
A Unified View of Localized Kernel Learning∗

John Moeller† Sarathkrishna Swaminathan† Suresh Venkatasubramanian†

Abstract

Multiple Kernel Learning, or MKL, extends (kernelized)

SVM by attempting to learn not only a classifier/regressor

but also the best kernel for the training task, usually from

a combination of existing kernel functions. Most MKL

methods seek the combined kernel that performs best over

every training example, sacrificing performance in some

areas to seek a global optimum. Localized kernel learning

(LKL) overcomes this limitation by allowing the training

algorithm to match a component kernel to the examples that

can exploit it best. Several approaches to the localized kernel

learning problem have been explored in the last several years.

We unify many of these approaches under one simple system

and design a new algorithm with improved performance. We

also develop enhanced versions of existing algorithms, with

an eye on scalability and performance.

1 Introduction

Kernel-based learning algorithms require the user to specify

a kernel that defines the shape of the underlying data space.

Kernel learning is the problem of learning a kernel from the

data, rather than providing one by fiat. Most approaches to

kernel learning assume some structure to the kernel being

learned: either as an explicit linear Mahalanobis representa-

tion, or as some finite combination of set of fixed kernels.

This latter class of approaches is often called multiple kernel

learning.

While multiple kernel learning has been studied exten-

sively and has had success in identifying the right kernel for

a given task, it is expressively limited because each kernel

has influence over the entire data space. Consider an exam-

ple of a binary classification task, depicted in Figure 1. On

the left side we show the results of classifying the data with a

global MKL method (here, the UNIFORM method of Cortes

et al. [5]) and on the right side we show the results of classifi-

cation with our new proposed method LD-MKL. Because the

global method requires that each kernel be used to classify

each point in the same way, the decision boundary is not as

flexible and many more support points are required.

Motivated by this, a few directions have been proposed

∗This research was funded in part by the NSF under grants IIS-1251049

and CNS-1302688.
†School of Computing, University of Utah. Email: {moeller, sarath,

suresh}@cs.utah.edu

to build localized kernel learning solutions. Gönen and Al-

paydin [7] introduced the idea of a learned gating func-

tion that modulated the influence of a kernel on a point

(LMKL). Lei et al. [14] observed that LMKL uses a non-convex

optimization and suggested using a probabilistic clustering

to generate part of the gating function beforehand, in or-

der to obtain a convex optimization and thus prevent over-

fitting and yield generalization bounds (C-LMKL). Kannao

and Guha [10] suggested a different approach to find a gat-

ing function by looking at individual features of the input,

and uses successes of the individual kernels to learn the gat-

ing function through support vector regression (SwMKL).

All of the above approaches invoke a fixed-kernel SVM

subroutine as part of the algorithm. This is inefficient, and

prevents these methods from scaling. C-LMKL does argue for

a convex formulation of the problem, but does not directly

address the problem of scaling.

1.1 Our Contributions. We present a unified interpreta-

tion of localized kernel learning that generalizes all of the

approaches described above, as well as the general multiple

kernel learning formulation. This interpretation yields a new

algorithm for LKL that is superior to all existing methods.

In addition, we make use of prior work on scalable multiple

kernel learning [17] as a subroutine to make existing meth-

ods for LKL scale well, improving their performance signif-

icantly in some cases.

Our interpretation relies on a geometric interpretation of

gating functions in terms of local reproducing kernel Hilbert

spaces acting on the data. This interpretation also helps ex-

plain the observation above (only empirically observed thus

far) that local kernel learning methods appear to produce

good classifiers with fewer support points than global meth-

ods.

2 Background

We use the notation [a . . .b] to indicate a sequence of integers

i such that a≤ i≤ b. We use bold Roman letters to indicate

vectors (x) and matrices (A). Matrices are capitalized.

Because we discuss several approaches to localized MKL,

and each uses a different set of notations, we choose our own

convention:

• i indexes kernel functions/spaces and the number of

individual kernel spaces is m.

Copyright © by SIAM

Unauthorized reproduction of this article is prohibited.

252

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

(a) Classifier produced by global MKL with 118 support points. (b) Classifier produced by LD-MKL with 20 support points.

Figure 1: Illustration of the difference between local and global multiple kernel learning. In each example, the classifier

is built from two kernels, one quadratic and one Gaussian. Points from the two classes are colored blue and red (with

transparency as a hint towards density). The decision boundary is marked in green and the margin boundaries are in the

appropriate colors for the global case. For the local case, the margins of each kernel are plotted with dotted lines, red for

Gaussian and blue for quadratic. Support points are indicated by black circles around points. Note that the classifier uses

a soft-margin loss and so support points may not be exactly on the margin boundary. The global version has 118 support

points, while the local version has only 20.

• j and k index examples and the number of training

points is n.

• t is used to indicate iterations in an algorithm.

• The Greek letter κ is used to indicate a kernel function.

κi(x j,xk) is the ith kernel function applied to training

examples x j and xk.

The softmax operator is a map R
d → (0,1)d that nor-

malizes the input vector to the range (0,1):

softmax(x) =

(

expxi

∑
d
k=1 expxk

)d

i=1

2.1 Prior work on localized kernel learning Since our

work unifies a number of different approaches to performing

localized multiple kernel learning, we start with a self-

contained review of these methods.

The core idea (somewhat simplified) of kernel learning

for classification is to fix a space K of kernel functions

κ(·, ·) and learn a kernel κ ∈ K that best classifies the

training data. The term multiple kernel learning comes from

the fact that the space K is often expressed as the set of

all positive combinations of a fixed set of kernels, and thus

the search for a specific kernel turns into a search for a

set of parameters ηi, one per kernel, so that the resulting

discriminant function can be written as

f (x) =
m

∑
i=1

ηi〈wi,φi(x)〉+b

The rationale for localized kernel learning (as illustrated

in Section 1) is to allow the weight assigned to different ker-

nels to vary in different parts of the data space to incorporate

any local structure in the data.

Localized Multiple Kernel Learning (LMKL). Gönen

and Alpaydin [6] were the first to propose an algorithm

to solve this problem. They called their method localized

multiple kernel learning (LMKL). The idea was generalize the

ηi to be functions of the data x as well as a set of gating

parameters V ∈ R
d×m.

They defined a gating function as:

η(x|V) = softmax(x⊤V+v0),

where v0 is an m-dimensional vector of offsets1.

Given such a gating function, they then defined a gener-

alized discriminant function:

f (x) =
m

∑
i=1

ηi(x|V)〈wi,φi(x)〉+b,

1 In later works they proposed other gating functions that employed

sigmoids and Gaussian functions [7].

Copyright © by SIAM

Unauthorized reproduction of this article is prohibited.

253

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Expressing the classifier function leads to a non-convex

optimization involving the parameters V . They then pro-

posed solving this problem using a two-step alternating op-

timization algorithm, summarized in Algorithm 1.

Algorithm 1 LMKL

1: repeat

2: Calculate Kη , the Gram matrix of the combined

kernel, with the gating functions ηi:

3: (Kη) jk← κη(x j,xk) = ∑
m
i=1 ηi(x j)κi(x j,xk)ηi(xk)

4: Solve canonical SVM with Kη

5: Update gating parameters V using gradient descent

6: until convergence

The complexity of the overall algorithm is dominated

by the time to perform the canonical SVM. Other variants of

this basic framework include Yang et al. [27], which allows

gating functions to operate on groups of points, and Han and

Liu [8] which incorporates a gating function based on pair-

wise similarities inferred from a kernel density estimate for

each kernel.

Convex LMKL (C-LMKL). More recently, Lei et al.

[14] noted the non-convex nature of the above objective

function. In order to avoid the tendency of such functions

to overfit to the training data, they proposed an alternate

convex formulation of the localized multiple kernel learning

problem. The central idea of their approach is to first

construct a soft clustering of the data, represented by a

soft assignment function cℓ(x j) that associates point x j with

cluster ℓ. Next, they define parameters βℓi that associate each

of m kernels with each cluster ℓ: in effect, the soft clustering

fixes the locality they wish to exploit, and the βℓi then allow

them to use different kernel combinations.

The resulting optimization is convex, assuming that

the loss function is convex. This allows them to obtain

generalization bounds as well as good prediction accuracy

in practice. The optimization itself proceeds as a two-stage

optimization: the first stage invokes a standard SVM solver

to find the best weight vectors given the βℓi and the second

stage optimizes βℓi for given weights. This latter stage can

in fact be solved in closed form. Thus, as with LMKL, the

term dominating the computation time is the use of an SVM

solver.

Success-Based Locally-Weighted Kernel Combina-

tion (SwMKL) Kannao and Guha [10] introduced SwMKL as

a way to localize kernel learning in a different manner. Their

method is to analyze each kernel for its success on the input

data, then construct a gating function based on smoothing

the success with a regression, summarized in Algorithm 2.

Its complexity is controlled by the initial SVM compu-

tations, the different support vector regression operations,

as well as the final SVM calculation on the combined ker-

nel function. The experimental approach in [10] is to sepa-

Algorithm 2 SwMKL

1: for all i ∈ [1..m] do

2: Train classifier fi : Rd →{−1,1} with kernel κi

3: Train regressor gi :Rd→ (0,1) with (X,δ (y, fi(X)))

4: Train classifier using

κ(x j,xk) =
∑

m
i=1 gi(x j)κi(x j,xk)gi(xk)

∑
m
i=1 gi(x j)gi(xk)

rate each kernel by feature – essentially creating individual

kernels for each combination of kernel and feature and then

combining them. When testing with this algorithm, we had

much better success when using a kernel on all features.

Sample-Adaptive Multiple Kernel Learning (SAMKL).

An alternate approach employed by Liu et al. [15] is to sep-

arate out the assignment of kernels to points and the weights

associated with the kernels. In their formulation, which they

describe as sample-adaptive multiple kernel learning, they

introduce latent binary variables to decide whether a partic-

ular kernel should operate on a particular point or not. Each

point is therefore mapped to a single point in the product of

the feature spaces defined by the given kernels. Now they

run a two-stage alternating optimization: in the first stage,

given fixed values of the latent variables, they solve a mul-

tiple kernel learning problem for the different subspaces si-

multaneously, and then they run an integer program solver

to obtain new values of the latent variables. Note that each

step of the iteration here involves costly operations (an MKL

solver and an integer program solver) in comparison with the

SVM solvers in the other approaches.

3 A unified view of localized kernel learning

One of the contributions of this work is a unified perspective

that integrates these different approaches and also helps ex-

plain the somewhat paradoxical fact that localized multiple

kernel often yields classifiers with fewer support points than

standard multiple kernel learning methods.

3.1 Localization via Hilbert subspaces Consider the fol-

lowing generalized and gated kernel κγ defined as:

κγ(x,x
′) =

m

∑
i=1

γi(x,x
′)κi(x,x

′),

where γi : Rd×R
d → [0,1] is a “gating function.”

We call γi separable if it decomposes into a product of

a function with itself, i.e. if γi(x,x
′) = ηi(x)ηi(x

′), where

ηi : Rd→ [0,1]. For the rest of this section, we only consider

separable gating functions. We also make two additional

assumptions for all x ∈ R
d : (1) ∑

m
i=1 ηi(x) = 1, and (2)

ηi(x)≥ 0 ∀i ∈ [1..m].

Copyright © by SIAM

Unauthorized reproduction of this article is prohibited.

254

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

The RKHS of a localized kernel. Consider the Gram

matrix Hi of γi: specifically the n×n matrix Hi whose (j,k)th

entry is γi(x j,xk) (we will refer to this later as the gating

matrix). If γi is separable, then we know that Hi is positive

definite, because it can be expressed as the outer product of

a vector with itself (Hi = η⊤η). Defining Ki as the Gram

matrix of the kernel κi, it is now easy to see that we can write

the Gram matrix of the kernel κγ as the matrix ∑i Hi ◦Ki

(where ◦ denotes the Schur product).

In the separable case, since both Hi and Ki are positive

definite, so is Hi ◦Ki by the Schur product theorem. There-

fore γi(x,x
′)κi(x,x

′) is a kernel function, and the correspond-

ing lifting map is ηi(x)Φi(x).
We know that a positive linear combination of kernel

functions is itself a kernel function and induces a product

reproducing kernel Hilbert space (RKHS) that is a simple

Cartesian product of all the individual Hilbert spaces. The

inner product of this space is just the sum of all the individual

inner products. Thus the kernel κγ has a natural feature space

as the product of the individual feature spaces.

Localization. This framework now allows us to pro-

vide a geometric intuition for why localized kernel learn-

ing might be able to reduce the number of required sup-

port points. Suppose that ηi(x) = 0. This implies that

〈ηi(x)Φi(x),ηi(x
′)Φi(x

′)〉 is always 0. Because the ith

RKHS is one component of the product RKHS, this means

that ηi(x)Φi(x) lies in some subspace perpendicular to this

RKHS.

Furthermore, suppose that ηi(x) = 1. By our assump-

tions that ∑
m
i=1 ηi(x) = 1 and that ηi is non-negative, this

means that ηi(x)Φi(x) is absent from every other RKHS in

the product. Therefore ηi(x)Φi(x) lies exclusively in the i-th

RKHS.

This partitioning behavior is advantageous, because it is

much simpler to find decision boundaries within the individ-

ual RKHS components rather than trying to find one that will

work for all at the same time. The decision hyperplane in the

product RKHS will be the unique hyperplane that intersects

all the subspaces in their respective decision boundaries.

Depending on the gating function, there will of course

be some training examples that are “confused” about what

subspace to lie in. Therefore we wish to pick a set of gating

functions that reduces this confusion. The crucial property

of the gating function γi and the gating matrix Hi is that they

are separable. With the separability constraint, we need only

find a set of one-dimensional functions that works for the

training data2.

3.2 Gating and optimization The localized MKL algo-

rithms described above (and in fact virtually all localized

2 If the gating function is not separable, but is decomposable into a

positive linear combination of a fixed-size set of separable functions, then

the partitioning is still possible – see Section 3 below, under “C-LMKL”.

kernel learning algorithms) can be placed in the framework

we have just described, thus explaining in a broader context

how their localization works. The specifics differ on how the

function κγ is generated:

1. Gating: Each algorithm has a gating function γi(x,x
′)

for every kernel function κi. Recall that the gating

function simply controls the degree to which a kernel

responds to a particular point.

2. Optimization: Each algorithm also has an optimization

behavior, that either generates or tunes each γi.

LMKL:

• Gating: The gating function is separable, and η(x) =
(η1(x), . . . ,ηi(x), . . .) = softmax(x⊤V+v0).

• Optimization: Alternating optimization using an SVM

solver to find the kernel support points and stochastic

gradient descent to find the parameters V, v0.

C-LMKL:

• Gating: The gating function is separable, but not

directly. It is equal to ∑
ℓ
r=1 βircr(x)cr(x

′), where βir ≥ 0

is the weight with which kernel i influences points

associated with cluster r, and cr is the (pre-computed)

likelihood of x falling into cluster r.

Since γi decomposes into a linear combination

βircr(x)cr(x
′), we can apply Section 3.1 to C-LMKL. In

C-LMKL we replicate each kernel ℓ times (once for each

cr) and give each its own weight
√

βir.

• Optimization: The parameters βir are learned through

(convex) optimization and the functions cr are gener-

ated through ℓ different clusterings.

SwMKL:

• Gating: The gating function is not separable in this

case, because the γi are normalized pairwise. γi(x,x
′) =

gi(x)gi(x
′)/Z(x,x′), where Z(x,x′) = ∑

m
i=1 gi(x)gi(x

′),
and gi are the SVR-generated functions.

Note While κγ may be positive definite, its individual

terms are very unlikely to be so. It is therefore not clear

whether this algorithm in its unmodified form can be

placed in our unified context. We explore this issue in

greater depth in the next section.

• Optimization: The gating functions gi are generated

using SVR from X×δ (y, ŷi).

SAMKL

• Gating: ηi(x) is a binary-valued function that decides

if kernel i should be used for point x.

Copyright © by SIAM

Unauthorized reproduction of this article is prohibited.

255

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

• Optimization: The optimization is an alternating op-

timization between the gating function and the kernel

parameters. Because the ηi are binary-valued, a further

multiple kernel learning step is required to determine

kernel weights and support vectors for the classifier, and

the gating parameters are learned with an integer pro-

gramming solver.

Global (“classic”) MKL:

• Gating: ηi(x)=
√

µi, where µi≥ 0 is constant for every

kernel, that is, does not change relative to each point.

• Optimization: The µi can be optimized using several

methods including stochastic gradient descent, multi-

plicative weight updates and alternation.

4 LD-MKL: A new algorithm for localized kernel

learning

Viewing the algorithms for localized kernel learning in a

common framework illustrates both their commonalities and

their weaknesses. With the exception of SwMKL, all the

approaches make use of a two- (or three-) stage optimization

of which LibSVM is one component. As we shall see in our

experiments, this renders these methods quite slow and not

easy to scale. SwMKL on the other hand avoids this problem

by doing single SVM calculations for each kernel and then

combining them into a single larger kernel. This improves

its running time, but makes it incur a large memory footprint

in order to build a classifier for the final kernel.

We now present a new approach, inspired by SwMKL,

that addresses these concerns. Our method, which we call

LD-MKL (localized decision-based multiple kernel learning),

fits into the unified framework for localized kernel learning

via the use of local Hilbert spaces, avoids the large memory

footprint of SwMKL, and also scales far more efficiently than

the other multi-stage optimizations.

We start by observing that the first steps of Algorithm 2

give us a classifier fi and a gating function gi. The function

fi, since it is an SVM decision function, can be formulated

as

fi(x) =
n

∑
j=1

αi jy jκi(x j,x).

Note that α has an additional index to indicate which kernel

we trained the classifier against. Suppose we modify this

function to incorporate the gating function gi
3:

f i(x) =
n

∑
j=1

αi jy jgi(x j)κi(x j,x).(4.1)

3As discussed in the previous section, we assume that the gating

functions have been normalized so that (1) ∑
m
i=1 gi(x) = 1 and (2) gi(x) ≥

0 ∀i ∈ [1..m].

f i is the SVM prediction function, but where each support

point αi j is weighted by its gating value. We can now

construct a weighted vote using these functions. We combine

the output of each f i, apply tanh4, and weight by gi:

f (x) =
m

∑
i=1

gi(x) tanh(f i(x))(4.2)

Algorithm 3 contains the listing of this procedure. Note

that we retrain each classifier on the subset of the data

where the corresponding gating function is significant (i.e.

is greater than 1/m). This reduces the support points consid-

erably because the classifier is retrained only on points that

it classified well.

Algorithm 3 LD-MKL

1: for all i ∈ [1..m] do

2: Train classifier fi : Rd →{−1,1} with kernel κi

3: Train regressor gi :Rd→ (0,1) with (X,δ (y, fi(X)))

4: Normalize regressors gi with softmax

5: for all i ∈ [1..m] do

6: Retrain classifier fi on (X,y)gi(x)>1/m

7: Compute each decision function using (4.1)

8: Classify inputs using sign of (4.2)

If commonly-used kernels are employed (such as linear,

polynomial, or Gaussian kernels), then this method can take

advantage of optimizations that exist in, e.g., LibSVM to

train the classifiers and regressors quickly. The training step

is over after the regressors are computed and normalized.

It is easy to see that LD-MKL has the desired gating

behavior with separable gating functions. The optimization

step is as before, but without needing to consult a final SVM

solver.

5 Experiments

Our experiments will seek to validate two main claims: first

that LD-MKL is indeed superior to prior localized kernel

learning methods, and secondly that there is demonstrable

reduction in the number of support points when using local-

ized methods.

Scalability. In addition, we will also investigate ways

to make existing localized methods more scalable. As noted,

with the exception of SwMKL, all approaches use a multi-stage

iterative optimizer of which one step is an SVM solver. We

instead make use of a multiplicative-weight-update-based

solver developed by Moeller et al. [17]. This method has

a much smaller memory footprint and uses a lightweight

iteration that also yields sparse support vectors. While this

4We use tanh(f i(x)) instead of the sign of f i(x) so that uncertain

classifications (i.e., kernels with resulting values of f i(x) near 0) don’t

pollute the vote with noise.

Copyright © by SIAM

Unauthorized reproduction of this article is prohibited.

256

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

solver was designed for multiple kernel learning, it is easily

adapted as an SVM solver.

Data Sets. Table 1 contains information about the vari-

ous datasets that we test with. All of these sets are taken from

the libsvm repository at https://www.csie.ntu.edu.

tw/~cjlin/libsvmtools/datasets/binary.html.

Dataset Examples Features

Breast Cancer 683 10

Diabetes 768 8

German-Numeric 1000 24

Liver 345 6

Mushroom 8192 112

Gisette 6000 5000

Adult 32561 123

Table 1: Datasets for comparison of LMKL, SwMKL, and

C-LMKL

Methodology. In each of the experiments we partition

the data randomly between 75% train and 25% test exam-

ples. Unless otherwise indicated, we repeat each partition

100 times and average the run time and the accuracy. In all

experiments where we measure accuracy, we use the propor-

tion of correctly classified points. Where possible, we also

report the standard deviation of all measured values in paren-

theses. Superior values are presented in bold when the value

minus the standard deviation is greater than all the other val-

ues plus their respective standard deviations.

In each experiment where we used a standard SVM

solver, we used LibSVM [2] via scikit-learn [20]. We

use the default LibSVM parameters (e.g., tolerance), and

vary them only for changing specific kernels and passing

specific kernel parameters. We use C = 1.0 and for Gaussian

kernels, a range of γ from 2−4 to 24 are tried and the best

accuracy observed is used.

Implementations. For LMKL, we took MATLAB code

provided by Gonen5 and converted it to python to have a

common platform for comparison. This code included an

SMO-based SVM solver which we converted as well. We

verified correctness of intermediate and final results between

the two platforms before running our experiments. For

SwMKL and LD-MKL, we used the SVM and SVR solvers from

scikit-learn. For C-LMKL, as prescribed by Lei et al. [14],

we used a kernel k-means preprocessing step with a uniform

kernel and three clusters. For large data sets, kernel k-means

is very slow, and so we used a streaming method proposed

by Chitta et al. [3] that runs the clustering algorithm on a

sample (of size 1000 in our experiments) and then estimates

probabilities for the remaining points. The global kernel

5http://users.ics.aalto.fi/gonen/icml08.php

learning methods we used were UNIFORM, which merely

averages all kernels, SPG-GMKL [9]6 and MWUMKL [17].

Hardware. All experiments were conducted on Intel R©
Xeon R© E5-2650 v2 CPUs, 2.60GHz with 64GB RAM and

8 cores.

5.1 Evaluating LD-MKL. We start with an evaluation of

LD-MKL in Table 2. In each row, we present accuracy and

timing (numbers in parentheses are standard deviations). As

we can see, for small datasets, SwMKL is the fastest method,

but for larger datasets LD-MKL is the fastest. In comparison

with LMKL and C-LMKL, SwMKL and LD-MKL are considerably

faster. This speedup is obtained without any significant loss

in accuracy: in all cases, the accuracy of LD-MKL is either the

best or is less than optimal in a statistically insignificant way.

5.2 Scaling As we can see in Table 2, LMKL and C-LMKL

run very slowly as the data complexity increases (dimensions

or number of points), and the primary bottleneck is the

repeated invocation of an SVM solver. As described above,

we replaced the SVM solver with a single-kernel version of

MWUMKL and studied the resulting performance.

Table 3 summarizes the results of this experiment. As

we can see, for both LMKL and C-LMKL, using a scalable SVM

solver greatly improves the running time of the algorithm.

In fact as we can see, the methods using LibSVM fail

to complete on certain inputs, whereas the methods that

use MWUMKL do not. We note that MWUMKL uses

a parameter ε which is the acceptable error in the duality

gap of the SVM optimization program. Higher ε values

translate to more iterations, and accuracy can often improve

(up to a point) with lower ε . Unless stated otherwise, we

use ε = 0.01. Note that for this ε , accuracy does drop

significantly in certain cases.

The case of SwMKL is a little more interesting. For

smaller data sets the basic method works quite well,

and indeed outperforms any enhancement based on using

MWUMKL. However, this comes at a price: the SwMKL

method requires a lot of memory to solve the final kernel

SVM with a kernel formed by combining the base kernels.

For smaller data sets this effect does not materially affect

performance, but as we move to larger data sets like Adult,

the method starts to fail catastrophically. Figure 2 illustrates

the memory usage incurred by the three localized methods

when not using MWUMKL and when using it. As we can

see, the memory grows polynomially with the size of input.

Stress-testing. Scaling LD-MKL to truly large datasets

can present a challenge because we make use of kernelized

support-vector regression. There are several methods to

address this problem which we will not enumerate here, but

6http://www.cs.cornell.edu/~ashesh/pubs/code/SPG-GMKL/

download.html

Copyright © by SIAM

Unauthorized reproduction of this article is prohibited.

257

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://users.ics.aalto.fi/gonen/icml08.php
http://www.cs.cornell.edu/~ashesh/pubs/code/SPG-GMKL/download.html
http://www.cs.cornell.edu/~ashesh/pubs/code/SPG-GMKL/download.html

LMKL SwMKL LD-MKL C-LMKL

Breast 96.58 % (1.35 %) 97.1% (1.1%) 97.1% (1.2%) 96.7% (1.1%)

Cancer 122 s (8.9 s) 0.15 s (2.1 ms) 0.14 s (2.36 ms) 28.7 s (80 ms)

Diabetes 74.71% (3.07%) 77.0% (2.7%) 76.7% (2.56%) 76.4% (2.4%)

157.6 s (34 s) 0.18 s (1.4 ms) 0.24 s (3.58 ms) 36.8 s (32 ms)

German- 70.78% (2.85%) 75.7% (2.4%) 75.84% (2.51%) 76.8% (1.6%)

Numeric 216 s (22 s) 0.27 s (3.8 ms) 0.38 s (3.56 ms) 69.6 s (20 ms)

Liver 62.49% (5.92%) 69.3% (5.0%) 65.19% (5.81%) 57.7% (5.1%)

35.4 s (7.2 s) 0.1 s (1.4 ms) 0.83 s (1.3 ms) 7.4 s (129 ms)

Mushroom 99.99% (0.0%) 99.9% (0%) 100.0% (0.0%) 100% (0.0%)

17.27 m (1.2 m) 14.57 s (1.2 s) 3.1 s (0.3 s) 2.43 h (12.6 m)

Gisette 97.22% (0.34%) 97.06% (0.35%) 96.88% (0.46%) 96.5% (0.28%)

48.6 m (2.8 m) 4.54 m (0.72 m) 4.0 m (0.06 m) 3.4 h (9.24 m)

Adult - 84.6% (0.37%) 84.78% (0.4%) 84.65% (0.83%)

Income - 6.65 m (1.2 m) 6.52 m (0.14 m) 7.5 h (14.3 m)

Table 2: Accuracies and running times for various datasets and methods, using LibSVM as the SVM solver. Numbers in

parentheses are standard deviations. For the first four data sets, numbers are averaged over 100 runs. For the last three larger

data sets, numbers are averaged over 20 runs. Values which are significantly superior to that of other methods are typeset in

bold.

●●
●

●

●
●

●

●● ●

●

●
●

●

●● ●

●

●
●

●

32 KB

1 MB

32 MB

1 GB

10
2.5

10
3

10
3.5

10
4

10
4.5

n

m
e
m

o
ry

method

●

●

●

LibSVM

MWUMKL (16 kernels)

MWUMKL (2 kernels)

Figure 2: Minimum memory required (assuming double-

precision floats) for LibSVM-based and MWUMKL-based

methods. LibSVM-based methods exclude those that use

only LibSVM’s standard kernels, such as LD-MKL, but in-

clude those that construct a new kernel, such as LMKL,

C-LMKL, and SwMKL. The values for n are taken from the “Ex-

amples” column from Table 1.

are targets for future versions of our algorithm.

5.3 Support Points We have argued earlier that localized

multiple kernel learning methods have the potential to gen-

erate classifiers with comparable accuracy but fewer sup-

port points than global multiple kernel methods. This fact

was first observed by Gönen and Alpaydin [6]. We now

present detailed empirical evidence establishing this claim.

We compare the different localized kernel learning meth-

ods to UNIFORM (a multiple kernel learning algorithm that

merely takes an average of all the kernels in its dictio-

nary [4]), SPG-GMKL [9] (an iterative MKL solver that uses

the spectral projected gradient), and MWUMKL, run in its

original form as a multiple kernel learning algorithm. Re-

sults are presented in Table 4. While we did not annotate the

results with accuracy numbers for ease of viewing, all meth-

ods have comparable accuracy (as Table 2 also indicates).

We observe that in all cases, the classifier using the

fewest support points is always one of the localized methods,

and the differences are always significant. However, it is

not the case that a single local method always performs best.

In general, LD-MKL (and SwMKL) appear to perform slightly

better, but this is not consistent. Nevertheless, the results

provide a clear justification for the argument that local kernel

learning indeed finds sparser solutions.

6 Related Work

The general area of kernel learning was initiated by Lanck-

riet et al. [13] who proposed to simultaneously train an SVM

as well as learn a convex combination of kernel functions.

The key contribution was to frame the learning problem as

Copyright © by SIAM

Unauthorized reproduction of this article is prohibited.

258

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LMKL SwMKL LD-MKL C-LMKL

Breast 97.08 % (1.1 %) 96.42% (1.6%) 93.4% (2.2%) 90.4% (2.4%)

Cancer 0.18 s (4.3 ms) 0.18 s (1.2 ms) 0.63 s (9.3 ms) 5.6 s (122 ms)

Diabetes 73.19% (3.39%) 76.63% (2.9%) 77.0% (3.4%) 71.1% (10%)

0.27 s (18 ms) 0.29 s (3.8 ms) 0.48 s (46 ms) 7.2 s (32 ms)

German- 70.07% (3.1%) 72.2% (3.29%) 73.0% (3.8%) 73.4% (4.1%)

Numeric 0.63 s (43 ms) 0.62 s (10.2 ms) 1.0 s (55 ms) 16.3 s (101 ms)

Liver 56.82% (6.53%) 59.63% (10.47%) 58.8% (8.0%) 49.7% (6.3%)

0.13 s (5 ms) 0.11 s (3.4 ms) 0.3 s (6.5 ms) 1.45 s (106 ms)

Mushroom 99.87% (0.1%) 99.9% (0%) 99.9% (0.1%) 98.8% (0.24%)

24.4 s (0.36 s) 21.3 s (0.2 s) 53.0 s (0.2 s) 31.4 m (1.2 m)

Gisette 97.28% (0.4%) 69.96% (2.01%) 92.2% (0.8%) 90.26% (1.2%)

8.2 m (0.18 m) 8.91 m (0.44 m) 29.0 m (10 s) 28.5 m (53.1 s)

Adult 57.4% (5.31%) 83.96% (0.61%) 80.2% (0.8%) 84.65% (0.35%)

Income 9.4 m (0.6 m) 9.1 m (6.8 s) 12.3 m (14.3 s) 47.65 m (2.46 m)

Table 3: Accuracies and running times for various datasets and methods, using MWUMKL as the SVM solver. Numbers

in parentheses are standard deviations. For the first four data sets, numbers are averaged over 100 runs. For the last three

larger data sets, numbers are averaged over 20 runs. Values which are significantly superior to that of other methods are

typeset in bold.

Localized Methods Global methods

SwMKL LD-MKL LMKL C-LMKL MWUMKL UNIFORM GMKL

Breast 11.4% (1%) 12.9% (1.1%) 38% (3.5%) 10.8% (1.1%) 21% (1.4%) 70.2% (1.9%) 15.1% (1%)

Diabetes 55.2% (1.3%) 56.4% (1.3%) 58% (1.7%) 73.9% (10%) 79.1% (1.7%) 70% (2%) 61.9% (1.2%)

German 52.2% (3.3%) 43.4% (2.4%) 89.2% (2.8%) 99.8% (0.3%) 81.7% (1.1%) 60.8% (1.6%) 68.4% (1.4%)

Liver 82.2% (1.7%) 70.2% (7.3%) 63.1% (2.3%) 88.1% (2.7%) 92.2% (1.6%) 89.6% (2.6%) 84.2% (1.9%)

Mushrooms 4.3% (0.2%) 8.1% (0.8%) 1.9% (0.1%) 4.0% (0.3%) 22.6% (0.1%) 96.4% (0.8%) 15.2% (0.2%)

Gisette 20.8% (0.3%) 31.9% (0.2%) 32.3% (0.8%) 26.3% (0.5%) 36.9% (0.0%) 99.4% (0.3%) 46.2% (0.3%)

Adult 35.6% (0.2%) 37.4% (0.2%) - 35.4% (0.2%) 40.4% (0.0%) 48.2% (0.2%) 41.7% (0.1%)

Table 4: Numbers of support points computed as a percentage of the total number of points. Numbers in parentheses are

standard deviations over 100 iterations. Values which are significantly superior to that of other methods are typeset in bold.

an optimization over positive semidefinite kernel matrices

which in turn reduces to a QCQP. Soon after, Bach et al.

[1] proposed a block-norm regularization method based on

second order cone programming (SOCP).

For efficiency, researchers started using optimization

methods that alternate between updating the classifier pa-

rameters and the kernel weights. Many authors then ex-

plored the MKL landscape, including Rakotomamonjy et al.

[21], Sonnenburg et al. [22], Xu et al. [25, 26]. However,

as pointed out in [4], most of these methods do not com-

pare favorably (both in accuracy as well as speed) even

with the simple uniform heuristic. More recently, Moeller

et al. [17] developed a multiplicative-weight-update based

approach that has a much smaller memory footprint and

scales far more effectively. Other global kernel learning

methods include [5, 16, 18, 19, 23] and notably methods us-

ing the ℓp-norm [11, 12, 24].

References

[1] Francis R. Bach, Gert R. G. Lanckriet, and Michael I.

Jordan. Multiple kernel learning, conic duality, and the

SMO algorithm. In ICML, 2004.

[2] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A

library for support vector machines. ACM Transactions

on Intelligent Systems and Technology, 2:27:1–27:27,

2011. Software available at http://www.csie.ntu.

edu.tw/~cjlin/libsvm.

[3] Radha Chitta, Rong Jin, Timothy C Havens, and Anil K

Jain. Approximate kernel k-means: Solution to large

scale kernel clustering. In KDD, pages 895–903. ACM,

2011.

[4] Corinna Cortes. Invited talk: Can learning kernels help

performance? In ICML, Montreal, Canada, 2009.

[5] Corinna Cortes, Mehryar Mohri, and Afshin Ros-

Copyright © by SIAM

Unauthorized reproduction of this article is prohibited.

259

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

tamizadeh. Learning non-linear combinations of ker-

nels. In NIPS, Vancouver, Canada, 2009.

[6] Mehmet Gönen and Ethem Alpaydin. Localized multi-

ple kernel learning. In ICML, pages 352–359, 2008.

[7] Mehmet Gönen and Ethem Alpaydin. Localized algo-

rithms for multiple kernel learning. Pattern Recogni-

tion, 46(3):795–807, 2013.

[8] Yina Han and Guizhong Liu. Probability-confidence-

kernel-based localized multiple kernel learning with

norm. IEEE Transactions on Systems, Man, and Cy-

bernetics, Part B: Cybernetics, 42(3):827–837, 2012.

[9] Ashesh Jain, S. V. N. Vishwanathan, and Manik Varma.

SPG-GMKL: generalized multiple kernel learning with

a million kernels. In KDD, pages 750–758, 2012.

[10] Raghvendra Kannao and Prithwijit Guha. Tv news

commercials detection using success based locally

weighted kernel combination. arxiv, 2015. URL http:

//arxiv.org/abs/1507.01209v1.

[11] Marius Kloft, Ulf Brefeld, Soeren Sonnenburg, Pavel

Laskov, Klaus-Robert Müller, and Alexander Zien.

Efficient and accurate lp-norm multiple kernel learning.

In NIPS, Vancouver, Canada, 2009.

[12] Marius Kloft, Ulf Brefeld, Sören Sonnenburg, and

Alexander Zien. lp-norm multiple kernel learning.

JMLR, 12:953–997, 2011.

[13] Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett,

Laurent El Ghaoui, and Michael I. Jordan. Learning the

kernel matrix with semidefinite programming. JMLR,

5:27–72, December 2004.

[14] Yunwen Lei, Alexander Binder, Ürün Dogan, and Mar-

ius Kloft. Localized multiple kernel learning - A con-

vex approach. CoRR, abs/1506.04364, 2015. URL

http://arxiv.org/abs/1506.04364.

[15] Xinwang Liu, Lei Wang, Jian Zhang, and Jianping Yin.

Sample-adaptive multiple kernel learning. In AAAI,

2014.

[16] Charles A. Micchelli and Massimiliano Pontil. Learn-

ing the kernel function via regularization. JMLR, 6:

1099–1125, December 2005.

[17] John Moeller, Parasaran Raman, Suresh Venkatasubra-

manian, and Avishek Saha. A geometric algorithm for

scalable multiple kernel learning. In AISTATS, pages

633–642, 2014.

[18] Cheng Soon Ong, Alexander J. Smola, and Robert C.

Williamson. Learning the kernel with hyperkernels.

JMLR, 6:1043–1071, 2005.

[19] Francesco Orabona and Jie Luo. Ultra-fast optimiza-

tion algorithm for sparse multi kernel learning. In

ICML, Bellevue, USA, 2011.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-

nay. Scikit-learn: Machine learning in Python. JMLR,

12:2825–2830, 2011.

[21] Alain Rakotomamonjy, Francis Bach, Stéphane Canu,

and Yves Grandvalet. More efficiency in multiple

kernel learning. In ICML, Corvalis, USA, 2007.

[22] Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer,

and Bernhard Schölkopf. Large scale multiple kernel

learning. JMLR, 7:1531–1565, December 2006.

[23] Manik Varma and Bodla Rakesh Babu. More general-

ity in efficient multiple kernel learning. In ICML, Mon-

treal, Canada, 2009.

[24] S. V. N. Vishwanathan, Zhaonan Sun, Nawanol Am-

pornpunt, and Manik Varma. Multiple kernel learning

and the SMO algorithm. In NIPS, Vancouver, Canada,

2010.

[25] Zenglin Xu, Rong Jin, Irwin King, and Michael R. Lyu.

An extended level method for efficient multiple kernel

learning. In NIPS, Vancouver, Canada, 2008.

[26] Zenglin Xu, Rong Jin, Haiqin Yang, Irwin King, and

Michael R. Lyu. Simple and efficient multiple kernel

learning by group lasso. In ICML, Haifa, Israel, 2010.

[27] Jingjing Yang, Yuanning Li, Yonghong Tian, Lingyu

Duan, and Wen Gao. Group-sensitive multiple kernel

learning for object categorization. In ICCV, pages 436–

443. IEEE, 2009.

Copyright © by SIAM

Unauthorized reproduction of this article is prohibited.

260

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

http://arxiv.org/abs/1507.01209v1
http://arxiv.org/abs/1507.01209v1
http://arxiv.org/abs/1506.04364

