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Abstract—Buhler and Tompa [5] introduced the random projection algorithm for

the motif discovery problem and demonstrated that this algorithm performs well on

both simulated and biological samples. We describe a modification of the random

projection algorithm, called the uniform projection algorithm, which utilizes a

different choice of projections. We replace the random selection of projections by a

greedy heuristic that approximately equalizes the coverage of the projections. We

show that this change in selection of projections leads to improved performance on

motif discovery problems. Furthermore, the uniform projection algorithm is directly

applicable to other problems where the random projection algorithm has been

used, including comparison of protein sequence databases.

Index Terms—Motif discovery, transcription factor binding sites, random

projection, combinatorial designs, low-discrepancy sequences.
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1 INTRODUCTION

THE problem of discovering signals in a set of DNA sequences (the
motif discovery problem) is well-studied in computational biology. An
important application is to discover binding sites for transcription
factors (DNA binding proteins) in a collection of DNA sequences
several hundred to several thousand nucleotides in length. These
binding sites are frequently short (6-20 nucleotides in length) and
not completely conserved. That is, transcription factor binding sites
are subject to mutation and, consequently, cannot be identified by
pattern matching algorithms that seek exact matches. Since finding
mutated signals is a notoriously difficult problem, many algorithms
have been proposed for the motif discovery problem. These
algorithms employ either a profile or pattern representation of a
motif. In profile-based methods such GibbsDNA [15], MEME [1],
and CONSENSUS [12], a motif is represented by a position-specific
scoring matrix. In pattern-based methods such as TEIRESIAS [19],
WINNOWER and SP-STAR [18], MITRA [9], MULTIPROFILER
[14], and the algorithms of Marsan and Sagot [16], the motif is
represented as a string with mismatches. Numerous other algo-
rithms have been developed for the motif discovery problem and
the ever increasing quantity of biological sequence data coupled
with high-throughput measurements of gene expression and
protein-DNA binding continue to stoke interest in the development,
evaluation, and application of motif discovery algorithms.

One motif discovery algorithm that has generated significant

interest is randomprojection algorithmofBuhler andTompa [5]. The

random projection algorithm is a pattern-basedmethod that applies

locality-sensitive hashing [13] to search for conserved patterns in a

set of sequences. Beyond its application to motif discovery with a

pattern motif model, the random projection algorithm was used for

motif discovery with a Bayesian network motif model [2] and also

applied to comparison of protein sequence databases [4], [3], [11].
In thispaper,wedescribe amodificationof the randomprojection

algorithm, called the uniform projection algorithm. The uniform

projection algorithm replaces the random choice of projections by a

greedy heuristic that approximately equalizes the coverage of the
chosen projections. In the terminology of optimization theory, the
random projection algorithm is a Monte Carlo method for finding a
global optimum by applying a local optimization routine to
randomly sampled points. In contrast, the uniform projection
algorithm biases the selection of sample points to achieve more
balanced, or uniform, coverage of the domain. We compare the
uniform projection algorithm to the random projection algorithm,
and show that onaverage, theuniformprojection algorithmachieves
the same rate of success on simulated motif discovery problems as
the random projection algorithm with 20-50 percent fewer projec-
tions. The reduction in the number of projections translates into a
higher rate of success on simulated data when we fix the maximum
number of uniformprojections to the same value used byBuhler and
Tompa in their randomprojectionalgorithm.Ouruniformprojection
algorithm can be directly substituted for the random projection
algorithm in any problem where the random projection algorithm
has proven useful. For clarity of exposition, we will limit the
discussion in this paper to the motif discovery problem.

Throughout the paper, we will use the following computational
formulation of the motif discovery problem described by Pevzner
and Sze [18]. Suppose there is an unknown stringM of length l (the
motif). Given a collection S ¼ fS1; S2; . . . ; Stg of t DNA sequences
of fixed length n such that each sequence Si contains an l-mer Mi, a
mutated variant of M , with mutations at d positions, the planted
ðl; dÞ motif discovery problem is to find M . The major challenge that
arises in this formulation of the motif discovery problem is that
two motif instances Mi and Mj can be quite different and, thus,
direct comparison of the l-mers present in the collection S is often
ineffective. Pevzner and Sze proposed the particularly challenging
ð15; 4Þ motif problem in which two instances Mi and Mj of the
motif can differ from each other in eight of 15 locations, even
though each instance of the motif differs from M in at most four
positions.

The ðl; dÞ motif discovery problem models the fact that
biological motifs are often conserved at particular positions, but
that these positions may not be contiguous. Furthermore, the
conserved positions may not be identical over all instances of the
motif present in the data. However, one reasonable assumption is
that a significant fraction of the motif instances will agree at certain
positions. For example, for an ðl; dÞ problem, we expect that several
instances Mi agree at k fixed positions, for some integer k < l� d.
This assumption forms the guiding principle of the random
projection algorithm of Buhler and Tompa [5].

2 RANDOM PROJECTION ALGORITHM

The idea of the random projection algorithm for the ðl; dÞ motif
discovery problem is to form a candidate motif model from l-mers

in the data S that agree at k particular positions, for some k � l.
Given a substring S ¼ s1s2 . . . sl from the collection S and k distinct
integers 1 � p1 < p2 < � � � < pk � l, we define a ðk=lÞ-projection
P ðSÞ to be the string sp1sp2 . . . spk . We write the projection operator
P by listing the k-tuple of positions: P ¼ ðp1; p2; . . . ; pkÞ. We will
refer to P simply as a k-projection when the length l is clear from
the context.

A single iteration of the random projection algorithm proceeds
as follows: Fix a projection length k and choose a projection P1 by
selecting k distinct positions 1 � p1 < p2 < � � � < pk � l uniformly
at random. Create a hash table H of size 4k, indexed by all possible
DNA strings of length k. Each entry of the hash table consists of a
bucket where substrings of length l are stored. For each substring S

of length l from the collection S, place S into the bucket with index
P1ðSÞ. Fix an integer s > 0 and call a bucket containing s or more
strings an enriched bucket. Under the assumption that many
instances of a motif agree at some positions then a projection P
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onto these positions will result in an enriched bucket. Take the
strings in an enriched bucket B as an initial model for the motif.
For example, we can use the consensus of the strings in B as an
initial model for M or, alternatively, we can form a profile from the
strings in B. The initial motif model is then refined using a local
optimization scheme. Buhler and Tompa [5] employ the expecta-
tion maximization (EM) algorithm of Bailey and Elkan [1] as well
as a variation of the SP-STAR algorithm of Pevzner and Sze [18] to
optimize the initial motif model obtained from an enriched bucket.
Thus, the random projection algorithm can be viewed as a
procedure for determining good starting points for a local
optimization routine such as EM.

We refine each enriched bucket and retain the “best” motif
discovered during this process, where “best” is determined by an
appropriate motif scoring function. We start a new iteration by
choosing a new projection P2 and repeating the hashing and
refinement steps using the new projection P2. After a suitable
number of iterations (choose projection, hash, refine), return the
best motif found over all iterations.

The random projection algorithm depends on several para-
meters whose values must be chosen. For a given ðl; dÞ motif
problem we must specify the projection size k, the threshold s for
defining an enriched bucket and the number of iterations m of the
algorithm. Certainly, we can perform all possible k-projections, but
this approach leads to a large number of iterations and, conse-
quently, lengthy running times for the algorithm. For example, for
the ð15; 4Þ problem with projection size k ¼ 7, there are
15
7

� �
¼ 6; 435 possible projections. For a ðl; dÞ motif problem with

fixed projection size k and bucket threshold s, Buhler and Tompa
compute the number mBT of random projections to perform in the
following way. Let P denote the chosen random projection and
define P ðMÞ to be the planted bucket. Buhler and Tompa definemBT

to be the number of iterations necessary such that there is a
95 percent probability that the planted bucket is enriched on at least
one iteration, i.e., s or more motif instances will appear in the same
enriched bucket on at least one iteration. For example, for the
ð15; 4Þ motif discovery problem, Buhler and Tompa perform a
maximum of 172 randomly chosen projections.

3 UNIFORM PROJECTION ALGORITHM

Buhler and Tompa employ randomprojections in order to find good
starting points for expectation maximization, a local optimization
procedure. They note that on occasion, the random projection
algorithm recovers the motif from a bucket other than the planted
bucket, an occurrence that they refer to as an “added bonus” of the
algorithm [5]. However, this feature highlights another way of
viewing the success of the randomprojection algorithm: the random
projection algorithm samples the space of all possible projections,
occasionally (and with high probability if at least mBT random
projections are performed) finding a “good” projection that
produces an enriched bucket that is refined to produce the motif
M . From this perspective, sampling the space of all k-projections by
random selection is not a very efficient strategy. For example, for the
ð15; 4Þ motif problem with projection size 7, if one chooses
projections randomly, then, on average, 60,146 projections must
be chosen before all 6; 435ð7=15Þ-projections are sampled, a result
that follows from the classic coupon collector problem [10].

Instead of choosing projections by selecting k positions
uniformly at random, we want to bias the choice of projections
to sample the space of projections more efficiently. Our motivation
is similar to the use of quasirandom or low-discrepancy sequences
in Monte Carlo integration and global optimization [17]. In these
applications, a relatively small number of carefully chosen sample
points provide better performance than randomly chosen points.
We define the discrepancy between a sequence of projections as

follows: First, we represent a ðk=lÞ-projection P as an l-bit binary

string with k ones at the positions in P . We define the distance

�ðPi; PjÞ between projections Pi and Pj to be the Hamming

distance between their binary representations. The discrepancy d

between a sequence P1; . . . ; PM of projections is equal to
maxP min1�i�M �ðP; PiÞ, where the maximum is taken over all

ðk=lÞ-projections P . Our goal is to find a relatively small sequence

of projections with low discrepancy. While the theory and

construction of low-discrepancy sequences in ½0; 1�n are well
developed, these techniques are not directly applicable in

Hamming space. Thus, we investigate a heuristic method to

generate sequences of projections with lower discrepancy than

sequences of random projections.
An obvious way to reduce the number of projections without

changing the discrepancy of the sequence of projections is to

choose a new projection PMþ1 only if it is distinct from the

projections P1; P2; . . . ; PM that have already been chosen. General-
izing this observation, we now describe a different method of

projection selection that maintains good performance on motif

discovery problems while using a smaller number of projections

than random projection.
We say that a k-projection P covers a j-tuple J ¼ ðn1; . . . ; njÞ if

J � P . Fix a motif length l, a projection size k � l, a covering length

j � k, and a coverage parameter � � 1. We desire a solution to the

following problem.

Uniform Projection Problem. Find a sequence of ðk=lÞ-projections
P1; P2; . . . ; PN such that each j-tuple J ¼ ðn1; . . . ; njÞ of positions is
covered by � projections.

A solution to the Uniform Projection Problem gives a sequence
of projections with discrepancy d � 2ðk� jÞ; thus, larger values of
jwill yield sequences with lower discrepancy. For certain values of
l, k, j, and �, the Uniform Projection Problem has a solution. The
study of these cases is the subject of combinatorial design theory [21],
[7], [20], where in the terminology of combinatorial designs, the
“points” are the j-tuples and the “blocks” are the k-projections. The
sequence of projections is given by a j� ðl; k; �Þ design [20] (Fig. 1).
Unfortunately, the values of l, k, and j encountered in motif
discovery problems rarely coincide to the cases where a solution is
given by a combinatorial design. Furthermore, even when a
combinatorial design exists for particular values l, k, j, and �,
constructing the design is a difficult problem [7].

For the motif discovery problem, we focus on the case � ¼ 1,

i.e., each j-tuple is covered once. Furthermore, we content

ourselves with an approximate solution to the Uniform Projection
Problem, where each j-tuple is covered by at least � ¼ 1 projections.

Thus, we view the Uniform Projection Problem as an instance of

the set covering problem [8], where the “points” are the tuples J

and the “sets” are the tuples covered by a projection P . We use a
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Fig. 1. A 2-(7, 3, 1) combinatorial design, known as the Fano plane. The line
segments and circle represent the blocks. Each block contains three points and
each point contained in exactly two blocks.



greedy approach to the set covering problem similar to the greedy

heuristic described by Chváital [6].
In the greedy algorithm, we iteratively choose projections, where

at each iteration we build a new k-projection from infrequently
covered j-tuples as follows: We maintain a hash table C indexed by

all j-tuples of positions: The entry CðJÞ in the hash table for the
j-tuple J ¼ ðn1; n2; . . . ; njÞ is the count jfi : J � Pig1�i�M j of the
currently chosen projections P1; P2; . . . ; PM that cover J . We add a

new projection PMþ1 to our sequence in a greedy fashion by
selecting the positions of PMþ1 to be a union of j-tuples with the

lowest counts in C. Often many j-tuples J will have the smallest
count in the hash table C and, so, we randomize the sequence of
j-tupleswith the same lowest count and select the first j-tuples in the

randomized sequence whose union is at least k positions. We
randomly drop positions from the last j-tuple in the selected set to

obtain exactly k positions.
For example, say the motif length l ¼ 15, the projection size

k ¼ 7 and j ¼ 4. There are 15
7

� �
¼ 6; 435 (7/15)-projections and

each projection covers 35 4-tuples. The hash table C is indexed
by the 15

4

� �
¼ 1; 365 possible 4-tuples. If Cðð1; 5; 8; 10ÞÞ ¼ 0 and

Cðð4; 5; 9; 15ÞÞ ¼ 0, then we can cover these 4-tuples by forming
the (7/15)-projection P ¼ ð1; 4; 5; 8; 9; 10; 15Þ. Having done so,

we now set Cðð1; 5; 8; 10ÞÞ ¼ 1, Cðð4; 5; 9; 15ÞÞ ¼ 1, and we also
increase the counts in the hash table of the other 33 subsets of

f1; 4; 5; 8; 9; 10; 15g of size 4.
In our implementation of the uniform projection algorithm, we

construct the full sequence of projections P1; P2; . . . ; PN in batches as

follows: First, we construct projections P1; P2; . . . ; PM1
which cover

all 1-tuples. Next, we greedily augment this sequence of projections

with newprojectionsPM1þ1; PM1þ2; . . . ; PM2
such that the augmented

sequence P1; P2; . . . ; PM2
cover all 2-tuples. We continue augment-

ing the sequence of projections in this way until all j-tuples are
covered. During this process, a new projection PMþ1 is added to the
sequence only if it is distinct from P1; P2; . . . ; PM . With this

approach, the parameter j does not need to be chosen a priori.
Instead, one chooses m, the number of projections to perform (i.e.,

how long to run the algorithm), with the guarantee that as m

increases, all j-tuples are covered for increasing values of j.

4 RESULTS

We wrote implementations of the random projection and

uniform projection algorithms in C, which are available at
http://www-cse.ucsd.edu/groups/bioinformatics/software.html.

To verify our code, we also used Jeremy Buhler’s C++
implementation of the random projection algorithm [4] and
modified the projection generation routines to employ our

uniform projection scheme. Both implementations produced
the same results.

We first test if the greedy heuristic for uniform choice of
projections provides superior coverage of j-tuples of positions

compared to a random choice of projections. We fix the projection
size k ¼ 7. For fixed values of l and j, we find the average number

of projections required to cover j-tuples once, where the average is
obtained over 20 runs of the algorithm (Table 1). In general, the
number of uniform projections required to cover j-tuples is less
than one-half to one-third the number of random projections. A
lower bound on the number of projections required to achieve
�-fold coverage of j-tuples is

�

l
j

� �

k
j

� � :

This bound is achieved by a a j� ðl; k; �Þ design, when such a
design exists. However, this lower bound is not strict if no design
exists. For the case k ¼ 7, the greedy algorithm requires roughly
twice the number of projections to achieve 6-tuple coverage as an
exact design would require. The better coverage of j-tuples

achieved by the uniform projection algorithm also results in
uniform projection sequences having lower discrepancy than
random projection sequences (Fig. 2).

To determine if the greater j-tuple coverage and lower
discrepancy of uniform projections lead to better results in motif
discovery, we generated planted ðl; dÞ motif discovery problems
using the following motif model (FM model) of Pevzner and Sze
[18]. Select a motif M by choosing the l letters in M randomly from
the set fA;C;T;Gg. Generate an instance Mi of the motif by
selecting d positions of M randomly and mutating the letters at
these positions. Create a DNA sequence Si of length n, by first
inserting the motif instance Mi at a random location in Si and then
generating the remaining letters of the sequence Si randomly from
the set fA;C;T;Gg. All random choices are performed from the
uniform distribution. Repeat this procedure for i ¼ 1; . . . ; t to
generate t DNA sequences of length n, each with a mutated variant
Mi of the motif M.

Table 2 shows a comparison of uniform versus random
projections in different ðl; dÞ motif discovery problems with t ¼ 20

sequences of length n ¼ 600 nucleotides, projection size k ¼ 7, and
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TABLE 1
Average Number of Uniform/Random 7-Projections Required to Cover j-tuples, Where the Average Is Obtained over 20 Runs of the Algorithm

Approximately 2-3x more random projections are required to cover j-tuples.

Fig. 2. The discrepancy d of a sequence of uniform ð7=14Þ-projections (solid gray
curve) is lower than a sequence of random ð7=14Þ-projections (dashed curve),
demonstrating that uniform projections provide more efficient sampling of the
space of projections. Each curve is an average of 20 projection sequences.



bucket threshold s ¼ 4. For each value of ðl; dÞ the results of 20

different randomly generated problems are shown. A failure means

that the recovered motif consensus does not agree with the

consensus of the 20 planted motif instances, after performing all

m ¼ l
k

� �
possible k-projections and the success rate is defined as

1� num: failures
20 . With the exception of a few simple problems—where

the motif is found after a relatively small number of projections—

fewer uniform projections are required to find the motif. For these

more difficult problems, the reduction in the number of projections

is more than 20 percent.
In the planted ðl; dÞ motif discovery, the motif M is known and,

thus, we can run the algorithm until either M is found or all

projections have beenperformed. In a real biologicalmotif discovery

problem, the motifM is unknown, and thus we must choose a fixed

number of projections to perform. For a given motif length l,

projection sizek, andbucket threshold s, Buhler andTompacompute

the number of randomprojections,mBT , necessary such that there is

a 95 percent probability that s or more motif instances appear in an

enriched bucket during at least one iteration. When we perform at

mostmBT projections,we see that the success rate of both the random

projection and uniform projection algorithms fall below one

(Table 3). For the difficult ð14; 4Þ, ð16; 5Þ, and ð18; 6Þmotif problems,

theuniformprojectionalgorithmfinds theplantedmotif in10percent

more cases than the random projection algorithm. When both

algorithms succeed, the uniform projection algorithm requires 20-

50 percent fewer projections. Performance improvements are similar

on sample biological datasets. A rigorous analysis of a stopping

criterion for the uniform projection algorithm is difficult. Never-

theless, our results indicate that at most 0.8mBT uniform projections

are sufficient to obtain similar success rates as random projections;

alternatively,mBT uniformprojections are generallymore successful

than the same number of random projections.
These computational experiments reveal that in many cases the

uniform projection algorithm performs better than the random
projection algorithm, either by finding the motif with fewer
projections (i.e., faster), or by finding the motif in cases where
random projection fails. The costs in time and memory for the
creation of uniform projections is negligible and the reduction in
running times using uniform projection versus random projection
is approximately equal to the reduction in the number of required
projections (20-50 percent), as the rate limiting step of both
algorithms is the EM refinement of enriched buckets.

The uniform projection algorithm can be applied to other

problems where random projection has been useful, including

comparison of protein databases [3], [11]. Further study of low-

discrepancy sequences in Hamming space may result in methods

for generating evenmore efficient sequences of uniform projections,

extending the utility of the algorithm in bioinformatics applications.
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TABLE 2
Comparison of Uniform versus Random Selection of Projections on
Simulated ðl; dÞ Motif Discovery Problems with t ¼ 20 Sequences of
Length n ¼ 600, Projection Length k ¼ 7, and Bucket Threshold s ¼ 4

In each case, the average is taken over 20 replicates. The success rate is defined
as 1� num: failures

20 , where a failure means that the motif consensus does not agree
with the consensus of the planted motifs after mmax ¼ l

7

� �
projections.

TABLE 3
Uniform versus Random Projections Maximum

of mBT Projections Allowed

The uniform projection algorithm achieves higher rates of success with fewer
projections.


