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VI3moMKeHHAR B CTATHE METOAEHA IIOBBOIAET HCCICHOBATHL BOLPOC
0 CYIMEecTEOBARUIE TPOHABOMHOI 110 TapaMeTpy ¢ WA pemeruit Goiee ofumx
CPAHHIHBIX 3a0aY, B HOTOPHIX Koafpuiuents oneparopa L M TpaBHEYHBIX
omepaTopoB B; ABIAOTCS JOCTATOUHO TIARKIMM (PYHKIMAMI OT © W 2.

o mac CyWECTBEHHBM ABIATIOCH YCIOBHe maxm; <2m-—2, Han
MOKASHBAIOT IPOCTERNAe TPUMepsl, IPH HAPYLIEHHYM ITOI0 OrDAHMYEHIES
npowsBonHas Dy, MOMEr CYIecTBOBATL JIHIUL Kak oGoOmienuas (yHi-
s, HaM KameTcs MHTEpecHbM HCCIETOBAHMC JI0 KOHNA BO3HAKALOIIEH
3AeChL CUTyallll.

BauusiM GbII0 B TaisKe PACCMOTPEHHME [IOBEICHA PelleHHH HIIHITH-
9eCKAX 32721 B YCIOBHAX HX HOPMANLHON pPA3DCIMAMOCTH, R HE CRMHCT-
BEHHOCTH.

ABTop BRIpamaer nerpenmolo Graromapuocrs I. M. Jlanreny, B Gece-
BAX ¢ ROTOPHIM BOSHHKIM HOCTAHOBKH M3YIEHHHIX B crarhe aamay u fI. A,
Pofirfepry sa HDOMOILB H KPHTHYECKHE 3AMEUAHMA.
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In a recent paper [1] B. E. Johnson proved the remarkable faect
that every strictly irreducible representation of a Banach algebra is
continuous. In the present note we use a similar argument to prove a cex-
tain modification of the classical uniform boundedness prineiple; this
simple result (theorem (2.2) of the present mnote) is interesting in its
own right and turns out to be the hasis of theorems concerning the heha-
viour of algebraic homomeorphisms of Banach spaces into spaces of linear
operators. Indeed, if 4 is a Banach space, ¥ and & two normed spaces
and 7' an algebraic homomorphism of 4 into L(Y, A’), then the modifi-
cation of the uniform boundedness theorem mentioned above may be
used to show that 7' is continuous provided it satisfies some surprisingly
weak conditions (thecrem (2.5) of the present note). These conditions
being automatically satisfied if 4 is a Banach algebra and T' a strictly
irreducible representation thereof, this result constitubes a slight gener-
alization of Johnson’s theorem. At the same time it puts into evidence
the way in which nse is made of the assumption that 4 is a Banach al-
gebra.

1. Preliminaries. In this section we intend to collect some simple
propositions which will be needed in the sequel. We begin by listing
several simple facts concerning rare and meagre sets in topological
spaces.

(1.1) LZet T be a topological space and H a subset of T. Then

1°if A« H and A is rare (meagre) in H, then A is rare (meagre)
in T as well;
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2° if H 4s open in T, then A < I is vare (meagre) in T if and only
if it is rare (meagre) in H.

Further, let us recall the definifion of the operator D. Given a topo-
logical space T, we denote, for each A < T, by D{(A) the set of all points
wel with the following property: for each neighbourhood U of » the
intersection U ~ 4 is non-meagre in T.

(1.2} Let T be a topological space. Then the following conditions are
equivatent: ‘

1% we have G < D(@) for each non-void G open in T';

2% every mon-veid G open in T is non-meagre in T

3° every non-void G open in T is non-meagre in itself

Proof. We observe, first that 2° and 3° are equivalent by (1.1).
Now suppose that 1° is satisfied and let G be an open set in 7, @ non-
void. Since & is non-void, there exists a point x«@. By 1° we have z ¢ D(F)
so that every neighbourhood of # is non-meagre in 7. Hence @ itself is
non-meagre in T which proves 2°. If 3° ig satisfied and if & is non-void
and open in T, take an arbitrary # <G and an arbitrary open neighbourhoed
U of ¢. Then H = U ~ @ is non-void and open in I hence non-meagre
in ibgelt; it follows from (1.1) that H is non-meagre in 7. Hence, x <D (F)
s6 that ¢ = D(G). This proves 1° and completes the proof.

A gpace which satisfies one (and hence all) of the conditions of the
preceding lemma will be called & Buaire space. In the cage of a linear space
we have the following simple proposition:

(1.3) Let B be a topological vector space. If B is non-meagre in ilself
then, 1 iz a Baire space.

Proof. Take an arbitrary non-void open set ¢ and suppose that @
is mesgre in T. Choose a ge6; then G—g is again meagre in 7T and so is
© n{G—yg) for any natural number #. Since B = o n(G—g), this is a con-
tradiction.

We shall also need the following simple lemma:

(1.4) Let B be a linear space and P, § two. subspaces of T such that
their set theorelical wnion P § = B. Then either P or § equals B.

Prooif. Suppose that P dees not fill the whole of T and let ug show
that P = Q. Take a fixed ¢, outside P. If peP, both p4g, and p—g,
are points outside P hence p-q,eQ and P—qoc®. It follows that
P =H(P+ @)+ (p—00)) <@ 50 that P < @, whence @ =P ~ @ — E.

It (P,p) and (Q,q) are two normoed spaces, we denote by
Lip, p), (@, g)) the space of all continmous linear transformations of
(P, p) into (@, ¢). If we drop the requirement of continuity, we obtain
the space of all algebraic homomorphisms of P into ¢ which we denote
by Lﬂ((P) _'P); (Q: Q)) or, ShOIﬂY: LW(P’ Q) :
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It B is a linear space and F a sef of homemorphisms of # into a linear
space X, we denote by N (7) the set of all #¢f such that flay =0 for
all feF.

2. A uniform boundedness theorem. The classical uniform bounded-
ness principle may Dbe formulated as follows:

(2.1) Let (B, p) be a normed Baire space and S a set of algebraie home-
norphisms of B into a normed space (X, w). Assume further that

1° each ye8 is continuous;

2° the set § is pointwise bounded for cach beB.

Then the set 8 is equicontinuous.

The Dbasic result of the present paper comsists in showing that this
tesult remains almost true if we replace condition 1° by a wealker hypo-
rhesis. Instead of requiring y to be continzous we take the weaker postu-
Iate that the kernel N (y) be closed in (B, p).

(2.2) TueoreM. Let (B,p) be a Banach space, 8 a sef of algebraic
homomorphisms of B into o normed space (X, w). Assume Jfurther. that

1% for each yeS, the set N{y) is closed in (B, p);

2° the set § is pointwise bounded for each beB.

Thew there exists a finite sel y, ..., yne S such thal the set 8 is equi-
continuous on N (i1, ..., yn) or, more precisely, there exists a o >0 such
that beN(yy, ..., ¥) and yeS imply w(by) < op(b).

Proof. Tor each ae<B, write Af(a) = sup wlay); yeS. Aecording
to condition 2°, the comstant M (a) is finite for each ael. Suppose that
the statement of the theorem is false.

It follows that, for each o >0 and each finite set #,,..., %, there
exists an aeN(y, ..., ¥a) and a yeS such that p{a) <1 and w(ay) > o.
We shall proceed by induction. There exists an a; and a i, eS8 such that
ploy) <1 and wla,y,) = 2. Forther, there exists an a,«N(y,) and a y,e8
such that p(a) <1 and w{ayy.) = 2*(2+ 4 M (a,)). Similarly, there exists
an dye N (¥, ¥:) and 2 y;¢8 such that play) <1 and w(ays) > 283+
+ 3 M (a)+(1/2)2 M (ag)]. Proceeding by induetion we construct two
sequences ¢;eB, y;e8 such that

p(ai)gl) mieN(yu-"inhl):
W (s Yn) = 2" (-n+ E (1/2)7‘1[1(@,-)).
ig<n—1

Consider mow the point a = Y (1/2Yay; clearly p(a) <1. Given
i1
2 natural number n, we have

wyu=2(1/2)j%'yn+”ym where v = Z (1/2)7'11

i<n iBntl
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For j = nt1 we have a;eN(y,) so that, N (9.) being closed, the
vector © belongs to N(y,) as well. It follows that

w(ays) = w((112)" utn + X (1/2)"%'.%)

Jegn—1

= (12 wia) — O L2 (g

Th—1

> (1) wlmy) — D (L2YM(a)=mn,
71
which eontradicts condition 2°. The proot is complete.

Tt would be interesting to know whether the preceding result remains
true under the weaker hypothesis that (B, p) is a Baire space.

The result just obtained may be considerably improved if we add
another condition.

(2.3) Let (B, p) be a Banach space, (X, w) a normed space. Let § be
a subset of L,(B, X). Denole by ¥ the subspace of L,(B, X) generated by 8
and suppose that the following three conditions are satisfied:

19 for each y<¥, the set N(y) is closed in (B, p};

20 the set 8 is poindwise bounded for each beB;

3° given Yy .oy Yne Y and @y, ..., @, X Such that the y; are linearly
independent, there ewists @ beB such that by, = a; for § =1,2, ..., n.

Then either Y is finite-dimensional or 8 is equicontinuous omn the
whole of B.

Proof. The proof will be divided inte four steps.

1. According to (2.2) there exist ¥,,...,7.,¢Y and & ¢ >0 such
that beN(yy, ...y ) and yeS imply w{by) < op(d).

II. Let us prove now the following assertion: if y ¢ ¥ is linearly inde-
pendent of ¥y, ..., Y., then y is continuous on (B, p). We begin by showing
that B = N(yy, ..., ¥)+ N (y). Indeed, given beB there exists, by
assumption 3°, a ¢eB such that cy; = 0 and ey = by. It follows that
ceN(y, ..., ) and b—eeN(y). Since (B,p) is complete and the sub-
spaces N are cloged therein there exists a § >0 such that every deB
may be written in the form & = w-+v, %eN(yy, ..., ), veN(y) with
p(u)-+p(v) < fp(b). Since y may be written in the form y = 3 A8y, 88,
we have, for heN (Y, ..., %), the estimate

wihy) =w Y yhs) < 3 135 whs) < X 14l) op(h) = v (W),
where we set.y = g{Z{%]). If beB, we have thus

wiby) = wluy+ovy) = wluy) <yplw) < vEp(b)
which completes the proof of our assertion.
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ITI. Denote by P the subspace of ¥ generated by #,, ..., %» and
by @ the subspace of those ¥ ¥ which are continuous on (B, p). According
to the preceding part of the proof P o @ == ¥. It follows that either
P =¥ so that Y iz finite-dimensional or § = Y.

IV. Tf Y is not finite-dimensional, we have § = Y; in partieular,
8 iz a set of continnous linear transformations of (B, p) into (X, ) which
is pointwise bounded on (B, ), a complete space. It follows that § is
equicontinous. The proof is complete.

The preceding results may also be formulated in the form of propo-
sitions concerning mappings of a Banach spaee into spaces of linear
operators. Before considering the main theorem, let us state a simple
resuit about mappings of a Banaeh space into spaces of linear fonetionals
which helps to understand the general case.

(2.4) Let 4 and B be two normed spaces and let T be a continious
linear mapping of A into (B', o(B', B)). Suppose that A is « Baire space.
Then T is continuous inlo (B, w), where w is the norm fopology of E.

Proof, According to our assumption, for each xel, the mapping
a - { T{a), x iscontinuous on A henee {T(+), x> is @ certain element
T'zed’. Denote by B the set of all T'x, where z<¥ and |»] < 1 and let
ug show that B, a subset of 4’, is bounded in the norm. Sinee 4 is a Baire
space it suffices to show that B is pointwise bounded on A. To see that,
take o fixed aed and an arbitrary element beB, b= T'®. Then

[Ka, By = (o, T' @)} = KT (a), 2] < |T{a)je < 1T (a)l;

this estimate being independent of beB, the proof is complete.

(2.5) TmeorEM. Let (Y, q) and (X,w) be two mormed spaces. Let
(4, p) be o Banach space and T an algebraic homomorphism of 4. into
L((Y , 0 (X, fw)). Suppose that the following two conditions are satisfied:

1° for each y <Y the set N{y) = {aed; Ty = 0} is elosed in (A, p);

8° given Yiy.--r Yue ¥ and @y ..., GneX such that the y; are linearly
independent, then there ewisis an aed such thot Toy, = 2.

Then either ¥ ig finite-dimensional or the mapping T is continuous.

Proof. Tet us define, for each ye¥, an element h(yyelqa(d, X)
by the relation a-h{y) = T.y.

Take, in proposition {2.3), for (B,p), ¥, 8, the following objects
respectively: (4, ), &(¥), k{T), where U iz the unit ball of (XY, ¢q)-
Lt ns prove that the assumptions of (2.3) are satistied. In order to see
that the set B(T) is bounded for each acd take & fizved aeA and an arbit-
rary yeY, g{y) < 1. Tt follows that wla-k{y)) = w(Tey) < 1Pl () < |Tal
for all yeU. The other two conditions being immediate, it follows that
either ¥ is finite-dimensional or the set A (L) ig equi-continuous. In the
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second case there exists a § > 0 such that [h{y)| < £ for each 4 for which
gly) <<1. Henece |h(y)| < fgly) for all yeX¥ so that

w(Tay) = wla ki) < p(a)|hip)] < fpla)gy)-

3. Bilinear mappings. The preceding results admit interesting refor-
mulations in the form of statements about hilinear mappings. We begin
by stating a classical result about separately continuous bilinear map-
pings and then proceed to investigate what happens if we relax the rve-
quirement of continuity for one of the two variables.

(38.1) Let (A,p), (X,q) and (X,w) be three normed spaces, (4., p)
& Baire space. Let I be a separately continuous bilinear moapping of Ax Y
into X. Then there ewisis o constani « >0 such that

w(F(w,y)) < ap()qy).

Proof. For each yeY denote by T, the transformation I (-, y)so
that T, is a continnous linear mapping of (4, p) info (X, w). Let
M < L4, p), (X, w)) be the set of all T, for ye ¥, g(y) < 1. For each
fixed #ecd it follows from the continuity of F(w,-) that tlie seti M{x)
is bounded. Since (4, p) is Baire space and M is pointwise bhounded,
it follows that theve exists a constant « such that [7,] < « for each T <M.
Hence |T,| < aq(y) so that w(F(z, y)} = w{T,2) < |T,|p(x) < ap(@)g(y),
which completes the proof.

(3.2) Let (A, p}, (Y, q) and (X, w) be threc normed spaces and lot f
be @ bilinear mapping of A XY into X. Suppose that (A, p) is complete and

1° for each fized acA ihe value fla,) is CONBIIUOUS;

2° for each fived ye¥ the set N(y) = {acd, fla,y) = 0} is elosed
in (4,p).

Then there ewists o finite sequence ¥y, ..., YneY and an o =0 such
that acN{y, ...y ys) and yeY imply

w{f(a, ) < ap(ayg(y).

Proof. We are going to apply proposition (2.2). For each ye ¥ the
value f(+,y) i3 an algebraic homomorphism k(y) of 4 into X. Denote
by 8 the set of all (y) for g(¥) < 1. Tt follows from condition 1° of the
present theorem that, given a fixed aed,f(a,-) is confinuous so that
w(f(a,y))gﬂg(y) for a snitable 8 > 0. If s¢d, wo have s = h(y) for
some g(y) < 1, whence w(as) = w(f(a,y)) < fgly) < §.

Condition 2° of (2.2) is thus satisfied. The rest Tollows immediately.

(3.3) Let (A, p),(Y, q) and (X, w) be three normed spaces and let f be
a bilincar mapping of AX Y into X. Suppose that {4, p) is aomplete'cmd
“ 1;’ for cach fized ye¥ the set N(y) = {ned, fla,y) = 0} is closed in

2 P ‘
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2° for each fized acA the value fla, -) is continnous;

3° given Yy, ..., yne¥ and @, ..., 3,eX such that the Yy are linearly
independent, there ewists am aed such that fla, yo) = a;.

Then either Y i3 finite-dimensional or there exists @ § > 0 such that
w(f(a, ¥)) < fp(a)q(y) for all acd and ye¥.

Proof. An immediate consequence of (2.3).

4. Representations of Banach algebras. Now we are ready to apply
the resulbs about mappings into spaces of linesr operators to represen-
tations of Banach algebras. Thiz immediately yields Johnson’s theorem.

(4.1) TamoreM, Let (4, p) be a Banach algebra and let T be o strictly
drreducible represeniation of A on the normed space {X,w). Then T is
CORBINUOUS.

Proof. The mapping T is an algebraic homomorphism of A4 into
L({(X,w), (X, w). We shall use theorem (2.3) where we put (¥, g)
= (X, w). First of all, it follows from the general theory of Banach al-
gebras (see theorem 2.4.6 of [3]} that condition 3° of theorem (2.5) is
satistied, Further, for each y, the set ¥ (y) is the set of all a<A for which
Toy = 0. It is a well known fact that this kernel i§ a maximal modular
left ideal in 4 and, accordingly, closed in (4, p). This gives condition 1°.
It follows that either X is finite-dimensional or T is continmous. I X
is finite-dimensional, denote by H the intersection of all N (x), xeX,
and observe that H i8 a eclosed two sided ideal in (4, p). It follows that
A[H is isomorphiec to a subalgebra of the finite-dimensional algebra
L{(X, w), (X, w)). Since all norms on & finite-dimensional vector space are
equivalent, we have [T, < fp(«a) for some § > 0. The proof is complete.

A preliminary report about these results is contained in [2].

The aunthor is indebted to H. H. Corson and F. F. Bongall for their
comments.
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