 3.4.12 will

contradict with (3.36).

We are now able to derive the exact convergence rate of χ∗q(σ) and Rq(χ
∗
q(σ), σ).

Lemma 3.4.14. For any given q ∈ (1, 2), suppose the conditions in Lemma 3.4.7 for

B hold. Then we have

χ∗q(σ) =
(q − 1)E|B|q−2

qE|B|2q−2
σq + o(σq),

Rq(χ
∗
q(σ), σ) = 1− (q − 1)2(E|B|q−2)2

E|B|2q−2
σ2 + o(σ2).

Proof. In this proof, we use χ∗ to denote χ∗q(σ) for notational simplicity. Using the

notations in Equation (3.13), we know that χ∗ satisfies the following equation:

0 = χ∗U1 − U2 − χ∗U3.

Our first goal is to show that σq−2U2 → q(q−1)E|B|q−2 as σ → 0. Define the interval

K = [−b/σ − (χ∗)1/(2−q),−b/σ + (χ∗)1/(2−q)]. (3.37)

Then we have,

U2

σ2−q =
q(q − 1)

σ2−q

∫ ∞
0

∫
K

|ηq(b/σ + z;χ∗)|4−2q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b)

+
q(q − 1)

σ2−q

∫ ∞
0

∫
R\K

|ηq(b/σ + z;χ∗)|4−2q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b). (3.38)
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We first show that the first term in (3.38) goes to zero. Note that ηq((χ
∗)1/(2−q);χ∗) =

(χ∗)1/(2−q)ηq(1; 1) by Lemma 3.4.1 part (iii), we thus have

q(q − 1)

σ2−q

∫ ∞
0

∫
K

|ηq(b/σ + z;χ∗)|4−2q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b)

≤ q(q − 1)

σ2−q

∫ ∞
0

∫
K

|ηq((χ∗)1/(2−q);χ∗)|4−2q

(χ∗q(q − 1))3
φ(z)dzdF (b)

≤ 1

σ2−q

∫ ∞
0

∫
K

η4−2q
q (1; 1)

χ∗(q(q − 1))2
φ(z)dzdF (b)

≤ 1

σ2−q

∫ C1σ
√

log(1/σ)

0

∫
K

η4−2q
q (1; 1)

χ∗(q(q − 1))2
φ(z)dzdF (b)

+
η4−2q
q (1; 1)

q2(q − 1)2σ2−qχ∗
|K|φ(C1

√
log(1/σ)− (χ∗)1/(2−q)).

Since we have already shown χ∗ = Ω(σq) in Corollary 3.4.13, it is straightforward to

see that the second integral in the above bound is negligible for large enough C1. For

the first term, we know

1

χ∗σ2−q

∫ C1σ
√

log(1/σ)

0

∫
K
φ(z)dzdF (b) ≤ O(1)(χ∗)(q−1)/(2−q)σε(log(1/σ))

2−q+ε
2 = o(1).

Our next goal is to find the limit of the second term in (3.38). In order to do that, we

again break the integral into several pieces. Recall the intervals Iγ, I−1, I0, I1, . . . ,J0,J1, . . .

that we introduced in Lemmas 3.4.7 and 3.4.8. We consider two different cases:

1. In this case, we assume that (χ∗)1/(2−q) = o( σq−ε

log(1/σ)
).

Hence K ⊆ I−1. We have

1

σ2−q

∫ ∞
0

∫
I−1\K

|ηq(b/σ + z;χ∗)|4−2q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b)

≤ 1

σ2−q

∫ ∞
0

∫
I−1\K

1

|ηq(b/σ + z;χ∗)|2−q
φ(z)dzdF (b)

≤ 1

σ2−q

∫ ∞
0

∫
I−1\K

1

χ∗η2−q
q (1; 1)

φ(z)dzdF (b)

≤ 1

σ2−q

∫ C2σ
√

log(1/σ)

0

∫
I−1\K

1

χ∗η2−q
q (1; 1)

φ(z)dzdF (b)

+
1

σ2−q

∫ ∞
C2σ
√

log(1/σ)

∫
I−1\K

1

χ∗η2−q
q (1; 1)

φ(z)dzdF (b).
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The fact that χ∗(σ) = Ω(σq) enables us to conclude that the second integral

above goes to zero by choosing large enough C2. Regarding the first term we

know

1

χ∗σ2−q

∫ C2σ
√

log(1/σ)

0

∫
I−1\K

φ(z)dzdF (b)

≤
φ(0)|I−1|P(|B| ≤ C2σ

√
log(1/σ))

σ2−qχ∗
= O(1) · σ

q

χ∗
· (log(1/σ))

−q+ε
2

(a)
= o(1),

where (a) is due to χ∗ = Ω(σq). We now consider another integral.

1

σ2−q

∫ ∞
0

∫
Iγ\I−1

|ηq(b/σ + z;χ∗)|4−2q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b)

≤ 1

σ2−q

∫ ∞
0

∫
Iγ\I−1

1

|ηq(b/σ + z;χ∗)|2−q
φ(z)dzdF (b).

Our goal is to show that this integral goes to zero as well. We use the following

calculations:

1

σ2−q

∫ ∞
0

∫
Iγ\I−1

1

|ηq(b/σ + z;χ∗)|2−q
φ(z)dzdF (b)

≤ 1

σ2−q

m∗+2∑
i=0

∫ ∞
0

∫
Ii\Ii−1

1

|ηq(b/σ + z;χ∗)|2−q
φ(z)dzdF (b)

+
1

σ2−q

∑̀
i=1

∫ ∞
0

∫
Ji\Ji−1

1

|ηq(b/σ + z;χ∗)|2−q
φ(z)dzdF (b)

+
1

σ2−q

∫ ∞
0

∫
J0\Im∗+2

1

|ηq(b/σ + z;χ∗)|2−q
φ(z)dzdF (b),

where ` is chosen in a way such that Iγ ⊆ J`. Define mi = |Ii| and m̃i = |Ji|.

Note that we did similar calculations for the case χ = Cσq in Lemmas 3.4.7 and

3.4.8. The key argument regarding χ that we used there to show each term above

converges to zero was that ηq(mi;Cσ
q) = Θ(mi) and ηq(m̃i;Cσ

q) = Θ(m̃i).

Hence, if we can show that ηq(mi;χ
∗) = Θ(mi) and ηq(m̃i;χ

∗) = Θ(m̃i) in the

current case, then those proofs will carry over and we will have

1

σ2−q

∫ ∞
0

∫
Iγ\I−1

1

|ηq(b/σ + z;χ∗)|2−q
φ(z)dzdF (b)→ 0.
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For this purpose, we make use of Lemma 3.4.6. Note that since m−1 < m0 <

m1 < . . . < mm∗+2 < m̃0 < m̃1 < m̃2 . . . < m̃`, we only need to confirm the

condition of Lemma 3.4.6 for m−1. We have

χ∗mq−2
−1 = χ∗σ(q−ε)(q−2) log(1/σ)2−q = o(1),

by the assumption of Case 1. Hence in the current case we have obtained

1

σ2−q

∫ ∞
0

∫
Iγ

|ηq(b/σ + z;χ∗)|4−2q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b)→ 0.

Furthermore, it is clear that

σq−2|ηq(b/σ + z;χ∗)|4−2q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
≤ 1

|ηq(b+ σz;χ∗σ2−q)|2−q + χ∗σ2−qq(q − 1)
.

We can then follow the same line of arguments for deriving limσ→0−S2/σ
2 in

the proof of Lemma 3.4.10 to obtain limσ→0 σ
q−2U2 = q(q − 1)E|B|q−2.

2. The other case is (χ∗)
1

2−q = Ω( σq−ε

log(1/σ)
). Because (χ∗)

1
2−q = Ω( σq−ε

log(1/σ)
) and

χ∗ = O(σq−1), there exists a value of 0 ≤ m̄ ≤ m∗ + 1 such that for σ small

enough, (χ∗)
1

2−q = o(|Im̄|) and (χ∗)
1

2−q = Ω(|Im̄−1|). We then break the integral

into:

1

σ2−q

∫ ∞
0

∫
Iγ\K

|ηq(b/σ + z;χ∗)|4−2q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b)

=
1

σ2−q

∫ ∞
0

∫
Im̄\K

|ηq(b/σ + z;χ∗)|4−2q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b)

+
1

σ2−q

∫ ∞
0

∫
Iγ\Im̄

|ηq(b/σ + z;χ∗)|4−2q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b) (3.39)

Once we show that each of the two integrals above goes to zero as σ → 0,

then the subsequent arguments will be exactly the same as the ones in Case 1.



CHAPTER 3. LOW NOISE ANALYSIS WITHOUT SPARSITY 146

Regarding the first integral,

1

σ2−q

∫ ∞
0

∫
Im̄\K

|ηq(b/σ + z;χ∗)|4−2q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b)

≤ 1

σ2−q

∫ C3σ
√

log(1/σ)

0

∫
Im̄\K

1

χ∗η2−q
q (1; 1)

φ(z)dzdF (b)

+
1

σ2−q

∫ ∞
C3σ
√

log(1/σ)

∫
Im̄\K

1

χ∗η2−q
q (1; 1)

φ(z)dzdF (b)

≤
φ(0)|Im̄|P(|B| ≤ C3σ

√
log(1/σ))

σ2−qη2−q
q (1; 1)χ∗

+
φ(C3

√
log(1/σ)/2)

σ2−qη2−q
q (1; 1)χ∗

.

Since χ∗ = Ω(σq) from Corollary 3.4.13, it is clear that the second term in the

above upper bound goes to zero by choosing large enough C3. Regarding the

first term we have

|Im̄|P(|B| ≤ C3σ
√

log(1/σ))

σ2−qχ∗

(a)

≤ O(1)
σε(log(1/σ))

2−q+ε
2 σ

ε+q−1
q−1

(2−q)m̄− ε
q−1

χ∗ log(1/σ)S
m̄
0 (2−q)

(b)

≤

O(1)(log(1/σ))
−q+ε

2 = o(1) if m̄ > 0,

O(1)(log(1/σ))
ε+4−3q

2 σq
2−(2+ε)q+3ε+1 = o(1) if m̄ = 0,

where (a) holds even when m̄ = m∗+1 since ε+q−1
q−1

(2−q)m̄− ε
q−1
≤ 0 by the defi-

nition of m∗; and (b) is due to the fact that (χ∗)1/(2−q) = Ω

(
σ
ε+q−1
q−1 (2−q)m̄−1− ε

q−1

(log(1/σ))S
m̄−1
0 (2−q)

)
when m̄ > 0 and (χ∗)1/(2−q) = Ω( σq−ε

log(1/σ)
) when m̄ = 0, according to the choice

of m̄. For the second integral in (3.39), note that (χ∗)
1

2−q = o(|Im̄|), hence

χ∗|Im̄|q−2 → 0. It implies that the arguments in calculating the second integral

in Case 1 hold here as well.

So far we have been able to derive the limit of σq−2U2. We next analyze the

term σq−2χ∗U3 and show that it goes to zero as σ → 0. We have

χ∗

σ2−q

∫ ∞
0

∫
K

|ηq(b/σ + z;χ∗)|2−q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b) ≤

χ∗

σ2−q

∫ ∞
0

∫
K

χ∗η2−q
q (1; 1)

(χ∗q(q − 1))3
φ(z)dzdF (b) =

1

σ2−q

∫ ∞
0

∫
K

η2−q
q (1; 1)

χ∗(q(q − 1))3
φ(z)dzdF (b)
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The upper bound above has been shown to be zero in the preceding calculations

regarding the first term in (3.38). Furthermore, note that when z /∈ K,

|ηq(b/σ + z;χ∗)|2−q ≥ χ∗η2−q
q (1; 1).

We can then obtain

χ∗

σ2−q

∫ ∞
0

∫
Iγ\K

|ηq(b/σ + z;χ∗)|2−q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b)

≤ O(1) · 1

σ2−q

∫ ∞
0

∫
Iγ\K

|ηq(b/σ + z;χ∗)|4−2q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b).

The last term has been shown to converge to zero in the analysis of σq−2U2.

Above all we have derived that

lim
σ→0

χ∗

σ2−q

∫ ∞
0

∫
Iγ

|ηq(b/σ + z;χ∗)|2−q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b) = 0.

This together with the fact

χ∗|ηq(b/σ + z;χ∗)|2−q

σ2−q(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
≤ q−1(q − 1)−1

|ηq(b+ σz;σ2−qχ∗)|2−q + σ2−qχ∗q(q − 1)
,

we can again follow the line of arguments for −σ−2S2 in the proof of Lemma

3.4.10 to get

lim
σ→0

χ∗

σ2−q

∫ ∞
0

∫
R

|ηq(b/σ + z;χ∗)|2−q

(|ηq(b/σ + z;χ∗)|2−q + χ∗q(q − 1))3
φ(z)dzdF (b) = 0.

Finally a direct application of Dominated Convergence Theorem gives us σ2q−2U1 →

q2E|B|2q−2. Hence we are able to derive the following

lim
σ→0

χ∗

σq
= lim

σ→0

σq−2U2 + σq−2χ∗U3

σ2q−2U1

=
(q − 1)E|B|q−2

qE|B|2q−2
.

Now that we have derived the convergence rate of χ∗, according to Lemma 3.4.10, we

can immediately obtain the order of Rq(χ
∗, σ).

Having the convergence rate of Rq(χ
∗
q(σ), σ) as σ → 0 in Lemma 3.4.14, the

derivation for the expansion of AMSE(λ∗,q, q, σw) will be the same as the one in the

proof of Theorem 3.2.3.
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3.4.4.2 Proof for the case q = 1

Lemma 3.4.15. Suppose that P (|B| ≤ t) = Θ(σ`) (as t→ 0) and E|B|2 <∞, then

for q = 1

αmσ
` ≤ χ∗q(σ) ≤ βmσ

`(logm(1/σ))`/2,

α̃mσ
2` ≤ 1−Rq(χ

∗
q(σ), σ) ≤ β̃mσ

2`(logm(1/σ))`,

for small enough σ, where logm(1/σ) = log log . . . log︸ ︷︷ ︸
m times

(
1
σ

)
; m > 0 is an arbitrary

integer number; and αm, βm, α̃m, β̃m > 0 are four constants depending on m.

Proof. Since the proof steps are similar to those in Lemma 3.4.5, we do not repeat

every detail and instead highlight the differences. We write χ∗ for χ∗q(σ) for notational

simplicity. Using the same proof steps in Lemma 3.4.5, we can obtain χ∗ → 0, as

σ → 0 and

χ∗ =
Eφ(χ∗ −B/σ) + Eφ(χ∗ +B/σ)

E1(|Z +B/σ| ≥ χ∗)
.

Following the same arguments from the proof of Lemma 2.5.34, we can show

Θ(σ`) ≤ Eφ(χ∗ −B/σ) + Eφ(χ∗ +B/σ) ≤ Θ(σ`(logm(1/σ))`/2), (3.40)

Θ(σ`) ≤ Eφ(
√

2B/σ), Eφ(−B/σ + αχ∗) ≤ Θ(σ`(logm(1/σ))`/2), (3.41)

where α is any number between 0 and 1. Since E1(|Z+B/σ| ≥ χ∗)→ 1 , the bounds

for χ∗ is proved by using the result (3.40). Furthermore, we know

Rq(χ
∗, σ)− 1 ≤ Rq(χ, σ)− 1 = E(η1(B/σ + Z;χ)−B/σ − Z)2 +

2E(∂1η1(B/σ + Z;χ)− 1) ≤ χ2 − 2E
∫ −B/σ+χ

−B/σ−χ
φ(z)dz = χ2 − 4χEφ(−B/σ + αχ),

where |α| ≤ 1 is dependent on B. If we choose χ = 3e−1Eφ(
√

2B/σ) in the above

inequality, it is straightforward to see that

Rq(χ
∗, σ)− 1 ≤ −Θ((Eφ(

√
2B/σ))2) ≤ −Θ(σ2`),
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where the last step is due to (3.41). For the other bound, note that

Rq(χ
∗, σ)− 1 = E(η1(B/σ + Z;χ∗)−B/σ − Z)2 + 2E(∂1η1(B/σ + Z;χ∗)− 1)

≥ −2E
∫ −B/σ+χ∗

−B/σ−χ∗
φ(z)dz = −4χ∗Eφ(−B/σ + αχ∗) ≥ −Θ(σ2`(logm(1/σ))`).

The last inequality holds because of the upper bound on χ∗ and (3.41).

Based on the results of Lemma 3.4.15, deriving the expansion of AMSE(λ∗,1, 1, σw)

can be done in a similar way as in the proof of Theorem 3.2.3. We do not repeat it

here.

3.4.5 Proof of Theorem 3.3.2

The idea of this proof is similar to those for Theorems 3.2.3 and 3.2.5. We make use

of the result in Theorem 2.2.2:

AMSE(λ∗,q, q, δ) = σ̄2Rq(χ
∗
q(σ̄), σ̄) = δσ̄2 − σ2

w. (3.42)

Since we are in the large sample regime where δ →∞, σ̄ is a function of δ. It is clear

from (3.42) that 0 ≤ δσ̄2−σ2
w ≤ σ̄2. Hence σ̄2 ≤ σ2

w/(δ− 1)→ 0, which further leads

to

σ̄2 =
σ2
w

δ
+ o(1/δ). (3.43)

Due to the fact that σ̄ → 0 as δ → ∞, we will be able to use the convergence rate

results of Rq(χ
∗
q(σ), σ) (as σ → 0) we have proved in Lemmas 3.4.4 and 3.4.5. For

1 < q ≤ 2, Equations (3.42), (3.43) and Lemma 3.4.4 together yield

δ2(AMSE(λ∗,q, q, δ)− σ2
w/δ) = δ2(σ̄2Rq(χ

∗
q(σ̄), σ̄)− (σ̄2 − σ̄2Rq(χ

∗
q(σ̄), σ̄)/δ))

= (σ̄4δ2) ·
Rq(χ

∗
q(σ̄), σ̄)− 1

σ̄2
+ (δσ̄2) ·Rq(χ

∗
q(σ̄), σ̄) (3.44)

→ −(q − 1)2(E|B|q−2)2

E|B|2q−2
σ4
w + σ2

w.

For the case q = 1, from Lemma 3.4.5 we know Rq(χ
∗
q(σ̄), σ̄) − 1 is exponentially

small. So the firs term in (3.44) vanishes and the second term remains the same.
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3.4.6 Proof of Theorem 3.3.3

Theorem 3.3.3 can be proved in a similar fashion as for Theorem 3.3.2. Equation

(3.43) still holds. Equations (3.42), (3.43) and Lemma 3.4.15 together give us for

q = 1,

δ`+1(AMSE(λ∗,q, q, δ)− σ2
w/δ) = (σ̄2`+2δ`+1) ·

Rq(χ
∗
q(σ̄), σ̄)− 1

σ̄2`
+ (δ`σ̄2) ·Rq(χ

∗
q(σ̄), σ̄),

where the first term above is Θ(1) and the second one is o(1) when ` < 1. The case

1 < q ≤ 2 can be proved exactly the same way as in Theorem 3.3.2 by using Lemma

3.4.14.
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Chapter 4

From low noise to large noise

analysis

4.1 Introduction

We have presented a thorough analysis of bridge estimators under the low noise regime

in Chapters 2 and 3. Our analysis can be considered as a generalization of phase

transition analysis and provides a more accurate characterization of LQLS estimators

when a small noise is added in the model. Nevertheless, in many applications the noise

present in the data is very large. Hence our preceding analysis can be irrelevant in

such cases. In this chapter, we adopt the same sensitivity analysis framework we used

in the previous two chapters, and characterize the performance of LQLS in low signal-

to-noise ratios. This time we let the noise level σw →∞ and derive the second-order

expansion of AMSE. Our results reveal a completely different picture of the behavior

of LQLS estimators from what we have showed in the low noise setting. In particular,

among all the q ∈ [1,∞), ridge is optimal and LASSO is always suboptimal.
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4.2 A second-order large noise sensitivity analysis

Recall that G is the random variable that characterizes the non-zero components of

the coefficient β, and we use Z to denote a standard normal. The main result is

presented in the theorem below1.

Theorem 4.2.1. As σ →∞, we have the following expansions of AMSE(λ∗,q, q, σw).

(i) For q = 1, when G has sub-Gaussian tail, we have

AMSE(λ∗,1, 1, σw) = εE|G|2 + o(e−
C2σ2

w
2 ), (4.1)

where C is any positive number smaller than C0, with C0 a constant only de-

pending on ε and G.2

(ii) For 1 < q ≤ 2, if all the moments of G are finite, then

AMSE(λ∗,q, q, σw) = εE|G|2 − ε2(E|G|2)2cq
σ2
w

+ o(σ−2
w ), (4.2)

with cq =

(
E|Z|

2−q
q−1

)2

(q−1)2E|Z|
2
q−1

.

(iii) For q > 2, if G has sub-Gaussian tail, then (4.2) holds.

The proof is presented in Chapter 4.3. Figure 4.1 compares the accuracy of the

first-order approximation and second-order approximation for moderate values of σw.

As is clear, for q ∈ (1,∞) the second-order approximation provides a more accurate

approximation for a wide range of σw. Moreover, the first-order approximation of

LASSO is already very accurate as can be justified by its exponentially small second

order term in (4.1).

According to this theorem, we can conclude that for sufficiently large σw, LQLS

with any q > 1 can outperform LASSO. This is because while the first dominant term

1The result is part of Wang et al. (2017).

2Refer to the proof of this theorem for the exact characterization of C0.
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Figure 4.1: Absolute relative error of first-order and second-order approximations of

AMSE, displayed by the orange curves and purple curves respectively, for different

values of σw. In these four figures, pB = (1− ε)δ0 + εδ1, δ = 0.4, ε = 0.2.

is the same for all the bridge estimators with q ∈ [1,∞), the second order term for

LASSO is exponentially smaller (in magnitude) than that of the other values of q.

More interestingly, the following corollary shows that in fact q = 2 leads to the best

AMSE in the large noise regime.

Corollary 4.2.2. The maximum of cq, defined in Theorem 4.2.1, is achieved at q = 2.

Proof. A simple integration by part yields:

E|Z|
2−q
q−1 = 2

∫ ∞
0

z
2−q
q−1φ(z)dz = 2(q − 1)

∫ ∞
0

φ(z)dz
1
q−1

= 2(q − 1)

∫ ∞
0

z
q
q−1φ(z)dz = (q − 1)E|Z|

q
q−1
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Figure 4.2: The constant cq in Theorem 4.2.1 part (ii). The maximum is achieved at

q = 2.

We can then apply Hölders’s inequality to obtain

cq =
(E|Z|

q
q−1 )2

E|Z|
2
q−1

≤ E|Z|
2
q−1EZ2

E|Z|
2
q−1

= 1 = c2.

Therefore while the AMSE of all bridge estimators share the same first dominant

term, ridge offers the largest second dominant term (in magnitude), and hence the

lowest AMSE. Figure 4.3 shows the AMSE comparison for different LQLS estimators.

It is important to note that the optimality of ridge and suboptimality of LASSO hold

for sparse coefficients. In other words, in low signal-to-noise ratios `2-regularization

gives better estimates for sparse parameters even than the sparsity promoting `1-

regularization. This is in contrast to the conclusion we obtained for low noise setting.

The results in low and large noises together can be considered as a manifest of bias-

variance trade-off principle in statistics.

A natural question is the comparison among q ∈ [0, 1]. Theorem 4.2.1 may imply

that q = 1 can outperform all the other q < 1, since `q-regularization with q < 1 is



CHAPTER 4. FROM LOW NOISE TO LARGE NOISE ANALYSIS 155

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

σ

0.24

0.25

0.26

0.27

0.28

0.29

0.30

M
S
E

δ= 0. 8, ε= 0. 3

q=1.0

q=2.0

q=3.0

q=1.2

q=4.0

Figure 4.3: The AMSE curves for LQLS estimators with q = 1, 1.2, 2, 3, 4. For this

figure, pB = (1− ε)δ0 + εδ1, δ = 0.8, ε = 0.3.

even more aggressive than `1 hence leading to larger variance. We formally confirm

it for a special family of distributions fβ in the next theorem.

Theorem 4.2.3. Suppose fβ = (1− ε)δ0 + εδµ, where µ is a non-zero constant. Then

for any given 0 ≤ q < 1, there exists a threshold σ̄w such that

AMSE(λ∗,1, 1, σw) < AMSE(λ∗,q, q, σw), for all σw > σ̄w.

The proof can be found in Zheng et al. (2017).

4.3 Proof of Theorem 4.2.1

4.3.1 Roadmap and preliminaries

Since the proof of this theorem is long, we lay out the roadmap of the proof here

to help readers navigate through the details. According to Corollary 2.2.4, we know
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that AMSE(λ∗,q, q, σw) can be computed as

AMSE(λ∗,q, q, σw) = δ(σ̄2 − σ2
w), (4.3)

where σ̄ satisfies the following equation:

σ̄2 = σ2
w +

1

δ
min
α≥0

E(ηq(B + σ̄Z;ασ̄2−q)−B)2. (4.4)

It is clear from (4.4) that σ̄ →∞ as σw →∞. However, to derive the second-order

expansion of AMSE(λ∗,q, q, σw) as σw → ∞, we need to obtain the convergence rate

of σ̄. We will achieve this goal by first characterizing the convergence rate of the term

minα≥0 E(ηq(B + σZ;ασ2−q)−B)2 as σ →∞. We then use that result to derive the

convergence rate of σ̄ based on (4.4) and finally calculate AMSE(λ∗,q, q, σw) through

(4.3). Since the proof techniques look different for q = 1, 1 < q ≤ 2, q > 2, we prove

the theorem for these three cases separately.

Let Φ and φ denote the cumulative distribution function and probability density

function of a standard normal random variable respectively. Standard result on the

expansion of Gaussian tails through integration by parts gives: for k ∈ N+, s > 0

Φ(−s) = φ(s)
[ k−1∑
i=0

(−1)i(2i− 1)!!

s2i+1
+ (−1)k(2k − 1)!!

∫ ∞
s

φ(t)

t2k
dt
]
, (4.5)

where (2i− 1)!! , 1× 3× 5× . . .× (2i− 1).

Lemma 4.3.1. Consider a nonnegative random variable X with probability distribu-

tion µ and P(X > 0) = 1. Let ξ > ζ > 0 be the points such that P(X ≤ ζ) ≤ 1
4

and P(ζ < X ≤ ξ) ≥ 1
4
. Let a, b, c : R+ → R+ be three deterministic positive func-

tions such that a(s), c(s) → ∞ as s → ∞. Then there exists a positive constant s0

depending on a, c,X, such that when s > s0,∫ a(s)

0

eb(s)x−
x2

c(s)dµ(x) ≤ 3

∫ a(s)

ζ

eb(s)x−
x2

c(s)dµ(x).
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Proof. For large enough s such that a(s) > ξ,∫ a(s)

ζ

eb(s)x−
x2

c(s)dµ(x) ≥
∫ ξ

ζ

eb(s)x−
x2

c(s)dµ(x) ≥ eb(s)ζ−
ξ2

c(s)P(ζ < X ≤ ξ)

≥ eb(s)ζ−
ξ2

c(s)P(X ≤ ζ) ≥ e−
ξ2

c(s)

∫ ζ

0

eb(s)x−
x2

c(s)dµ(x).

As a result we have the following inequality,∫ a(s)

0

eb(s)x−
x2

c(s)dµ(x) ≤ (1 + e
ξ2

c(s) )

∫ a(s)

ζ

eb(s)x−
x2

c(s)dµ(x).

For sufficiently large s such that e
ξ2

c(s) < 2, the conclusion follows.

4.3.2 Proof of Theorem 4.2.1 for q = 1

According to Definitions (2.46), (2.77) and Lemma 2.5.5 part (v), it is clear that

Equation (4.4) can be rewritten:

σ̄2 = σ2
w +

1

δ
σ̄2Rq(χ

∗
q(σ̄), σ̄). (4.6)

As explained in the roadmap of the proof, the key step is to characterize the conver-

gence rate of σ̄. Towards this goal, we first derive the convergence rate of χ∗q(σ) as

σ → ∞ in Chapter 4.3.2.1. We then bound the convergence rate of Rq(χ
∗
q(σ), σ) as

σ → ∞ in Chapter 4.3.2.2. We finally apply the preceding result to (4.6) to charac-

terize σ̄ when σw →∞, and derive the expansion of AMSE(λ∗,q, q, σw) as σw →∞ in

Chapter 4.3.2.3.

4.3.2.1 Deriving the convergence rate of χ∗q(σ) as σ →∞ for q = 1

We first prove χ∗q(σ)→∞ as σ →∞ in the next lemma.

Lemma 4.3.2. Assume E|G|2 <∞. Then, χ∗q(σ)→∞ as σ →∞.

Proof. Suppose this is not true, then there exists a sequence {σn} such that χ∗q(σn)→

χ0 <∞ and σn →∞, as n→∞. Notice that

|ηq(B/σn + Z;χ∗q(σn))| ≤ |B|/σn + Z ≤ |B|+ Z,
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for large n. We can apply Dominated Convergence Theorem (DCT) to obtain

lim
n→∞

Rq(χ
∗
q(σn), σn) = Eη2

q (Z;χ0) > 0.

On the other hand, since χ = χ∗q(σn) minimizes Rq(χ, σn)

lim
n→∞

Rq(χ
∗
q(σn), σn) ≤ lim

n→∞
lim
χ→∞

Rq(χ, σn) = 0.

A contradiction arises.

Based on Lemma 4.3.2, we can further derive the convergence rate of χ∗q(σ).

Lemma 4.3.3. If G has a sub-Gaussian tail, then

lim
σ→∞

χ∗q(σ)

σ
= C0,

where C = C0 is the unique solution of the following equation:

E
(
eCG(CG− 1) + e−CG(−CG− 1)

)
=

2(1− ε)
ε

.

Proof. Since χ = χ∗q(σ) minimizes Rq(χ, σ), we know

∂1Rq(χ
∗
q(σ), σ) = 0. (4.7)

To simplify the notation, we will simply write χ for χ∗q(σ) in the rest of this proof.

Rearranging the terms in (4.7) gives us

2(1− ε)
ε

= E
χ2

φ(χ)

[
χΦ
( |G|
σ
− χ

)
+ χΦ

(
− |G|

σ
− χ

)
− φ
( |G|
σ
− χ

)
− φ
( |G|
σ

+ χ
)]

︸ ︷︷ ︸
T (G,χ,σ)

.

Fixing t ∈ (0, 1), we reformulate the above equation in the following way:

2(1− ε)
ε

= E[T (G,χ, σ)I(|G| ≤ tσχ)] + E[T (G,χ, σ)I(|G| > tσχ)]. (4.8)

We now analyze the two terms on the right hand side of the above equation. Since G

has a sub-Gaussian tail, there exists a constant γ > 0 such that P(|G| > x) ≤ e−γx
2

for x large. We can then have the following bound,

|E[T (G,χ, σ)I(|G| > tσχ)]| ≤ χ2

φ(χ)

(
2χ+

√
2/π
)
P(|G| > tσχ)

≤ χ2
(
2
√

2πχ+ 2
)
e−(γt2σ2− 1

2
)χ2 → 0, as σ →∞,
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where we have used the fact that χ →∞ as σ →∞ from Lemma 4.3.2. This result

combined with (4.8) implies that as σ →∞

E[T (G,χ, σ)I(|G| ≤ tσχ)]→ 2(1− ε)
ε

. (4.9)

Moreover, using the tail approximation of normal distribution in (4.5) with k = 3, we

have for sufficiently large σ,

E[T (G,χ, σ)I(|G| ≤ tσχ)]

≤ E
[ χ

χ− |G|/σ
e
χ|G|
σ
− G2

2σ2

(
χ|G|
σ
− χ2

(χ− |G|/σ)2
+

3χ2

(χ− |G|/σ)4

)
︸ ︷︷ ︸

U1(G,χ,σ)

+

χ

χ+ |G|/σ
e−

χ|G|
σ
− G2

2σ2

(
− χ|G|

σ
− χ2

(χ+ |G|/σ)2
+

3χ2

(χ+ |G|/σ)4

)
︸ ︷︷ ︸

U2(G,χ,σ)

]
· I(|G| ≤ tσχ).

Similarly applying (4.5) with k = 2 gives us for large σ

E[T (G,χ, σ)I(|G| ≤ tσχ)] ≥ E
[ χ

χ− |G|/σ
e
χ|G|
σ
− G2

2σ2

(
χ|G|
σ
− χ2

(χ− |G|/σ)2

)
︸ ︷︷ ︸

L1(G,χ,σ)

+

χ

χ+ |G|/σ
e−

χ|G|
σ
− G2

2σ2

(
− χ|G|

σ
− χ2

(χ+ |G|/σ)2

)
︸ ︷︷ ︸

L2(G,χ,σ)

]
· I(|G| ≤ tσχ).

We can conclude based on the two bounds that limσ→∞
χ
σ

= C1 with 0 < C1 <∞.

Otherwise

• If C1 =∞, there exists a sequence χn/σn →∞ and σn →∞, as n→∞. Since

|L2(G,χn, σn)| ≤ e−
χn|G|
σn (χn|G|

σn
+ 1) ≤ 2, we can apply DCT to obtain

lim
n→∞

E(L2(G,χn, σn)I(|G| ≤ tσnχn)) = 0.

Furthermore, we choose a positive constant ζ > 0 satisfying the condition in
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Lemma 4.3.1 for the nonnegative random variable |G|. Then

E(L1(G,χn, σn)I(|G| ≤ tσnχn))

≥ E
[
e
χn|G|
σn
− G2

2σ2
n

(
χn|G|
σn

− 1

(1− t)3

)
I(|G| ≤ tσnχn)

]
≥
∫
ζ<g≤tσnχn

e
χng
σn
− g2

2σ2
n
χng

σn
dF (g)−

∫
g≤tσnχn

1

(1− t)3
e
χng
σn
− g2

2σ2
n dF (g)

(a)

≥
(ζχn
σn
− 2

(1− t)3

)∫
ζ<g≤tσnχn

e
χng
σn
− g2

2σ2
n dF (g)

≥
(ζχn
σn
− 2

(1− t)3

)
e
χnζ
σn

∫
ζ<g≤tσnχn

e
− g2

2σ2
n dF (g)→∞,

where we have used Lemma 4.3.1 in (a). This forms a contradiction.

• If C1 = 0, for large enough σ we have χ
σ
< 1 and then on |G| ≤ tσχ,

|U1(G,χ, σ) + U2(G,χ, σ)| ≤ 2

1− t
eG
[
G+

1

(1− t)2
+

3

χ2(1− t)4

]
,

which is integrable since G has sub-Gaussian tail. Hence we apply DCT to

obtain as σ →∞

E [(U1(G,χ, σ) + U2(G,χ, σ))I(|G| ≤ tσχ)]→ −2

This forms another contradiction.

Similar to the above arguments, we can conclude that limσ→∞
χ
σ

= C2 ∈ (0,∞). Now

that χ
σ

= O(1), we can use DCT to obtain

lim
σ→∞

E
[ χ

χ± |G|/σ
e
χ|G|
σ
− G2

2σ2
3χ2

(χ± |G|/σ)4
I(|G| ≤ tσχ)

]
= 0.

This result combined with (4.9) and the upper and lower bounds on E[T (G,χ, σ)I(|G| ≤

tσχ)] enables us to show

lim
σ→∞

E[(L1(G,χ, σ) + L2(G,χ, σ))I(|G| ≤ tσχ)] =
2(1− ε)

ε
.

Now consider a convergent sequence χn
σn
→ C1 ∈ (0,∞) and σn → ∞ as n → ∞.

On |G| ≤ tσnχn we can bound for large n

|L1(G,χn, σn) + L2(G,χn, σn)| ≤ 2

1− t
e2C1G

(
2C1G+

1

(1− t)2

)
,
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which is again integrable. Thus DCT gives us

2(1− ε)
ε

= lim
n→∞

E[(L1(G,χn, σn) + L2(G,χn, σn))I(|G| ≤ tσnχn)]

= E
[
eC1|G|(C1|G| − 1) + e−C1|G|(−C1|G| − 1)

]
.

For C2 the same equation holds. By calculating the derivative we can easily verify

h(c) = ec|G|(c|G| − 1) + e−c|G|(−c|G| − 1), as a function of c over (0,∞), is strictly

increasing. This determines C1 = C2. Above all we have shown

χ∗q(σ)

σ
→ C0, as σ →∞,

where E
[
eC0G(C0G− 1) + e−C0G(−C0G− 1)

]
= 2(1−ε)

ε
.

4.3.2.2 Bounding the convergence rate of Rq(χ
∗
q(σ), σ) as σ →∞ for q = 1

We state the main result in the next lemma.

Lemma 4.3.4. If G has sub-Gaussian tail, then as σ →∞

Rq(χ
∗
q(σ), σ) =

εE|G|2

σ2
+ o
(φ(χ∗q(σ))

(χ∗q(σ))3

)
.

Proof. For notational simplicity, we will use χ to denote χ∗q(σ) in the rest of the proof.

Since η1(u;χ) = sgn(u)(|u| − χ)+, we can write Rq(χ, σ) in the following form:

Rq(χ, σ) = 2(1− ε)
(
(1 + χ2)Φ(−χ)− χφ(χ)

)
+εE

[
(1 + χ2 −G2/σ2)

(
Φ(G/σ − χ) + Φ(−G/σ − χ)

)
︸ ︷︷ ︸

S1(G,χ,σ)

−(G/σ + χ)φ(χ−G/σ) + (G/σ − χ)φ(χ+G/σ)︸ ︷︷ ︸
S2(G,χ,σ)

+G2/σ2

]
.

Hence, we have

lim
σ→∞

χ3

φ(χ)

(
Rq(χ, σ)− εE|G|2

σ2

)
= 2(1− ε) lim

σ→∞

χ3

φ(χ)
[(1 + χ2)Φ(−χ)− χφ(χ)]

+ε lim
σ→∞

χ3

φ(χ)
E[S1(G,χ, σ) + S2(G,χ, σ)]

(a)
= 4(1− ε) + ε lim

σ→∞

χ3

φ(χ)
E[S1(G,χ, σ) + S2(G,χ, σ)]. (4.10)
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We have used the tail expansion (4.5) with k = 3, 4 to obtain (a). Note that since

|xφ(x)| ≤ e−1/2
√

2π
, we have

|S1(G,χ, σ) + S2(G,χ, σ)| ≤ 2e−1/2

√
2π

+
4χ√
2π

+ 2

(
1 + χ2 +

G2

σ2

)
.

Moreover, it is not hard to use the sub-Gaussian condition P(|G| > x) ≤ e−γx
2

to

obtain

E(G2I(|G| > tσχ)) =

∫ tσχ

0

2xP(G > tσχ)dx+

∫ ∞
tσχ

2xP(G > x)dx

≤ (tσχ)2e−γt
2σ2χ2

+
1

γ
e−γt

2σ2χ2

,

where t ∈ (0, 1) is a constant. Combining the last two bounds we can derive

χ3

φ(χ)
E[(S1(G,χ, σ) + S2(G,χ, σ))I(|G| > tσχ)]

≤ χ3
(
2e−1/2 + 4χ+ 2

√
2π(1 + χ2)

)
e−(γt2σ2− 1

2
)χ2

+

2
√

2πχ3

σ2
(t2σ2χ2 + 1/γ)e−(γt2σ2− 1

2
)χ2 → 0, as σ →∞.

On the other hand, we can build an upper bound and lower bound for |S1(G,χ, σ) +

S2(G,χ, σ)| on {|G| ≤ tσχ} with the tail expansion (4.5) as we did in the proof

of Lemma 4.3.3, For both bounds we can argue they converge to the same limit as

σ →∞ by using DCT and Lemma 4.3.3. Here we give the details of using DCT for

the upper bound. Using (4.5) with k = 3 we can obtain the upper bound,

χ3

φ(χ)
(S1(G,χ, σ) + S2(G,χ, σ))

≤ χ3φ(χ−G/σ)

φ(χ)

[
2G2/σ2 − 2χG/σ − 1

(χ−G/σ)3
+

3(1 + χ2 −G2/σ2)

(χ−G/σ)5

]
+

χ3φ(χ+G/σ)

φ(χ)

[
2G2/σ2 + 2χG/σ − 1

(χ+G/σ)3
+

3(1 + χ2 −G2/σ2)

(χ+G/σ)5

]
.

It is straightforward to see that on {|G| ≤ tσχ} for sufficiently large χ, there exist

three positive constants C1, C2, C3 such that the upper bound can be further bounded

by
[
C1|G|+1
(1−t)3 + C2

(1−t)5 + C1|G|+1
(1+t)3 + C2

(1+t)5

]
eC3|G|, which is integrable by the condition that
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G has sub-Gaussian tail. Hence we can apply DCT to derive the limit of the upper

bound. Similar arguments enable us to calculate the limit of the lower bound. By

calculating the limits of the upper and lower bounds we can obtain the following

result:

χ3

φ(χ)
E[(S1(G,χ, σ) + S2(G,χ, σ))I(|G| ≤ tσχ)]

→ −2E
(
eC0G(C0G− 1) + e−C0G(−C0G− 1)

)
= −4(1− ε)

ε
.

This completes the proof.

4.3.2.3 Deriving the expansion of AMSE(λ∗,q, q, σw) for q = 1

We are now in the position to derive the result (4.1) in Theorem 4.2.1. As we explained

in the roadmap, we know

AMSE(λ∗,q, q, σw) = σ̄2Rq(χ
∗
q(σ̄), σ̄) = δ(σ̄2 − σ2

w). (4.11)

First note that σ̄ → ∞ as σw → ∞ since σ̄ ≥ σw. Then according to Lemma 4.3.4

and (4.11), we have

lim
σw→∞

σ2
w

σ̄2
= lim

σ̄→∞

σ2
w

σ̄2
= lim

σ̄→∞

(
1−

Rq(χ
∗
q(σ̄), σ̄)

δ

)
= 1. (4.12)

Furthermore, Lemma 4.3.3 shows that

lim
σw→∞

χ∗q(σ̄)

σ̄
= lim

σ̄→∞

χ∗q(σ̄)

σ̄
= C0. (4.13)

Combining Lemma 4.3.4 with (4.11), (4.12), and (4.13) we obtain as σw →∞,

e
C2σ2

w
2 (AMSE(λ∗,q, q, σw)− εE|G|2) = e

C2σ2
w

2 σ̄2(Rq(χ
∗
q(σ̄), σ̄)− εE|G|2/σ̄2)

= e
C2σ2

w
2 σ̄2e−

(χ∗q (σ̄))2

2 (χ∗q(σ̄))−3o(1) = e
−σ

2
w
2

(
(χ∗q (σ̄))2

σ̄2 · σ̄
2

σ2
w
−C2)

σ̄2(χ∗q(σ̄))−3o(1) = o(1).

We have used the fact 0 < C < C0 to get the last equality.
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4.3.3 Proof of Theorem 4.2.1 for 1 < q ≤ 2

The basic idea of the proof for q ∈ (1, 2] is the same as that for q = 1. We characterize

the convergence rate of Rq(χ
∗
q(σ), σ) in Chapter 4.3.3.1. We then derive the expansion

of AMSE(λ∗,q, q, σw) in Chapter 4.3.3.2.

4.3.3.1 Characterizing the convergence rate of Rq(χ
∗
q(σ), σ) as σ → ∞ for

q ∈ (1, 2]

We first derive the convergence rate of χ∗q(σ) as σ →∞.

Lemma 4.3.5. For q ∈ (1, 2], assume G has finite moments of all order. We have

as σ →∞,

χ∗q(σ)

σ2(q−1)
→

(
q − 1

q
1
q−1

E|Z|
2
q−1

EB2E|Z|
2−q
q−1

)q−1

.

Proof. First note that Lemma 4.3.2 holds for q ∈ (1, 2] as well. Hence χ∗q(σ) → ∞

as σ → ∞. We aim to characterize its convergence rate. Since η2(u;χ) = u
1+2χ

, the

result can be easily verified for q = 2. We will focus on the case q ∈ (1, 2). For

notational simplicity, we will use χ to represent χ∗q(σ) in the rest of the proof. By the

first order condition of the optimality, we have ∂1Rq(χ, σ) = 0, which can be further

written out:

0 = E[(ηq(B/σ + Z;χ)−B/σ)∂2ηq(B/σ + Z;χ)]

= E

[
−q|ηq(B/σ + Z;χ)|q

1 + χq(q − 1)|ηq(B/σ + Z;χ)|q−2

]
︸ ︷︷ ︸

H1

+

1

σ
E

[
Bq|ηq(B/σ + Z;χ)|q−1sgn(B/σ + Z)

1 + χq(q − 1)|ηq(B/σ + Z;χ)|q−2

]
︸ ︷︷ ︸

H2

, (4.14)

where we have used Lemma 2.5.8 part (ii). We now analyze the two terms H1 and
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H2 respectively. Regarding H1 from Lemma 2.5.5 part (i) we have

χ
q+1
q−1 q

∣∣ηq(B/σ + Z;χ
)∣∣q

1 + χq(q − 1)
∣∣ηq(B/σ + Z;χ

)∣∣q−2 ≤
∣∣χ 1

q−1ηq
(
B/σ + Z;χ

)∣∣2
q − 1

=

∣∣∣|B/σ + Z| −
∣∣ηq(B/σ + Z;χ)

∣∣∣∣∣ 2
q−1

q
2
q−1 (q − 1)

≤ (|B|+ |Z|)
2
q−1

q
2
q−1 (q − 1)

, for σ ≥ 1.

Since G has finite moments of all orders, the upper bound above is integrable. Hence

DCT enables us to conclude

lim
σ→∞

χ
q+1
q−1H1 =

E|Z|
2
q−1

q
2
q−1 (1− q)

. (4.15)

For the term H2, according to Lemma 2.5.5 part (i) and Lemma 2.5.8 part (i) we can

obtain

H2 =
1

σχ
E

[
B
(
B/σ + Z − ηq(B/σ + Z;χ)

)
1 + χq(q − 1)

∣∣ηq(B/σ + Z;χ
)∣∣q−2

]

=
1

σ2χ
E

[
B2

1 + χq(q − 1)
∣∣ηq(B/σ + Z;χ)

∣∣q−2

]
︸ ︷︷ ︸

I1

+E
[
BZ∂1ηq(B/σ + Z;χ)

σχ

]
︸ ︷︷ ︸

I2

− 1

σχ
E

[
Bηq(B/σ + Z;χ)

1 + χq(q − 1)
∣∣ηq(B/σ + Z;χ)

∣∣q−2

]
︸ ︷︷ ︸

I3

.

By a similar argument and using DCT, it is not hard to see that,

lim
σ→∞

σ2χ
q
q−1 I1 =

EB2E|Z|
2−q
q−1

q
1
q−1 (q − 1)

, (4.16)

lim
σ→∞

σχ
q+1
q−1 I3 =

EBE
(
|Z|

3−q
q−1 sgn(Z)

)
q

2
q−1 (q − 1)

= 0.

Regarding the term I2, by using Stein’s lemma and Taylor expansion, we can obtain
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a sequel of equalities:

I2 =
E
[
B(Z2 − 1)ηq

(
B/σ + Z;χ

)]
χσ

=
E
[
B(Z2 − 1)

(
ηq(Z;χ) + ∂1ηq(γB/σ + Z;χ)B/σ

)]
χσ

=
E
[
B2(Z2 − 1)∂1ηq

(
γB/σ + Z;χ

)]
χσ2

=
1

χσ2
E
[

B2(Z2 − 1)

1 + χq(q − 1)
∣∣ηq(γB/σ + Z;χ

)∣∣q−2

]
,

where the second step is simply due to Lemma 2.5.5 part (iv); γ ∈ (0, 1) is a ran-

dom variable depending on B and Z. Again with a similar argument to verify the

conditions of DCT we obtain

lim
σ→∞

χ
q
q−1σ2I2 =

(2− q)EB2E|Z|
2−q
q−1

q
1
q−1 (q − 1)2

. (4.17)

Finally, based on (4.14) and collecting the results from (4.15), (4.16) and (4.17)

enables us to have as σ →∞,

χ

σ2(q−1)
=

[
χ
q+1
q−1 (I3 −H1)

σ2χ
q
q−1 (I1 + I2)

]q−1

→

(
q − 1

q
1
q−1

E|Z|
2
q−1

EB2E|Z|
2−q
q−1

)q−1

.

We now characterize the convergence rate of Rq(χ
∗
q(σ), σ) in the lemma below.

Lemma 4.3.6. Suppose 1 < q ≤ 2 and G has finite moments of all orders, then as

σ →∞,

Rq(χ
∗
q(σ), σ) =

εE|G|2

σ2
−
ε2
(
E|G|2E|Z|

2−q
q−1
)2

(q − 1)2E|Z|
2
q−1

1

σ4
+ o(1/σ4).

Proof. It is straightforward to prove the result for q = 2. From now on we only

consider 1 < q < 2. We write χ for χ∗q(σ) in the rest of the proof to simplify the

notation. First we have

Rq(χ, σ)− εE|G|2

σ2
= Eη2

q (B/σ + Z;χ)− 2E[ηq(B/σ + Z;χ)B/σ]

= Eη2
q (B/σ + Z;χ)− 2E[(ηq(Z;χ) + ∂1ηq(γB/σ + Z;χ)B/σ)B/σ]

= Eη2
q (B/σ + Z;χ)− 2E[∂1ηq(γB/σ + Z;χ)B2/σ2], (4.18)
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where we have used Taylor expansion in the second step and γ ∈ (0, 1) is a random

variable depending on B,Z. According to Lemma 2.5.5 part (i),

χ
2
q−1η2

q (B/σ + Z;χ) = q
2

1−q (|B/σ + Z| − |ηq(B/σ + Z;χ)|)
2
q−1

≤ q
2

1−q (|B|+ |Z|)
2
q−1 , for σ ≥ 1.

The upper bound is integrable since G has finite moments of all orders. Hence we

can apply DCT to obtain

lim
σ→∞

χ
2
q−1Eη2

q (B/σ + Z;χ) = q
2

1−qE|Z|
2
q−1 . (4.19)

We can follow a similar argument to use DCT to have

lim
σ→∞

χ
2
q−1E[∂1ηq(γB/σ + Z;χ)B2/σ2]

(a)
= lim

σ→∞

χ
1
q−1

σ2
· lim
σ→∞

E

[
B2

χ−
1
q−1 + q(q − 1)|χ

1
q−1ηq(γB/σ + Z;χ)|q−2

]
(b)
=
q − 1

q
1
q−1

E|Z|
2
q−1

EB2E|Z|
2−q
q−1

· EB
2E|Z|

2−q
q−1

q
1
q−1 (q − 1)

= q
2

1−qE|Z|
2
q−1 , (4.20)

where (a) holds due to Lemma 2.5.8 part (i); we have used Lemma 4.3.5 and DCT to

obtain (b). Finally, we put the results (4.18), (4.19), (4.20) and Lemma 4.3.5 together

to derive

lim
σ→∞

σ4(Rq(χ, σ)− εE|G|2/σ2)

= lim
σ→∞

σ4

χ
2
q−1

·
[

lim
σ→∞

χ
2
q−1Eη2

q (B/σ + Z;χ)−

2 lim
σ→∞

χ
2
q−1E(∂1ηq(γB/σ + Z;χ)B2/σ2)

]
=

(
q − 1

q
1
q−1

E|Z|
2
q−1

EB2E|Z|
2−q
q−1

)−2

· (q
2

1−qE|Z|
2
q−1 − 2q

2
1−qE|Z|

2
q−1 )

= −
ε2
(
E|G|2E|Z|

2−q
q−1
)2

(q − 1)2E|Z|
2
q−1

.

This finishes the proof.
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4.3.3.2 Deriving the expansion of AMSE(λ∗,q, q, σw) for q ∈ (1, 2]

The way we derive the result (4.2) of Theorem 4.2.1 is similar to that in Chapter

4.3.2.3. We hence do not repeat all the details. The key step is applying Lemma

4.3.6 to obtain

lim
σw→∞

σ2
w(AMSE(λ∗,q, q, σw)− εE|G|2) = lim

σ̄→∞
σ2
w(AMSE(λ∗,q, q, σw)− εE|G|2)

= lim
σ̄→∞

σ2
w

σ̄2
· lim
σ̄→∞

σ̄4(Rq(χ
∗
q(σ̄), σ̄)− εE|G|2/σ̄2)

= −ε2(E|G|2)2cq.

4.3.4 Proof of Theorem 4.2.1 for q > 2

We aim to prove the same results as presented in Lemmas 4.3.5 and 4.3.6. However,

many of the limits we took when proving for the case 1 < q ≤ 2 become invalid for

q > 2 because DCT may not be applicable. Therefore, here we assume a slightly

stronger condition that G has a sub-Gaussian tail and use a different reasoning to

validate the results in Lemmas 4.3.5 and 4.3.6. Throughout this section, we use χ

to denote χ∗q(σ) for simplicity. First note that Lemma 4.3.2 holds for q > 2 as well.

Hence we already know χ∗q(σ) → ∞ as σ → ∞. The following key lemma paves our

way for the proof.

Lemma 4.3.7. Suppose function h : R2 → R satisfies |h(x, y)| ≤ C(|x|m1 + |y|m2)

for some C > 0 and 0 ≤ m1,m2 < ∞. B has sub-Gaussian tail. Then the following

result holds for any constants v ≥ 0, γ ∈ [0, 1] and q > 2,

lim
σ→∞

χ
v+1
q−1E

[
h(B,Z)|ηq(B/σ + Z;χ)|v

1 + χq(q − 1)|ηq(γB/σ + Z;χ)|q−2

]
(4.21)

=
q
−v−1
q−1

q − 1
E[h(B,Z)|Z|

v+2−q
q−1 ], as σ →∞.

Moreover, there is a finite constant K such that for sufficiently large σ,

max
0≤γ≤1

χ
v+1
q−1E

[
|h(B,Z)||ηq(B/σ + Z;χ)|v

1 + χq(q − 1)|ηq(γB/σ + Z;χ)|q−2

]
≤ K. (4.22)
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Proof. Define

A = {|ηq(γB/σ + Z;χ)| ≤ 1

2
|γB/σ + Z|}.

We evaluate the expectation on the set A and its complement Ac respectively. Recall

we use pB to denote the distribution of B. By a change of variable we then have

E
[

h(B,Z)|ηq(B/σ + Z;χ)|v

1 + χq(q − 1)|ηq(γB/σ + Z;χ)|q−2

]
=

∫
h(x, y − γx/σ)|ηq(y + (1− γ)x/σ;χ)|v

1 + χq(q − 1)|ηq(y;χ)|q−2
φ(y − γx/σ)dydpB(x).

We have on I{|ηq(y;χ)|≤ 1
2
|y|} when σ is large enough,

χ
v+1
q−1 |h(x, y − γx/σ)| · |ηq(y + (1− γ)x/σ;χ)|v

1 + χq(q − 1)|ηq(y;χ)|q−2
φ(y − γx/σ)

(a)

≤ |h(x, y − γx/σ)| · |χ
1
q−1ηq(y + (1− γ)x/σ;χ)|v

q(q − 1)|χ
1
q−1ηq(y;χ)|q−2

φ(y − γx/σ)

(b)
=

q
q−2−v
q−1 |h(x, y − γx/σ)| · |y + (1− γ)x/σ|

v
q−1

q(q − 1)(|y| − |ηq(y;χ)|)
q−2
q−1

φ(y/
√

2)e−
1
4

(y− 2γx
σ

)2+ γ2x2

2σ2

(c)

≤ 2
q−2
q−1 q

q−2−v
q−1 |h(x, y − γx/σ)| · |y + (1− γ)x/σ|

v
q−1

q(q − 1) |y|
w
q−1

φ(y/
√

2)e
γ2x2

2σ2

(d)

≤ 2
q−2
q−1 q

q−2−v
q−1 (|x|m1 + (|y|+ |x|)m2) · (|y|+ |x|)

v
q−1

q(q − 1) |y|
q−2
q−1

φ(y/
√

2)ec0x
2

.

We have used Lemma 2.5.5 part (i) to obtain (a)(b); (c) is due to the condition

|ηq(y;χ)| ≤ 1
2
|y|; and (d) holds because of the condition on the function h(x, y).

Notice that the numerator of the upper bound is essentially a polynomial in |x| and

|y|. Since B has sub-Gaussian tail, if we choose c0 small enough (when σ is sufficiently

large), the integrability with respect to x can be guaranteed. The integrability w.r.t.

y is clear since (2− q)/(q − 1) > −1. Thus we can apply DCT to obtain

lim
σ→∞

χ
v+1
q−1E

[
h(B,Z)|ηq(B/σ + Z;χ)|v

1 + χq(q − 1)|ηq(γB/σ + Z;χ)|q−2
IA
]

=

∫
lim
σ→∞

h(x, y − γx/σ)|χ
1
q−1ηq(y + (1− γ)x/σ;χ)|v

χ
1

1−q + q(q − 1)|χ
1
q−1ηq(y;χ)|q−2

φ(y − γx/σ)I{|ηq(y;χ)|≤ 1
2
|y|}dydpB(x)

=

∫
q
−1−v
q−1 h(x, y)

(q − 1)|y|
q−2−v
q−1

φ(y)dydpB(x) =
q
−1−v
q−1

q − 1
E[h(B,Z)|Z|

v+2−q
q−1 ].
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We now evaluate the expectation on the event Ac. Note that Ac implies

|γB/σ + Z| = χq|ηq(γB/σ + Z;χ)
∣∣∣q−1

+ |ηq(γB/σ + Z;χ)|

>
χq

2q−1
|γB/σ + Z|q−1 +

1

2
|γB/σ + Z|

⇒ |γB/σ + Z| < 2(χq)
1

2−q .

Hence we have the following bounds,

χ
v+1
q−1E

[
|h(B,Z)| · |ηq(B/σ + Z;χ)|v

1 + χq(q − 1)|ηq(γB/σ + Z;χ)|q−2
IAc
]

≤ χ
v+1
q−1E(|h(B,Z)| · |ηq(B/σ + Z;χ)|vIAc)

≤ χ
1
q−1

∫
|y|<2(χq)

1
2−q
|h
(
x, y − γx

σ

)
| · |χ

1
q−1ηq

(
y +

1− γ
σ

x;χ
)
|vφ(y)e

γyx
σ dydpB(x)

(e)

≤ q
v

1−qχ
1
q−1

∫
|y|<2(χq)

1
2−q

(|x|m1 + (|y|+ |x|)m2) (|y|+ |x|)
v
q−1φ(y)e

2(χq)
1

2−q
σ

xdydpB(x)

≤ q
v

1−qχ
1
q−1

∫
|y|<2(χq)

1
2−q

P (|x|, |y|)φ(y)e
2(χq)

1
2−q
σ

xdydpB(x)

(f)

≤ c1χ
1
q−1χ

1
2−q

∫
P̃ (|x|)exdpB(x) ≤ c2χ

−1
(q−1)(q−2) →∞ as σ →∞,

where (e) is due to Lemma 2.5.5 part (i) and condition on h(x, y); P (·, ·), P̃ (·) are

two polynomials; the extra term χ
1

2−q in step (f) is derived from the condition |y| <

2(χq)
1

2−q . We thus have finished the proof of (4.21). Finally, note that the two upper

bounds we derived do not depend on γ, hence (4.22) follows directly.

We are now in position to prove Theorem 4.2.1 for q > 2. We will be proving the

results of Lemmas 4.3.5 and 4.3.6 for q > 2. After that the exactly same arguments

presented in Chapter 4.3.3.2 will close the proof. Since the basic idea of proving

Lemmas 4.3.5 and 4.3.6 for q > 2 is the same as for the case q ∈ (1, 2], we do not

detail out the entire proof and instead highlight the differences. The major difference

is that we apply Lemma 4.3.7 to make some of the limiting arguments valid in the

case q > 2. Adopting the same notations in Chapter 4.3.3.1, we list the settings in

the use of Lemma 4.3.7 below
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• Lemma 4.3.5 I1: set h(x, y) = x2, v = 0, γ = 1.

• Lemma 4.3.5 I3: set h(x, y) = xsgn(x
σ

+ y), v = 1, γ = 1. Note that the

dependence of h(x, y) on σ does not affect the result.

• Lemma 4.3.5 I2: Notice we have

χ
q
q−1σ2I2 =χ

1
q−1σE

[
B(Z2 − 1)

(
ηq(Z;χ) +

B

σ

∫ 1

0

∂1ηq(sB/σ + Z;χ)ds
)]

=χ
1
q−1

∫ 1

0

E
[
B2(Z2 − 1)∂1ηq(sB/σ + Z;χ)

]
ds

=

∫ 1

0

χ
1
q−1E

[
B2(Z2 − 1)

1 + χq(q − 1)
∣∣ηq(sB/σ + Z;χ)

∣∣q−2

]
ds.

We have switched the integral and expectation in the second step above due

to the integrability. Set h(x, y) = x2(y2 − 1), v = 0, γ = s; then by the bound

(4.22) in Lemma 4.3.7, we can bring the limit σ →∞ inside the above integral

to obtain the result of limσ→∞ χ
q
q−1σ2I2.

• In Lemma 4.3.6, we need rebound the term E[ηq(B/σ + Z;χ)B/σ] in (4.18).

χ
1
q−1σ2E[ηq(B/σ + Z;χ)B/σ]

=χ
1
q−1σ2E

[
B

σ

(
ηq(Z;χ) +

B

σ

∫ 1

0

∂1ηq(sB/σ + Z;χ)ds
)]

=

∫ 1

0

χ
1
q−1E

[
B2

1 + χq(q − 1)
∣∣ηq(sB/σ + Z;χ)

∣∣
]
ds

We set h(x, y) = x2, v = 0, γ = s. The rest arguments are similar to the previous

one.
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Chapter 5

Discussions

5.1 Linear asymptotics for non-convex problems

We remind the reader that our derivation of AMSE for LQLS with q ∈ [0, 1) is

based on the replica method from statistical physics. In particular, we have made

the “replica symmetry” (RS) assumption for the method to work out the existing

AMSE formula. A crucial follow-up procedure is to perform the “replica-symmetry-

breaking” (RSB) scheme to check the validity of the RS assumption, and potentially

improve over the RS result. Since the RSB calculations are far more complicated

than RS calculations, we leave the work for future research.

Under our linear asymptotic (n/p → δ) framework, we should realize that the

AMSE characterization of LQLS for 0 ≤ q < 1 (we have to resort to the non-

rigorous replica method) is much harder than that for q ≥ 1 (we have rigorous and

general results). There seemingly exists a theoretical barrier between convex and

non-convex bridge regression problems. It seems such a barrier exists under more

general non-convex regression problems. As far as we know there has not been a

rigorous derivation of AMSE for any non-convex regression problems under the linear

asymptotics. Establishing a fully rigorous treatment is an important and challenging

research direction.



CHAPTER 5. DISCUSSIONS 173

5.2 Variable selection via bridge regression

The thesis is focused on characterizing the behavior of bridge regression for the goal

of parameter estimation. Hence we have used AMSE to measure the performance.

However, if the primary interest lies on variable selection, how would bridge regres-

sion perform? Will the preceding analyses be irrelevant in this case? To answer

these questions, we first define a measure of variable selection performance. For a

given estimator β̂, we consider the false discovery proportion (FDP) and true positive

proportion (TPP), defined as

FDP =

∑p
i=1 1(β̂i 6= 0, βi = 0)∑p

i=1 1(β̂i 6= 0)
, TPP =

∑p
i=1 1(β̂i 6= 0, βi 6= 0)∑p

i=1 1(βi 6= 0)
.

We have been able to derive the asymptotically exact limits of FDP and TPP for

LASSO and sparse estimators obtained by thresholding β̂(λ, q) with q ≥ 1. The

variable selection performance of LASSO or thresholded LQLS can then be evaluated

by plotting TPP (the limit) against FDP (the limit) at various tuning or threshold

levels. Denote this ROC-type curve by TF curve, and recall the optimal tuning λ∗,q

for AMSE

λ∗,q = arg min
λ

lim
n→∞

1

p
‖β̂(λ, q)− β‖2

2.

We have proved that, the thresholded β̂(λ∗,1, 1) achieves a uniformly improved TF

curve than the plain LASSO. We further generalize the result to LQLS for any q ≥ 1

and conclude that thresholded version of β̂(λ∗,q, q) with smaller AMSE attains a uni-

formly better TF curve, i.e., having an improved variable selection performance. The

implication of our results is two-fold. Firstly, variable selection does not have to be

carried out by sparsity inducing regularization in a single step. Rather, threshold-

ing a regularized estimator may lead to superior performance, even if the regularized

estimator is not sparse. For example, in the low signal-noise ratio case, thresholded

ridge regression can obtain a better TF curve than LASSO. Secondly, the goal of

variable selection is tightly aligned with parameter estimation, at least for the family
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of LQLS. Hence, our analysis of LQLS for parameter estimation carries over to the

variable selection paradigm. Refer to Wang et al. (2017) for all the details.

5.3 Prediction in bridge regression

By far we have demonstrated that for a given q ∈ [1,∞), we would like to use β̂(λ∗,q, q)

for parameter estimation, and the thresholded version for variable selection. If we

move the focus to prediction, does λ = λ∗,q remain the optimal tuning for β̂(λ, q)?

Denote the optimal tuning of β̂(λ, q) for prediction by

λ∗∗,q = arg min
λ

lim
n→∞

1

n
‖Xβ̂(λ, q)−Xβ‖2

2.

We have proved that λ∗,q > λ∗∗,q for LASSO, λ∗,q = λ∗∗,q for ridge regression, and

there is no definite conclusion for any other q 6= 1, 2. Our findings not only single out

the featured properties of LASSO and ridge regression in the LQLS family, but have

a valuable implication for tuning parameter selection under the Stein’s Unbiased Risk

Estimate (SURE) (Stein, 1981) framework. Since SURE is an unbiased estimator for

the expected in-sample prediction error E‖Xβ̂(λ, q) − Xβ‖2
2/n, in the large sample

regime our result indicates that SURE can not identify the optimal tuning of LASSO

for parameter estimation, but it does for ridge regression. We further show that for

LASSO, as ε, the sparsity level of the true coefficient β, goes to zero, λ∗,q−λ∗∗,q → 0.

The result suggests that in the extremely sparse scenarios, SURE can be safely used

to select the optimal λ of LASSO for parameter estimation. We leave a full treatment

regarding the prediction performance of bridge regression as a near future work.
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