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A UNIFORM BIJECTION BETWEEN NONNESTING

AND NONCROSSING PARTITIONS

DREW ARMSTRONG, CHRISTIAN STUMP, AND HUGH THOMAS

Abstract. In 2007, D.I. Panyushev defined a remarkable map on the set of
nonnesting partitions (antichains in the root poset of a finite Weyl group). In
this paper we use Panyushev’s map, together with the well-known Kreweras
complement, to construct a bijection between nonnesting and noncrossing par-
titions. Our map is defined uniformly for all root systems, using a recursion in
which the map is assumed to be defined already for all parabolic subsystems.
Unfortunately, the proof that our map is well defined, and is a bijection, is
case-by-case, using a computer in the exceptional types. Fortunately, the proof
involves new and interesting combinatorics in the classical types. As conse-
quences, we prove several conjectural properties of the Panyushev map, and we
prove two cyclic sieving phenomena conjectured by D. Bessis and V. Reiner.

1. Introduction

To begin we will describe the genesis of the paper.

1.1. Panyushev complementation. Let Δ ⊆ Φ+ ⊆ Φ be a triple of simple roots,
positive roots, and a crystallographic root system corresponding to a finite Weyl group
W of rank r. We think of Φ+ as a poset in the usual way, by setting α ≤ β whenever
β − α is in the nonnegative span of the simple roots Δ. This is called the root
poset. The set of nonnesting partitions NN(W ) is defined to be the set of antichains
(sets of pairwise-incomparable elements) in Φ+. This name is based on a pictorial
representation of antichains in the classical types. It is well known that the number
of nonnesting partitions is equal to the Catalan number

Cat(W ) :=
r∏

i=1

di + h

di
,

where d1 ≤ d2 ≤ · · · ≤ dr = h are the degrees of a fundamental system of poly-
nomial invariants for W (called the degrees of W ), and where h is the Coxeter
number. This formula was first conjectured by Postnikov [21, Remark 2] and at
least two uniform proofs are known: Cellini and Papi [8] established a bijection
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4122 DREW ARMSTRONG, CHRISTIAN STUMP, AND HUGH THOMAS

Figure 1. An orbit of the Panyushev complement.

between antichains in the root poset and dominant chambers of the Shi arrange-
ment. The enumeration then follows from earlier work of Haiman [14] on the finite
torus Q/(h + 1)Q, or from subsequent work of Athanasiadis [2] on characteristic
polynomials of hyperplane arrangements.

In 2007, Panyushev defined a remarkable map on nonnesting partitions [20]. To
describe it, we first note that an antichain I ⊆ Φ+ corresponds bijectively to the
order ideal 〈I〉 ⊆ Φ+ that it generates. The Panyushev complement is defined as
follows.

Definition 1.1. Given an antichain of positive roots I ⊆ Φ+, define Pan(I) to be
the antichain of minimal roots in Φ+ \ 〈I〉.

For example, Figure 1 displays a single orbit of the Panyushev complement
acting on the root poset of type A3. The antichain in each picture corresponds to
the maximal black dots in the order ideal given by the shaded area.

We note that this action on antichains can be applied to an arbitrary poset, and,
in fact, this operation has been rediscovered several times, going back at least to
Duchet [10] for Boolean lattices and to Brouwer-Schrijver [7] for arbitrary posets.
In this paper, we keep the expression “Panyushev complement” because Panyushev
observed that this map on the root poset has some special properties not holding in
an arbitrary poset. In particular, in [20], he made the following conjectures, which
have remained open even in type A.

Panyushev Conjectures. Let W be a finite Weyl group of rank r, with h its
Coxeter number, and let Pan be the Panyushev complement on antichains in the
associated root poset Φ+. Moreover, let ω0 be the unique longest element in W .

(i) Pan2h is the identity map on NN(W ).

(ii) Panh acts on NN(W ) by the involution induced by −ω0.
(iii) For any orbit O of the Panyushev complement acting on NN(W ), we have

1

|O|
∑
I∈O

|I| = r/2.

For example, in type A3 we have 2h = 8, and the Panyushev complement has
three orbits, of sizes 2, 4, and 8 (the one pictured). In type A, ω0 acts by αi �→
−αn−i, where αi denotes the i-th simple root in the linear ordering of the Dynkin

diagram. One can observe in the pictured orbit that Panh acts by reflecting the
root poset (this corresponds to reversing the linear order of the Dynkin diagram),

and that Pan2h is the identity map. Moreover, the average size of an antichain in
this orbit is 1

8 (2 + 1 + 1 + 2 + 2 + 1 + 1 + 2) = 3/2 = r/2.
In this paper we will prove the following.

Theorem 1.2. The Panyushev Conjectures are true.
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Figure 2. An orbit of the Kreweras map.

However, this theorem is not the main goal of the paper. Instead, we will use the
Panyushev complement as inspiration to solve an earlier open problem: to construct
a uniform bijection between antichains in Φ+ and a different sort of Catalan object,
the noncrossing partitions. We will then use the combinatorics we have developed
to prove the Panyushev Conjectures.

1.2. Kreweras complementation. In addition to nonnesting partitions, there is
also a notion of noncrossing partitions for root systems, which we now describe.

Let T be the set of all reflections in a finite Coxeter group W of rank r. That is, T
consists of the reflections orthogonal to the positive roots Φ+ of a (not necessarily
crystallographic) root system Φ. Let S ⊆ T denote the simple reflections, orthogonal
to the simple roots Δ ⊆ Φ+ ⊆ Φ, and let c ∈ W be a Coxeter element (the product
of the reflections S in some order). Then the set of noncrossing partitions is

NC(W, c) := {w ∈ W : �T (w) + �T (cw
−1) = r} ⊆ W.

For a full exposition of this object and its history, see [1]. It turns out that NC(W, c)
is also counted by the Catalan number Cat(W ), but in this case no uniform proof
is known (the only proof is case-by-case, using a computer for the exceptional
types). In this paper we will partially remedy this situation by uniformly con-
structing a bijection between antichains in Φ+ and NC(W, c). It is only a partial
remedy because the proof that our map actually is a bijection is still case-by-case.

Our map relies on the Panyushev complement and a certain map on noncrossing
partitions, which we now describe. The type A noncrossing partitions were first
studied in detail by Kreweras [19], as pictures of “noncrossing partitions” of vertices
around a circle. He noticed that the planarity of these pictures yields a natural anti-
automorphism, which we call the Kreweras complement.

Definition 1.3. Given a noncrossing partition w ∈ NC(W, c) ⊆ W , let Krew(w) :=
cw−1. Since the reflection length �T is invariant under conjugation it follows that
Krew(w) is also in NC(W, c).

In type An−1 the set NC(W, c) is isomorphic to the lattice of classical noncrossing
partitions: place the vertices {1, 2, . . . , n} around a circle; we say a partition of
these vertices is “noncrossing” if the convex hulls of its blocks are pairwise disjoint.
To construct the classical Kreweras map, place the vertices {1, 1′, 2, 2′, . . . , n, n′}
around a circle; if π is a noncrossing partition of the vertices {1, . . . , n}, then
Krew(π) is defined to be the coarsest partition of {1′, 2′, . . . , n′} such that π ∪
Krew(π) is a noncrossing partition of {1, 1′, . . . , n, n′}. For example, Figure 2 shows
a single orbit of Krew acting on the noncrossing partitions of a square (given by the
black vertices). Note here that Krew2 rotates the square by 90◦.
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4124 DREW ARMSTRONG, CHRISTIAN STUMP, AND HUGH THOMAS

For a general root system we have Krew2(w) = cwc−1, which is just conjugation
by the Coxeter element. Since any Coxeter element c has order h (indeed this is the

usual definition of the Coxeter number h) we conclude that Krew2h is the identity
map. Thus we will prove part (i) of the Panyushev Conjectures by constructing a
bijection from antichains to noncrossing partitions that sends Pan to Krew.

1.3. Panyushev complement = Kreweras complement. The main idea for
our bijection is to essentially declare that Pan = Krew, and then work out what this
means. The key observation is the following.

Since a Dynkin diagram of finite type is a tree, we can partition the simple
reflections S into sets S = L
R such that the elements of L commute pairwise, as
do the elements of R. Let cL denote the product of the reflections L (in any order)
and similarly let cR denote the product of the reflections R. Thus cL and cR are
involutions in W and c = cLcR is a special Coxeter element, called a/the bipartite
Coxeter element.

The data for Pan consists of a choice of simple system Δ — which from now
on we will partition as Δ = ΔL 
 ΔR — and the data for Krew consists of a
Coxeter element — which from now on we will assume to be c = cLcR. With this
in mind, Panyushev observed that his map has two distinguished orbits: one of
size h consisting of the sets of roots at each rank of the root poset; and one of
size 2, namely {ΔL,ΔR}. Similarly, the Kreweras map on NC(W, cLcR) has two
distinguished orbits: one of size h consisting of

cL, cLcRcL, . . . , cRcLcR, cR;

and one of size 2, namely {1, c}. The attempt to match these orbits was the genesis
of our bijection.

To understand its definition, we must first discuss parabolic recursion. Let WJ ⊆
W denote the parabolic subgroup generated by a subset J ⊆ S of simple reflections
and let ΔJ ⊆ Φ+

J ⊆ Φ+ be the corresponding simple and positive roots. Antichains
and noncrossing partitions may be restricted to WJ as follows. Given an antichain
I ⊆ Φ+, its support supp(I) = 〈I〉∩Δ is the set of simple roots below I. If supp(I) ⊆
J , then I is also an antichain in the parabolic subroot system Φ+

J . Similarly, the
set J induces a unique partition of the diagram J = LJ 
 RJ with LJ ⊆ L and
RJ ⊆ R. Writing cJ for cLJ

cRJ
, we may discuss the parabolic noncrossing partitions

NC(WJ , cJ) ⊆ NC(W, c).

We fix these conventions for the statements of our Main Definition and Theorem.

Main Definition. Given an antichain I ∈ NN(W ) we recursively define a non-
crossing partition ΘW (I) ∈ NC(W, c) as follows. The initial condition is that
ΘW (ΔL) := 1 ∈ W .

(i) Choose k ≥ 0 minimal so that Pank(I) has less than full support,

supp(Pank(I)) = J � S.

(ii) Compute w =
(∏

s∈L\J s
)
ΘWJ

(I) ∈ NC(WJ , cJ) ⊆ NC(W, c).

(iii) Finally, let ΘW (I) := Krew−k(w) ∈ W .

To show that this map is well defined, we have to show that every orbit contains
at least one element which is not of full support (since otherwise it would sometimes
be impossible to choose k in step (i) above).
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Main Theorem. The map ΘW is well defined and a bijection from nonnesting
partitions to noncrossing partitions. Moreover, it is the unique map from NN(W )
to NC(W, c) satisfying the following three properties:

(i) ΘW (ΔL) = 1 ∈ W , (initial condition)
(ii) ΘW ◦ Pan = Krew ◦ΘW , (Pan = Krew)

(iii) ΘW (I) =
(∏

s∈L\supp(I) s
)
ΘWsupp(I)(I). (parabolic recursion)

Note that the Main Definition is uniform for root systems. It is also computa-
tionally efficient and has been implemented in Maple. In order to prove the Main
Theorem, one has to ensure that properties (ii) and (iii) are compatible in the case
of a Panyushev orbit containing multiple elements which are not of full support.
One might hope for an explicit, nonrecursive definition of ΘW . We do provide such
a definition in the classical types (though not uniformly). In contrast to the uniform
character of the Main Definition, our proof of the Main Theorem is case-by-case,
using the above-mentioned computation in the exceptional types.

We also note that the interaction between “nonnesting” and “noncrossing” prop-
erties is a subtle phenomenon, even just in type A (see [9]). For the classical types
in general: A. Fink and B. I. Giraldo [12] as well as M. Rubey and the second au-
thor [23] have both constructed NN to NC bijections that are uniform in a certain
combinatorial framework that encompasses types A, B/C and D. These bijections
have some advantages over ours; in particular, both preserve the “parabolic type”
of the nonnesting and noncrossing partitions. On the other hand, our new bijection
has the advantages that 1) its definition is truly uniform, and 2) it allows us to
prove the Panyushev Conjectures, as well as two conjectures of Bessis and Reiner,
which we describe in the next section.

Since the original version of this paper appeared on the arxiv, Striker and
Williams [26] found a new approach to the Panyushev complement, which allows
them to construct equivariant bijections between noncrossing and nonnesting par-
titions in types A and B as special cases. They also give some additional references
to occurrences of the Panyushev complement in the literature (prior to the work of
Panyushev). Another recent paper related to the Panyushev complement is [24].

1.4. Cyclic sieving. The cyclic sieving phenomenon was introduced by V. Reiner,
D. Stanton, and D. White in [22] as follows: let X be a finite set, let X(q) ∈ Z[q]
and let Cd = 〈c〉 be a cyclic group of order d acting on X. The triple (X,X(q), Cd)
exhibits the cyclic sieving phenomenon (CSP) if

[X(q)]q=ζk =
∣∣Xck

∣∣,
where ζ denotes a primitive d-th root of unity and Xck := {x ∈ X : ck(x) = x} is
the fixed-point set of ck in X. Let

X(q) ≡ a0 + a1q + · · ·+ ad−1q
d−1 mod (qd − 1).(1)

An equivalent way to define the CSP is to say that ai equals the number of Cd-orbits
in X whose stabilizer order divides i [22, Proposition 2.1].

Bessis and Reiner recently showed that the action of the Coxeter element on non-
crossing partitions together with a remarkable q-extension of the Catalan numbers

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4126 DREW ARMSTRONG, CHRISTIAN STUMP, AND HUGH THOMAS

Cat(W ) exhibits the CSP: define the q-Catalan number

Cat(W ; q) :=
r∏

i=1

[di + h]q
[di]q

,

where [k]q = 1 + q + q2 + · · ·+ qk−1 is the usual q-integer. It is not obvious, but it
turns out (see Berest, Etingof, and Ginzburg [4]) that this number is a polynomial
in q with nonnegative coefficients. In type An−1, the formula reduces to the classical
q-Catalan number of Fürlinger and Hofbauer [13]. That is, we have

Cat(An−1; q) =
1

[n+ 1]q

[
2n
n

]
q

,

where [ ab ]q =
[a]q !

[b]q![a−b]q!
is the Gaussian binomial coefficient and [k]q! = [1]q[2]q · · · [k]q

is the q-factorial.
For a Coxeter element c ∈ W , it follows directly from the definition that the map

conj(w) = cwc−1 is a permutation of the set NC(W, c) of noncrossing partitions. In
classical types, this corresponds to a “rotation” of the pictorial presentation.

Theorem 1.4 (Bessis and Reiner [6]). The triple
(
NC(W ),Cat(W ; q), 〈conj〉

)
ex-

hibits the CSP for any finite Coxeter group W .

Actually, they proved this result in the greater generality of finite complex re-
flection groups; we will restrict the current discussion to (crystallographic) finite real
reflection groups — that is, finite Coxeter groups and finite Weyl groups, respec-
tively. At the end of their paper, Bessis and Reiner [6] conjectured several other
examples of cyclic sieving, two of which we will prove in this paper.

Theorem 1.5. Let W be a finite Coxeter group, respectively finite Weyl group.

(i) The triple
(
NC(W ),Cat(W ; q), 〈Krew〉

)
exhibits the CSP.

(ii) The triple
(
NN(W ),Cat(W ; q), 〈Pan〉

)
exhibits the CSP.

Note that (i) is a generalization of Theorem 1.4 since Krew2 is the same as
conjugation by the Coxeter element. The type A version of (i) has been proved
by D. White (see [6]) and independently by C. Heitsch [15]; C. Krattenthaler has
announced a proof of a more general version for complex reflection groups which
appeared in the exceptional types in [18]; and will appear for the group G(r, p, n)
in [17]. In this paper we find it convenient to present an independent proof, on
the way to proving our Main Theorem. Combining (i) and the Main Theorem then
yields (ii) as a corollary.

1.5. Outline. The paper is organized as follows.
In Section 2, we introduce a notion of noncrossing handshake configurations for

the classical types, and define a bijection φW from noncrossing handshake config-
urations TW to noncrossing partitions NC(W, c). We establish the cyclic sieving
phenomenon for noncrossing partitions using these bijections in classical types, and
via a computer check for the exceptional types.

In Section 3, we define a bijection ψW from the nonnesting partitions of W to
TW in the classical types. Using this, we establish the cyclic sieving phenomenon
for nonnesting partitions in the classical types, and again via a computer check for
the exceptional types.
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Figure 3. The noncrossing handshake configuration T ∈ T6 for
w = (2, 3, 5) and its associated rooted plane tree.

In Section 4, we show that the bijection from the nonnesting partitions of W
to TW in the classical types satisfies a suitable notion of parabolic induction.

In Section 5, we put together the bijections from sections two and three to
prove the Main Theorem. The calculations for the exceptional types were done
using Maple code, which is available from the first author.

In the final section, Section 6, we use the combinatorics describing the Panyu-
shev and the Kreweras complementation to prove the Panyushev Conjectures.

2. The Kreweras CSP for noncrossing partitions

In this section, we prove Theorem 1.5(i) for every type individually. For type
An−1, C. Heitsch proved the theorem by connecting noncrossing partitions of type
An−1 to noncrossing set partitions of [n] := {1, . . . , n} and moreover to noncrossing
handshake configurations of [2n] and to rooted plane trees. For the classical types,
we will explore a connection which is related to the construction of C. Heitsch as
described in Remark 2.

2.1. Type A. Fix the linear Coxeter element c to be the long cycle (1, 2, . . . , n).
Here, linear refers to the fact that it comes from a linear ordering of the Dynkin
diagram. It is well known that the set of noncrossing partitions NCn := NC(An−1)
can be identified with the set of noncrossing handshake configurations. The ground
set consists of 2 copies of [n] colored by 0 and 1 drawn on a circle in the order
1(0), 1(1), . . . , n(0), n(1). A noncrossing handshake configuration is defined to be a
noncrossing matching of those 2 copies of [n]; see Figure 3. As shown in the figure,
they are in natural bijection with rooted plane trees. The bijection φAn−1

: Tn −→
NCn is then, for w = φAn−1

(T ), given by(
i(1), j(0)

)
∈ T ⇔ w(i) = j.

For a direct description of noncrossing partitions in terms of rooted plane trees see
e.g. [5, Figure 6].

Remark 1. Observe that the described construction does not require the choice
of the linear Coxeter element. As the Coxeter elements in type An−1 are exactly
the long cycles, one obtains analogous constructions by labelling the vertices of Tn
by any given long cycle. This corresponds to the natural isomorphism between

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4128 DREW ARMSTRONG, CHRISTIAN STUMP, AND HUGH THOMAS

NC(W, c) and NC(W, c′) given by conjugation sending c to the Coxeter element c′.
We will make use of this flexibility later on in this paper.

The following proposition follows immediately from the definition.

Proposition 2.1. The Kreweras complementation on NCn can be described in
terms of Tn by clockwise rotation of all edges by one, or, equivalently, by counter-
clockwise rotation of all vertex labels by one. I.e., for T ∈ Tn, we have(

i(1), j(0)
)
∈ T ⇔

(
j(1), (i+ 1)(0)

)
∈ Krew(T ).

Remark 2. One can easily deduce the proposition as well from O. Bernardi’s de-
scription [5, Figure 6] and the definition of the Kreweras complementation of a
set partition to be its coarsest complementary set partition. C. Heitsch obtains
analogous results in [15] by directly considering a bijection φ′ between Tn and NCn

which is related to the bijection φ described above by φ′(w) = φ(Krew(w)).

For more readability, we set Catn(q) := Cat(An−1; q), and Catn := Catn(1).

Theorem 2.2. The triple
(
NCn,Catn(q), 〈Krew〉

)
exhibits the CSP.

Proof. The theorem follows immediately from [16, Theorem 8]: let d be an integer
such that d

∣∣2n and let ζ be a primitive d-th root of unity. Then it follows e.g. from
[11, Lemma 3.2] that Catn(q) reduces for q = ζ to

[
Catn(q)

]
q=ζ

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Catn if d = 1,

nCatn−1
2

if d = 2 and n odd,(
2n/d

n/d

)
if d ≥ 2, d

∣∣n,
0 otherwise.

(2)

In [16, Theorem 8], C. Heitsch proved that noncrossing handshake configurations

of 2n which are invariant under a d-fold rotation, i.e., for which Krew2n/d(T ) = T ,
are counted by those numbers. �

2.2. Types B and C. As the reflection groups of types B and C coincide, the
notions of noncrossing partitions do as well. Therefore we restrict our attention
to type C. In this case, we fix the linear Coxeter element c to be the long cycle
(1, . . . , n,−1, . . . ,−n) and keep in mind that we could replace c by any long cycle
of analogous form. NC(Cn) can be seen as the subset of NC(A2n−1) containing all
elements for which i �→ j if and only if −i �→ −j, where n+ i and −i are identified.
TCn

is defined to be the set of all noncrossing handshake configurations T of [±n]
for which (i(1), j(0)) ∈ T if and only if (−i(1),−j(0)) ∈ T . The Kreweras comple-
mentation on NC(Cn) is again the clockwise rotation of all edges by 1. Observe that
the symmetry property is expressed in terms of the Kreweras complementation by
Krew2n(T ) = T for T ∈ TCn

. By construction, the bijection φA2n−1
: T2n−̃→NC2n

restricts to a bijection

φCn
: T (Cn)−̃→NC(Cn),

which is compatible with the Kreweras complementation, i.e.,

φCn
(Krew(T )) = Krew(φCn

(T )).

For the proof of Theorem 1.5(i) in type C, we need the following observation.
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Lemma 2.3. Let d1 and d2 be divisors of 2n, and let d3 = lcm{d1, d2}. T ∈ Tn
is invariant both under d1- and d2-fold rotation if and only if T is invariant under
d3-fold symmetry.

Proposition 2.4. The triple
(
NC(Cn),Cat(Cn; q), 〈Krew〉

)
exhibits the CSP.

The proof in type C is a simple corollary of the proof in type A.

Proof. The q-Catalan number Cat(W ; q) reduces for W = Cn to

Cat(Cn, q) =

[
2n
n

]
q

.

Let d be an integer such that d
∣∣4n and let ζ be a primitive d-th root of unity. Then

it follows again from [11, Lemma 3.2] that Cat(Cn, q) reduces for q = ζ to

[
Cat(Cn, q)

]
q=ζ

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
4n/d

2n/d

)
if d even and d

∣∣2n,(
2n/d

n/d

)
if d odd,

0 otherwise.

Let d
∣∣4n. Then, by the previous lemma, the number of elements in TCn

which are

invariant under d-fold symmetry, i.e., for which Krew4n/d(T ) = T , are exactly those
elements in T2n which are invariant under lcm{d, 2}-fold symmetry. The proposition
follows. �

2.3. Type D. In this case, we fix the linear Coxeter element c to be given by
(1, . . . , n− 1,−1, . . . ,−n+ 1)(n,−n). As in types A and C, the noncrossing hand-
shake configuration in type D comes from noncrossing set partitions of type D as
defined in [3] by replacing every point i by the two points i(0) and i(1), together
with the appropriate restrictions, as described below.

Define a matching of

{±1(0),±1(1), . . . ,±n(0),±n(1)}

to be noncrossing of typeDn if the points {±1(0),±1(1), . . . ,±(n−1)(0),±(n−1)(1)}
are arranged clockwise on a circle as in type Cn−1 and the points {±n(0),±n(1)}
form a small counterclockwise oriented square in the center of the circle, and the
matching does not cross in this sense. A noncrossing handshake configuration T of
type Dn is a noncrossing matching T of type Dn, with the additional properties
that (i(1), j(0)) ∈ T if and only if (−i(1),−j(0)) ∈ T and that the size of

M± := {(i(1), j(0)) ∈ T : i and j have opposite signs}

is divisible by 4. See Figure 4 for examples of noncrossing handshake configurations
of type D3.

As in the other types, we keep in mind that we could replace the linear Coxeter
element by any Coxeter element to obtain labellings for the vertices of a noncrossing
handshake configuration of type D.

Define the Kreweras complementation Krew on Dn by rotating the labels of
the outer circle counterclockwise and the labels of the inner circle clockwise; more
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Figure 4. Four different noncrossing handshake configurations in TD3
.

precisely, let κ(i(0)) := i(1) and

κ(i(1)) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(i+ 1)(0) if i ∈ [n− 2],
(i− 1)(0) if i ∈ [−n+ 2],

(−1)(0) if i = n− 1,
1(0) if i = −n+ 1,

(−n)(0) if i = n,
n(0) if i = −n.

(3)

Then (i(1), j(0)) ∈ T if and only if
(
κ(j(0)), κ(i(1))

)
∈ Krew(T ). To see this, observe

that the only outer vertices changing sign are ±(n− 1)(1), and the only two inner
vertices are ±n(1). Thus, the size of M± for Krew(T ) is again divisible by 4.
As an immediate consequence of the construction in [3], we obtain that the map
φDn

: TDn
−̃→NC(Dn) defined in the same way as for NCn is well defined and a

bijection between noncrossing handshake configurations of type Dn and NC(Dn).

Proposition 2.5. The bijection φDn
: TDn

−̃→NC(Dn) is compatible with the Krew-
eras complementation, i.e., for T ∈ TDn

,

φDn
(Krew(T )) = Krew(φDn

(T )).

Proof. Let
(
i(1), j(0)

)
∈ T . This implies that

(
κ(j(0), κ(i(1)))

)
∈ Krew(T ). There-

fore, by checking the different cases in (3), we obtain φDn
(Krew(T ))φDn

(T ) = c,
and moreover, φDn

(Krew(T )) = cφDn
(T )−1 = Krew(φDn

(T )). �
Proposition 2.6. The triple

(
NC(Dn),Cat(Dn; q), 〈Krew〉

)
exhibits the CSP.
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Figure 5. A typical situation in TDn
with 4-fold symmetry for 4 = d

∣∣n.
Proof. The q-Catalan number Cat(Dn; q) is given by

Cat(Dn, q) =

[
2n− 1

n

]
q2

+ qn
[
2n− 2

n

]
q2
.

Let d be an integer such that d
∣∣4(n− 1) and let ζ be a primitive d-th root of unity.

Then it follows again from [11, Lemma 3.2] that Cat(Dn, q) reduces for q = ζ to

[
Cat(Dn, q)

]
q=ζ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cat(Dn) if d = 1,

Cat(Dn) if d = 2, n even,

Cat(Cn−1) if d = 2, n odd,

Cat(Cn/2) if d = 4, 4
∣∣n,

Cat(C2(n−1)/d) if d ≥ 4 even, d
∣∣2(n− 1),

Cat(C(n−1)/d) if d ≥ 3 odd,

0 otherwise.

For d = 1, this is obvious.

For d = 2, n even, the symmetry property implies that Krew2(n−1)(T ) = T for
all T ∈ TDn

.
For d = 2, n odd, observe that T ∈ TDn

is invariant under 2-fold symmetry,

i.e., Krew2(n−1)(T ) = T if and only if {±n(0),±n(1)} forms a submatching of T .
Therefore, those are counted by Cat(Cn−1).

For d = 4
∣∣n, we want that Krewn−1(T ) = T and therefore, {±n(0),±n(1)} must

not form a submatching of T and we are in a situation as indicated in Figure 5.
This gives∣∣{T ∈ TDn

: Krewn−1(T ) = T}
∣∣ = 2(n− 1)Cat(A(n−2)/2)

=
4(n− 1)

n

(
n− 2

(n− 2)/2

)
=

(
n

n/2

)
,

where the first 2 comes from the 2-fold rotation of the inner square, the n − 1 is
the number of possible connections between the inner square and the circle, and
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Cat(A(n−2)/2) is the number of noncrossing handshake configurations of the n− 2
free points on the outer circle.

For d ≥ 4 even, d
∣∣2(n−1), we have again that {±n(0),±n(1)} forms a submatch-

ing of T and we have immediately that∣∣{T ∈ TDn
: Krew4(n−1)/d(T ) = T}

∣∣ = Cat(C2(n−1)/d).

For d ≥ 3 odd, it follows that d
∣∣n− 1 and the same argument as in the previous

case applies.
The only otherwise case which is left is the case d ≥ 4 even, d � 2(n− 1). In this

case, we see that 4
∣∣d and it follows together with the symmetry property that there

does not exist a T ∈ TDn
such that Krew4(n−1)/d(T ) = T . �

2.4. Type I2(k). For the dihedral groups, we obtain the theorem by straightfor-
ward computations. Let I2(k) = 〈a, b〉 for two given simple reflections a, b and
fix the linear Coxeter element c := ab. Then NC(I2(k)) contains 1, c and all k
reflections contained in I2(k).

Proposition 2.7. The triple
(
NC(I2(k)),Cat(I2(k); q), 〈Krew〉

)
exhibits the CSP.

Proof. The Kreweras complementation Krew on NC(I2(k)) has 2 orbits, one is {1, c}
and the other contains all k reflections. On the other hand,

Cat(I2(k); q) =
[k + 2]q[2k]q

[2]q[k]q

=

{
(1 + q2 + · · ·+ qk)(1 + qk) if k even,

1 + q2 + · · ·+ qk−1 + qk + qk+1 + · · ·+ q2k if k odd,

and the proposition follows. �

2.5. Exceptional types. For the exceptional Coxeter groups,

Cat(W ; q) mod (q2h − 1)

can be simply computed and by (1), we need to find the following orbit lengths,
where i ∗ j is shorthand for i orbits of length j:

F4 : 8 ∗ 12, 1 ∗ 4, 1 ∗ 3, 1 ∗ 2,
H3 : 3 ∗ 10, 1 ∗ 2,
H4 : 9 ∗ 30, 1 ∗ 5, 1 ∗ 3, 1 ∗ 2,
E6 : 30 ∗ 24, 8 ∗ 12, 1 ∗ 8, 1 ∗ 4, 1 ∗ 3, 1 ∗ 2,
E7 : 230 ∗ 18, 3 ∗ 6, 1 ∗ 2,
E8 : 832 ∗ 30, 5 ∗ 15, 3 ∗ 10, 2 ∗ 5, 1 ∗ 3, 1 ∗ 2.

Those orbit lengths were verified with a computer; as mentioned above, they can
be deduced as well from [18].

3. The Panyushev CSP for nonnesting partitions

In this section, we prove Theorem 1.5(ii) for every type individually by providing
a bijection between nonnesting partitions and noncrossing handshake configurations
which maps the Panyushev complementation to the Kreweras complementation.
We consider the same noncrossing handshake configurations as before, but we use
a different labelling to refer to the vertices. In type An−1, we label the vertices

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A UNIFORM BIJECTION BETWEEN NN AND NC PARTITIONS 4133

Figure 6. The nonnesting labels on a noncrossing handshake con-
figuration in T6.

(a) (b)

Figure 7. (a) An antichain and its image under the Panyushev
complementation in the root poset of type A5; (b) another an-
tichain and its image in the root poset of type C3.

on the outer circle by {1(0), . . . , n(0), n(1), . . . , 1(1)} in clockwise order. E.g., the
noncrossing handshake configuration shown in Figure 3 is relabelled as shown in
Figure 6.

3.1. Type A. Let Φ+ := {(i, j) = ei − ej : 1 ≤ i < j ≤ n} be the set of all
transpositions identified with a set of positive roots for An−1. The root poset
structure on Φ+ is given by

(i, j) ≤ (i′, j′) ⇔ i′ ≤ i < j ≤ j′;(4)

see Figure 7(a) for an example. Let I = {(i1, j1), . . . , (ik, jk)} ∈ NN(An−1) such
that i1 < · · · < ik. Observe that (4) implies j1 < · · · < jk as well. Define a map

ψAn−1
: NN(An−1) −→ Tn
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as follows: for 1 ≤ � ≤ k, mark the vertex j
(0)
� with i� and for i ∈ [n] \ {i1, . . . , ik}

mark the vertex i(1) with i. Now, for 1 ≤ i ≤ n, in increasing order, match the
vertex marked with i with the first nonmatched vertex, where first is interpreted
counterclockwise from the marked vertex if i ∈ {i1, . . . , ik} and clockwise from the
marked vertex if i /∈ {i1, . . . , ik}. For example, for the antichain

I =
{
(1, 2), (4, 5), (5, 6)

}
∈ NN(A5)

considered in Figure 7(a), we have ψAn−1
(I) = T , where T ∈ T6 is the noncrossing

handshake configuration shown in Figures 3 and 6.
To show that ψAn−1

is a bijection, we define its inverse ψ′
An−1

: Tn → NN(An−1).

Let T ∈ Tn. Mark all j(b) for which (i(a), j(b)) ∈ T with i < j, or with i = j and
(a, b) = (0, 1). Next, label all marks i(1) with i, and then label all marks i(0)

clockwise with the remaining labels in [n]. The antichain ψ′
An−1

(T ) is then given

by

ψ′
An−1

(T ) =
{
(i, j) : vertex j(0) is marked by i

}
.

Proposition 3.1. The map ψ′
An−1

is well defined and the inverse of ψAn−1
. In

particular, ψAn−1
: NN(An−1)−̃→Tn is a bijection.

Proof. To see that ψ′
An−1

is well defined, we have to check that any marked vertex

j(0) is marked with some i < j. Assume that j(0) is marked with j. This implies
that the set {1(0), . . . , (j − 1)(0), (j − 1)(1), . . . , 1(1)} contains j − 1 marked vertices
and forms therefore a submatching, a contradiction to the fact that j, as it is
marked, is matched to some element in this set.

As in the process of applying ψ′
An−1

and of applying ψAn−1
the same vertices get

marked, ψ′
An−1

is in fact the inverse of ψAn−1
. �

Theorem 3.2. The bijection ψAn−1
is compatible with the Panyushev respectively

the Kreweras complementation. For I ∈ NN(An−1), we have

Krew(ψAn−1
(I)) = ψAn−1

(Pan(I)).

To prove this theorem, we first have to understand how the Panyushev comple-
mentation behaves in type A. Recall that the support supp(I) of some antichain
I ∈ NN(An−1) is given by supp(I) :=

⋃
(i,j)∈I{si, . . . , sj−1}. Next, set

Î =
{
(i′1, j

′
1), . . . , (i

′
k, j

′
k)} := I ∪ {(i, i) : si−1, si /∈ supp(I)

}
such that i′1 < · · · < i′k, where the dummies s0, sn are supposed not to be in supp(I).
The Panyushev complementation is then given by

Pan(I) =
{
(i′2 − 1, j′1 + 1), . . . , (i′k − 1, j′k−1 + 1)

}
∈ NN(An−1).

Proposition 3.3. Let I be a nonnesting partition. Then sk /∈ supp(I) if and only
if {i(0), i(1) : 1 ≤ i ≤ k} defines a submatching of ψAn−1

(I). In particular,

(i(0), i(1)) ∈ ψAn−1
(I) ⇔ (i, i) ∈ Î .

Proof. The proposition follows directly from the definition. �

Example 3.4. The noncrossing handshake configuration T in Figure 6 is the image
of I = {(1, 2), (4, 5), (5, 6)} ∈ NN(A5) under ψA5

. The complement of the support
of I is S \ supp(I) = {s2, s3}. The submatchings guaranteed by the proposition are
those on the vertices {1(0), 1(1), . . . , k(0), k(1)} for k ∈ {2, 3}.
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Proof of Theorem 3.2. As it is easier to see, we describe the analogous statement
for ψ′

An−1
. The element ψ′

An−1
(Krew(T )) can be described in terms of ψ′

An−1
(T ) as

follows: a marked i(0) is turned to a marked (i+1)(0) (unless i = n when the mark
disappears), and for a marked i(1), we obtain a marked (i−1)(1) (unless i = 1 when
the mark disappears). If (i(0), i(1)) ∈ T , the marked i(1) is replaced by a marked
(i+ 1)(0). The theorem follows with Proposition 3.3 and the description of Pan(I)

in terms of Î. �

3.2. Types B and C. In contrast to the situation for reflection groups, the notion
of the root system does not coincide for types B and C. The resulting root posets
turn out to be isomorphic (as posets) but not equal. Thus, it suffices to study the
Panyushev complementation on one of the two. As the connection between the
root poset of type Cn and the root poset of type A2n−1 is straightforward, whereas
there is a little more work to do in type Bn, we will study nonnesting partitions
of type Cn. This corresponds to the fact that the type Cn Dynkin diagram can be
obtained from the type An−1 Dynkin diagram through a “folding process”.

The set of reflections identified with a set of positive roots in type Cn is given
by

Φ+ := {(i, j) = ei − ej : 1 ≤ i < j ≤ n} ∪ {(i, j) = ei + ej : 1 ≤ i ≤ j ≤ n}.

See Figure 7(b) for the root poset of type C3 as an example.
To understand nonnesting partitions of type Cn, observe that an antichain in

Φ+ can be identified with a symmetric antichain in the root poset of type A2n−1:
there is an involution δ on NN(An−1) by horizontally flipping the root poset of type
An−1, i.e., replacing the positive root (i, j) by (n+1−j, n+1−i). In other words, δ
is the induced map coming from the involution on the Dynkin diagram sending one
linear ordering to the other. Define an antichain I ∈ NN(An−1) to be symmetric if
it is invariant under this involution. It is well known that NN(Cn) can be seen as
the set of all antichains A ∈ NN(A2n−1) which are symmetric,

NN(Cn) ∼=
{
I ∈ NN(A2n−1) : δ(I) = I

}
.

Moreover, this identification is compatible with the Panyushev complementation,

δ(I) = I ⇔ δ(Pan(I)) = Pan(I).

This allows us to study this complementation on nonnesting partitions of type Cn

in terms of symmetric nonnesting partitions of type A2n−1.
On the other hand, we have seen above that the bijection φA2n−1

: T2n −→
NC(A2n−1) restricts to a bijection φCn

: TCn
−→ NC(Cn). Therefore, we want

to show that the bijection ψA2n−1
: NN(A2n−1) −→ T2n gives rise to a bijection

ψCn
: NN(Cn) −→ TCn

which is again compatible with the Panyushev and the
Kreweras complementations.

Lemma 3.5. The involution δ on I for I ∈ NN(An−1) can be described in terms
of the Kreweras complementation as

ψAn−1
(δ(I)) = Krewn(ψAn−1

(I)).

Proof. For T ∈ Tn, we have

(i(a), j(b)) ∈ T ⇔
(
(n+ 1− j)(b

c), (n+ 1− i)(a
c)
)
∈ Krewn(T ),
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where a, b ∈ {0, 1} and ac (resp. bc) denotes the complement of a (resp. b) in {0, 1}.
It is straightforward to check that this observation implies that

ψ′
An−1

(
Krewn(ψAn−1

(I))
)
= δ(I).

�

Theorem 3.6. ψA2n−1
restricts to a well-defined bijection ψCn

: NN(Cn) −→ TCn
.

Proof. The statement of the theorem is equivalent to the statement that

δ(I) = I ⇔ Krewn(ψA2n−1
(I)) = ψA2n−1

(I).

This follows directly from the previous lemma. �

3.3. Type D. Fix the numbering of the Dynkin diagram of type Dn so that n−2 is
adjacent to n− 1, n, and n− 3. We consider the involution δ of this diagram which
interchanges n and n− 1. It acts on NN(Dn), NC(Dn), and TDn

. On TDn
, it acts

by rotating the inner four vertices by a half turn. It is convenient to define a new
type of noncrossing handshake configuration, which we denote TDn/δ: this consists
of 4n− 4 external vertices, labelled as in a Cn−1 noncrossing handshake configura-
tion, such that either all the vertices participate in a 180◦-rotationally symmetric
noncrossing matching (in which case we simply have a Cn−1 noncrossing hand-
shake configuration) or else all but four vertices participate in a 180◦-rotationally
symmetric noncrossing matching, while the four remaining vertices are isolated but
have the property that any two of them could be attached without creating any
crossings. It is clear that elements of TDn/δ correspond to δ-orbits in TDn

.

3.3.1. Defining a map from NN(Dn)/δ to TDn/δ. Note that Krew acts naturally on
TDn/δ, while Pan acts naturally on δ-orbits in NN(Dn). We will begin by showing
that (TDn/δ,Krew) and (NN(Dn)/δ,Pan) are isomorphic as sets with a cyclic action.

In this subsection, we will define a cardinality-preserving bijection from δ-orbits
in NN(Dn) to TDn/δ, which we will denote by ψDn/δ. (In fact, for notational
convenience, we will write ψDn/δ as a map from NN(Dn) to TDn/δ which is constant
on δ-orbits.) We will then show that it is possible to refine ψDn/δ to a bijection
from NN(Dn) to TDn

.
Singleton δ-orbits in TDn/δ. Such an element consists of a type Cn−1 noncross-

ing handshake configuration on 4n− 4 external vertices 1(0), . . . , (2n− 2)(0), (2n−
2)(1), . . . 1(1).

Singleton δ-orbits in NN(Dn). Such an element of NN(Dn) corresponds to a
single element of NN(Bn−1). We reinterpret this as an element of NN(Cn−1), which
corresponds (as we have already seen) to an element of NN(A2n−3) fixed under the
involution of the A2n−3 diagram.

Map from singleton δ-orbits in NN(Dn) to TDn
. We define ψDn/δ on a singleton

δ-orbit by sending the type A2n−3 antichain to an A2n−3 noncrossing handshake
configuration, using ψA2n−3

.

Now we consider the doubleton δ-orbits. Write H for the 2n− 2 vertices {(n−
2)(1), . . . , 1(1), 1(0), . . . , n(0)}, and Hc for the other 2n− 2 vertices on the boundary.

Doubleton δ-orbits in TDn
. These correspond to elements of TDn/δ which have

four vertices of degree zero.
Doubleton δ-orbits in NN(Dn). Let I be an antichain in such an orbit. Write I

for the collection of type A2n−3 roots obtained by taking each root in I, passing first
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to Bn−1, identifying the root poset of Bn−1 with that of Cn−1, and then unfolding
to one or two roots in A2n−3. Note that I is typically not an antichain.

Example 3.7. Consider the Dn antichain consisting of αn +αn−2 and αn−1. The
former contributes elements (n−1, n+1) and (n−2, n), while the latter contributes
(n− 1, n). This does not form an antichain. There will often be two elements in I
with first coordinate n− 1, and two elements with second coordinate n.

We also associate to I an antichain in ΦA2n−3
, defined as follows. Consider

the elements of I which lie in the square with opposite corners at (1, 2n − 2) and
(n−1, n). (We call this square R.) Record the first coordinates of these as i1, . . . , ir,
and the last as j1, . . . , jr.

Note that j1 = j2 and ir = ir−1 are possible (occurring when I is not an

antichain). Define Î by replacing these r elements of I by the r − 1 elements

(i1, j2), (i2, j3), . . . , (ir−1, jr). (In the case that r = 1, the result is that Î ∩R = ∅.)
The map from doubleton δ-orbits in NN(Dn) to doubleton δ-orbits in NC(Dn).

We define ψDn/δ(I) in several steps. Using Lemma 3.9, below, we know that Î ∈
NN(Cn−1). Therefore, we can consider ψCn−1

(Î) ∈ TCn−1
. Lemma 3.11 below

guarantees that there are at least two edges in this diagram which run from vertices
in H to vertices in Hc. Remove the two such edges which are closest to the center.
The result is a noncrossing handshake configuration of type Dn/δ as defined above.
This is ψDn/δ(I).

3.3.2. Defining ψDn
. We now consider refining ψDn/δ to a map from NN(Dn) to

TDn
.

We use the convention that a type D noncrossing handshake configuration has
the same outside labels as for type D/δ noncrossing handshake configurations,
with four internal vertices which are numbered by congruence classes modulo 4,
increasing in counterclockwise order. We count as “positive”, external vertices
with label (0), and the internal vertices 0 and 3, and as “negative”, external vertices
with the label (1) and the internal vertices 1 and 2. In a noncrossing handshake
configuration, the number of edges that connect a positive vertex to a negative
vertex must be divisible by 4.

If a noncrossing handshake configuration T of type Dn/δ has no isolated vertices,
this requirement means that there is a unique way of completing T to a type Dn

configuration, while if T has four isolated vertices, then there are two ways of
completing T to a type Dn configuration.

For a, b outer vertices, write d(a, b) for the clockwise distance from a to b. Write
eI(a, b) for the number of vertices in the clockwise interval from a to b, including b
but not a, and which are not on the clockwise end of an edge in ψDn/δ(I).

For I an antichain in NN(Dn) in a doubleton δ-orbit, define s(I) to be 0 if the
root of I whose image in I is (i, n) with i as small as possible has αn−1 in its
support; otherwise, set s(I) = 1.

We now define ψDn
(I). If I is in a singleton δ-orbit, then define ψDn

(I) to be
ψDn/δ(I) together with edges connecting the internal vertices in the unique possible
way.

If I is in a doubleton δ-orbit, define ψDn
(I) by starting with ψDn/δ(I) and, for

each singleton external vertex v, attach it to the internal vertex whose number is
given by n− d(v, (n− 1)(0)) + 2s(I) + 2eI(v, (n− 1)(0)).
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Example 3.8. For the root poset of type D3 with simple roots

α1 = e1 − e2, α2 = e2 − e3, α3 = e2 + e3,

the four antichains ∅, {α1, α2, α3}, {α2}, {α1, α3} are mapped by ψDn
to the four

noncrossing handshake configurations in TD3
shown in Figure 4 from left to right.

3.3.3. Proof that ψDn
is well defined and is a bijection. There are several lemmas

which must be established to show that the definition given above makes sense, and
yields a bijection.

Lemma 3.9. Î is in NN(A2n−3). Further, the map from I to Î is injective, and
its image consists of all the antichains in NN(Cn−1) (thought of as a subset of
NN(A2n−3)) except those containing (n− 1, n).

Proof. The inverse map is clear, since ir must be n and j1 must be n − 1. This
inverse map can be applied to any antichain in NN(Cn−1) except those containing
(n− 1, n). �

Now, since Î is in NN(Cn−1), its image under the bijection ψA2n−3
is a type Cn−1

noncrossing handshake configuration. The following lemma is useful.

Lemma 3.10. The image of ψCn−1
applied to antichains with no roots in R consists

exactly of those type Cn−1 noncrossing handshake configurations with no edges from
{(n− 1)(1), . . . , 1(1), 1(0), . . . , (n− 1)(0)} to the other vertices.

Proof. The first n − 1 edges in the noncrossing handshake configuration will all
connect vertices in {(n−1)(1), . . . , 1(1), 1(0), . . . , (n−1)(0)}, which uses up all those
vertices. �
Lemma 3.11. The image of ψCn−1

applied to Î for I ∈ NN(Dn) consists of exactly
those type Cn−1 noncrossing handshake configurations with the property that there
is at least one edge (and therefore at least two edges) from H to Hc.

Proof. We have already shown that as I runs through NN(Dn), we have that Î
runs through those antichains in NN(Cn−1) not containing (n − 1, n). The image

under Pan−1 of type Cn−1 antichains not containing (n− 1, n) is exactly the Cn−1

antichains whose intersection with R is nonempty. Now apply Lemma 3.10 to

Pan−1(Î), together with the fact that Krew ◦ ψCn−1
= ψCn−1

◦ Pan. �
We now have the pieces in place to establish the following proposition:

Proposition 3.12. The map ψDn/δ is a bijection from NN(Dn/δ) to TDn/δ.

Proof. It is clear that ψDn/δ takes singleton δ orbits in NN(Dn) bijectively to the
noncrossing handshake configurations in TDn/δ which contain no isolated vertices.
It is also clear that ψDn/δ is an injection from doubleton orbits in NN(Dn) into the
TDn/δ noncrossing handshake configurations with four isolated vertices. Finally,
given such a diagram, there is a unique way to reattach the isolated vertices to
obtain a TCn−1

noncrossing handshake configuration such that the reattached edges
cross from H to Hc. It follows that ψDn/δ is a bijection. �

We now proceed to show that ψDn
, as defined above, is a bijection from NN(Dn)

to TDn
. To begin with, we need the following lemma which gives a condition

equivalent to the parity condition on the number of edges in a type Dn noncrossing
handshake configuration which connect positive and negative vertices.
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Lemma 3.13. The condition that the number of edges joining a positive vertex to a
negative vertex be divisible by four is equivalent to the condition that a positive, even-
numbered singleton vertex must be connected to an internal vertex of odd parity, and
similarly for the other possible choices of singleton vertex, where changing either
“positive” or “even-numbered” reverses the parity of the internal vertex.

We are now ready to prove that ψDn
is a bijection.

Lemma 3.14. ψDn
is a bijection from NN(Dn) to TDn

.

Proof. We must show that if v and v′ are singleton vertices in ψDn/δ(I), such that
the next singleton vertex after v in counterclockwise order is v′, then the vertex to
which v′ is attached is one step counterclockwise from that to which v is attached.
We evaluate −d(v′, (n−1)(0))+d(v, (n−1)(0)) = −d(v′, v) by counting the vertices
between v′ and v (including v but not v′). Each edge on the outer rim between v and
v′ contributes −2 to −d(v′, v) (one for each of its endpoints), and also contributes
2 to 2eI(v

′, (n− 1)(0))− 2eI(v, (n− 1)(0)) = 2eI(v
′, v). The only other contribution

to 2eI(v
′, v) is an additional 2 coming from the vertex v, and also −d(v′, v) has an

additional −1 coming from v. Thus the total effect is that v′ is attached one step
counterclockwise from i.

The condition provided by Lemma 3.13 is also clear from the definition. (Note
that the complicated terms don’t have any effect on the parity of the vertex to
which we connect v.)

Bijectivity follows from bijectivity for ψDn/δ together with the fact that the two
elements of a doubleton δ orbit in NN(Dn) will be mapped to different noncrossing
handshake configurations. �
3.3.4. Compatibility between Panyushev complementation and rotation. We will
first prove that ψDn/δ expresses the compatibility between Panyushev complemen-
tation for NN(Dn)/δ and rotation of Dn/δ noncrossing handshake configurations,
and then we will prove the similar result for ψDn

.

Proposition 3.15. For I ∈ NN(Dn), we have that

ψDn/δ(Pan(I)) = Krew(ψDn/δ(I)).

Proof. We consider three cases separately. The first case is the case that I is in a
singleton δ-orbit, in which case the result follows immediately from the analogous
result for type Cn−1.

The second case is when Î ∩R �= ∅.

Lemma 3.16. If Î ∩R �= ∅, then P̂an(I) = Pan(Î) and

ψCn−1
(Pan(Î)) = Krew(ψCn−1

(Î)) = Krew(ψDn/δ(I)).

Proof. The fact that P̂an(I) = Pan(Î) in this case follows from the definitions. The
compatibility of Pan and Krew in type C implies that

ψCn−1
(Pan(Î)) = Krew(ψCn−1

(Î)).

Finally, we wish to show that Krew(ψCn−1
(Î)) = Krew(ψDn/δ(I)). The result

which has to be established is that the pair of innermost edges in Krew(ψCn−1
(Î))

is the rotation of the innermost edges of ψCn−1
(Î). This is true because, in order for

the innermost edges no longer to be innermost, they must no longer run between
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the two sides of the diagram. But this would then imply that there were no edges

between H and Hc in ψCn−1
(P̂an(I)), contrary to Lemma 3.11. �

We now consider the case that Î∩R = ∅. In this case, in contrast to the previous
one, the proof does not pass through the similar statement in type C.

Let X̂ = Pan(Î). It is immediate from the definition of Panyushev complemen-

tation that X̂ ∩ R = (n − 1, n). By Lemma 3.11, it follows that ψCn−1
(X̂) has no

edges from H to Hc.

By the compatibility of Pan and Krew in type C, we have that ψCn−1
(X̂) =

Krew(ψCn−1
(Î)). The innermost edges of ψCn−1

(Î) connecting H to Hc, after rota-

tion, no longer connect H to Hc. Thus, in ψCn−1
(X̂), those edges connect (n+1)(0)

to some z′ in Hc and (n− 2)(1) to some (symmetrical) z in H.

Lemma 3.17. ψCn−1
(P̂an(I)) can be obtained from ψCn−1

(X̂) by removing the

edges connected to (n+1)(0) and (n−2)(1) and replacing them by the other possible
pair of symmetrical edges.

Proof. I ∩R necessarily equals (n− 1, n). Let Y = Pan(I). There are two possibil-
ities for Y ∩R: it equals either {(n− 2, n), (n− 1, n), (n− 1, n+1)} or {(n− 1, n)},
depending on whether or not I has any entries on the (n−1)-th row (or equivalently

the n-th column). The corresponding values of Ŷ ∩R are {(n−2, n), (n−1, n+1)}
and ∅.

Now consider applying ψCn−1
to X̂ and Ŷ . Suppose first that we are in the case

that Ŷ ∩ R = ∅. This means that the (n − 1)-th row is empty in I, so in Î, both
R and the row below R are empty. We have seen already that the fact that R is
empty means that there are no edges between vertices numbered at most n− 1 and
those numbered at least n. A similar argument shows that the absence of roots in
the (n− 1)-th row implies that the vertices numbered at most n− 2 are connected
to other vertices in that set. It follows that (n− 1)(0) and (n− 1)(1) are connected

in ψA2n−3
(Î). By symmetry, n(0) and n(1) are also.

In determining ψCn−1
(X̂), n(0) gets the label n − 1. In determining ψCn−1

(Ŷ ),

the label n−1 goes to (n−1)(1), the symmetrically opposite vertex. We know that

ψCn−1
(Ŷ ) has no edges connecting vertices ≤ n− 1 with those ≥ n, so the result of

adding the (n−1)-th edge is to complete the matchings among the vertices ≤ n−1.

It follows that when we evaluate ψCn−1
(X̂) instead, vertex n(0) will necessarily be

connected to the same vertex as (n−1)(1) was in ψCn−1
(Ŷ ). This means that, while

n(0) and (n− 2)(1) are connected in ψCn−1
(X̂), we have that n(0) and (n+1)(0) are

connected in ψCn−1
(Ŷ ), establishing the claim.

Now consider the case that Ŷ ∩R = {(n− 2, n), (n− 1, n+ 1)}. In determining

ψCn−1
(Ŷ ), we have that n(0) receives label n− 2 and (n+1)(0) receives label n− 1.

Since X̂ and Ŷ only differ inside R, we have that the (n − 2)-th column is empty

in X̂, so (n− 2)(1) receives the n− 2 label; and we also have that n(0) receives the
label n− 1.

Let us write b for the vertex joined in n(0) in X̂, and a for the vertex joined

in (n − 2)(1) in X̂. Note that in X̂, there are no edges between H and Hc, so,
prior to the (n − 2)-th edge being drawn, the four available vertices in H are
(n− 2)(1), a, b, n(0) (in clockwise order).
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Now consider what happens when we evaluate ψCn−1
(Ŷ ). When adding the

(n−2)-th edge, we connect n(0) to the next available vertex counterclockwise from it,
which is b. Next, we connect to (n+1)(0) the next available vertex counterclockwise
from it, which is a.

The result is that n(0) is attached to the same vertex in X̂ and Ŷ , but the vertex

attached to (n+1)(0) in Ŷ is attached to (n− 2)(1) in X̂. This suffices to establish
the claim. �

The final case of the proposition now follows, because the only edges between H

andHc in ψCn−1
(P̂an(I)) are the new edges identified above, whose four end-vertices

are the result of rotating clockwise the four degree zero vertices of ψDn/δ(I). �

In order to show the compatibility between ψDn
and Panyushev complementa-

tion, we must study the relationship between s(I) and s(Pan(I)). It is straightfor-
ward to check that s(I) and s(Pan(I)) are the same iff I contains a root supported

over vertex n − 2 but neither n − 1 nor n. This is equivalent to saying that Î
includes some root (j, n − 1) (i.e., a root on the row just below R). This can also
be described in terms of ψDn

(I), as in the lemma below.

Lemma 3.18. For I an A2n−3-antichain, I contains a root (j, n − 1) iff ψDn
(I)

contains an edge joining n−1 to k with k in {(n−3)(1), . . . , 1(1), 1(0), . . . , (n−2)(0)}.

Proof. If I has such a root, then the j-th edge which is added will be an edge joining
n− 1 to such a k. (Since j ≤ n− 2, at the j-th step, at least one of the vertices in
{(n− 3)(1), . . . , (n− 2)(0)} will be available.)

On the other hand, if ψDn
(I) contains such an edge with k = k(0), the only

possibility is that there was a root (j, n− 1) in I. If k = k(1), then an edge from k
could have been added at the k-th step, but this edge would not have been joining
k(1) to (n − 1)(0) as there would have been an available vertex with a smaller
label. �

We say that a vertex is the clockwise end of an edge if the vertex is not degree
zero, and the vertex to which it is attached is closer to it counterclockwise than
clockwise.

Lemma 3.19. s(I) = s(Pan(I)) iff (n− 1)(0) is on the clockwise end of an edge in
ψDn/δ(I).

Proof. It follows from the previous lemma that s(I) = s(Pan(I)) iff (n − 1)(0) is

attached to some k in {(n− 3)(1), . . . , (n− 2)(0)} in ψA2n−3
(Î).

Suppose (n−1)(0) is attached to some k in {(n−3)(1), . . . , (n−2)(0)} in ψA2n−3
(Î).

Observe that (n− 1)(0) cannot be degree zero in ψDn/δ(I), because the edge from

(n− 1)(0) to k is entirely within H. Therefore (n− 1)(0) is on the clockwise end of
its edge.

Conversely, if (n− 1)(0) is on the clockwise end of an edge in ψDn/δ(I), either it

is attached to k in {(n− 3)(1), . . . , (n− 2)(0)}, or else it is attached to (n− 1)(1). In
fact, though, it cannot be attached to (n− 1)(1) in ψDn/δ. If it were the case that

(n − 1)(0) and (n − 1)(1) were attached in ψA2n−3
(Î), this edge would have been

removed in ψDn/δ(I). Thus s(I) = s(Pan(I)). �
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We are now ready to prove the following result:

Lemma 3.20. For I ∈ NN(Dn), we have that ψDn
(Pan(I)) = Krew(ψDn

(I)).

Proof. By Proposition 3.15, we know that ψDn/δ(Pan(I)) = Krew(ψDn/δ(I)). If I
lies in a singleton δ-orbit, this is sufficient.

Now suppose I lies in a doubleton δ-orbit. By Proposition 3.15, we know that
Krew(ψDn

(I)) and ψDn/δ(Pan(I)) differ, if at all, only in the way that the singleton
vertices are connected.

Let v be a singleton vertex in ψDn/δ(I). We know that Krew(v) is a singleton
vertex in Pan(I). In ψDn

(I), suppose that v is connected to i. We then see that
Krew(v) is connected to i + 1, since the last two terms in the formula cancel each
other out by Lemma 3.19. �

3.4. Exceptional types. As for noncrossing partitions in Section 2.5, the excep-
tional types – as we consider only crystallographic reflection groups, this includes
for now the dihedral group G2 – were verified using a computer.

4. Parabolic induction in the classical types

In this section, we define the notion of parabolic induction for a collection of
maps from NN(W ) to TW , for W a reflection group of classical type, and we show
that the previously defined bijections ψW satisfy this notion of parabolic induction.
Further, we show that they are uniquely characterized by this property together
with their compatibility with Panyushev complementation and rotation.

4.1. Type An−1. First, consider the case of W = An−1. Pick i, with 1 ≤ i ≤
n − 1. Removing the node i from the Dynkin diagram, we obtain two Dynkin
diagrams, of types Ai−1 and An−1−i. Given noncrossing handshake configurations
U ∈ TAi−1

and V ∈ TAn−1−i
, we can assemble them into a single noncrossing

handshake configuration U ∗ V of type An−1, by adding i to the labels of the
vertices of V . (In order for this to work if i = 1 or i = n − 1, we define the
unique noncrossing handshake configuration associated to type A0 to consist of two
vertices, numbered 1(0) and 1(1), connected by an edge.)

Suppose that I ∈ NN(An−1) does not have αi in its support. We can then write
I as a union of I1 supported over a subset of α1, . . . , αi−1, and I2 supported over a
subset of αi+1, . . . , αn−1.

We say that a collection of maps FAn−1
: NN(An−1) −→ TAn−1

satisfies parabolic
induction if, whenever I ∈ NN(An−1) satisfies that the simple root αi is not in the
support of I, then

FAn−1
(I) = FAi−1

(I1) ∗ FAn−1−i
(I2).

Proposition 4.1. The maps ψAn−1
satisfy parabolic induction.

Proof. This is an immediate corollary of Proposition 3.3. �

4.2. Type Cn. Similarly, if we remove a simple root αi from a Cn Dynkin diagram,
we obtain a diagram of type Ai−1 and one of type Cn−i. For convenience, we use
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C1 as a pseudonym for A1 here. In particular, the noncrossing handshake configu-
rations of type C1 are just the noncrossing handshake configurations of type A1. By
convention, the empty diagram is the unique noncrossing handshake configuration
of type C0.

Given a noncrossing handshake configuration of type U ∈ TAi−1
and V ∈ TCn−i

,
define U ∗ V to consist of:

• U ,
• V with its labels increased by i,
• U with each label j replaced by 2n + 1 − j, and superscripts (0) and (1)
interchanged.

Again, if I ∈ NN(Cn) and αi is not in the support of I, we can divide I into
antichains I1 and I2. A collection of maps FW : NN(W ) → TW for W of type
A or C is said to satisfy parabolic induction if the collection FAn

satisfies type A
parabolic induction and for I ∈ NN(Cn), whenever αi is not in the support of I,
we have

FCn
(I) = FAi−1

(I1) ∗ FCn−i
(I2).

We have the following corollary of the previous proposition:

Corollary 4.2. The maps ψAn
, ψCn

satisfy parabolic induction.

4.3. Type Dn. If we remove a simple root αi from a Dynkin diagram of type
Dn, for i �= n − 1, n (the two antennae), then we obtain a Dynkin diagram of
type Ai−1 and a Dynkin diagram of type Dn−i. Given two noncrossing handshake
configurations U ∈ TAi−1

and V ∈ TDn−i
, we write U ∗V for the diagram consisting

of:

• U ,
• V with its labels increased by i (including the central ones, where the
increase is taken modulo 4),

• The diagram U with label j replaced by 2n − 1 − j, and the superscripts
(0) and (1) interchanged.

(We let D2 refer to the reducible root system consisting of two orthogonal simple
roots and their negatives, and let D3 = A3. We interpret “noncrossing handshake
configuration of type Dn” for n = 2, 3, using the type D definition of noncrossing
handshake configuration.)

If we remove a simple root αi from a Dynkin diagram of type Dn, where i = n−1
or n, then we obtain a Dynkin diagram of type An−1. We will define a pair of maps
Indi : TAn−1

→ TDn
, as follows.

Indn(U) is defined to consist of the type A diagram, with vertices n(0) and n(1)

moved to the center and renamed n and n+1, together with the 180 degree rotation
of this diagram. This is a type Dn noncrossing handshake configuration by Lemma
3.13.

Indn−1(U) is obtained by adding 2 to each of the labels of the central vertices
of Indn(U).

Again, if 1 ≤ i ≤ n− 2, and I ∈ NN(Dn) does not have αi in its support, we can
define I1 ∈ NN(Ai−1) and I2 ∈ NN(Dn−i). If i = n− 1, n, and I does not have αi

in its support, we can simply view I as an antichain in NN(An−1). A collection of
maps FW : NN(W ) −→ TW for W = An, Dn is said to satisfy parabolic induction
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if the collection FAn
satisfies type A parabolic induction, and:

(i) for 1 ≤ i ≤ n− 2, if I ∈ NN(Dn) does not have αi in its support, then

FDn
(I) = FAi−1

(I1) ∗ FDn−i
(I2),

and
(ii) for i = n− 1, n, if I ∈ NN(Dn) does not have αi in its support, then

FDn
(I) = Indi(FAn−1

(I)).

Proposition 4.3. The maps ψDn
, ψAn

satisfy parabolic induction.

Proof. Condition (i) follows as in the previous cases. For condition (ii), we divide
into cases.

I ∈ NN(Dn) has neither αn nor αn−1 in its support. In this case, I does not
intersect R. The result in this case follows as in type Cn−1.

I ∈ NN(Dn) has exactly one of αn, αn−1 in its support. In this case, I ∩ R
consists of either one root (n− 1, n) or two roots (j, n) and (n− 1, 2n− 1− j). It

follows that Î ∩R consists of either zero roots or one root.
In the former case, in the type A2n−3 noncrossing handshake configuration as-

sociated to Î, there are no edges from vertices with labels at most n − 1 to those
with labels at least n. It follows that the innermost edges from H to Hc are con-
nected to n(0) and to (n− 1)(1), and thus that in the Dn/δ noncrossing handshake
configuration, (n−1)(1) is a singleton vertex. The other singleton vertex with label
at most n− 1, call it a, is the one that is connected to (n− 1)(1) in the type A2n−3

noncrossing handshake configuration. Now, suppose I is supported over αn−1, so
s(I) = 0. We deduce that (n− 1)(1) is attached to n− (2n− 3) + 2(n− 1) = n+1.
On the other hand, if I is supported over αn, (n− 1)(1) is attached to (n+ 1) + 2.

Now consider the calculation of ψAn−1
(I). Up to the (n − 1)-th step, the same

thing happens. At the (n − 1)-th step, there now is an entry in the (n − 1)-th
column (namely, (n − 1, n)), so we mark n(0) with label n − 1, and thus on turn
n− 1, we connect n(0) to the nearest available entry, which must be a, since it and
(n− 1)(1) are the only unmatched vertices on the left-hand side. On the final step,
we join n(1) and (n− 1)(1). We see that ψDn

(I) = Indn−s(I)(ψAn−1
(I)).

Next, consider the case that Î ∩R has one root in its support, say (i, 2n+1− i).

Consider the calculation of ψA2n−3
(Î) and of ψAn−1

(I) in parallel. The same thing
happens in both up to the i-th step. On the i-th step of the An−1 calculation, the
label i goes onto the node n(0), so we connect n(0) to (n− 1)(0) at this point, while
for the A2n−3 calculation, we connect (2n+ 1− i)(0) to (2n− i)(0). From here on,
the calculations run the same way up to and through the (n− 1)-th step. In both
calculations, there is no entry in the (n− 1)-th column, so we connect (n− 1)(1) to

some entry on the left-hand side. After this step, in the calculation of ψA2n−3
(Î),

there are two remaining unmatched vertices whose labels are at most n − 1. One
of them is (n− 1)(0), while we call the other one a. It follows that the four vertices
in H which will eventually be matched to vertices in Hc are, in clockwise order,
the vertex attached to (n − 1)(1), a, (n − 1)(0), and (by symmetry) n(0). The two
innermost edges are therefore the ones attached to a and (n− 1)(0). It follows that
we will connect a and (n − 1)(0) to the internal vertices, and (n − 1)(0) will be
connected to n if s(I) = 0 and n+ 2 if s(I) = 1.

On the n-th step of the ψAn−1
(I) calculation, we connect n(1) to the only available

vertex, a. We therefore see that Indn−s(I)(ψAn−1
(I)) = ψDn

(I), as desired. �
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4.4. Uniqueness of ψ in the classical types. Finally, we show that parabolic
induction determines ψ uniquely in the classical cases. In this section, we show
that:

Theorem 4.4. The only collection of bijections FW : NN(W ) → TW , for W
running over all classical irreducible reflection groups, that satisfy:

(i) FW ◦ Pan = Krew ◦ FW , and
(ii) classical parabolic induction, as defined previously,

are the maps FW = ψW .

Proof. We have already shown that the maps ψW do satisfy the two properties
mentioned in the theorem; we need only show that these two properties are sufficient
to characterize these functions uniquely.

By property (i), it suffices to know that, for any Pan orbit in NN(W ), there
is some antichain to which some parabolic induction applies. Expressed in those
terms, it is not obvious that this is true. However, thanks to the bijections ψW , it is
sufficient to show that for any Krew orbit in TW , there is a noncrossing handshake
configuration which could have arisen by parabolic induction. This is quite clear.
Let T be a noncrossing handshake configuration of type W . Pick some edge joining
two external vertices. After applying a suitable power of Krew to T , the chosen
edge connects i(0) to i(1). In type An−1, this implies that T comes from a parabolic
induction Ai−1∗A1 ∗An−i, where at most one of these is zero. A completely similar
approach works in type C or D, except in the case of D2, since in that case there
is a Krew orbit with no edge connecting a pair of external vertices. However, it is
easy to check that both the elements of that orbit arise via Ind. This completes
the proof. �

5. A uniform, recursive bijection

In this section, we prove the Main Theorem. We begin with the classical types.
Let W be a reflection group of classical type, and let L,R be a bipartition

of its simple roots. For each of the three classical families, we define a certain
bijection φ(L,R) : TW → NC(W, cLcR), which will be a mild variant of φW as
defined in Section 2. Then we define Λ(L,R) : NN(W ) → NC(W, cLcR) by setting
Λ(L,R)(I) = φ(L,R)ψW (I). We then check that this bijection satisfies conditions
(i)–(iii) of the Main Theorem.

Next, we show that the Main Definition yields a well-defined map (using results
from the previous section in the classical types, and a computer check for the
exceptional types). We also show that a map satisfying conditions (i)–(iii) of the
Main Theorem must be the map defined by the Main Definition. Thus, the bijection
Λ(L,R) described above must be the map defined by the Main Definition. This
completes the proof of the Main Theorem in the classical types. Finally, we check
(with a computer) that the maps defined by the Main Definition also satisfy the
Main Theorem in the exceptional types, which completes the proof of the Main
Theorem.

5.1. Type An−1. Let {s1, . . . , sn−1} with si = (i, i+ 1) be the generators in type
An−1, and let cLcR be a bipartite Coxeter element. As mentioned in Remark 1, we
can cyclically label the vertices of the noncrossing handshake configurations in Tn
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by the Coxeter element cLcR. If s1 ∈ L, the cyclic labelling for φ(L,R) is given by

2(0), 2(1), 4(0), 4(1), . . . , 3(0), 3(1), 1(0), 1(1),(5)

and if s1 ∈ R, the cyclic labelling for φ(L,R) is given by

1(1), 3(0), 3(1), . . . , 4(0), 4(1), 2(0), 2(1), 1(0).(6)

Theorem 5.1. The bijections

ΛAn−1,(L,R) : NN(An−1)−̃→NC(An−1, cLcR),

ΛAn−1,(R,L) : NN(An−1)−̃→NC(An−1, cRcL)

satisfy conditions (i)–(iii) of the Main Theorem in type A.

Proof. We will only check the first statement; the proof of the second is identical.
The initial condition is easily verified. The Pan = Krew condition follows from the
facts that ψAn−1

◦ Pan = Krew ◦ ψAn−1
and φ(L,R) ◦ Krew = Krew ◦ φ(L,R).

As we have proved the parabolic recursion for ψAn−1
in the previous section,

it is left to prove the analogous statement for φ(L,R). Let T ∈ Tn be a non-

crossing handshake configuration such that T1 = {i(0), i(1) : 1 ≤ i ≤ k} and
T2 = {i(0), i(1) : k < i ≤ n} define submatchings of T with vertices being labelled
as in Proposition 3.3. We have to show that

φ(L,R)(T ) =

{
φ(L1,R1)(T1) φ(L2,R2)(T2) if sk ∈ R,

sk φ(L1,R1)(T1) φ(R2,L2)(T2) if sk ∈ L,

where L1/2 = L ∩ S1/2 and R1/2 = R ∩ S1/2 with S1 = {s1, . . . , sk−1} and S2 =
{sk+1, . . . , sn−1}. This results in 4 different cases.

Case 1: s1 ∈ L, sk ∈ R. In this case, the labelling is as in (5) and k is even. The
statement follows as the labelling of T1 is given by

2(0), 2(1), . . . , k(0), k(1), (k − 1)(0), (k − 1)(1), . . . , 1(0), 1(1),

and the labelling of T2 is given by the remaining labels. These are exactly
the labellings obtained as well for φ(L1,R1)(T1) and φ(L2,R2)(T2).

Case 2: s1 ∈ L, sk ∈ L. In this case, the labelling is as in (5) and k is odd. The
labelling of T1 is now given by

2(0), 2(1), . . . , (k + 1)(0), k(1), . . . , 1(0), 1(1),

and the labelling of T2 is given by the remaining labels. It is a straight-
forward check that this differs from the labelling for φ(L1,R1)(T1) and for

φ(R2,L2)(T2) by having the labels (k + 1)(0) and k(0) interchanged. This
corresponds exactly to the additional factor sk.

The remaining two cases for s1 ∈ R are solved in the analogous way. �

5.2. Type Cn. As above, the bipartite Coxeter elements in type Cn can be obtained
from bipartite Coxeter elements in type A2n−1, where−i and 2n+1−i are identified.
The bijection in type C then follows as a simple corollary from the construction in
type A.
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Corollary 5.2. The bijections

ΛCn,(L,R) : NN(Cn)−̃→NC(Cn, cLcR),

ΛCn,(R,L) : NN(Cn)−̃→NC(Cn, cRcL)

satisfy conditions (i)–(iii) of the Main Theorem in type C.

5.3. Type D. Exactly the same argument as in type An−1 applies to the bipar-
tite Coxeter elements in type Dn. Those are obtained from the bipartite Coxeter
element in type An−1 by adding sn = (n − 1,−n) to L if n is even and to R if n
is odd. E.g., in type D4, we obtain the cyclic labelling on the outer circle for cLcR
given by

2(0), 2(1),−3(0),−3(1),−1(0),−1(1),−2(0),−2(1), 3(0), 3(1), 1(0), 1(1),

and the inner circle labelling by 4(0), 4(1),−4(0),−4(1). The labellings for cRcL are
again given by reflecting the labels at the diagonal through 1(1).

Corollary 5.3. The bijections

ΛDn,(L,R) : NN(Dn)−̃→NC(Dn, cLcR),

ΛDn,(R,L) : NN(Dn)−̃→NC(Dn, cRcL)

satisfy conditions (i)–(iii) of the Main Theorem in type D.

Proof. The proof follows the same lines as the proof in type A, with the additional
check for the cases in which sn−1 or sn are not contained in the support of an
antichain I ∈ NN(Dn). Using Theorem 4.4 in type Dn, this check is straightfor-
ward. �

5.4. The Main Definition and the Main Theorem. We now establish that the
Main Definition does yield a well-defined map. As we remarked in the Introduction,
this requires precisely that we show that in every Pan-orbit of NN(W ), there is
an antichain which does not have full support. In the classical types, this was
established in the proof of Theorem 4.4, while in the exceptional types, it is easily
verified with a computer.

We will denote the map defined by the Main Definition by Θ(L,R). (We prefer
this to the simpler notation, ΘW , which we used in the Introduction, because it is
important to keep track of the bipartition of the simple roots.)

Next, we check that any map satisfying conditions (i)–(iii) of the Main Theorem
must coincide with Θ(L,R). Let Ψ(L,R) be a map satisfying conditions (i)–(iii) of
the Main Theorem. We prove by induction on the rank of W that Ψ(L,R) = Θ(L,R).

Let J be an antichain in NN(W ). Let k be minimal such that I = Pank(J)
has less than full support. Now Θ(L,R)(I) = Ψ(L,R)(I) by comparing step (ii) from
the Main Definition with the parabolic induction property in the Main Theorem.
Finally Θ(L,R)(J) = Krew−kΘ(L,R)(I) = Krew−kΨ(L,R)(I), and by Pan = Krew,
this equals Ψ(L,R)(J), as desired.

This finishes the proof that any map satisfying properties (i)–(iii) of the Main
Theorem must be the map defined by the Main Definition. Since we have already
established that the maps Λ(L,R) satisfy conditions (i)–(iii) of the Main Theorem,
we must have that Λ(L,R) = Θ(L,R) in the classical types, which finishes the proof
of the Main Theorem in these types. For the exceptional types, it is relatively easy
to check with a computer that the maps defined by the Main Definition really do

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4148 DREW ARMSTRONG, CHRISTIAN STUMP, AND HUGH THOMAS

satisfy conditions (i)–(iii) of the Main Theorem, and the proof of the Main Theorem
is completed.

6. A proof of the Panyushev Conjectures

In this final section of the paper, we will use combinatorial results described in
the previous sections to prove the Panyushev Conjectures. The first proposition
follows directly from the uniform description of the bijection.

Proposition 6.1. Part (i) of the Panyushev Conjectures holds: Pan2h is the iden-
tity map on NN(W ).

Proof. This follows from the connection to the Kreweras complementation and the
fact that Krew2h is the identity map on NC(W ). �

For all remaining proofs, we use the combinatorics obtained for the classical
types, and computer checks for the exceptionals. To prove (ii) of the Panyushev

Conjectures, it remains to show that Krewh acts on NN(W ) by the involution
induced by −ω0. Thus, we have two cases, depending on how −ω0 acts on Dynkin
diagrams:

(iia) Krewh acts trivially on Φ in types Cn, D2n, F4, E7, and E8.

(iib) In the remaining types An−1, D2n+1, and E6, the action of Krewh is induced
by the involution on the Dynkin diagram (called δ in types A and D).

Proof of part (ii) of the Panyushev Conjectures. In types A and C, (iia) and (iib)
follow from the symmetry property of noncrossing handshake configurations (see
Lemma 3.5). In type D, (iia) and (iib) follow from the facts that rotating a type
Dn/δ noncrossing handshake configuration by 2(n− 1) steps yields the same con-
figuration, but to obtain the same Dn noncrossing handshake configuration, it is
also necessary to ensure that the number of rotations applied yields a half-turn of
the 4 inner vertices. Type E6 was checked with a computer. The statements for
the remaining exceptional types can be verified using the orbit lengths found in
Section 2.5. �

Proof of part (iii) of the Panyushev Conjectures. First we consider type An−1.
Pick a noncrossing handshake configuration X, and consider

X,Krew(X), . . . ,Krew2n−1(X).

Each edge e in X appears (rotated) in each of these noncrossing handshake configu-
rations, and we see that some endpoint of e is labelled with (0) and marked in n−1
of these noncrossing handshake configurations. In a given noncrossing handshake
configuration, the number of vertices labelled with (0) and marked is exactly the
number of positive roots in the corresponding antichain, so we see that the total
number of positive roots in the antichains corresponding to these 2n noncrossing
handshake configurations is n − 1 times the number of edges, which is n. It fol-
lows that the average number of positive roots in the corresponding Pan orbit is
(n− 1)/2.

The easiest way to prove the result for type Cn is the following: it is straightfor-
ward to check that every second antichain in a Panyushev orbit contains a positive
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root of the form (i, i). As type A2n−1 folds to the type Cn, the total number of
antichains in an orbit in type Cn is given by

4n
2

2n−1
2 + 2n

4n
=

n

2
.

Here, the numerator contains 4n 2n−1
2 , which is the orbit size (without symmetry)

times the average number of elements in the orbit in type A2n−1, the division by
2 comes from the folding, and the correction term 2n comes from the centered
element in every other orbit which is not folded. The 4n in the denominator is
again the size of the orbit. (If we have a k-fold symmetry, all three pieces obtain a
factor of 1/k.) This completes the proof in type C.

In type D, the situation is again a little more involved. We will work in terms of
Dn/δ configurations. There are two different cases, based on whether or not there
are four isolated vertices on the outside.

Suppose first that there are not. Each such Dn antichain corresponds to a Cn−1

antichain, and the Panyushev map respects this folding action. Thus, a Panyushev
orbit of such Dn antichains corresponds to a Panyushev orbit of Cn−1 antichains;
the average number of roots present in these Cn−1 antichains is (n − 1)/2. The
Dn antichain I corresponding to a Cn−1 antichain I ′ is just the inverse image of
I ′ under the folding map from ΦDn

to ΦCn−1
. The number of elements in I equals

the number of elements in I ′ plus the number of elements in I ′ whose inverse image
consists of two roots; there will be either one or zero such roots in I ′. We observe
that there is such a root in I ′ iff n(0) is marked. As we rotate ψCn−1

(I ′) through a

full rotation, each edge of the configuration is connected to vertex n(0) twice, once
at each of its endpoints, and it is easy to see that once we will have n(0) marked,
while once it will be unmarked. Thus, the average effect of passing from I ′ to I is
to add 1

2 to the size of the antichains, resulting in an average size of n/2, as desired.
Now suppose that there are four isolated vertices in ψDn/δ(I). We consider first

the average size of Î (which, we recall, is an antichain of type A2n−3). Recall that,

as we consider ψA2n−3
(Î), ψA2n−3

(P̂an(I)), . . . , the effect is to rotate the noncrossing
handshake configuration except that there is one pair of edges which, at a certain
point, gets switched, and then eventually switches back; in a full rotation (4n− 4
steps) this happens twice.

Consider first an edge which is not involved in the switching. It contributes a
marked vertex 2n− 3 times (out of the 4n− 4 rotations). Now consider the pair of
edges that are involved in the switching. One verifies directly that they contribute,

together, 4n− 8 marked vertices. The average size of the antichains Î , P̂an(I), etc.,
is [(2n− 4)(2n− 3) + (4n− 8)]/(4n− 4) = (4n2 − 10n+ 4)/(4n− 4).

We next consider the average size of the sets I, Pan(I), etc. Each of these

contains one more root than the corresponding antichain Î , P̂an(I), etc., so the
average size of these sets is (4n2 − 6n)/(4n− 4).

Next we consider the relationship between the size of I and the size of I. The
size of I is |I|/2, plus a correction of 1

2 if I has an element on the central diagonal.
Over 4n − 4 rotations, the correction will appear 2n times (i.e., two more than

half the time). The reason for this is that, if I is such that Î and P̂an(I) differ
by a switch of the edges, then neither of them will have an element on the central
diagonal. We see this because of the fact that the switching edges are the most
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internal among those connecting H to Hc in ψA2n−3
(Î). Now Î has no element on

the central diagonal iff I does have an element on the central diagonal.
It follows that the number of elements in an antichain, averaged over a Pan-orbit,

is (4n2 − 4n)/(8n− 8) = n/2. �
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