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Abstract—With the advent of multi-core architectures, worst
case execution time (WCET) analysis has become an increas-
ingly difficult problem. In this paper, we propose a unified
WCET analysis framework for multi-core processors featuring
both shared cache and shared bus. Compared to other previous
works, our work differs by modeling the interaction of shared
cache and shared bus with other basic micro-architectural
components (e.g. pipeline and branch predictor). In addition,
our framework does not assume a timing anomaly free multi-
core architecture for computing the WCET. A detailed experi-
ment methodology suggests that we can obtain reasonably tight
WCET estimates in a wide range of benchmark programs.

I. INTRODUCTION

Hard real time systems require absolute guarantees on
program execution time. Worst case execution time (WCET)
has therefore become an important problem to address.
WCET of a program depends on the underlying hardware
platform. Therefore, to obtain a safe upper bound on WCET,
the underlying hardware need to be modeled. However,
performance enhancing micro-architectural features of a
processor (e.g. cache, pipeline) make WCET analysis a very
challenging task.

With the rapid growth of multi-core architectures, it is
quite evident that the multi-core processors are soon going
to be adopted for real time system design. Although multi-
core processors are aimed for improving performance, they
introduce additional challenges in WCET analysis. Multi-
core processors employ shared resources. Two meaningful
examples of such shared resources are shared cache and
shared bus. The presence of a shared cache requires the
modeling of inter-core cache conflicts. On the other hand,
the presence of a shared bus introduces variable bus access
latency to accesses to shared cache and shared main memory.
The delay introduced by shared cache conflict misses and
shared bus accesses is propagated by different pipeline
stages and affects the overall execution time of a program.
WCET analysis is further complicated by a commonly
known phenomenon called timing anomalies [1]. In the
presence of timing anomalies, a local worst case scenario
may not lead to the WCET of the overall program. As an
example, a cache hit rather than a cache miss may lead to the

WCET of the entire program. Therefore, we cannot always
assume a cache miss or maximum bus delay as the worst
case scenario, as the assumptions are not just imprecise, but
they may also lead to an unsound WCET estimation. A few
solutions have been proposed which model the shared cache
and/or the shared bus ([2], [3], [4], [5], [6]) in isolation,
but all of these previous solutions ignore the interactions of
shared resources with important micro-architectural features
such as pipelines and branch predictors.

In this paper, we propose a WCET analysis framework
for multi-core platforms featuring both a shared cache and
a shared bus. In contrast to previous work, our analysis
can efficiently model the interaction of the shared cache
and bus with different other micro-architectural features
(e.g. pipeline, branch prediction). A few such meaning-
ful interactions include the effect of shared cache conflict
misses and shared bus delays on the pipeline, the effect of
speculative execution on the shared cache etc. Moreover,
our analysis framework does not rely on a timing-anomaly
free architecture and gives a sound WCET estimate even in
the presence of timing anomalies. In summary, the central
contribution of this paper is to propose a unified analysis
framework that features most of the basic micro-architectural
components (pipeline, (shared) cache, branch prediction and
shared bus) in a multi-core processor.

Our analysis framework deals with timing anomalies
by representing the timing of each pipeline stage as an
interval. The interval covers all possible latencies of the
corresponding pipeline stage. The latency of a pipeline stage
may depend on cache miss penalties and shared bus delays.
On the other hand, cache and shared bus analysis interact
with the pipeline stages to compute the possible latencies of
a pipeline stage. Our analysis is context sensitive — it takes
care of different procedure call contexts and different micro-
architectural contexts (i.e. cache and bus) when computing
the WCET of a single basic block. Finally, WCET of the
entire program is formulated as an integer linear program
(ILP). The formulated ILP can be solved by any commercial
solver (e.g. CPLEX) to get the whole program’s WCET.

We have implemented our framework in an extended ver-
sion of Chronos [7], a freely available, open-source, single-



core WCET analysis tool. To evaluate our approach, we
have also extended a cycle accurate simulator [8] with both
shared cache and shared bus support. Our experiments with
moderate to large size benchmarks from [9] show that we
can obtain tight WCET estimates for most of the benchmarks
in a wide range of micro-architectural configurations.

II. RELATED WORK

Research in single-core WCET analysis has started a
few decades ago. Initial works used only integer linear
programming (ILP) for both micro-architectural modeling
and path analysis [10]. However, the work proposed in [10]
faces scalability problems due to the explosion in number
of generated ILP constraints. In [11], a novel approach
has been proposed, which employs abstract interpretation
for micro-architectural modeling and ILP for path analysis.
Subsequently, an iterative fixed-point analysis has been
proposed in [12] for modeling advanced micro-architectural
features such as out-of-order and superscalar pipelines. A
different paper by the same set of authors [13] has proposed
an ILP-based modeling of branch predictors. Our baseline
framework is built upon the technique proposed in [12], [13].

Although there has been a significant progress in single-
core WCET analysis research, little has been done so far
in WCET analysis for multi-cores. Multi-core processors
employ shared resources (e.g. shared cache, shared bus),
which gives rise to a new problem for modeling inter-
core conflicts. A few solutions have already been proposed
for analyzing a shared cache [2], [3], [14]. All of these
approaches extend the abstract interpretation based cache
analysis proposed in [11]. However, in contrast to our pro-
posed framework, these approaches model the shared cache
in isolation, assume a timing-anomaly-free architecture and
ignore the interaction with different other micro-architectural
features (e.g. pipeline and branch prediction). On the other
hand, separated shared bus analysis has been proposed in
[15], [5], [4]. None of these works model the interactions
with pipeline and branch prediction. Additionally, [15] and
[4] both assume a timing-anomaly-free architecture.

A recent approach [6] has combined abstract interpretation
and model checking for analyzing private cache and shared
bus, respectively. However, it is unclear whether such a
combination would remain scalable in the presence of a
shared cache and other micro-architectural features.

To eliminate the problem of pessimism in multi-core
WCET analysis, researchers have proposed predictable
multi-core architectures [16] and predictable execution mod-
els by code transformations [17]. However, we argue that
these approaches are orthogonal to the idea of this paper and
our idea in this paper can be used to pinpoint the source of
overestimation in multi-core WCET analysis.

In summary, there has been little progress on multi-core
WCET analysis by modeling individual micro-architectural
components (e.g. shared cache, shared bus). Our work differs
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Figure 1. Execution graph for the example program in a 2-way superscalar
processor with 2-entry instruction fetch queue and 4-entry reorder buffer.
Solid edges show the dependency between pipeline stages, whereas the
dotted edges show the contention relation.

from all previous works by proposing a unified framework,
which is able to analyze the most basic micro-architectural
components and their interactions in a multi-core processor.

III. BACKGROUND

Pipeline modeling through execution graphs: The cen-
tral idea of pipeline modeling revolves around the concept
of the execution graph [12]. The execution graph is con-
structed for each basic block in the program control flow
graph (CFG). For each instruction in the basic block, the
corresponding execution graph contains a node for each of
the pipeline stages. We assume a five stage pipeline —
instruction fetch (IF), decode (ID), execution (EX), write
back (WB) and commit (CM). Edges in the execution graph
capture the dependencies among pipeline stages; either due
to resource constraints (instruction fetch queue size, reorder
buffer size etc.) or due to data dependency (read after write
hazard). The timing of each node in the execution graph
is represented by an interval, which covers all possible
latencies suffered by the corresponding pipeline stage.

Figure 1 shows a snippet of assembly code and the
corresponding execution graph. The example assumes a 2-
way superscalar processor with 2-entry instruction fetch
queue (IFQ) and 4-entry reorder buffer (ROB). Since the
processor is a 2-way superscalar, instruction I3 cannot be
fetched before the fetch of I1 finishes. This explains the edge
between IF nodes of I1 and I3. On the other hand, since IFQ
size is 2, IF stage of I3 cannot start before ID stage of I1
finishes (edge between ID stage of I1 and IF stage of I3).
Note that I3 is data dependent on I1 and similarly, I5 is data
dependent on I4. Therefore, we have edges from WB stage
of I1 to EX stage of I3 and also from WB stage of I4 to EX
stage of I5. Finally, as ROB size is 4, I1 must be removed
from ROB (i.e. committed) before I5 can be decoded. This
explains the edge from CM stage of I1 to ID stage of I5.

A dotted edge in the execution graph (e.g. the edge
between EX stage of I2 and I4) represents contention
relation (i.e. a pair of instructions which may contend for
the same functional unit). Since I2 and I4 may contend for
the same functional unit (multiplier), they might delay each
other due to contention. The pipeline analysis is iterative.
Analysis starts without any timing information and assumes

2



basic blocks

Program A

binary

L1 cache 

analysis

Program running

on different cores

conflicts

Inter−core 
cache

L2 cache 

analysis

modeling

Pipeline 

Branch predictor 

modeling

Branch predictor 
Speculative
execution

constraints
User

formulating 
program 

WCET

ILP 

CFG

constraints

Shared bus

analysis

Bus context
constraints

of WCET 

Micro−architectural modeling

constraints

WCET of

A

flow

Figure 2. Overview of our analysis framework

that all pairs of instructions which use same functional units
and can coexist in the pipeline, may contend with each
other. In the example, therefore, the analysis starts with
{(I1,I2),(I2,I4),(I1,I4), (I3,I5)} in the contention relation.
After one iteration, the timing information of each pipeline
stage is obtained and the analysis may rule out some pairs
from the contention relation if their timing intervals do not
overlap. With this updated contention relation, the analysis
is repeated and subsequently, a refined timing information
is obtained for each pipeline stage. Analysis is terminated
when no further elements can be removed from the con-
tention relation. WCET of the code snippet is then given by
the worst case completion time of the CM node for I5.

IV. OVERVIEW OF OUR ANALYSIS

Figure 2 gives an overview of our analysis framework.
Each processor core is analyzed at a time by taking care of
the inter-core conflicts generated by all other cores. Figure
2 shows the analysis flow for some program A running on
a dedicated processor core. The overall analysis can broadly
be classified into two separate phases: 1) micro-architectural
modeling and 2) path analysis. In micro-architectural mod-
eling, the timing behavior of different hardware components
is analyzed (as shown by the big dotted box in Figure 2).
We use abstract interpretation (AI) based cache analysis [11]
to categorize memory references as all-hit (AH) or all-miss
(AM) in L1 and L2 cache. A memory reference is catego-
rized AH (AM) if the resulting access is always a cache hit
(miss). If a memory reference cannot be categorized as AH
or AM, it is categorized as unclassified (NC). In the presence
of a shared L2 cache, categorization of a memory reference
may change from AH to NC due to the inter-core conflicts
[3]. Moreover, as shown in Figure 2, L1 and L2 cache
analysis has to consider the effect of speculative execution
when a branch instruction is mispredicted (refer to Section
VII for details). Similarly, the timing effects generated by the
mispredicted instructions are also taken into account during
the iterative pipeline modeling (refer to [12] for details). The
shared bus analysis computes the bus context under which
an instruction can execute. The outcome of cache analysis
and shared bus analysis is used to compute the latency of

different pipeline stages during the analysis of the pipeline
(refer to Section V for details). Pipeline modeling computes
the WCET of each basic block. WCET of the entire program
is formulated as maximizing the objective function of a
single integer linear program (ILP). WCETs of individual
basic blocks are used to construct the objective function of
the formulated ILP. The constraints of the ILP are generated
from the structure of the program control flow graph (CFG),
micro-architectural modeling (branch predictor and shared
bus) and additional user given constraints (e.g. loop bound).
The modeling of the branch predictor generates constraints
to bound the execution count of mispredicted branches
(for details refer to [13]). On the other hand, constraints
generated for bus contexts bound the execution count of a
basic block under different bus contexts (for details, refer
to Section VI). Path analysis finds the longest feasible
program path from the formulated ILP through implicit path
enumeration (IPET). Any ILP solver (e.g. CPLEX) can be
used for IPET and for deriving the whole program’s WCET.

System and application model: We assume a multi-
core processor with each core having a private L1 cache.
Additionally, multiple cores share an L2 cache. The exten-
sion of our framework for more than two levels of caches
is straightforward. If a memory block is not found in L1
or L2 cache, it has to be fetched from the main memory.
Any memory transaction to L2 cache or main memory has
to go through a shared bus. For shared bus, we assume a
TDMA based round robin arbitration policy, where a fixed
length bus slot is assigned to each core. We also assume
fully separated caches and buses for instruction and data
memory. Therefore, the data references do not interfere with
the instruction references. In this work, we only model the
effect of instruction caches. However, the data cache effects
can be considered in a similar fashion. Since we consider
only instruction caches, the cache miss penalty (computed
from cache analysis) directly affects the instruction fetch (IF)
stage of the pipeline. We do not consider self modifying code
and therefore, we do not need to model the coherence traffic.
Finally, we consider the LRU cache replacement policy and
non-inclusive caches only.

V. INTERACTION OF SHARED RESOURCES WITH PIPELINE

Let us assume each node i in the execution graph is
annotated with the following timing parameters, which are
computed iteratively:
• earliest[treadyi ] : Earliest ready time of node i.
• earliest[tstarti ] : Earliest start time of node i.
• earliest[tfinishi ] : Earliest finish time of node i.
• latest[treadyi ] : Latest ready time of node i.
• latest[tstarti ] : Latest start time of node i.
• latest[tfinishi ] : Latest finish time of node i.

Therefore, the active time span of node i can be represented
by the interval [earliest[treadyi ], latest[tfinishi ]]. In the fol-
lowing sections, we shall discuss how the presence of a
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shared cache and a shared bus affects the timing information
of different pipeline stages.

A. Interaction of shared cache with pipeline
Let us assume CHMCL1

i (CHMCL2
i ) denotes the

AH/AM/NC cache hit-miss classification of an IF node i
in L1 (shared L2) cache. Further assume that Ei denotes
the possible latencies of an IF node i without considering
any shared bus delay. Ei can be defined as follows:

Ei =



1, if CHMCL1
i = AH;

LATL1 + 1,

if CHMCL1
i = AM ∧ CHMCL2

i = AH;

LATL1 + LATL2 + 1,

if CHMCL1
i = AM ∧ CHMCL2

i = AM ;

[LATL1 + 1, LATL1 + LATL2 + 1],

if CHMCL1
i = AM ∧ CHMCL2

i = NC;

[1, LATL1 + 1],

if CHMCL1
i = NC ∧ CHMCL2

i = AH;

[1, LATL1 + LATL2 + 1], otherwise.

(1)

where LATL1 and LATL2 represent the fixed L1 and L2
cache miss latencies respectively. Note that the interval-
based representation captures the possibilities of both a
cache hit and a cache miss in case of an NC categorized
cache access. Therefore, the computation of Ei can also
deal with the architectures that exhibit timing anomalies.

B. Interaction of shared bus with pipeline

Let us assume that we have a total of C cores and the
TDMA based round robin scheme assigns a slot length Sl

to each core. Therefore, the length of one complete round
is SlC. We begin with the following definitions which are
used throughout the paper:

Definition 5.1: (TDMA offset) A TDMA offset at a par-
ticular time T is defined as the relative distance of T from
the last scheduled round. Therefore, at time T , the TDMA
offset can be precisely defined as T mod SlC.

Definition 5.2: (Bus context) A Bus context for a partic-
ular execution graph node i is defined as the set of TDMA
offsets reaching/leaving the corresponding node. For each
execution graph node i, we track the incoming bus context
(denoted Oin

i ) and the outgoing bus context (denoted Oout
i ).

For a task executing in core p (where 0 ≤ p < C),
latest[tfinishi ] and earliest[tfinishi ] are computed for an IF
execution graph node i as follows:

latest[t
finish
i ] = latest[t

start
i ] + max latp(O

in
i , Ei) (2)

earliest[t
finish
i ] = earliest[t

start
i ] + min latp(O

in
i , Ei) (3)

Note that max latp, min latp are not constants and
depend on the incoming bus context (Oin

i ) and the set of
possible latencies of IF node i (Ei) in the absence of a
shared bus. max latp and min latp are defined as follows:

max latp(O
in
i , Ei) =

1, if CHMCL1
i = AH;

max
o∈Oin

i
,t∈Ei

∆p(o, t), otherwise. (4)

min latp(O
in
i , Ei) =

1, if CHMCL1
i 6= AM ;

min
o∈Oin

i
,t∈Ei

∆p(o, t), otherwise. (5)

In the above, Ei represents the set of possible latencies
of an IF node i in the absence of shared bus delay (refer
to Equation 1). Given a TDMA offset o and latency t in
the absence of shared bus delay, ∆p(o, t) computes the total
delay (including shared bus delay) faced by the IF stage of
the pipeline. ∆p(o, t) can be defined as follows (similar to
[4] or [5]):

∆p(o, t) =


t, if pSl ≤ o + t ≤ (p + 1)Sl;
t + pSl − o, if o < pSl;
t + (C + p)Sl − o, otherwise.

(6)

In the following, we shall now show the computation of
incoming and outgoing bus contexts (i.e. Oin

i and Oout
i

respectively) for an execution graph node i.
Computation of Oout

i from Oin
i : The computation of

Oout
i depends on Oin

i , on the possible latencies of execution
graph node i (including shared bus delay) and on the
contention suffered by the corresponding pipeline stage. In
the modeled pipeline, inorder stages (i.e. IF, ID, WB and
CM) do not suffer from contention. But the out-of-order
stage (i.e. EX stage) may experience contention when it is
ready to execute (i.e. operands are available) but cannot start
execution due to the unavailability of a functional unit. Worst
case contention period of an execution graph node i can be
denoted by the term latest[tstarti ]− latest[treadyi ]. For best
case computation, we conservatively assume the absence of
contention. Therefore, for a particular core p (0 ≤ p < C),
we compute Oout

i from the value of Oin
i as follows:

O
out
i =


u(Oin

i , Ei + [0, latest[tstart
i ]− latest[tready

i ]]), if i = EX;
u(Oin

i ,
⋃

o∈Oin
i

,t∈Ei
∆p(o, t)), if i = IF ;

u(Oin
i , Ei), otherwise.

(7)
Here, u denotes the update function on TDMA offset set

with a set of possible latencies of node i and is defined as
follows:

u(O,X) =
⋃

o∈O,t∈X

{(o+ t) mod SlC} (8)

Note that Ei + [0, latest[tstarti ] − latest[treadyi ]] captures
all possible latencies suffered by the execution graph node i,
taking care of contentions as well. Therefore, Oout

i captures
all possible TDMA offsets exiting node i, when the same
node is entered with bus context Oin

i . More precisely,
assuming that Oin

i represents an over-approximation of the
incoming bus context at node i, the computation by Equation
7 ensures that Oout

i represents an over-approximation of the
outgoing bus context from node i.

Computation of Oin
i : The value of Oin

i depends on the
value of Oout

j , where j is a predecessor of node i in the
execution graph. If pred(i) denotes all the predecessors of
node i, clearly, ∪j∈pred(i)O

out
j gives a sound approximation

of Oin
i . However, it is important to observe that not all

predecessors in the execution graph can propagate TDMA
offsets to node i. Recall that the edges in the execution graph
represent dependency (either due to resource constraints
or due to true data dependences). Therefore, node i in
the execution graph can only start when all the nodes in
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pred(i) have finished. Consequently, the TDMA offsets are
propagated to node i only from the predecessor j, which
finishes immediately before i is ready. Nevertheless, our
static analyzer may not be able to compute a single pre-
decessor that propagates TDMA offsets to node i. However,
for two arbitrary execution graph nodes j1 and j2, if we can
guarantee that earliest[tfinishj2 ] > latest[tfinishj1 ], we can
also guarantee that j2 finishes later than j1. By capturing
this property, we can compute Oin

i as follows:

O
in
i =

⋃
{Oout

j | j ∈ pred(i) ∧ earliest[t
finish
pmax ] ≤ latest[t

finish
j ]}

(9)

where pmax is a predecessor of i such that
latest[tfinishpmax ] = maxj∈pred(i) latest[t

finish
j ]. Therefore,

Oin
i captures all possible outgoing TDMA offsets from the

predecessor nodes that are possibly finished latest. Given
that the value of Oout

j is an over-approximation of the
outgoing bus context for each predecessor j of i, Equation
9 gives an over-approximation of the incoming bus context
at node i. Finally, Equation 7 and Equation 9 together
ensure a sound computation of the bus contexts at the entry
and exit of each execution graph node.

VI. WCET COMPUTATION OF A BASIC BLOCK

A. Execution context of a basic block

Computing bus context without loops: In the previous
section, we have discussed the pipeline modeling of a basic
block B in isolation. However, to correctly compute the
execution time of B, we need to consider 1) contentions (for
functional units) and data dependencies among instructions
prior to B and instructions in B; 2) contentions among
instructions after B and instructions in B. Set of instructions
before (after) B which directly affect the execution time
of B is called the prologue (epilogue) of B [12]. B may
have multiple prologues and epilogues due to the presence
of multiple program paths. However, the size of any prologue
or epilogue is bounded by the total size of IFQ and ROB. To
distinguish the execution contexts of a basic block B, exe-
cution graphs are constructed for each possible combination
of prologues and epilogues of B. Each execution graph of
B contains the instructions from B itself (called body) and
the instructions from one possible prologue and epilogue.
Assume we compute the incoming (outgoing) bus context
Oin

i (p, e) (Oout
i (p, e)) at body node i for prologue p and epi-

logue e (using the technique described in Section V). After
we finish the analysis of B for all possible combinations of
prologues and epilogues, we compute an over-approximation
of Oin

i (Oout
i ) by merge operation: Oin

i =
⋃

p,eO
in
i (p, e)

and Oout
i =

⋃
p,eO

out
i (p, e). Clearly, Oin

i (Oout
i ) captures

an over-approximation of the bus context at the entry (exit)
of node i, irrespective of any prologue or epilogue of B.

Computing bus context in the presence of loops: In
the presence of loops, a basic block can be executed with
different bus contexts at different iterations of the loop. The
bus contexts at different iterations depend on the set of
instructions which can propagate TDMA offsets across loop

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

from previous iteration

of loop

Body instructions
inside the loop

Prologue instructions

nodes

nodesπout
l

πin
l

Instructions outside loop

Figure 3. πin
l and πout

l nodes shown with the example of a sample
execution graph. πin

l nodes propagate bus contexts across iterations,
whereas, πout

l nodes propagate bus contexts outside of loop.

iterations. For each loop l, we compute two sets of nodes
— πin

l and πout
l . πin

l are the set of pipeline stages which
can propagate TDMA offsets across iterations, whereas, πout

l

are the set of pipeline stages which could propagate TDMA
offsets outside of the loop. Therefore, πin

l corresponds to the
pipeline stages of instructions inside l which resolve loop
carried dependency (due to resource constraints, pipeline
structural constraints or true data dependency). On the other
hand, πout

l corresponds to the pipeline stages of instructions
inside l which resolve the dependency of instructions outside
of l. Figure 3 demonstrates the πout

l and πin
l nodes for a sam-

ple execution graph. The bus context at the entry of all non-
first loop iterations can be captured as (Oin

x1, O
in
x2, . . . , O

in
xn)

where πin
l = {x1, x2, . . . , xn}. The bus context at the first

iteration is computed from the bus contexts of instructions
prior to l (using the technique described in Section V).
Finally, Oout

xi for any xi ∈ πout
l can be responsible for

affecting the execution time of any basic block outside of l.

B. WCET computation under multiple bus contexts

Foundation: As discussed in the preceding, a basic
block inside some loop may execute under different bus
contexts. In this section, we shall show how the execution
count of different bus contexts can be bounded by generating
additional ILP constraints. These additional ILP constraints
are eventually fed to the global ILP formulation. We begin
with the following notations to discuss our technique:

Ωl: The set of all bus contexts that may reach loop l
in any iteration.

Ωs
l : The set of all bus contexts that may reach loop l at

first iteration. Clearly, Ωs
l ⊆ Ωl. Moreover, if l is contained

inside some outer loop, l would be invoked more than once.
As a result, Ωs

l may contain more than one element.
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Gs
l : For each s0 ∈ Ωs

l , we build a flow graph
Gs

l = (V s
l , F

s
l ) where V s

l ⊆ Ωl. The graph Gs
l captures

the transitions among different bus contexts across loop
iterations. An edge fw1→w2 = (w1, w2) ∈ F s

l exists (where
w1, w2 ∈ Ωl) if and only if l can be entered with bus context
w1 at some iteration n and with bus context w2 at iteration
n + 1. Note that Gs

l cannot be infinite, as we have only
finitely few bus contexts that are the nodes of Gs

l .
Mw

l : Number of times the body of loop l is entered
with bus context w ∈ Ωl in any iteration.

Mw1→w2

l : Number of times l can be entered with bus
context w1 at some iteration n and with bus context w2 at
iteration n + 1 (where w1, w2 ∈ Ωl). Clearly, if fw1→w2

/∈
F s
l for any flow graph Gs

l , Mw1→w2

l = 0.
Construction of Gs

l : For each loop l and for each
s0 ∈ Ωs

l , we construct a flow graph Gs
l . Initially, Gs

l contains
a single node representing bus context s0 ∈ Ωs

l . After
analyzing all the basic blocks inside l (using the technique
described in Section V), we may get a new bus context at
some node i ∈ πin

l (recall that πin
l are the set of execution

graph nodes that may propagate bus context across loop
iterations). As a byproduct of this process, we also get the
WCET of all basic blocks inside l when the body of l is
entered with bus context s0. Let us assume that for any
s ∈ Ωl\Ωs

l and i ∈ πin
l , s(i) represents the bus context Oin

i .
Suppose we get a new bus context s1 ∈ Ωl after analyzing
the body of l once. Therefore, we add an edge from s0 to
s1 in Gs

l . We continue expanding Gs
l until sn(i) ⊆ sk(i)

for all i ∈ πin
l and for some 1 ≤ k ≤ n− 1 (where sn ∈ Ωl

represents the bus context at the entry of l after it is analyzed
n times). In this case, we finish the construction of Gs

l by
adding a backedge from sn−1 to sk. We also stop expanding
Gs

l if we have expanded as many times as the relative loop
bound of l. Note that Gs

l contains at least two nodes, as
the bus context at first loop iteration is always distinguished
from the bus contexts in any other loop iteration.

It is worth mentioning that construction of Gs
l is much less

computationally intensive than a full unrolling of l. The bus
context at the entry of l quickly reaches a fixed-point and
we can stop expanding Gs

l . In our experiments, we found
that the number of nodes in Gs

l never exceeds ten.
Generating separate ILP constraints: Using each flow

graph Gs
l for loop l, we generate ILP constraints to distin-

guish different bus contexts under which a basic block can
be executed. In an abuse of notation, we shall use w.i to
denote that the basic block i is reached with bus context w.i
when the immediately enclosing loop of i is reached with
bus context w in any iteration. The following ILP constraints
are generated to bound the value of Mw

l :

∀w ∈ Ωl :
∑
x∈Ωl

Mx→w
l = Mw

l (10)

∀w ∈ Ωl : Mw
l − 1 ≤

∑
x∈Ωl

Mw→x
l ≤Mw

l (11)

∑
w∈Ωl

Mw
l = Nl.h (12)

where Nl.h denotes the number of times the header of
loop l is executed. Equations 10-11 generate standard flow
constraints from each graph Gs

l , constructed for loop l.
Special constraints need to be added for the bus contexts
with which the loop is entered at the first iteration and at
the last iteration. If w is a bus context with which loop
l is entered at the last iteration, Mw

l is more than the
execution count of outgoing flows (i.e. Mw→x

l ). Equation
11 takes this special case into consideration. On the other
hand, Equation 12 bounds the aggregate execution count of
all possible contexts w ∈ Ωl with the total execution count
of the loop header. Note that Nl.h will further be involved
in defining the CFG structural constraints, which relate the
execution count of a basic block with the execution count of
its incoming and outgoing edges [11]. Equations 10-12 do
not ensure that whenever loop l is invoked, the loop must
be executed at least once with some bus context in Ωs

l . We
add the following ILP constraints to ensure this:

∀w ∈ Ωs
l : Mw

l ≥ Nw.h
l.h (13)

Here Nw.h
l.h denotes the number of times the header of loop l

is executed with bus context w. The value of Nw.h
l.h is further

bounded by the CFG structural constraints.
The constraints generated by Equations 10-13 are suffi-

cient to derive the WCET of a basic block in the presence of
non-nested loops. In the presence of nested loops, however,
we need additional ILP constraints to relate the bus contexts
at different loop nests. Assume that the loop l is enclosed
by an outer loop l′. For each w′ ∈ Ωl′ , we may get a
different element s0 ∈ Ωs

l and consequently, a different
Gs

l = (V s
l , E

s
l ) for loop l. Therefore, we have the following

ILP constraints for each flow graph Gs
l :

∀Gs
l = (V s

l , E
s
l ) :

∑
w∈V s

l

Mw
l ≤ boundl ∗ (

∑
w′∈parent(Gs

l
)

Mw′

l′ )

(14)
where boundl represents the relative loop bound of l and
parent(Gs

l ) denotes the set of bus contexts in Ωl′ for which
the flow graph Gs

l is constructed at loop l. The left-hand side
of Equation 14 accumulates the execution count of all bus
contexts in the flow graph Gs

l . The total execution count
of all bus contexts in V s

l is bounded by boundl, for each
construction of Gs

l (as boundl is the relative loop bound of
l). Since Gs

l is constructed
∑

w′∈parent(Gs
l )M

w′

l′ times, the
total execution count of all bus contexts in V s

l is bounded
by the right hand side of Equation 14.

Finally, we need to bound the execution count of any basic
block i (immediately enclosed by loop l), with different bus
contexts. We generate the following two constraints to bound
this value: ∑

w∈Ωl

Nw.i
i = Ni (15)

∀w ∈ Ωl : Nw.i
i ≤Mw

l (16)
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where Ni represents the total execution count of basic block
i and Nw.i

i represents the execution count of basic block
i with bus context w.i. Equation 16 tells the fact that
basic block i can execute with bus context w.i at some
iteration of l only if l is reached with bus context w at the
same iteration (by definition). Ni will be further constrained
through the structure of program’s CFG, which we exclude
in our discussion.

Computing bus contexts at loop exit: To derive the
WCET of whole program, we need to estimate the bus
context exiting a loop l (say Oexit

l ). A recently proposed
work ([5]) has shown the computation of Oexit

l without a
full loop unrolling. In this paper, we use a similar technique
as in [5] with one important difference: In [5], a single offset
graph Goff is maintained, which tracks the outgoing bus
context from each loop iteration. Once Goff got stabilized,
a separate ILP formulation on Goff derives the value of
Oexit

l . In the presence of pipelined architectures, Oout
i for

any i ∈ πout
l could be responsible for propagating bus

context outside of l (refer to Figure 3). Therefore, a separate
offset graph is maintained for each i ∈ πout

l (say Gi
off ) and

an ILP formulation for each Gi
off can derive an estimation

of the bus context exiting the loop (say Oexit
i ). In [5], it

has been proved that the computation of Oexit
l is always

an over-approximation (i.e. sound). Given that the value of
each Oout

i is sound, it is now straightforward to see that the
computation of each Oexit

i is also sound. For details of this
analysis, readers are further referred to [5].

VII. EFFECT OF BRANCH PREDICTION ON CACHE

Abstract-interpretation-based cache analysis produces a
fixed point on abstract cache content at the entry (denoted
as ACSin

i ) and at the exit (denoted as ACSout
i ) of each

basic block i. If a basic block i has multiple predecessors,
output cache states of the predecessors are joined to produce
the input cache state of basic block i. Consider an edge
j → i in the program CFG. If j → i is an unconditional
edge, computation of ACSin

i does not require any change.
However, if j → i is a conditional edge, the condition could
be correctly or incorrectly predicted during the execution.
For a correct prediction, the cache state ACSin

i is still
sound. On the other hand, for incorrect prediction, ACSin

i

must be updated with the memory blocks accessed at the
mispredicted path. We assume that there could be at most
one unresolved branch at a time. Therefore, the number
of mispredicted instructions is bounded by the number of
instructions till the next branch as well as the total size of
instruction fetch queue and reorder buffer. To maintain a
safe cache state at the entry of each basic block i, we join
the two cache states arising due to the correct and incorrect
predictions of conditional edge j → i. We demonstrate the
entire scenario through an example in Figure 4. In Figure
4, we demonstrate the procedure for computing the abstract
cache state at the entry of a basic block i. Basic block i is

acsoutj

= Join(acsoutj , acsoutspec)

acsoutj

acsoutspec
acsoutspec

acsini
acsini = acsoutspec

(a) (b) (c)

j j j

i i i

acsini = acsoutj

Speculated
instructions

Figure 4. (a) Computation of acsini when the edge j → i is correctly
predicted, (b) Computation of acsini when the edge j → i is mispredicted,
(c) A safe approximation of acsini by considering both correct and incorrect
prediction of edge j → i.

conditionally reached from basic block j. To compute a safe
cache content at the entry of basic block i, we combine two
different possibilities —- one when the respective branch
is correctly predicted (Figure 4(a)) and the other when the
respective branch is incorrectly predicted (Figure 4(b)). The
combination is performed through abstract join operation,
which on the other hand depends on the type of analysis
(must or may) being computed. A stabilization on the
abstract cache contents at the entry and exit of each basic
block is achieved through conventional fixed point analysis.

VIII. WCET COMPUTATION OF AN ENTIRE PROGRAM

We compute the WCET of the entire program with N
basic blocks by using the following objective function:

Maximize T =

N∑
i=1

∑
j→i

∑
w∈Ωi

tc,wj→i ∗ E
c,w
j→i + tm,w

j→i ∗ E
m,w
j→i

(17)
Ωi denotes the set of all bus contexts under which basic

block i can execute. Basic block i can be executed with
different bus contexts. However, the number of elements in
Ωi is always bounded by the number of bus contexts entering
the loop immediately enclosing i (refer to Section VI). tc,wj→i

denotes the WCET of basic block i when the basic block i
is reached from basic block j, the control flow edge j →
i is correctly predicted and i is reached with bus context
w ∈ Ωi. Similarly, tm,w

j→i denotes the WCET of basic block i
under the same bus context but when the control flow edge
j → i was mispredicted. Note that both tc,wj→i and tm,w

j→i are
computed during the iterative pipeline modeling (with the
modifications proposed in Section V). Ec,w

j→i (Em,w
j→i ) denotes

the number of times basic block i is reached from basic
block j with bus context w and when the control flow edge
j → i is correctly (incorrectly) predicted. Therefore, we
have the following two constraints:

Ec
j→i =

∑
w∈Ωi

Ec,w
j→i, Em

j→i =
∑
w∈Ωi

Em,w
j→i (18)

Constraints on Ec
j→i and Em

j→i are proposed by the ILP
based formulation in [13]. On the other hand, Ec,w

j→i and
Em,w

j→i are bounded by the CFG structural constraints and
the constraints proposed by Equations 10-16 in Section VI.
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Finally, the WCET of the program maximizes the objec-
tive function in Equation 17. Any ILP solver (e.g. CPLEX)
can be used for the same purpose.

IX. SOUNDNESS OF ANALYSIS

In this section, we shall provide the basic ideas for the
proof of the soundness of our analysis framework. Due to
space constraints, details of the proofs are included in the
technical report [18].

The heart of soundness guarantee follows from the
fact that we represent the timing of each pipeline
stage as an interval. Recall that the active timing in-
terval of each pipeline stage is captured by INTVi =
[earliest[treadyi ], latest[tfinishi ]]. Therefore, as long as we
can guarantee that INTVi always over-approximates the
actual timing interval of the corresponding pipeline stage in
any concrete execution, we can also guarantee the soundness
of our analysis. To ensure that the interval INTVi is always
an over-approximation, we have to consider all possible
latencies suffered by any pipeline stage. The latency of a
pipeline stage, on the other hand, may be influenced by the
following factors:

Cache miss penalty: Only NC categorized memory ref-
erences may have variable latencies. Our analysis represents
this variable latency as an interval [lo, hi] (Equation 1) where
lo (hi) represents the latency of a cache hit (miss).

Functional unit latency: Some functional units may
have variable latencies depending on the operands (e.g.
multiplier unit). For such functional units, we consider the
EX pipeline stage latency as an interval [lo, hi] where lo (hi)
represents the minimum (maximum) possible latency of the
corresponding functional unit.

Contention to access functional units: A pair of in-
structions may delay each other by contending for the
same functional unit. Since only EX stage may suffer from
contention, two different instructions may contend for the
same functional unit only if the timing intervals of the
respective EX stages overlap. For any pipeline stage i, an
upper bound on contention (say CONTmax

i ) is computed by
accounting the cumulative effect of contentions created by
all the overlapping pipeline stages (which access the same
functional unit as i). We do not compute a lower bound on
contention and conservatively assume a safe lower bound of
0. Finally, we add [0, CONTmax

i ] with the timing interval of
pipeline stage i. Clearly, [0, CONTmax

i ] covers all possible
latencies suffered by pipeline stage i due to contention.

Bus access delay: Bus access delay of a pipeline stage
depends on the incoming bus contexts (Oin

i ). Computation
of Oin

i is always an over-approximation as evidenced by
Equation 7 and Equation 9. Therefore, we can always
compute the interval spanning from minimum to maximum
bus delay using Oin

i (Equation 4 and Equation 5).
To conclude, we argue that the longest acyclic path search

in the execution graph always results in a sound estimation

of basic block WCET. Finally, the IPET approach searches
for the longest feasible program path to ensure a sound
estimation of whole program’s WCET.

X. EXPERIMENTAL EVALUATION

We have chosen moderate to large size benchmarks from
[9], which are generally used for timing analysis. Individual
benchmarks are compiled into simplescalar PISA (Portable
Instruction Set Architecture) [8] — a MIPS like instruction
set architecture. The control flow graph (CFG) of each
benchmark is extracted from its PISA compliant binary and
is used as an input to our analysis framework.

To validate our analysis framework, the simplescalar
toolset [8] was extended to support the simulation of shared
cache and shared bus. The simulation infrastructure is used
to compare the estimated WCET with the observed WCET.
Observed WCET is measured by simulating the program for
a few program inputs. Nevertheless, we would like to point
out that the presence of a shared cache and a shared bus
makes the realization of the worst case scenario extremely
challenging. In the presence of a shared cache and a shared
bus, the worst case scenario depends on the interleavings of
threads, which are running on different cores. Consequently,
the observed WCET result in our experiments may some-
times highly underapproximate the actual WCET.

For all of our experiments, we present the WCET overes-
timation ratio, which is measured as Estimated WCET

Observed WCET . Our
analysis uses the default system configuration in Table I.
Since the data cache modeling is not yet included in our
current implementation, all data accesses are assumed to be
L1 cache hits.

Component Default settings Perfect settings
Number of cores 2 NA

1-way, inorder
pipeline 4-entry IFQ, 8-entry ROB NA

L1 instruction 2-way associative, 1 KB All accesses
cache miss penalty = 6 cycles are L1 hit

L2 instruction 4-way associative, 4 KB NA
cache miss penalty = 30 cycles

Shared bus slot length = 50 cycles Zero bus delay
Branch predictor 2 level predictor, L1 size=1 Branch prediction

L2 size=4, history size=2 is always correct

Table I
DEFAULT MICRO-ARCHITECTURAL SETTING FOR EXPERIMENTS

To check the dependency of WCET overestimation on the
type of conflicting task (being run in parallel on a different
core), we use two different tasks to generate the inter-core
conflicts — 1) jfdctint, which is a single path program
and 2) statemate, which has a huge number of paths.
In our experiments (Figure 5(a)-(d)), we use jfdctint
to generate inter-core conflicts to the first half of the tasks
(i.e. matmult to nsichneu). On the other hand, we use
statemate to generate inter-core conflicts to the second
half of the tasks (i.e. edn to st). Due to the absence of
any infeasible program path, inter-core conflicts generated
by a single path program (e.g. jfdctint) can be more
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Figure 5. Effect of different micro-architectural parameters in WCET overestimation

accurately modeled compared to a multi-path program (e.g.
statemate). Therefore, in the presence of a shared cache,
we expect a better WCET overestimation ratio for the first
half of the benchmarks (i.e. matmult to nsichneu)
compared to the second half (i.e. edn to st).

To measure the WCET overestimation due to cache
sharing, we compare the WCET result with two different
design choices, where the level 2 cache is partitioned. For
a two-core system, two different partitioning choices are
explored: first, each partition has the same number of cache
sets but has half number of ways compared to the original
shared cache (called vertical partitioning). Secondly, each
partition has half number of cache sets but has the same
number of ways compared to the original shared cache
(called horizontal partitioning). In our default configuration,
therefore, each core is assigned a 2-way associative, 2 KB
L2 cache in the vertical partitioning, whereas each core
is assigned a 4-way associative, 2 KB L2 cache in the
horizontal partitioning.

Finally, to pinpoint the source of WCET overestimation,
we can selectively turn off the analysis of different micro-
architectural components. We say that a micro-architectural
component has perfect setting if the analysis of the same is
turned off (refer to column “Perfect settings” in Table I).

Effect of caches: Figure 5(a) shows the WCET overes-
timation ratio with respect to different L1 and L2 cache set-
tings in the presence of a perfect branch predictor and a per-
fect shared bus. Results show that we can reasonably bound
the WCET overestimation ratio except for nsichneu. The

main source of WCET overestimation in nsichneu comes
from the path analysis and not due to the micro-architectural
modeling. This is expected, as nsichneu contains more
than two hundred branch instructions and many infeasible
paths. These infeasible paths can be eliminated by providing
additional user constraints into our framework and hence
improving the result. We also observe that the partitioned
L2 caches may lead to a better WCET overestimation
compared to the shared L2 caches, with the vertical L2 cache
partitioning almost always working as the best choice. The
positive effect of the vertical cache partitioning is visible in
edn and adpcm, where the overestimation in the presence
of a shared cache rises. This is due to the difficulty in
modeling the inter-core cache conflicts from statemate
(a many-path program being run in parallel).

Effect of speculative execution: As we explained in
Section VII, the presence of a branch predictor and specula-
tive execution may introduce additional computation cycles
for executing a mispredicted path. Moreover, speculative
execution may introduce additional cache conflicts from a
mispredicted path. The results in Figure 5(b) and Figure
5(c) show the effect of speculation in L1 and L2 cache,
respectively. Mostly, we do not observe any sudden spikes
in the WCET overestimation just due to speculation. adpcm
shows some reasonable increase in WCET overestimation
with L2 caches and in the presence of speculation (Figure
5(c)). This increase in the overestimation ratio can be
explained from the overestimation arising in the modeling
of the effect of speculation in cache (refer to Section VII).
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Due to the abstract join operation to combine the cache
states in correct and mispredicted path, we may introduce
some spurious cache conflicts. Nevertheless, our approach
for modeling the speculation effect in cache is scalable and
produces tight WCET estimates for most of the benchmarks.

Effect of shared bus: Figure 5(d) shows the WCET
overestimation in the presence of a shared cache and a
shared bus. We observe that our shared bus analysis can
reasonably control the overestimation due to the shared bus.
Except for edn and nsichneu, the overestimation in the
presence of a shared cache and a shared bus is mostly equal
to the overestimation when shared bus analysis is turned off
(i.e. a perfect shared bus). Experiments with nsichneu
shows some interesting result. We observe that the WCET
overestimation ratio decreases by a large factor when shared
bus analysis is enabled. As we inspect the cause, we found
that the execution time of nsichneu is dominated by
shared bus delay, which is most accurately computed by our
analysis for this benchmark. On the other hand, we observed
in Figure 5(a) that the main source of WCET overestimation
in nsichneu is path analysis, due to the presence of many
infeasible paths. Consequently, when shared bus analysis
is turned off, the overestimation arising from path analysis
dominates and we obtain a high WCET overestimation ratio.
Average WCET overestimation in the presence of both a
shared cache and a shared bus is around 50%.

WCET overestimation sensitivity: We have also con-
ducted detailed experiments to check the WCET overestima-
tion sensitivity with respect to L1 cache size, L2 cache size,
bus slot length and different pipelines (inorder, out-of-order
and superscalar). On average, our framework results around
40% overestimation and a maximum of 90% overestimation
when very small L1 cache is used (512 bytes). For very small
L1 cache size, our analysis results in L1 cache thrashing
which eventually results in an overestimation of shared cache
and shared bus traffic. Due to space constraints, details of
these results are included in [18].

Analysis time: We have performed all the experiments
on an 8 core, 2.83 GHz Intel Xeon machine having 4 GB
of RAM and running Fedora Core 4 operating systems.
In most of the cases, our analysis finishes within a few
seconds. ILP solver time dominates when branch prediction
is enabled. When all the micro-architectural features are
analyzed (pipeline, L1 and shared L2 cache, shared bus
and branch prediction), our analysis takes maximum time
(around 300 seconds) for the program nsichneu, with an
average of 20-30 seconds over all other programs.

XI. CONCLUSION

In this paper, we have proposed a sound WCET analysis
framework by modeling different micro-architectural com-
ponents and their interactions in a multi-core processor. Our
analysis framework is also sound in the presence of timing
anomalies. Our experiments suggest that we can obtain

tight WCET estimates for the majority of benchmarks in
a variety of micro-architectural configurations. Apart from
design space exploration, we believe that our framework can
be used to figure out the major sources of overestimation in
multi-core WCET analysis. As a result, our framework can
help in designing predictable hardware for real time appli-
cations and it can also help writing real time applications
for the predictable execution in multi-cores.
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