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Abstract. Abstraction/refinement methods play a central role in the analysis of
hybrid automata, that are rarely decidable. Soundness (of evaluated properties) is
a major challenge for these methods, since abstractions can introduce unrealistic
behaviors.

In this paper, we consider the definition of a three-valued semantics for μ-
calculus on abstractions of hybrid automata. Our approach relies on two steps:
First, we develop a framework that is general in the sense that it provides a preser-
vation result that holds for several possible semantics of the modal operators. In a
second step, we instantiate our framework to two particular abstractions. To this
end, a key issue is the consideration of both over- and under-approximated reach-
ability analysis, while classic simulation-based abstractions rely only on overap-
proximations, and limit the preservation to the universal (μ-calculus’) fragment.
To specialize our general result, we consider (1) so-called discrete bounded bisim-
ulation abstractions, and (2) modal abstractions based on may/must transitions.

1 Introduction

Hybrid automata [16,1] provide an appropriate modeling paradigm for systems where
continuous variables interact with discrete modes. Such models are frequently used in
complex engineering fields like embedded systems, robotics, avionics, and aeronau-
tics [2,12,24,25]. In hybrid automata, the interaction between discrete and continuous
dynamics is naturally expressed by associating a set of differential equations to every
location of a finite automaton.

Finite automata and differential equations are well established formalisms in math-
ematics and computer science. Despite of their long-standing tradition, their combina-
tion in form of hybrid automata leads to surprisingly difficult problems that are often
undecidable. In particular, the reachability problem is undecidable for most families of
hybrid automata [1,14,20,21,22], and the few decidability results are built upon strong
restrictions of the dynamics [3,17]. The reachability analysis of hybrid automata is a
fundamental task, since checking safety properties of the underlying system can be re-
duced to a reachability problem for the set of bad configurations [16].

For this reason, a growing body of research is being developed on the issue of deal-
ing with approximated reachability on undecidable – yet reasonably expressive – hybrid
automata [9,11,23,25,26]. To this end, most of the techniques proposed so far either rely
on bounded state-reachability or on the definition of finite abstractions. While the first
approach suffers inherently of incompleteness, the quest for soundness is a key issue in
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the context of methods based on abstractions. In fact, abstractions can introduce unre-
alistic behaviors that may yield to spurious errors being reported in the safety analysis.
Usually, a simulation preorder is required to relate the abstraction to the concrete dy-
namics of the hybrid system under consideration, ensuring at least the correctness of
each response of (abstract) non reachability.

In this work, we provide a uniform approach to the sound evaluation of general
reactive properties on abstractions of hybrid automata. Here, ‘general’ refers to the fact
that we specify properties by means of the highly expressive logic of μ-calculus, that
covers in particular CTL and other specification logics. ‘Uniform’, instead, emphasizes
that we consider different possible classes of abstractions, whose analysis permits to
recover both under- and overapproximations of state-sets fulfilling a given reachability
requirement. Intuitively, this requirement is a minimal prerequisite for recovering sound
abstract evaluations of arbitrary μ-calculus formulas.

To achieve our results we proceed by two steps: We start with the development of a
generic semantics scheme for the μ-calculus, where the meaning of the modal operators
can be adapted to particular abstractions. Assuming certain constraints for the semantics
of these operators, we can prove a preservation result for our generic semantics scheme,
thus providing a general framework for different classes of abstractions. In a subsequent
step, we specialize our framework to suitable abstractions. In particular, we demonstrate
the applicability of our framework by considering (1) the class of so-called discrete
bounded bisimulation (DBB) abstractions [10], and (2) a kind of modal abstractions
based on may/must transitions. As a final contribution, we compare these instances
of our framework with respect to the issue of monotonicity of preserved μ-calculus
formulas.

The paper is organized as follows: Preliminaries are given in Section 2. Section 3 in-
troduces the classes of abstractions used in Section 5 to instantiate the generic result on
preservative three-valued μ-calculus semantics outlined in Section 4. The monotonic-
ity issue is dealt with in Section 6, while Section 7 concludes the paper discussing its
contributions. All proofs are given in the appendix and in [4].

2 Preliminaries

In this section, we introduce the basic notions used in the remainder of the paper.

Definition 1 (Hybrid Automata [3]). A Hybrid Automaton is a tuple H = 〈L,E,X ,
Init, Inv, F,G,R〉 with the following components:

• a finite set of locations L
• a finite set of discrete transitions (or jumps) E ⊆ L× L
• a finite set of continuous variablesX = {x1, . . . xn} that take values in R

• an initial set of conditions: Init ⊆ L× R
n

• Inv : L→ 2R
n

, the invariant location labeling
• F : L × R

n → R
n, assigning to each location � ∈ L a vector field F (�, ·) that

defines the evolution of continuous variables within �
• G : E → 2R

n

, the guard edge labeling
• R : E × R

n → 2R
n

, the reset edge labeling.
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We write v to represent a valuation (v1, . . . , vn) ∈ R
n of the variables’ vector x =

(x1, . . . , xn), whereas ẋ denotes the first derivatives of the variables in x (they all de-
pend on the time, and are therefore rather functions than variables). A state in H is a
pair s = (�,v), where � ∈ L is called the discrete component of s and v is called the
continuous component of s. A run of H is a path in the time abstract transition system
of H , given in Definition 2.

Definition 2. The time abstract transition system of the hybrid automatonH = 〈L, E,
X, Init, Inv, F,G,R〉 is the transition system TH =〈Q,Q0, �→,→〉, where:

• Q ⊆ L× R
n and (�,v) ∈ Q if and only if v ∈ Inv(�)

• Q0 ⊆ Q and (�,v) ∈ Q0 if and only if v ∈ Init(�) ∩ Inv(�)
• �→ = {e, δ} is the set of edge labels, that are determined as follows:

– there is a continuous transition (�,v) δ→ (�,v′), if and only if there is a differ-
entiable function f : [0, t] → R

n, with ḟ : [0, t] → R
n such that:

1. f(0) = v and f(t) = v′

2. for all ε ∈ (0, t), f(ε) ∈ Inv(�), and ḟ(ε) = F (�, f(ε)).
– there is a discrete transition (�,v) e→ (�′,v′) if and only if there exists an edge

(�, �′) ∈ E, v ∈ G(�) and v′ ∈ R((�, �′),v).

Definition 3 and Definition 4 recapitulate the syntax and the semantics of the μ-calculus
language Lμ on hybrid automata, respectively [6,7].

Definition 3 (Lμ Syntax). The set of μ-calculus preformulas for a set of labels a ∈
{e, δ} and propositions p ∈ AP is defined by the following syntax:

φ := p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a]φ |E(φ1Uφ2) |A(φ1Uφ2) | μZ.φ | νZ.φ
The set Lμ of μ-calculus formulas is defined as the subset of pre-formulas, where each
subformula of the type μZ.φ and νZ.φ satisfies that all occurrences of Z in φ occur
under an even number of negation symbols.

Definition 4 (Semantics of Lμ on Hybrid Automata). LetAP be a finite set of propo-
sitional letters, let p ∈ AP and consider H = 〈L,E,X , Init, Inv, F,G,R〉. Given
�AP : Q→ 2AP and φ ∈ Lμ, the function �φ� : Q→ {0, 1} is inductively defined:

• �p�(q) = 1 iff p ∈ lAP (q)
• �¬φ� := ¬ �φ�
• �φ 
 ψ� := �φ� 
 �ψ� for 
 ∈ {∨,∧}
• �E(φUψ)�(q) = 1 iff there exists a run ρ departing from q that admits a prefix

ρ∗ := q1
a1→ ...

an−1→ qn, where q = q1, ai ∈ {e, δ}, qi = (l, vi), satisfying:
· �ψ�(qn) = 1 and for 1 ≤ i < n: �φ�(qi) = 1
· for ai = δ: ∃ a differentiable function f : [0, t] → R

n, for which:
1. f(0) = vi and f(t) = vi+1

2. for all ε ∈ (0, t), f(ε) ∈ Inv(�), and ḟ(ε) = F (�, f(ε))
3. for all ε ∈ (0, t), q′ = (li, f(ε)) satisfies �φ ∨ ψ�(q′) = 1

• �A(φUψ)�(q1) = 1 iff for all runs ρ departing from q there exists a prefix ρ∗ :=
q1

a1→ ...
an−1→ qn, where q = q1, ai ∈ {e, δ}, qi = (l, vi), satisfying:
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· �ψ�(qn) = 1 and for 1 ≤ i < n: �φ�(qi) = 1
· for ai = δ: ∃ a differentiable function f : [0, t] → R

n, for which:
1. f(0) = vi and f(t) = vi+1

2. for all ε ∈ (0, t), f(ε) ∈ Inv(�), and ḟ(ε) = F (�, f(ε))
3. for all ε ∈ (0, t), q′ = (li, f(ε)) satisfies �φ ∨ ψ�(q′) = 1

• �〈a〉φ�(q) = 1 iff ∃q a→ q′ : �φ�(q′) = 1
�[a]φ�(q) = 1 iff ∀q a→ q′ : �φ�(q′) = 1

• The fixpoint operators are defined in the following way:
Let [φ]ψZ be the formula obtained by replacing all occurrences of Z with ψ. Given
a fixpoint formula σZ.φ with σ ∈ {μ, ν} its k-th approximation apxk(σZ.φ) is
recursively defined as follows:

apx0(μZ.φ) := 0 and apxk+1(μZ.φ) := [φ]apxk(μZ.φ)
Z

apx0(νZ.φ) := 1 and apxk+1(νZ.φ) := [φ]apxk(νZ.φ)
Z

Then smallest and greatest fixpoints �σZ.φ� are defined by
· smallest fixpoint: �μZ.φ� :=

∨

k∈N

�apxk(μZ.φ)�

· greatest fixpoint: �νZ.φ� :=
∧

k∈N

�apxk(μZ.φ)�

H � φ iff ∀q0 ∈ Q0 : �φ�(q0) = 1.

The following definition recalls the notion of simulation relation, that plays a central
role in the context of hybrid automata abstractions.

Definition 5 (Simulation). Let T1 = 〈Q1, Q1
0, �→,→1〉, T2 = 〈Q2, Q2

0, �→,→2〉,
Q1 ∩ Q2 = ∅, be two edge-labeled transition systems and let P be a partition on
Q1 ∪ Q2. A simulation from T1 to T2 is a non-empty relation on ρ ⊆ Q1 × Q2 such
that, for all (p, q) ∈ ρ:

• p ∈ Q1
0 iff q ∈ Q2

0 and [p]P = [q]P .
• for each label a ∈ �→, if there exists p′ such that p

a→ p′, then there exists q′ such
that (p′, q′) ∈ ρ and q

a→ q′.

If there exists a simulation from T1 to T2, then we say that T2 simulates T1, denoted
T1 ≤S T2. If T1 ≤S T2 and T2 ≤S T1, then T1 and T2 are said similar, denoted
T1 ≡S T2. If ρ is a simulation from T1 to T2, and the inverse relation ρ−1 is a simulation
from T2 to T1, then T1 and T2 are said bisimilar, denoted T1 ≡B T2

3 Abstractions of Hybrid Automata for Parallel over- and
Underapproximated Reachability Analysis

In this section, we introduce two kinds of abstractions that we will use in the sequel to
specialize our general preservation result for μ-calculus semantics.

Most of the abstraction/refinement methods for hybrid automata in the literature
are based on overapproximations of the reachable states1. In particular, they rely on
a generic notion of abstractions based on the simulation preorder. The latter is required
to relate the abstraction to the dynamics of the hybrid automaton, as formalized below.

1 Note that the reachability problem is undecidable for most classes of hybrid automata.
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Definition 6 (Abstraction). Let H be a hybrid automaton. An abstraction of H is a

finite transition system A = 〈R,R0,
δ→,

e→〉 in which

1. R is a finite partition of the state space of H , R0 ⊆ R is a partition of the initial

states,
δ→⊆ R×R and

e→⊆ R×R

2. A∗ := 〈R,R0

δ

→∗, e→〉 simulates the time abstract transition system TH associated

to H , where
δ

→∗ denotes the transitive closure of the continuous transitions
δ→

Since this basic notion of abstraction gives only an overapproximation of the hybrid
automaton’s reachable states, its usage is inherently limited to the universal fragment of
the μ-calculus [5]. As we are interested in unrestricted μ-calculus properties, we need a
more powerful abstraction/refinement approach. To this end, a minimum requirement is
the combination of both over- and underapproximations of state-sets satisfying a given
reachability property. The consideration of parallel over- and underapproximated reach-
ability on hybrid automata is quite new: In [10], discrete bounded bisimulation (DBB)
abstractions, briefly recalled in Subsection 3.1, were designed for this purpose. Another
approach that leads to over- and underapproximations is given by modal abstractions
for hybrid automata, that we develop in Subsection 3.2 (generalizing the definitions
given in context of discrete systems [13]).

3.1 Discrete Bounded Bisimulation (DBB) Abstractions

It is well known that the classic bisimulation equivalence can be characterized as a
coarsest partition stable with respect to a given transition relation [18]. Bounded bisim-
ulation imposes a bound on the number of times each edge can be used for partition
refinement purposes. For the equivalence of discrete bounded bisimulation (DBB), the
latter bound applies only to the discrete transitions of a given hybrid automaton, as
recalled in Definition 7, below.

Definition 7 (Discrete Bounded Bisimulation [10]). Let H be an hybrid automaton,
and consider the partition P on the state-space Q of TH = 〈Q,Q0, �→,→〉. Then:

1. ≡0∈ Q×Q is the maximum relation on Q such that for all p ≡0 q
(a) [p]P = [q]P and p ∈ Q0 iff q ∈ Q0

(b) ∀p δ→ p′∃q′ : p′ ≡0 q
′ ∧ q

δ→ q′

(c) ∀q δ→ p′∃q′ : p′ ≡0 q
′ ∧ p

δ→ p′

2. ≡n∈ Q×Q is the maximum relation on Q such that for all p ≡n q
(a) p ≡n−1 q

(b) ∀p δ→ p′∃q′ : p′ ≡n q′ ∧ q
δ→ q′

(c) ∀q δ→ p′∃p′ : p′ ≡n q′ ∧ p
δ→ p′

(d) ∀p e→ p′∃q′ : p′ ≡n−1 q
′ ∧ q

e→ q′

(e) ∀q e→ q′∃p′ : p′ ≡n−1 q
′ ∧ p

e→ p′

For n ∈ N, the relation ≡n will be called n-DBB equivalence.



A Uniform Approach to Three-Valued Semantics for μ-Calculus 43

The succession of n-DBB equivalences over an hybrid automaton H naturally induces
a series of abstractions for H , as stated in Definition 8.

Definition 8 (Series of DBB Abstractions [10]). Let H be a hybrid automaton and
TH = 〈Q,Q0, l→,→〉 be the associated time abstract transition system. Let P be a
partition of Q and consider the n-DBB equivalence ≡n. Then, the n-DBB abstraction
H≡n = 〈Q′, Q′

0, l→ →′〉 is defined as follows:

– Q′ = Q/≡n
, Q′

0 = Q0/≡n

– ∀α, β ∈ Q′ :
• α

e→ β iff ∃a ∈ α∃b ∈ β : a e→ b

• α
δ→ β iff ∃a ∈ α∃b ∈ β : a δ→ b and the path a� b only traverses α and β

The existence of a simulation preorder relating successive elements in a series of DBB
abstractions allows the refinement of overapproximations of reachable sets in the con-
sidered hybrid automaton [10]. Moreover, H≡n preserves the reachability of a given
region of interest (in the initial partition) whenever the latter can be established on
H following a path that traverses at most n locations [10]. On this ground, it is also
possible to use the succession of DBB abstractions to obtain ⊆-monotonic underap-
proximations of the set of states fulfilling a given reachability requirement.

3.2 Modal Abstractions Based on May/Must Relations

For discrete systems [13], a may-transition between two abstract classes r and r′ en-
codes that for at least some state in r there is a transition to some state in r′. In turn, a
must-transition between r and r′ states that all states in r have a transition to a state in
r′. Naturally, may-transitions (resp. must-transitions) refer to overapproximated (resp.
underapproximated) transitions among classes of an abstract system. The above ideas
can be extended to the context of hybrid automata as formalized in Definition 9.

Definition 9 (Modal Abstractions). Let A = 〈R,R0,
δ→,

e→〉 be an abstraction of the
hybrid automatonH . Then A is a modal abstraction (or may/must abstraction) of H iff
the following properties hold:

– δ→⊇ δ→must, where
δ→must is defined as follows:

r
δ→must r

′ iff for all x ∈ r there exists an x′ ∈ r′ such that H can evolve
continuously from the state x to the state x′ by traversing the only regions r and r′.

– e→⊇ e→must where
e→must is defined as follows:

r
e→must r

′ iff for all x ∈ r there exists an x′ ∈ r′ s.t. x
e→ x′ in H .

The subautomaton 〈R,R0,
δ→must,

e→must〉 of A is called Amust.

Given the modal abstractionA for the hybrid automatonH , Lemma 1 states thatAmust
is simulated by the time abstract transition system TH of H .

Lemma 1. Let H be a hybrid automaton and let A be a may/must abstraction of H .
Then, the subautomatonAmust of A is simulated by TH , i.e. Amust ≤S TH ≤S A∗.
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On this ground, may/must abstractions can be used not only to overapproximate, but
also to underapproximate the set of states modeling a given reachability property, as
stated in Corollary 1.

Corollary 1. Let A = 〈R,R0
δ→,

e→〉 be a modal abstraction for the hybrid automaton
H , and let F be a set of (final) states in H . Assume that F is consistent with respect to
R, i.e. for all r ∈ R : r ∩ F = r ∨ r ∩ F = ∅. If r ∈ R admits a path to r′ ⊆ F in
Amust, then for all s ∈ r, exists s′ ∈ r′ such that H admits a run from s to s′.

4 A Generic Semantics for µ-Calculus on Abstractions of Hybrid
Automata

In this section, we present one of the main ingredients of our approach: a generic three-
valued semantics for μ-calculus on abstractions of hybrid automata. Here, two key-
words deserve our attention: Generic and three-valued.

The choice of a three-valued logic as the base of our semantics is motivated by the
broad family of abstractions that we consider for our framework. In fact, the abstractions
we have in mind are in general less precise than a bisimulation (which allows for exact
reachability analysis, but is seldom finite), and more precise than a simulation (that
allows only for overapproximated reachability analysis). Hence, we can not expect that
any μ-calculus formula is preserved, however it should be possible to recover at least all
true universal μ-calculus subformulas2. By means of a three-valued logic, we can use
the third value ⊥ to distinguish the cases for which it is not possible to derive a boolean
truth value, due to the coarseness of the abstraction. Instead, the preservation applies
to all the boolean results established using the abstract semantics. In the following, we
write ¬3, ∨3, ∧3 for the three-valued extensions of the boolean operations ¬, ∨, ∧,
respectively3.

The second keyword – generic – is better understood as a way of establishing a link
between (1) the quest for soundness in our semantics, and (2) the variety of patterns
according to which different abstractions split the information over their regions. Our
generic semantics is an abstract semantics scheme, where the evaluation is fixed for
some operators (namely boolean and fixpoint operators), and only subject to some con-
straints for the others. The constraints are sufficient to establish a general preservation
result, though the semantics scheme can be adapted to several classes of abstractions.

Given the above premises, we are now ready to formalize in Definition 10 our three-
valued generic semantics for μ-calculus on abstractions of hybrid automata. Note that
for a μ-calculus formula φ, we distinguish between the semantics �φ�H on a hybrid
automaton H (as given in Definition 4) and the semantics �φ�(r) on the region r of an
abstraction of H .

Definition 10 (Generic μ-Calculus Semantics). Let H be a hybrid automaton whose
state space is partitioned into finitely many regions of interest by the labeling func-
tion lAP : Q → 2AP , where AP is a finite set of propositional letters. Let φ be a

2 Recall that bisimulation preserves the whole μ-calculus, while simulation preserves the only
true universally quantified formulas.

3 We use Kleene’s definition of three-valued logic [19].
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μ-calculus formula with atomic propositions AP , and consider the abstraction A =
〈R,R0, l→,→〉 where R is assumed to refine4 the regions of interest in H .

1. If φ is an atomic proposition, then �φ�(r) =
{

1 φ ∈ lAP (r)
0 otherwise

2. If φ = ¬ϕ, then �¬ϕ� = ¬3�ϕ�
3. If φ = ϕ ∨ ψ, then �ϕ ∨ ψ� = �ϕ� ∨3 �ψ�
4. If φ = ϕ ∧ ψ, then �ϕ ∧ ψ� = �ϕ� ∧3 �ψ�
5. If φ ∈ {〈δ〉ϕ, 〈e〉ϕ, [δ]ϕ, [e]ϕ,E(ϕUψ), A(ϕUψ)}, then �φ� is required to fulfill

the following conditions:

�φ�(r) = 1 ⇒ ∀ x ∈ r : �φ�H (x) = 1
�φ�(r) = 0 ⇒ ∀ x ∈ r : �φ�H (x) = 0

6. Let φ ∈ {μZ.ϕ, νZ.ϕ} be a fixpoint formula. Let [ϕ]ψZ be the formula obtained
by replacing all occurrences of Z with ψ. Given a fixpoint formula σZ.ϕ with
σ ∈ {μ, ν}, its k-th approximation apxk(σZ.ϕ) is recursively defined as follows:

– apx0(μZ.ϕ) := 0 and apxk+1(μZ.ϕ) := [ϕ]apxk(μZ.ϕ)
Z

– apx0(νZ.ϕ) := 1 and apxk+1(νZ.ϕ) := [ϕ]apxk(νZ.ϕ)
Z

The semantics of least and greatest fixpoints �σZ.ϕ� are defined by �apxk̂σZ.ϕ�

where k̂ is the smallest index where �apxk̂(σZ.ϕ)� = �apxk̂+1(σZ.ϕ)� holds.

Let φ be a μ-calculus formula and let A = 〈R,R0
δ→,

e→〉 be an abstraction of the
hybrid automaton H . On the ground of Definition 10, we can define a three-valued
relation �3 stating whether A is a model of the formula φ:

A �3 φ =

⎧
⎨

⎩

1 ∀r ∈ R0 : �φ�(r) = 1
0 ∃r ∈ R0 : �φ�(r) = 0
⊥ otherwise

Theorem 1 below states that both results true and false established on A via �3 are pre-
served on the underlying hybrid automaton. Note that Theorem 1 has a sort of uniform
character, since �3 subsumes indeed many possible effective semantics for μ-calculus,
the latter recovered by specializing the semantics of the modal operators according to
the properties of different classes of abstractions. For the rest of this work let � be the
partial order over {0, 1,⊥} defined by the reflexive closure of {(⊥, 0), (⊥, 1)}.

Theorem 1 (Uniform Preservation Theorem). Let H be a hybrid automaton, let A
be an abstraction of H . Then, for any μ-calculus formula φ, we haveA �3 φ � H � φ.

Hence, if A �3 φ is 1, so is H � φ, and if A �3 φ is 0, so is H � φ, and if A �3 φ is ⊥,
thenH � φ is completely unknown. For this reason, both valid and invalid subformulas
can be preserved with our framework as long as the abstraction is not too coarse.

4 Note that our assumption (the partition ofQ into regions of interest is refined by the abstraction
A = 〈R,R0, l→,→〉) implies that ∀r ∈ R ∀x1, x2 ∈ R : lAP (x1) = lAP (x2) holds. Thus,
the labeling function can be easily extended to lAP : R → 2AP .
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5 Instantiation to DBB- and May/Must-Abstractions

In this section, we specialize the general preservation result given in Section 4 to two
particular instances, namely to modal and DBB abstractions. As a result, we obtain two
preservative abstraction/refinement frameworks for μ-calculus on hybrid automata.

5.1 Semantics Completion for May/Must-Abstractions

In modal abstractions, each
δ→must (resp.

e→must) edge underapproximates a continu-

ous (resp. discrete) evolution for the underlying hybrid automata. In turn, each
δ→ (resp.

e→) edge overapproximates a continuous (resp. discrete) evolution for the considered
hybrid automaton. The above considerations can be used to properly instantiate the
semantics for the modal operators on may/must abstractions, completing the semantics
scheme given in Definition 10. Consider for example the modal operator 〈δ〉. According
to the adaptive semantics scheme in Definition 10, we should instantiate the semantics
�〈δ〉ϕ� in such a way that whenever �〈δ〉ϕ� evaluates to 1 (resp. 0) on an abstract region,
then it evaluates to 1 (resp. 0) on all the states of the region. This constraint is naturally

guaranteed on modal abstractions if we use only
δ→must edges (resp.

δ→ edges) to in-
spect for true (resp. false) evaluations. A similar way of reasoning allows to completely
adapt the semantics scheme in Definition 10 to the case of modal abstractions, as for-
malized in Definition 11.

Definition 11. Let H be a hybrid automaton, A = 〈R,R0
δ→,

e→〉 be a may/must
abstraction of H and let ϕ and ψ be μ-calculus formulas. Then, the semantics of the
three-valued μ-calculus of Definition 10 for a, ai ∈ {δ, e} is completed by:

• �〈e〉ϕ�(r)

⎧
⎨

⎩

1 ∃r e→must r
′ : �ϕ�(r′) = 1

0 ∀r e→ r′ : �ϕ�(r′) = 0
⊥ otherwise

• �〈δ〉ϕ�(r)

⎧
⎪⎨

⎪⎩

1 ∃r δ→must r
′ : �ϕ�(r′) = 1

0 ∀r
δ

→∗ r′ : �ϕ�(r′) = 0
⊥ otherwise

• �[a]φ� = �¬(〈a〉¬φ)�
• Let {rn}n∈N (resp. {rn}mustn∈N

) denote an infinite path of A (resp. Amust) starting
in r = r0. Then:

�E(ϕUψ)�(r)

⎧
⎨

⎩

1 ∃{rn}mustn∈N
∃k ∈ N : �ψ�(rk) = 1 ∧ �ϕ�(ri<k) = 1

0 ∀{rn}n∈N∀k ∈ N : �ψ�(rk) �= 0 ⇒ ∃i < k : �ϕ�(ri) = 0
⊥ otherwise

�A(ϕUψ)�(r)

⎧
⎨

⎩

1 ∀{rn}n∈N∃k ∈ N : �ψ�(rk) = 1 ∧ �ϕ�(ri<k) = 1
0 ∃{rn}mustn∈N

∀k ∈ N : �ψ�(rk) �= 0 ⇒ ∃i < k : �ϕ�(ri) = 0
⊥ otherwise

Lemma 2, below, states the correctness of our instantiation, namely it ensures that the
semantics for the modal operators on may/must abstractions in Definition 11 fulfill the
constraints provided in Definition 10.
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Fig. 1. May/Must Abstraction A1 of the Heat-
ing Controller
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Fig. 2. May/Must Abstraction A2 of the Heat-
ing Controller

Lemma 2. Let A be a modal abstraction for the hybrid automaton H , and assume to
interpret μ-calculus formulas according to Definition 11. Then, for any formula φ ∈
{〈δ〉ϕ, 〈e〉ϕ, [δ]ϕ, [e]ϕ,E(ϕUψ), A(ϕUψ)}, we have:

�φ�(r) = 1 ⇒ ∀ x ∈ r : �φ�H(x) = 1
�φ�(r) = 0 ⇒ ∀ x ∈ r : �φ�H(x) = 0

On this ground, the uniform preservation theorem given in the previous section (cfr.
Theorem 1) applies to our specialized semantics, as stated in Corollary 2.

Corollary 2. Let A be a modal abstraction for the hybrid automaton H , and assume
to interpret μ-calculus formulas according to Definition 11. Then A �3 φ � H � φ.

x > 18
ẋ = −0.1x

off

x < 24
ẋ = 5− 0.1x

on

x > 22, x′ = x

x < 20, x′ = x

Fig. 3. Heating Controller

We conclude this subsection by providing
a concrete example, which illustrates our
three-valued semantics on modal abstrac-
tions.

Figure 3 depicts a heating controller con-
sisting of the two discrete states off and on.
While the heating is off, the temperature x
falls via the differential rule ẋ = −0.1x.
Conversely, while the heating is on, the tem-
perature rises via ẋ = 5 − 0.1x. The location off may be left, when the temperature
falls below 20 degree and it has to be left, when x falls below 18 degree. Symmetric
conditions hold for on. Initially, the heating controller starts at the location off with a
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temperature of 20 degrees. Figure 1 and Figure 2 depict two different modal abstrac-
tions A1 and A2 for the heating controller. Consider the formula ψ = μZ.φ ∨ ♦Z ,
where φ denotes a propositional letter being true for the abstract state (off, (20, 24)).
This formula holds in the states that can reach a configuration where the temperature
is between 20 and 24 degree and the heating is off. Applying the semantics scheme
on A1, this formula can not be proven since A1 does not admit a must-path from the
initial region to (off, (20, 24)). Conversely, ψ can not be falsified, since there exists a
may-path from the initial region to the target region. Using A2 instead we can establish
A2 � ψ, since A2 contains a must-path leading to (off, (20, 24)). This yields H � ψ,
by our preservation theorem.

5.2 Semantics Completion for DBB Abstractions

We now turn out to the consideration of DBB abstractions, providing a further special-
ization of the uniform preservation result discussed in section 4.

DBB abstractions encode the information for parallel over- and underapproximated
reachability analysis differently from modal abstractions. In particular, there is no dis-
tinction between edges that over-estimate (resp. under-estimate) the evolution of the
underlying hybrid automaton. Rather, a discrete edge between the abstract states [r]≡n

and [r]≡n in H≡n means that H can evolve from [r]≡n to [r′]≡n−1 ⊇ [r′]≡n , via a
discrete edge. The continuous edges in H≡n represent instead with fidelity the contin-
uous evolution along the regions of the abstraction. These considerations are useful to
understand the ratio underlying the development of the exact semantics for the modal
operators on DBB abstractions, given in Definition 12.

Definition 12. Let H be a hybrid automaton and H≡n = 〈Q/≡n, Q0/≡n, l→,→/≡n〉
be its n-DBB abstraction. Then the semantics scheme in Definition 10 is completed by
the following rules:

• The value of �〈δ〉ϕ�≡n([x]≡n) is given by
⎧
⎪⎨

⎪⎩

1 ∃[x′]≡n ∈ Q/≡n : [x]≡n
δ→ [x′]≡n ∧ �ϕ�≡n([x′]≡n) = 1

0 �[x′]≡n ∈ Q/≡n : [x]≡n
δ

→∗ [x′]≡n ∧ �ϕ�≡n([x′]≡n) = 1
⊥ otherwise

• The value of �〈e〉ϕ�≡n([x]≡n) is given by
⎧
⎪⎨

⎪⎩

1 ∃[x′]≡n ∈ Q/≡n : [x]≡n
δ→ [x′]≡n ∧ �ϕ�≡n−1([x′]≡n) = 1

0 �[x′]≡n ∈ Q/≡n : [x]≡n
e→ [x′]≡n ∧ �ϕ�≡n([x′]≡n) �= 0

⊥ otherwise

• �[a]ϕ�≡n := �¬(〈a〉¬ϕ)�≡n for a ∈ {e, δ}
• Let us use the notation {[xi]≡n} to represent an infinite path in H≡n. Then:

The value of �E(ϕUψ)�≡n([x0]≡n) is given by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 ∃{[xi]≡n}∃k ∈ N : 1. [xi<k]≡n
δ→ [xi+1]≡n ∧ �ϕ ∨ ψ�≡n([xi]≡n) = 1

2. �ψ�≡n([xk]≡n) = 1 or
[xk]≡n

e→ [xk+1]≡n ∧ �E(ϕUψ)�≡n−1([xk+1]≡n−1) = 1
0 ∀{[xi]≡n}∀k ∈ N : �ψ�≡n([xk]≡n) 
= 0 ⇒ ∃j < k : �ϕ ∨ ψ�≡n([xj ]≡n) = 0
⊥ otherwise
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The value of �A(ϕUψ)�≡n([x0]≡n) is given by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 ∀{[xi]≡n}∃k ∈ N : �ψ�≡n([xk]≡n) = 1 ∧ �ϕ ∨ ψ�≡n([xi<k]≡n) = 1

0 ∃{[xi]≡n}∃k ∈ N : 1. [xi<k]≡n
δ→ [xi+1]≡n ∧ �ϕ ∧ ¬ψ�≡n([xi]≡n) = 1

2. �ϕ ∨ ψ�≡n([xk]≡n) = 0 or
[xk]≡n

e→ [xk+1]≡n ∧ �A(ϕUψ)�≡n−1([xk+1]≡n−1) = 0
⊥ otherwise

On the ground of Lemma 3 the uniform preservation theorem in Section 4 applies also
to our specialized semantics for DBB abstractions, as formally stated in Corollary 3.

Lemma 3. LetH≡n be an n-DBB abstraction for the hybrid automatonH , and assume
to interpret μ-calculus formulas according to Definition 12. Then, for any formula φ ∈
{〈δ〉ϕ, 〈e〉ϕ, [δ]ϕ, [e]ϕ,E(ϕUψ), A(ϕUψ)}:

�φ�(r) = 1 ⇒ ∀ x ∈ r : �φ�H(x) = 1
�φ�(r) = 0 ⇒ ∀ x ∈ r : �φ�H(x) = 0

Corollary 3. Let H≡n be an n-DBB abstraction for the hybrid automaton H , and as-
sume to interpret μ-calculus formulas according to Definition 12. Then for any formula
φ ∈ Lμ: H≡n �3 φ � H � φ

x2 ≤ 10
ẋ1 = 1
ẋ2 = 1

shut

x1 ≥ 0
ẋ1 = −1
ẋ2 = −2

open

x1 = 0

x2 = 10

Fig. 4. Water Level Controller

The following example illustrates the in-
stantiation of the semantic framework to
DBB abstractions described so far.

The hybrid automaton depicted in Fig. 4
models a water level controller with two
variables. The first variable x1 represents a
clock, while the second variable x2 models
the water level in the tank. When the valve
at the bottom of the tank is closed, the wa-
ter level increases by 1ms−1, otherwise it decreases by 2ms−1. Intuitively, the clock
allows to establish that the valve remains open as long as it was closed in the previ-
ous step. This hybrid automaton does not belong to any known decidable class , and it
yields infinite bisimulations for suitable initial partitions [15]. This is the case e.g. for
the initial partition

P = {shut ×X, shut × Y, open ×X, open × Y }
whereX = [0, 6]×{10} and Y = [0,∞)×(−∞, 10]\X . However, the above automa-
ton is fully O-minimal and thus the construction of DBB-Abstractions terminates [10].

Consider the following question ‘When starting in Init = open× [0, 6]×{10}, does
the water level controller always admit an evolution to r = shut × [0, 6] × {10}?’.
Such a question corresponds to compute whether H � ψ, where ψ = μZ.r ∨ ♦Z .
We use DBB abstractions to falsify the above property. Figure 5 and Fig. 6 depict the
0-DBB and 1-DBB abstraction, respectively. In the 0-DBB abstraction the formula ψ
evaluates to 1 on r1, r2, r3 and s1, and is indefinite elsewhere. Thus, (H � ψ) =⊥
since �ψ�(s2) =⊥ for the only initial region s2 of H≡0. In the 1-DBB abstraction H≡1

the region s2 gets split to 〈t2, t3〉 and ψ evaluates to 0 on t3. Since all a paths starting
in t3 do not allow to reach a region, where ψ evaluates to 1 or ⊥, we can conclude that
(H≡1 � ψ) = 0. Thus, due to the preservation theorem we can state that H � ψ.
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Fig. 5. 0-DBB Abstraction: Partitioning of the Regions and Control Graph of the Abstraction
(for simplification the cycle r1 ↔ s1 is left out)
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Fig. 6. 1-DBB Abstraction: Partitioning of the Regions and Control Graph of the Abstraction
(for simplification the cycle r1 ↔ s1 is left out)

6 Abstraction Refinement and Monotonicity

A key issue in the context of three-valued abstract semantics for μ-calculus on hybrid
automata is related to monotonicity. Given an abstraction-refinement framework, it is
desirable that the set of formulas evaluating to ⊥ decreases monotonically in its size
along any succession of finer abstractions. Such a requirement is reminiscent of the
usual regularity property for Kleene’s three-valued logics [8,19].

In this section, we compare the two abstraction refinement frameworks based
on DBB-abstractions and modal abstractions with respect to monotonicity. Theorem
2 proves that the DBB succession of abstractions allows to monotonically recover
true/false μ-calculus formulas along the series of refining abstractions.

Theorem 2 (Monotonicity). LetH≡n andH≡k with n > k be DBB abstractions of the
hybrid system H , and let φ be a μ-calculus formula. Then, (H≡k � φ) � (H≡n � φ).

The following example shows instead that the abstraction/refinement framework based
on modal abstractions does not behave well with respect to monotonicity.

Example 1. Let us consider the abstraction A3 depicted in Fig. 7 which is a refinement
of the abstraction A2 given in Fig. 2. In Section 5.1 we were able to establish the result
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Fig. 7. Abstraction A3 with may/must of the heating controller

(A2 �3 μZ.φ∨♦Z) = 1, where φ is a propositional letter being true on (20, 24)× off.
However, we cannot prove (A3 �3 μZ.φ ∨ ♦Z) = 1 since there exist no

e→must-
transitions from the configuration off to the configuration on.

7 Conclusions

In this paper, we developed a framework for inferring general μ-calculus properties
on abstractions of hybrid automata. Based on the definition of a sound three-valued
semantics on abstractions, our framework does not feature the inherent limitations of
bounded model checking or techniques using the simulation preorder. In particular,
our method can both prove and disprove arbitrary μ-calculus properties on abstractions
over- and underapproximating (unbounded) evolutions of the system. To cope with the
variety of candidate abstractions for our framework, we rely on a top-down approach in
which we (1) fix the semantics of boolean and fixpoint operators while only constrain-
ing the modal operators, and (2) consider suitable classes of abstractions to instantiate
the modal operators according to the constraints. We finally show that, despite of the
generality of the preservation result, the choice of the abstraction is relevant for the
monotonic preservation of true/false evaluations along abstraction refinements.
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