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Abstract

Feature-based vocoders, e.g., STRAIGHT, offer a way to manipulate the perceived characteristics of the speech signal

in speech transformation and synthesis. For the harmonic model, which provide excellent perceived quality, features

for the amplitude parameters already exist (e.g., Line Spectral Frequencies (LSF), Mel-Frequency Cepstral Coefficients

(MFCC)). However, because of the wrapping of the phase parameters, phase features are more difficult to design.

To randomize the phase of the harmonic model during synthesis, a voicing feature is commonly used, which

distinguishes voiced and unvoiced segments. However, voice production allows smooth transitions between

voiced/unvoiced states which makes voicing segmentation sometimes tricky to estimate. In this article, two-phase

features are suggested to represent the phase of the harmonic model in a uniform way, without voicing decision.

The synthesis quality of the resulting vocoder has been evaluated, using subjective listening tests, in the context of

resynthesis, pitch scaling, and Hidden Markov Model (HMM)-based synthesis. The experiments show that the

suggested signal model is comparable to STRAIGHT or even better in some scenarios. They also reveal some

limitations of the harmonic framework itself in the case of high fundamental frequencies.
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1 Introduction
Parametric speech signal representations are necessary

in almost every field of speech technologies: speech and

speaker recognition [1,2], speech and speaker transforma-

tion [3], synthesis [4], diarization [5], etc. Each of these

fields, however, requires a particular type of parametriza-

tion scheme. Thus, while low-dimensional filter bank

based Mel-Frequency Cepstral Coefficients (MFCC) [6]

are sufficiently accurate for recognition purposes, they

are not suitable for speech reconstruction by themselves.

Indeed, applications involving spoken outputs, such as

speech coding [7], require the speech signals to be rep-

resented by a set of features yielding almost transparent
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analysis/resynthesis. Voice transformation and speech

synthesis impose even stricter requirements, since the

parametric speech representations they deal with must

provide a solid and flexible framework to sculpt all

the characteristics of the speech sounds through direct

manipulation of the features (see, for instance, [8-10]).

Interestingly, recent statistical trends are also encourag-

ing research on parametric speech representations with a

constant number of parameters and with good mathemat-

ical properties [4].

Sinusoidal models represent the speech signal by means

of a sum of sinusoids given by their instantaneous fre-

quency, amplitude, and phase [11]. These models have

been widely used for speech analysis, resynthesis, and

modification [12-14]. Sinusoidal models have evolved

over the years [3,15], and recently, the so-called adaptive

Harmonic Model (aHM) [16] has also been shown to yield

practically transparent analysis/resynthesis and excellent

modification performance [17,18]. Despite the inher-

ent assumption that speech can be represented only by
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harmonic sinusoidal components, even in unvoiced seg-

ments, aHM succeeds at capturing the relevant spectral

information and noisy nature of a speech signal and thus,

representing the speech signal in a uniform way, with-

out using any voicing decision. As long as the perceptual

information carried in the phase is preserved, the uniform

way of describing and manipulating signals is a remark-

able practical advantage of aHM with respect to alter-

native models involving an explicit separation between

harmonics and noise [19] for two main reasons: (i) locat-

ing the voicing boundaries is an error-prone process and

(ii) in voice transformation, such a separation implies

the need for two independent modification procedures,

one for each component [3,20], which increases the risk

that listeners perceive them as two independent output

signals.

The features handled by aHM are not directly compat-

ible with methods involving statistical modeling because

the amplitude and phase parameters lie on the harmonic

grid which is dependent on the fundamental frequency f0
[21]. To avoid this issue, amplitude and phase information

have to be isolated from f0 and translated into indepen-

dent parameters. However, while amplitude envelopes are

relatively easy to obtain through interpolation between

sinusoidal amplitudes [22,23], the representation of phase

remains an open problem. Recent attempts of obtaining a

consistent phase envelope [24-27] provide features which

are theoretically valid in voiced time-frequency regions

but are not informative in unvoiced ones. Thus, standard

speech parametrization systems used in statistical frame-

works tend to discard the phase information. Instead, they

rely on a minimum-phase component derived from the

amplitude envelope, along with complementary param-

eters related to the degree of harmonicity in different

time-frequency regions, such as band aperiodicities [28]

or maximum voiced frequency [29].

This article presents a novel phase representation that

has been designed to handle, in a uniform manner

across time, all the relevant information conveyed by the

phase parameters of a full-band aHM model, namely the

maximum-phase component and the noisiness. This is

done through the following steps: first, aHM analysis [16]

is performed to obtain the instantaneous phase from the

waveform; then, the minimum-phase term is subtracted

from the measured phases, and the local Phase Distor-

tion (PD) [25] is calculated; finally, the short-time mean

and standard deviation of the PD are computed in the

neighborhood of each frame, the former being highly cor-

related to the maximum-phase component, and the latter

to the degree of noisiness. Among the advantages of this

novel approach, we canmention the following: (i) it is valid

to analyze signals exhibiting harmonic and noise com-

ponents that overlap both in time and in frequency and

thus, avoiding binary voiced/unvoiced decisions which are

error-prone and result in annoying artifacts, especially in

synthesis [30,31]. (ii) Since it helps avoiding an explicit

separation between harmonics and noise, it provides a

solid and uniform framework for speech manipulation

thus, avoiding artifacts near the voicing boundaries [21].

(iii) It can be easily made compatible with statistical

frameworks. Moreover, given the continuous nature of

the feature streams, the use of Multi-Space Distributions

(MSD) [32] can be avoided. In that sense, the involved

training and generation procedures can be simplified. In

addition to these advantages, the suggested phase rep-

resentation facilitates the study of the perceptual impor-

tance of the maximum-phase component and the degree

of noisiness, which are linked to separate features. Indeed,

phase perception is still a source of controversy in speech

processing [33-35].

The next section first summarizes the low-level analysis

of the speech signal using the aHMmodel. Then, the novel

phase features based on the mean and standard devia-

tion of PD are described in details, which are followed

by the description of the synthesis step. Finally, the eval-

uation section will show the importance of the features

and demonstrate the feasibility of the suggested represen-

tation in the context of voice transformation and speech

synthesis.

2 The adaptive harmonic model
Given a speech waveform s(t), we assume that its con-

tinuous fundamental frequency curve f0(t) can be known

a priori, thanks to numerous existing methods. For the

experiments described in this article, the STRAIGHT’s

f0 analysis method [10] has been used, which allows fair

comparisons during evaluation. The speech waveform is

first segmented into analysis frames centered around time

instants ti. For the reason of clarity, a constant step size

will be first assumed (e.g., 5 ms). Pitch synchronous anal-

ysis will be used later on, for statistical characterization in

Section 3.4. At each time instant ti, the main goal is to rep-

resent the frequency content of each frame using features

capturing independent characteristics of the speech sig-

nal. For this purpose, in a Blackman window of three pitch

periods around each ti, the aHM model [16] is first used

to decompose the analytic signal of s(t) into harmonic

frequency components:

si(t) =

Hi∑

h=1

ai,h · ej(hφ0(t)+φi,h) (1)

where i is the frame index, Hi = ⌊0.5fs/f0(ti)⌋ is the num-

ber of harmonic up to Nyquist frequency in the frame i,

fs denotes the sampling frequency, ai,h is the real-valued

amplitude of the hth harmonic at frame i, φi,h is the instan-

taneous phase parameter, and φ0(t) is a real function
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which adapts the frequency basis of the harmonic model

to the waveform frequency modulations [15]:

φ0(t) =
2π

fs

∫ t

ti

f0(τ )dτ . (2)

For this work, the Adaptive Iterative Refinement (AIR)

algorithm presented in [16] is used to refine the f0(t)

values and the sinusoidal parameters (ai,h and φi,h) are

estimated using the Least Squares (LS) solution.

Conversely to the conventional harmonic model [3], the

aHM model uses a full-band non-stationary frequency

basis. This mainly allows to represent a whole speech

recording using a single and continuous harmonic struc-

ture during both analysis and synthesis steps [15]. This

structural property is very convenient for the phase mod-

els and processing used in this work.

Also, in unvoiced segments, assuming that an f0(t) curve

can be obtained without substantial erratic jumps, it has

been shown that aHM can represent both voiced and

unvoiced segments uniformly, without voicing decision

[16]. Given the goal of this work, this property is obvi-

ously a necessary prerequisite. Additionally, together with

its harmonic tracking algorithm (i.e., AIR), this model pro-

vides almost always the most accurate and precise sinu-

soidal parameters compared to state-of-the-art methods

[16]. Eventually, this good accuracy and precision might

not be critical for obtaining the results of this article.

However, this allows tominimize the influence of the sinu-

soidal parameter estimation on the results thus, strength-

ening the link between the suggested phase processing

techniques and the results obtained. Finally, like the con-

ventional harmonic model [3], the resynthesis obtained by

aHM is almost indistinguishable from the original record-

ing [16]. This ensures that the aforementioned properties

come with no perceptual degradation.

Despite the advantages of aHM, the sinusoidal parame-

ters ai,h, φi,h, and fi,h = hf0(ti) lie on the harmonic grid,

which is not convenient for manipulation of the perceived

characteristics or for statistical modeling. Moreover, the

instantaneous phase parameter φi,h constantly wraps from

one instant to the next, whichmakes its modeling far from

straightforward. In the following steps, we aim at build-

ing amplitude and phase features which are independent

of the harmonic structure and we focus on the modeling

of the instantaneous phase.

2.1 A simple representation of the amplitude

For this study, we assumed that the voice production

consists of a spectrally flat source and a filter [36]. In

frequency domain:

Si( f ) = Gi( f ) · Vi( f ) (3)

where Si( f ) is the Fourier transform of si(t), described in

hertz for the reason of clarity,Gi( f ) is the spectrum of the

voice source, and Vi( f ) is the vocal tract filter response.

Therefore, the harmonic amplitudes ai,h can be consid-

ered as discrete samples of the filter amplitude response

|Vi( f )|:

if |Gi( f )| = 1 ∀f ⇒ ai,h = |Vi(hf0(ti))|. (4)

We also assumed that Vi( f ) is minimum-phase so that

∠Vi( f ) is linked to |Vi( f )| through the Hilbert transform

[37]. The phase response ∠Vi( f ) can also be retrieved

through the imaginary part of the Fourier transform of the

minimum-phase cepstrum v̂−(t) of Vi( f ):

v̂−(t) =

⎧
⎨
⎩
0 t < 0

2v̂(t) t > 0

v̂(t) t = 0

(5)

where v̂(t) is the real cepstrum of |Vi( f )|, i.e., v̂(t) =

F−1(log |Vi( f )|), as described in [37]. Modeling the

amplitude envelope is a well investigated subject, and it is

out of the scope of this article. In order to estimate |Vi( f )|

in a robust and simple way, we used a linear interpolation

of ai,h across frequency, as used in [38], on a discrete scale

of 512 frequency bins up to the Nyquist frequency. How-

ever, for the reason of clarity, the continuous notation in

hertz will be used in the following.

Even though the assumption of spectrally flat source

is widely used, it is also known that this hypothesis is

basically wrong since the glottal pulses have a low-pass

characteristic [39]. Therefore, in this work, |Vi( f )| encom-

passes the amplitude spectra of both the glottal source and

the vocal tract. Nevertheless, using PD, it has been shown

that this assumption allows to extract glottal source infor-

mation which is almost independent of the vocal tract

filter [40]. Indeed, this property was critical for estimation

of glottal model parameters using phase minimization

[25,40]. For the work presented in this article, this same

property ensures that the impact of the vocal tract filter

on the phase features representing the source is minimal.

On the contrary, the impact of the glottal source on the

vocal tract feature is far from negligible, which is not con-

venient. However, a robust separation of the vocal tract

filter and the glottal source is far from straightforward

[31,41-44]. Thus, in this work, we chose to favor again

robustness and simplicity, in order to focus, beforehand,

on the phase features. Interposing a separation process

within the presented phase feature extraction can be part

of future works.

3 Representations of the phase
In this section, we first describe the analytical model of

the instantaneous phase used in this work. State-of-the-

art phase processing are then described and discussed
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analytically using this model. Finally, the novel character-

ization of the short-term statistics of PD is described.

3.1 Theoretical model of the instantaneous phase

In order to represent the instantaneous phase parame-

ter φi,h, models have been already suggested for phase

synchronisation between frames [45,46] and speech cod-

ing [14,47]. In this work, we suggest to represent the

measured φi,h using a model similar to that in [47]:

φi,h =

voice source︷ ︸︸ ︷
θi,h︸︷︷︸
source
shape

+ h
2π

fs

∫ ti

ci

f0(τ )dτ

︸ ︷︷ ︸
linear phase

+

filter︷ ︸︸ ︷
∠Vi(hf0(ti)) (6)

whose terms are described here below. In voiced seg-

ments, each glottal pulse of the glottal source has a shape

which has mainly maximum-phase characteristics [27,39].

This glottal pulse shape has also a position in time ci.

Speech processing techniques often define ci as glottal

closure instants [48,49], or as energy local maxima of a

residual signal [50,51], or as pitch pulse onsets [12,14,27]

for centering windows and to synchronize instantaneous

phase parameters.

Even though such a definition is necessary for many

approaches, we will show below that it is not necessary

when using the Relative Phase Shift (RPS) [24,33] or PD,

which avoids an extra estimation procedure and its poten-

tial misestimation errors. In unvoiced segments, one can

assume that this shape is basically random for each frame.

In Equation 6, the source shape term θi,h represents this

pulse shape in both voiced and unvoiced segments. Since

the analysis windows are not centered on each ci (i.e.,

ci �= ti), a linear phase term is also necessary in order to

represent the time delay between ti (the window’s center)

and the position of the source shape ci. In the literature,

assuming the frequency structure is stationarity within

a frame, i.e., f0(t) = f0(ti), this term is often simplified

to a term which is linear in both frequency and time,

i.e., h(2π f0(ti)/fs)(ti − ci). Conversely, in Equation 6, we

use the integral form since the harmonic structure is not

stationary in the aHMmodel.

Finally, according to the voice production Equation 3,

the voice source is convolved by the vocal tract fil-

ter impulse response. Thus, we add the minimum-

phase ∠Vi(ω) to the model.

The following sections describe the suggested way to

characterize φi,h for speech processing using statistics of

PD and using the RPS as an intermediate step.

3.2 From phases to relative phase shift

The linear phase component in Equation 6 constantly

wraps the instantaneous phase φi,h from one time instant

to the next. This constitutes a major issue in phase mod-

eling [27].

To alleviate this issue, the RPS has been suggested [33],

which is expressed as:

RPSi,h = φi,h − hφi,1. (7)

The second row of Figure 1 shows an example of RPS

computation (the harmonic values have been interpolated

on a continuous frequency axis for reason of presenta-

tion). To further analyze the results of the RPS computa-

tion, one can replace the estimated instantaneous phase

parameter φi,h by its models Equation 6:

RPSi,h = θi,h + h 2π
fs

∫ ti
ci
f0(τ )dτ + ∠Vi

(
hf0(ti)

)

−h ·
(
θi,1 + 2π

fs

∫ ti
ci
f0(τ )dτ + ∠Vi( f0(ti))

)

(8)

which reduces to:

RPSi,h = θi,h − hθi,1 +
(
∠Vi

(
hf0(ti)

)
− h∠Vi

(
f0(ti)

))

(9)

Equation 9 shows that the RPS computation discards the

linear phase terms. It remains only the source shape at

each harmonic relative to that of the first harmonic and

the contribution of the minimum-phase envelope ∠Vi( f )

relative to that at the first harmonic. In voiced segments,

these two remaining terms can be easily assumed to evolve

smoothly across time because the shape of the glottal

pulse and the vocal tract do so. Therefore, this property of

RPS basically solves the issue of phase wrapping.

Additionally, ci is also discarded in Equation 9 so that

there is no need to estimate any GCI or pitch pulse onset.

This avoids misestimation of such time instants and the

consequences on speech processing techniques.

The RPS can also be computed on the Linear Prediction

(LP) residual [33], which removes the minimum-phase

contribution of Vi( f ). Similarly, let us define:

φ̃i,h = φi,h − ∠Vi(hf0(ti)) (10)

where φ̃i,h is the instantaneous phase where the

minimum-phase frequency response corresponding to

the amplitude envelope has been removed. Consequently,

Equation 9 becomes:

R̃PSi,h = φ̃i,h − hφ̃i,h = θi,h − hθi,1. (11)

The third row of Figure 1 shows an example of R̃PS (with,

again, the interpolation on a continuous frequency axis).

In Equation 11, only the source shape and the harmonic

number h remains. Ideally, we want to extract features

from the speech waveform which are independent from

each other as much as possible. However, h belongs to

the harmonic structure which is already handled by f0(t)

and the property of harmonicity of the model. Therefore,
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Figure 1 Examples of computation of RPS and PD, interpolated on a continuous frequency scale. V(f ) can be removed prior to RPS or PD

computations, thus removing the effects of the formant and focusing on the glottal source.
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this harmonic number is still inconvenient for charac-

terizing the phase properties independently from f0(t).

Interpolating the R̃PSi,h values on a continuous frequency

axis (as depicted in Figure 1) removes the harmonic sam-

pling. However, the harmonic number is still present in

the interpolated values. Note also that, h increases the

RPS variance towards high frequencies and drowns the

variance of θi,h into that of hθi,1, which is not conve-

nient for characterizing the source shape in mid and high

frequencies.

3.3 From relative phase shift to phase distortion

The problem mentioned above can be solved by simply

computing the finite difference of R̃PSi,h with respect to

h. In the general context of signal processing, the relative

phase difference between two frequency components is

known as PD, whose perceived characteristics are already

studied and known [52-54]. In the particular context of

speech analysis, we already used the PD for the estima-

tion of glottal model parameters [25,40] and for emotion

valence detection [55]. Moreover, in [40], we have shown

that the PD is directly linked to the maximum-phase com-

ponent of the glottal source. This sole property allows

to estimate parameters of glottal models as presented

in [25,40]. Therefore, PD is also a strong correlate of

the maximum-phase component of the voice source. The

rather complicate definition of PD in [25,40] is actually

equal to:

PDi,h = �
h
R̃PSi,h = R̃PSi,h+1 − R̃PSi,h

=
(
φ̃i,h+1 − (h + 1)φ̃i,1

)
−

(
φ̃i,h − hφ̃i,1

)

= φ̃i,h+1 − φ̃i,h − φ̃i,1

(12)

where �
h
denotes the finite difference operator. The fifth

row of Figure 1 shows an example of PD (with the inter-

polation on a continuous frequency axis). Basically, the

PD measures the phase desynchronization which exists

between each sinusoidal component of the voice source.

Additionally, this desynchronization is centered on the

first harmonic phase, like for the RPS. The finite differ-

ence makes also the PD similar to the group delay, whose

perceived characteristics have been already studied and

demonstrated [56] and whose applications are numerous

[48,57-61].

By replacing φi,h by its model Equation 6, the PD com-

putation leads to:

PDi,h = θi,h+1 − θi,h − θi,1. (13)

Since the linear and filter terms cancel, only the source

shape terms remain in Equation 13. Equation 13 also

shows that the computation of the PD represents the

phase desynchronization of the source shape between

each harmonic, centered on that of the first harmonic.

Compared to Equation 11, the harmonic number h is also

removed, as expected, by using the finite frequency differ-

ence. Consequently, when h increases, it adds to the RPS

measurement but does not influence the PD measure-

ment. For example, when using PD in fourth and fifth rows

of Figure 1, one can see red patterns appearing around

1.5 s between 4 and 8 kHz. On the contrary, no clear

pattern appears in the same time-frequency region using

the RPS (second and third rows). Using RPS, the region

concerned actually seems as blurred as in noisy time-

frequency regions (e.g., around 1.8 s). This is explained

by the presence of the harmonic number h in RPS which

increases the wrapping of the phase values.

3.4 Statistical features of the phase distortion

As shown in Equation 13, the phase distortion represents

basically the source shape. In voiced segments, the source

shape accounts mainly for the shape of the glottal pulse.

In unvoiced segments, the time evolution of this shape

throughout adjacent frames reproduces the noisiness of

the voice source. Therefore, in this section, we suggest to

statistically characterize the phase distortion in a short-

term window in order to extract a feature related to the

shape at a given time and another feature representing the

local variation of this shape around that same time. This

characterization will allow to manipulate the components

of the speech in voice transformation and HiddenMarkov

Model (HMM)-based synthesis.

We first assume that the information carried in PD is

independent of the fundamental frequency. As a conse-

quence, we interpolate PDi,h on a linear frequency scale

(as done for the previous figures), like a phase spec-

tral envelope [62,63], and thus, removing the harmonic

number from the representation. To achieve this phase

envelope, we first unwrap PDi,h and then interpolate it lin-

early on a discrete scale of 512 frequency bins up to the

Nyquist frequency, and thus, PDi,h becomes PDi[k]. Here,

the unwrapping function is necessary to avoid meaning-

less values during the interpolation process. Nevertheless,

the resulting PDi[k] is still a circular data. Instead of the

discrete notation in bins, the continuous notation in hertz

will be used in the following descriptions and sections for

the reason of clarity, i.e., PDi[k]⇔ PDi( f ), like for the

amplitude spectral envelope Vi( f ).

On a frame-by-frame basis in an analysis/synthesis pro-

cedure, the sole information carried by PDi( f ) might be

sufficient to reconstruct an instantaneous phase which

has the same perceived characteristics as those of the

instantaneous phase φi,h. This property has actually been

shown through listening tests in [33]. However, through

manipulation of PDi( f ), by time scaling, pitch scaling, or

statistical modeling, the short-term statistical character-

istics of the analyzed voice might not be preserved. For

example, stretching PDi( f ) over time would automatically
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reduce its temporal variance and thus, changing the extent

of randomness in the voice, which is not the purpose of a

time stretching transformation.

In this article, we suggest to preserve the short-term

mean and short-term standard deviation of PDi(f ) in

speech processing applications using features that repre-

sent these two moments. In order to estimate the mean

and standard deviation, we assume that the distribution

of PDi( f ) obeys a normal distribution. Moreover, since

PDi( f ) is a circular data defined in (−π ,π ], we make use

of the wrapped normal distribution [47,64].

In order to ensure that the short-term estimate of PD

variance is not influenced by the number of periods, it is

first necessary to use the same number of time instants ti
in each glottal cycle and not a constant step size as previ-

ously assumed so far. In order to have enough values for

computing a reliable short-term variance in the following,

we used four analysis instants per period:

ti = ti−1 +
1

4

1

f0(ti−1)
with t0 = 0. (14)

3.4.1 The short-termmean of PD

Since the values PDi( f ) are circular data, the wrapped nor-

mal distribution [47,64] has been used in this work to

model PDi( f ) over a few periods. The mean is estimated

with [64]:

μi( f ) = mean
i

(
PDi( f )

)
= ∠

(
1

N

∑

n∈B

ejPDn(f )

)
(15)

where B =
{
i − N−1

2 , · · · , i + N−1
2

}
and we used N = 25

frames in this work, which corresponds to six periods.

This averaging of PDi( f ) is necessary for separating the

randomness characteristics of the phase from its smoothly

varying behaviors. Even though six periods might appear

to be substantial, it ensures that the mean does not model

the randomness of the phase, which has to be modeled by

the feature described below.

3.4.2 The short-term standard deviation of PD

According to [64], the standard deviation should be esti-

mated by:

σi( f ) = std
i

(
PDi( f )

)

=

√
−2 log

∣∣∣ 1
N

∑
n∈B

ej(PDn(f ))
∣∣∣

(16)

where B =
{
i − N−1

2 , · · · , i + N−1
2

}
. However, in our con-

text of application, two issues arise with Equation 16.

Firstly, as shown in Equation 13, PDi( f ) is related to the

source shape in voiced segments. One can easily assume

that this shape is non-constant and evolve smoothly across

time. Thus, over a few periods, PDi( f ) has also a non-

constant trend. Figure 2 shows an example of PDi(2f0(t))

and the corresponding estimation of σi(2f0(t)). One can

see that the waveform is drastically changing from 1 s

to ∼1.07 s. This phenomenon is revealed by PDi(2f0(t))

which tends towards low phase values.

The σi( f ) estimate is overestimated by the presence of

this trend whereas σi( f ) is supposed to represent only

the noisiness of the voice source. Moreover, the time evo-

lution of μi( f ) already modeled this trend of the voice

source. Consequently, there is no reason to keep this

trend in the standard deviation estimate. In Figure 2, one

can also see that the estimation of the variance using

Equation 16 reaches 0.5 rad in the bottom plot, even

though the waveform does not show any noise around

1.07 s. Therefore, to alleviate this problem, we suggest to

remove an estimate of the trend prior to the computation

of the standard deviation. The trend is first estimated by

averaging PDi( f ) over two periods:

⌢
PDi(f ) = ∠

(
1

M

∑

m∈C

ejPDm(f )

)
(17)

where C =
{
i − M−1

2 , · · · , i + M−1
2

}
, with M = 9. This

trend is then removed before computing the standard

deviation:

σi( f ) = std
i

(
PDi( f ) −

⌢
PDi( f )

)

=

√
−2 log

∣∣∣ 1
M

∑
m∈C

ej(PDm(f )−⌢
PDm( f ))

∣∣∣ (18)

where C =
{
i − M−1

2 , · · · , i + M−1
2

}
and M = 9 frames.

Using two periods for the standard deviation and six for

the mean are motivated by the following reason. A wider

window for the standard deviation could cover the end

of a noisy segment and the beginning of a voiced seg-

ment and thus, overestimating the presence of noise at

the beginning of the voiced segment. Therefore, a short

window seems necessary to quickly adapt the standard

deviation estimate in transients. On the other hand, using

a wider window for the mean allows to obtain a more

robust estimate of the source shape in transients where

harmonic sinusoidal parameters are less reliable than in

voiced segments.

In order to have the same number of analysis instants in

each period, the step size of the analysis instants was first

adapted to f0(t) (see Equation 14). However, both mean

and standard deviation have to be independent from f0(t)

so that each feature represents independent characteris-

tics of the speech signal. Additionally, a variable step size

is not desirable for many applications, like in statistical

modeling, where a constant step size is necessary. Conse-

quently, prior to any application, μi( f ) and σi( f ) features

are resampled at new time instants t̂i, with a constant step

size, each 5 ms.
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Figure 2 Example of estimation of the standard deviation of PD, using Equations 16 and 18.

Figure 3 shows an example of features extraction.

4 Synthesis
The analysis steps described above provide, each 5 ms,

the features f0(ti), Vi( f ), μi( f ), and σi( f ). This section

describes the method used to resynthesize a full speech

signal using these features. This synthesis method is sim-

ilar to that used originally for the aHM model [16]. Basi-

cally, each harmonic track is first synthesized across time,

independently of each other, using a sampling rate fs.

The synthetic harmonics are then added up all together,

without using any windowing scheme. Since the synthetic

signal is bandlimited to the Nyquist frequency, the con-

tinuous notation for the time axis will be used in the

following, for reason of simplicity (i.e., x[n]⇔ x(t)).

In order to synthesize the continuous amplitude âh(t)

of each harmonic track, the amplitude envelope is first

sampled at harmonic frequencies for each time instants t̂i:

âi,h = |Vi

(
hf0(t̂i)

)
|. (19)

Then, these anchor values âi,h are interpolated across time

on a logarithmic scale in order to obtain âh(t).

In the aHMmodel, the continuous instantaneous phase

φ̂h(t) was not directly interpolated from the measured

instantaneous phase parameters φi,h because of the linear

phase term which is present in φi,h and does not allow to

compute a reliable interpolation. Instead, a relative phase

φ̌i,h was first computed in order to remove the influence

of the linear phase [16]:

φ̌i,h = φi,h − h ·
2π

fs

∫ ti

0
f0(τ )dτ (20)

where the zero for the beginning of the integral means

the beginning of the speech signal. Since the linear phase

is removed in Equation 20, the relative phase changes

smoothly from one time instant to the next if the shape of

the signal is also changing smoothly. Thus, any process-

ing of φ̌i,h is better conditioned than a processing of the

raw instantaneous phase value φi,h. This property explains

the success of the simple processing techniques presented

in [17,18]. In [16], the relative phases were then interpo-

lated on a continuous time axis using splines, i.e., φ̌i,h ⇒

φ̌h(t). Finally, the continuous instantaneous phase φ̂h(t)

was recovered by adding back the linear phase previously

removed:

φ̂h(t) = φ̌h(t) + h ·
2π

fs

∫ t

0
f0(τ ). (21)

The final synthetic signal ŝ(t) was generated by sum-

ming all the harmonic tracks together:

ŝ(t) =

H∑

h=1

âh(t)e
jφ̂h(t) · χ[hf0(t)<fs/2](t) (22)
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Figure 3 Example of features extraction: Phase Distortion (PD)’s mean and standard deviation. They characterize mainly the

maximum-phase content and the noisiness of the voice source, respectively.

where H is the maximum value of all Hi and the indicator

function χ[hf0(t)<fs/2](t) discards any harmonic segment

whose frequency is higher than Nyquist.

For the analysis/synthesis method suggested in this arti-

cle, the aHM synthesis summarized above has to be

adapted in order to use μi( f ) and σi( f ). Looking at

Equation 21, the linear phase term can be reconstructed

because f0(t) is preserved through the analysis step. How-

ever, the relative phase φ̌h(t) is lost. Therefore, the main

goal is to reconstruct a synthetic relative phase which

has the same perceived characteristics as the original

one. For this purpose, we suggest to follow the phase

model Equation 6 while using the short-term mean and

standard deviation of the phase distortion in order to

resynthesis a source shape. First, at each instant t̂i, we

synthesize a phase distortion P̂Di,h using the wrapped

normal distribution [47,64]:

P̂Di,h = WN (μi(hf0(ti)), σi(hf0(ti))) (23)

where WN (μ, σ) generates random values which obey

a wrapped normal distribution of mean μ and stan-

dard deviation σ . Note that, this procedure is similar to

known phase randomization techniques [65-67]. How-

ever, because of the finite difference used to compute PD,

our approach is similar to randomizing the group delay

and not the instantaneous phase. Because of this differ-

ence, the randomization is always centered around the

linear phase. Therefore, this approach ensures that the

noise component is always merged with the deterministic
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component, which avoid these two components to be

perceived separately. Based on Equation 13, then, we

suggest to approximate a source shape using P̂Di,h. How-

ever, because the PD values are centered around θi,1
(see Equation 13), this value is lost during the analysis step.

Therefore, we assume θi,1 = 0 and thus:

θ̂i,h = �
h

−1
P̂Di,h (24)

where �
h

−1 is the cumulative sum, which compensates for

the finite difference in Equation 13. Following the model

of the instantaneous phase Equation 6, we finally add the

minimum-phase response of the envelope Vi(f ) in order

to obtain the synthetic relative phase values φ̌i,h:

φ̌i,h = θ̂i,h + ∠Vi(hf0(ti)). (25)

The rest of the synthesis process is identical to that of

aHM. The continuous relative phase values are interpo-

lated across time using splines, and the linear phase is

added at the end in order to obtain the continuous instan-

taneous phase φ̂h(t) Equation 21 which is finally used in

Equation 22.

The complete analysis/synthesis procedure is called

Harmonic Model + Phase Distortion (HMPD).

4.1 Correction of σi(f)

When testing the resynthesis capabilities of the method

through informal listening tests, we found that the per-

ceived characteristics of the fricatives were not properly

reproduced. Basically, no segments of the signal were fully

randomized. After investigation, we found that σi( f ) was

limited in its measure. To illustrate this phenomenon,

Figure 4 shows the average of σi( f ) measured from
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Figure 4Measured and corrected σi(f) from a synthetic signal

with a known σi(f).

synthetic signals of known σi( f ). Synthetic signals of 4s

are first generated using the HMPD synthesis method

described above with μi( f ) = 0∀i, f . Each synthetic sig-

nal uses a different σi( f ) value between 0 and 2. The

HMPD analysis method is then used to reestimate the

σi( f ) values from the synthetic signals. Figure 4 shows

the measured σi( f ) averaged along the 4s. It shows that

the measured σi(f ) hardly reach 1.2, which is not suf-

ficient for reconstructing a sound which is perceived as

fully noisy. The following two reasons can explain this

issue. Firstly, during analysis, a window of three periods

is used to estimate the sinusoidal parameters Equation 1.

This window is necessary to obtain a frequency resolution

which allows to distinguish harmonic peaks and esti-

mate the sinusoidal parameters with a sufficient accuracy.

However, this window also over-smoothes the variance of

the parameter estimates across time. Even though these

parameters allow reconstruction of the signal on a frame-

by-frame basis, this over-smoothing effect does not allow

to estimate a short-term variance with sufficient accu-

racy for proper reconstruction of the phase’s statistics.

Secondly, the window size M in Equation 18, which has

to be short enough to follow the time evolution of the

speech signal, limits also the standard deviation estimate.

Note that, this effect appears with or without removing

the PD trend ⌢
PDi( f ) during analysis and thus, using either

Equations 16 or 18.

To avoid overloading this presentation, we chose to alle-

viate this issue in a simple manner. We corrected the

σi( f ) values prior to synthesis so that it was given a suf-

ficient randomness when it was greater than an empirical

threshold. Through informal listening tests, we found that

a forced σi( f ) value of 2 used above a threshold of 0.75

properly reconstruct the noisiness of fricatives while pre-

serving the voiced segments quality. Figure 4 depicts this

correction. Figure 5 shows an example of σi( f ) after cor-

rection, as it is used during the synthesis step. Future

works are planned to study the influence of the window

sizes and address this issue in a neater way.

5 Evaluation
This section aims at assessing the quality and versatil-

ity of the proposed phase representation. To this end,

experiments have been conducted in three different sce-

narios: resynthesis with no modification (Section 5.1),

pitch scale modification (Section 5.2), and HMM-based

speech synthesis (Section 5.3).

Even in resynthesis, objective measures such as Signal

to Reconstruction Error Ratio (SRER) or PESQ [68] are

not suitable for evaluation as they are waveform sensitive.

While it is true that the suggested HMPD representation

retains the waveform characteristics of the signal, it does

not keep its linear phase term: the original linear phase

removed between Equations 8 and 9 and the synthetic one
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Figure 5 Example of correction of the standard deviation estimate of the Phase Distortion (PD) σi(f). The correction mainly affects the noisy

time-frequency regions, where the correction ensures a full randomization.

added in Equation 21 are not necessarily the same but just

have the same derivative, i.e., f0(t). Consequently, origi-

nal and synthesized waveforms are not time synchronous.

Objective measures are also inconvenient for comparing

different configurations of the HMPD vocoder, includ-

ing those dropping themaximum-phase component given

by μi( f ), in which the shape of the glottal pulse is not

preserved.

Therefore, in this paper, all evaluations have been car-

ried out by means of subjective listening tests, as sug-

gested by [69]. All the sounds used in the following tests

are available at [70].

5.1 Quality of resynthesis

The first test was designed to evaluate mainly the impor-

tance of μi( f ) and σi( f ) in terms of perceptual quality.

The speech database used in this experiment contained

a total of 32 utterances spoken in 16 different languages

(two utterances per language, one from a male speaker

and one from a female speaker). Such a multilingual

database had been thoroughly designed to exhibit a very

wide phonetic variability and also an heterogeneous set of

speakers. The sampling frequency of the signals, fs, varied

between 16 and 44.1 kHz. All original recordings showed

high signal-to-noise ratios as they had been collected

from various synthesis databases. The test was conducted

through a web-based interface. A total of 43 volunteer

listeners were presented with the original recordings of

randomly selected signals along with their reconstructed

versions using: aHM; the suggested HMPD using both

μi( f ) and σi( f ); HMPD using σi( f ) only; the well-known

STRAIGHT vocoder, which was used as a hidden anchor.

Then, they were asked to grade the quality of these sounds

using a 5-points scale [69]. The order of the reconstruc-

tionmethods was randomized too, and the listenings were

made through headphones or earphones. For consistency

and to avoid the fatigue of the evaluators, each listener was

asked to grade only the voices of two languages (bothmale

and female voices) randomly selected among the 16.

Figure 6 contains the resulting mean opinion scores

along with their 95% confidence intervals. The scores have

been normalized according to the number of occurrence

of each language and to the variance of each listener’s

answers, as suggested in [69]. The scores achieved by

aHM are consistent with those reported in previous stud-

ies [16] and confirm the very good resynthesis potential
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Figure 6 Subjective assessment of perceived quality by 43 listeners of resynthesis methods, with the 95% confidence intervals.

of this signal model. However, one of the most remarkable

observations is the significant performance gap between

aHM and HMPD, which gives an idea of the relevance of

phase in quality issues. This loss of quality could be partly

explained by the following reason. First, the HMPD resyn-

thesis is not time synchronous with that of aHM. Indeed,

the synthetic linear phase term used in Equation 21 is not

that of the original speech signal. On the one hand, the

voiced segments can be delayed or advanced of only a

maximum of half of a period. This effect is surely impossi-

ble to perceive within a voiced segment, where the ampli-

tude envelope and the phase characteristics are properly

decorrelated using the suggested analysis/synthesis proce-

dure. However, on the other hand, this time desynchro-

nization might play a role in highly non-stationary speech

segments like in transients from plosive to voiced seg-

ments or in creaky voice. Indeed, in such cases, the time

amplitude envelope, which is driven by the mean of the

spectral amplitude envelope, should be synchronous with

the impulses triggered by the linear phase. However, the

time desynchronization in HMPD may break this neces-

sary correlation which can easily blur the perception of

time events and degrade the overall quality. Note that, this

reasoning also holds for the STRAIGHT method where

the linear phase is also fully artificial and neither syn-

chronous with the original one. According to informal

listening, the creaky voice segments seem, indeed, not

properly reconstructed in both HMPD and STRAIGHT.

Among other reasons, themeasure of randomness using

σi( f ) might not adapt quickly enough in transients, so

that the beginning and the end of voiced segments can be

sometimes over randomized. Smoothing techniques and

different separation procedures for estimation of μi( f )

and σi( f ) should be investigated in the future.

Regarding the relative performance of HMPD-μσ and

HMPD-σ , the average scores indicate that, for the voices

used in this experiment, the listeners were not able to

perceive any difference between them. This suggests that

the contribution of μi( f ) is not perceptually significant

in comparison with that of σi( f ). Even more, since the

link between PDi,h and the maximum-phase of the glot-

tal pulse has been shown and exploited [25,40], this

suggests that the maximum-phase information is hardly

noticeable at this overall quality level. Admittedly, this

could also be an indicator that μi( f ) is not capturing

the maximum-phase component properly. In any case,

the average results also show that the quality provided

by HMPD is at least as good as that of STRAIGHT

and better for male voices. Note also that, compared

to STRAIGHT, the difference of quality between gen-

ders is also clearly reduced using HMPD. In other words,

the phase randomization technique suggested in this

paper, which exploits σi( f ), might be a potential improve-

ment and replacement for STRAIGHT’s aperiodicity

measures [28].

5.2 Quality of pitch shifting

A second experiment was conducted to check the con-

sistency of HMPD in a more challenging scenario. In

that sense, pitch scaling is preferable over time scaling

because it can shed light on possible inaccuracies in iso-

lating amplitude or phase information from periodicity

information. Therefore, after the analysis step, f0(ti) was

multiplied by a factor of 2, or 0.5, in order to shift the pitch
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of the voice one octave upwards or downwards, respec-

tively. The signals in the database described in Section 5.1

were manipulated using three different methods: HMPD-

μσ , HMPD-σ , and STRAIGHT. In the case of HMPD,

the pitch modification factor was applied to all f0(ti) val-

ues, without any distinction between voiced and unvoiced

segments, while in STRAIGHT unvoiced segments were

obviously kept unvoiced.

Using a web-based interface, 30 listeners gave their pair-

wise preferences for the three possible combinations of

methods using a 5-points scale [69]: strong preference for

one method, preference for one method, preference for

the other method, strong preference for the other method,

or uncertainty. Again, each listener assessed the quality of

the upwards and downwards shifts of the recordings of

two languages, for one female and one male speaker per

language. The individual scores given by the listeners were

then aggregated into a single mean score for each method,

which shows global preference of one method against all

the others.

The results shown in Figure 7 indicate that HMPD-μσ is

less preferred than HMPD-σ . Deeper investigation based

on informal listening revealed that a low-frequency reso-

nance could be perceived in some signals after HMPD-μσ

manipulation. This might corresponds to the glottal for-

mant effect [71] which is not properly handled in our

manipulation. Indeed, keeping the phase characteristics of

the original glottal source, asμi( f ) is supposed to do, does

not make sense after pitch scaling by one octave. Finally,

this can also be interpreted as a symptom that μi( f ) is not

reproducing the maximum-phase component properly. In

any case, the resulting artifacts make signals more unnat-

ural. By discarding the contribution of μi( f ), HMPD-σ

avoids this issue and achieves a better quality. This is the

reason why only HMPD-σ was considered for evaluation

in the next Section 5.3.

Concerning the comparison between HMPD and

STRAIGHT, for upwards pitch shifting, STRAIGHT is

clearly preferred over HMPD-σ . However, for downwards

shifts, clear preferences are shown for HMPD-σ . Informal

listening revealed that for upwards pitch shifting, the

speech signals modified by HMPD sound tenser and lack

some noisiness. This is due to the inherent limitations

of modeling speech exclusively through harmonics: even

for an adequate phase variance across time, at high pitch

values, the frequency gap between every two consecu-

tive harmonics does not allow a proper reconstruction

of noise characteristics. STRAIGHT is not prone to this

effect because it uses a wideband noise [28]. This is

undoubtedly one issue in HMPD to be solved in future

works.

5.3 Quality of statistical parametric speech synthesis

To assess the quality of HMPD-σ in statistical parametric

speech synthesis, we built a system based on the HMM-

based Speech Synthesis System (HTS) [72] (v2.1.1). HTS

learns a correspondence between labels containing pho-

netic, linguistic, and prosodic information and one/many

streams of vectors containing acoustic features. This cor-

respondence is modeled at phone level through five-state

left-to-right context-dependent HMMs with explicit state

duration distributions. The technology behind this well-

known system is explained in detail in [4].

Both HMPD and STRAIGHT were slightly modified to

meet the requirements of HTS. In both of them, 39th-

order Mel-CEPstral (MCEP) coefficients were used to

model the amplitude envelope |Vi( f )| as suggested in [73],

the only difference being that in HMPD, these coeffi-

cients were obtained from discrete harmonic amplitudes

as in [29]. To model the degree of noisiness, the ape-

riodicity measures provided by STRAIGHT were aver-

aged within five meaningful bands, as detailed in [73],

whereas HMPD’s σi( f ), which takes values in the range

[0,∞) like |Vi( f )|, was also translated into MCEP coef-

ficients (order 12). For synthesis, the σi( f ) on linear

scale was recovered from the correspondingMCEP coeffi-

cients, like the amplitude envelope. Given the importance

of pitch artifacts in HMM-based speech synthesis, for

a fair comparison, we used the same f0(ti) values for

both vocoders, namely those provided by STRAIGHT. In

Figure 7 Preferences for 30 listeners of upwards and downwards pitch shifts of one octave, with the 95% confidence intervals.
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Table 1 Summary of the streams used in the HMM-based

synthesis system

Stream 1 Stream 2 Stream 3

Harmonic Model + Phase
Distortion (HMPD)

Content f0 Amp.Env. σi(f )

Parameters log MCEP (39) MCEP (12)

Model Cont.HMM Cont.HMM Cont.HMM

STRAIGHT [10,28]

Content f0 Amp.Env. Aperiodicity

Parameters log MCEP(39) Bandwise (5)

Model MSD-HMM Cont.HMM Cont.HMM

Amp.Env., amplitude envelope; MCEP(39), Mel-CEPstral coefficients of order 39;

Cont.HMM, continuous HMMmodel; MSD-HMM, Multi-Space Distribution

(MSD) [32].

unvoiced segments, the continuous f0(t) curve required

by HMPD-σ was simply obtained by linear interpolation

of the non-zero f0(ti) values. The resulting curve was

thenmodeled using continuous HMMswith oneGaussian

mixture per state instead of MSD-HMMs, as proposed

by [74].

Before presenting the generated utterances to the eval-

uators, we manually checked that no significant prosodic

differences were present between the two vocoders.

During synthesis, all parameter streams were generated

through the standard maximum likelihood parameter

generation procedure with global variance enhancement.

Table 1 summarizes the settings used for the streams.

We trained models for four different speech databases:

one female and one male speaker in Spanish, containing

1.2 and 2K utterances, respectively [75,76]; and one female

and one male speaker in English, containing 1.1 and 2.8K

utterances, respectively [77,78], all with fs = 16 kHz). All

the samples using STRAIGHT and HMPD are available at

[70]. For the sack of completeness, samples using impulse-

based glottal sources (μi( f ) = 0 and σi( f ) = 0 ∀i, f

in the whole signal or only in the voiced segments, as

often used in the literature as baseline systems [79,80])

have also been generated and are available on the demon-

stration page [70]. However, given their very poor quality,

they have not been included in the following listening test

in order to avoid their potential influence on the results

of STRAIGHT and HMPD. Therefore, we conducted a

pairwise preference test between STRAIGHT and HMPD

only, similar to that of Section 5.2. For each voice, 31

listeners gave their preference for each method for one

synthetic utterance randomly selected among ten.

Figure 8 shows the global mean preferences. Since there

are only two systems under comparison, the preferences

are symmetrical. The results show no significant differ-

ence between the two systems despite the high number

of evaluators. Therefore, the quality achieved by HMPD

is comparable to that of the state-of-the-art, while it uni-

formizes both the speech representation and themodeling

process by discarding the voicing decision. More impor-

tantly, this preliminary experiment is a reliable confirma-

tion that phase variance across time can inspire features

that succeed at capturing the time- and frequency-varying

degree of noisiness of speech in the aHM framework.

Interestingly, the gender dependencies observed in the

previous experiments also arise in Figure 8. Indeed, listen-

ers seem to prefer the female voices of STRAIGHT and

the male voices of HMPD-σ . As mentioned in Section 5.2,

this phenomenon is due to the inherent limitations of har-

monic modeling at high pitch values. Forthcoming works

will address this issue.

6 Conclusions
In this paper, features based on mean and standard devia-

tion of the PD have been suggested for analysis/synthesis

of speech signals, leading to a new HMPD vocoder.

These features avoid voiced and unvoiced segmentation.

Thus, the perceived quality of HMPD synthesis is inde-

pendent of the reliability of a voicing estimator. A first

listening test has shown that HMPD resynthesis quality

is as good as that of the STRAIGHT vocoder for female

voices and better for male voices.

A second preference test about pitch scaling has shown

a limitation of HMPD when the harmonics are not dense

enough to properly reproduce noise properties (e.g., with

high f0). Future works are planned to address this fun-

damental issue of the harmonic models. However, a clear

preference has been shown for HMPD in downwards

Figure 8 Preferences for 31 listeners about HMM-based synthesis, with the 95% confidence intervals.
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shifts, suggesting that additive wideband noise, often used

in existing vocoders, is not necessary for low pitched

voices. A last test has suggested that the quality of HMPD

in HMM-based speech synthesis is similar to that of the

state-of-the-art. Therefore, HMPD basically simplifies the

signal representation, in terms of uniformity, by removing

the voicing decision, without losing, on average, perceived

quality.
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