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A Unifying Approach for Disturbance Cancellation

and Target Detection in Passive Radar using OFDM
G. Gassier, G. Chabriel, J. Barrère, F. Briolle and C. Jauffret

Abstract—This paper addresses the problem of mo-
bile target detection in multipath scenarios with a pas-
sive radar using DVB-T transmitters of opportunity.
For such emissions, it has been shown the interest in im-
plementing “mismatched” correlators, reducing both
the zero Doppler contribution (ZDC) masking effects
and the false alarm rate. A very efficient mismatched
reference signal is obtained with the reciprocal filter (or
inverse filter) which consist in a modulus frequential
equalization of the transmitted signal.
We propose here to revisit the reciprocal filter based
correlator and to reinterpret it as a so-called Doppler
channel detector (CHAD). This new interpretation al-
lows a direct rejection of the ZDC, unifying in one and
the same step the main disturbance mitigation and the
detector construction. We provide a statistical theoret-
ical study of the performance and a comparison with
the matched correlator i.e. the classical cross-ambiguity
function (CAF). We demonstrate that CHAD has a
random pedestal (a clutter floor level) significantly
lower than that of the classical CAF for low Doppler
frequency shifts. Numerical experiments on simulated
and real data as well validate the mathematical deriva-
tions.

Index Terms—Passive bistatic radar (PBR), passive
covert radar (PCR), passive coherent location (PCL),
digital video broadcasting-terrestrial (DVB-T), orthog-
onal frequency division multiplexing (OFDM), cross-
ambiguity function (CAF), mismatched filter, recipro-
cal filter, clutter.

I. Introduction

A
Passive bistatic radar (PBR) exploits illuminators
of opportunity to detect moving targets from their

Doppler-shifted frequency echoes (see e.g. [1], [2], [3]).
We focus here on the very widespread digital video
broadcasting – terrestrial (DVB-T) transmitters. These
emissions are interesting from a signal processing point
of view: the bandwidth (7.6 MHz in Europe) allows the
target position to be theoretically estimated with a good
resolution (20 m at best); the underlying orthogonal
frequency division multiplexing (OFDM) allows the
broadcast signal detection through a multipath channel

G. Chabriel, J. Barrère and C. Jauffret are with Aix Marseille Uni-
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[4], and an antenna dedicated to the reference signal can
then be avoided [5].

A main difficulty concerns the presence of the very
powerful line-of-sight (LOS) path and its rooted replicas.
In the surveillance signal, this strong continuous zero
Doppler contribution (ZDC) may mask the echoes of
the smallest radar cross-section (RCS) targets in the
range-frequency plane of the cross-ambiguity function
(CAF). More precisely, since the integration time is
necessarily limited1, the dominant paths induce both
secondary lobes (essentially along the Doppler axis) and
a random pedestal abusively called clutter floor, whose
magnitude can be higher than the peaks of interest.
Since, for moving targets, the observation time must
remain reasonably low, a ZDC rejection preprocessing is
often performed [6], [7], [8], [9].
Classically, a weighted set of time-delayed versions of
the broadcast signal is fitted, in the least-squares (LS)
sense, to the surveillance signal [6], [7] then subtracted.
The main drawbacks in the aforementioned LS-based
ZDC rejection are a quite heavy computational and
memory loads. To decrease the memory load, a batch
implementation is also proposed in [6]: the ZDC is
estimated using consecutive smaller signal portions
instead of the whole signal duration. Unfortunately,
in this case, remaining correlations with low Doppler
sources conduct to a detection loss on both sides near
the null Doppler axis. Moreover, for DVB-T signals, the
periodical insertion of boosted pilot symbols, used for
synchronization and channel equalization, gives rise to
multiple ghost-peaks “spamming” the CAF output [10],
[11].
An alternative method using the OFDM structure and
reducing both the memory load and the computational
complexity, was proposed by D. Poullin in [8]. The
surveillance signal is projected orthogonally to the
frequency subspace corresponding to the ZDC. The
projector is cleverly approximated by a set of inverse
covariance matrices evaluated for each OFDM subcarrier.
Let us also mention [9] where a low complexity ZDC
rejection method based on the CP–OFDM structure of
the surveillance signal is described.
Note that in all the previous approaches, despite the
ZDC mitigation, a stronger target may mask a weaker
one as well. Such dominant echoes must then specifically

1One has to respect T ≪ c
Bv

where T , B, v and c are respectively
the integration time, the signal bandwidth, the target bistatic speed
and the celerity of light.
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be removed by a multistage elimination process as it is
proposed in [6].

Beside these ZDC mitigation studies, some authors
suggested to perform a CAF using so-called “mismatched”
versions of the illumination signal as a new reference: first,
Glende [12] proposed, for systems working with analog
TV, to use a modulus equalized (a reciprocal filtered)
version of the transmitted signal. For DVB-T emissions,
Palmer et al. [10] use some mismatched reference signal
to reduce the false alarms due to pilot data. Then, they
extended their approach [13] by using the reciprocal filter
associated to a circular correlator. Using a particular
sampling along the Doppler dimension (note that such
a sampling was already proposed by Berger et al. [14]
for CAF on DAB signals), they obtain a well-performing
detector without the need of a ZDC mitigation pre-stage.
We will denote this method by the inverse filter approach
(IFA).

As main contributions, we propose in this paper,
a new interpretation of IFA called “channel detector”
(CHAD) and a theoretical study of its performance. The
principle of this new approach is to estimate the so-called
Doppler channel due to paths with a same Doppler shift;
the corresponding impulse response is directly used to
detect the underlying echoes. This detector is shown
to be theoretically robust to clutter and we prove that
its random pedestal is generally lower than that of the
classical CAF.

The paper is organized as follows: Section II presents
the notion of time-varying Doppler channel associated
with the frequency ν characterized by its frequency
response Hν or equivalently by the impulse response hν .

CHAD approach is presented in Section III: an es-
timation of |hν |2 is used to detect the set of echoes
with the same Doppler-shifted frequency ν. Theoretical
performance comparisons between CHAD and CAF are
presented.
The validity of the mathematical derivations is illustrated
by numerical experiments on simulated and experimental
data (Section VI and Section VII).

II. Notion of Doppler Channel

A typical passive bistatic radar scenario is depicted in
Fig. 1, where a transmitter illuminates a scene composed of
different static scatterers due to topography, buildings . . . ,
and one or several moving reflectors of interest, namely the
targets. A wide spatial-aperture receive antenna collects
the radiations from the different paths.

Mobile (Target) Echo

Static Echo

L
O

S
 P

ath

Fig. 1. Passive bistatic radar typical scene

Let us consider a passband high frequency broadcast
signal of opportunity and let us denote by se its baseband
version. The observation time is here assumed to be suffi-
ciently small so that the Doppler dilatation/compression
effect can be neglected. Due to the multipath propagation
channel, the baseband received signal y(t) then corre-
sponds to a noisy linear combination of time-delayed repli-
cas of se(t), with frequency shifts depending on reflector
velocities.
Denoting by II , the index set {0, 1, . . . , I −1}, the received
signal can then be classically modeled as:

y(t) =
∑

i∈II

αise (t − τi − t0) e2πfpi
t +η(t), (1)

where:

• i is the reflector/path index varying from 1 to I − 1;
i = 0 being reserved for the LOS path,

• t0 is the LOS path propagation delay (from the
transmitter to the radar antenna),

• τi is the relative propagation delay such that τi + t0

corresponds to the propagation delay of the path i
(i.e. from the transmitter to the receive antenna, via
the ith reflector),

• fpi
is the Doppler-shifted frequency corresponding to

the path i,
• αi are factors depending on positions, RCS of the

different reflectors, . . .
• η(t) corresponds to the additive white Gaussian noise

(AWGN) channel.

The LOS path being indexed by 0, one has necessarily
τ0 = 0 and fp0

= 0.

Unlike conventional active radar systems, the emitted
signal se is here not directly available. Nevertheless, with
a DVB-T emission, one can perfectly recover the transmit-
ted data and consequently synthesize a baseband temporal
version of the LOS received signal. This synthetic signal,
referred as the “reference signal”, is denoted by s in the
sequel. The surveillance signal can now be expressed as a
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function of s:

y(t) =
∑

i∈II

αis (t − τi) e2πfpi
t +η(t). (2)

Assuming that F different Doppler-shifted frequencies are
observed, we gather the paths with the same Doppler-
shifted frequency, say fj , and define the corresponding
index sets

Jfj
= {i ∈ II |fpi

= fj}, j ∈ IF .

It can then be considered that the reference signal is
received through F distinct linear time-varying channels,
called subsequently Doppler channels and the observation
(2) is rewritten as

y(t) =
∑

j∈IF

(hfj
∗ s)(t) e2πfjt +η(t) (3)

where the impulse response hfj
(t):

hfj
(t) ,

∑

i∈Jfj

αiδ(t − τi) (4)

characterizes the time-invariant part of the jth Doppler
channel. The particular channel h0 (corresponding to the
null Doppler frequency f0 = 0), will be called the static
channel.

III. CHAD (Doppler CHAnnel Detection)

A. Recall of DVB-T Signal Main Features

The DVB-T analog signal is a sequence of so-called CP-
OFDM symbols, of duration Ts. Each symbol is composed
of two parts: the useful part of duration Tu and a redun-
dant part of duration Tcp, called the cyclic prefix (CP).
The useful part of a symbol m is composed of K orthog-
onal subcarriers fk = k

Tu
carrying a complex data dm

k .
Most of the subcarriers are modulated by information data
dm

k which can only take Q complex discrete values depend-
ing on the Q-ary QAM modulation used. Some of them are
modulated by a sequence of known data: the pilot data.
Finally, a set of low and high subcarrier frequencies are not
modulated ensuring that the overall bandwidth B stays
within K/Tu. We denote by EK = {Km, . . . , KM} ⊂ IK ,
the index subset of the effectively modulated subcarriers2.
The cardinality of EK is denoted #EK .

The cyclic prefix is obtained by copying the last part of
the symbol and attaching it in front of the useful part.
Its duration Tcp is chosen to be greater than the echo
delays, to avoid intersymbol (ISI) and intercarrier (ICI)
interferences [4].
The temporal expression of any baseband emitted CP-
OFDM symbol m is then:

sm(t′) =
1

K

∑

k∈EK

dm
k e

2π
k

Tu
t′

, (5)

2Note that in the DVB-T standard, #EK/K ≈ 0.83.

where t′ is a local time variable such as −Tcp ≤ t′ < Tu.
During the observation time, the entire baseband emitted
signal forms a sequence of M symbols we will denote by

s(t) =
(

s0(t′), . . . , sM−1(t′)
)

=
(

sm(t′)
)

m∈IM
(6)

where t is now the global time variable 0 ≤ t < MTs.

Assuming an error-free DVB-T demodulation, the data
dm

k , m ∈ IM , k ∈ EK , are assumed known throughout the
remainder of the paper.

B. Detection Principle

Since each fj-Dopplerized target is revealed by a peak
(ideally a Dirac pulse, see (4)) in the impulse response
hfj

corresponding to its Doppler channel, the main idea
is to estimate such an impulse response from the sampled
received signal y[k] and to use it as a detection function.
Introducing the under test Doppler frequency ν, the esti-
mation of hν needs the underlying Doppler channel to be
stationarized. We then define the corresponding Doppler
compensated observation:

yν(t) , y(t) e−2πνt . (7)

Using (3), yν(t) becomes

yν(t) =
∑

j∈IF

(hfj
∗ s)(t) e2π(fj−ν)t +ην(t), (8)

where ην(t) is the frequency-shifted noise contribution.

Introducing the index set Jν =
{

i ∈ II/fpi
= ν

}

, let us
now rewrite (8) as

yν(t) = ȳν(t) + ỹν(t) + ην(t), (9)

where the so-called static part ȳν(t) of yν(t), if it exists (i.e.
if Jν 6= ∅), gathers the contributions of all paths having
a null Doppler shift after compensation (the set of paths
with fpi

= ν before compensation), while the dynamic
part ỹν collects the remaining paths. One has

ȳν(t) =
(

hν ∗ s
)

(t) (10)

where (ideally) hν(t) =
∑

i∈Jν

αiδ (t − τi) . (11)

Let us assume that t = 0 corresponds to the beginning of
the useful part of an OFDM symbol coming up the direct
path3. The compensated observed signal can then be cut
out into blocks of duration Ts:

yν(t) =
(

ym
ν (t′)

)

m∈IM
, 0 ≤ t′ < Ts.

Thanks to the CP–OFDM structure of the signal and
assuming that the delays τi, i ∈ Jν are less than the CP
duration4, it can be shown from (4), (5) and (10) that the
static part of each block yields

3CP/pilot-aided standard synchronization.
4This assumption may seem restrictive but it corresponds anyway

to bistatic distances up to 70km (8K mode, Tcp = Tu/4). Moreover,
we will see that this assumption can be reasonably overridden.
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ȳm
ν (t′) =

∑

k∈EK

Hν [k]dm
k e

2π
k

Tu
t′

, 0 ≤ t′ < Tu, (12)

where the #EK complex coefficients Hν [k] correspond
to the frequency response of the ν−Doppler channel at
frequencies k

Tu
:

Hν [k] =
∑

i∈Jν

αi exp
(

−2π k
Tu

τi

)

, k ∈ EK . (13)

Let us sample the compensated received signal at the
data symbol period Tu/K. Using t′ = n′Tu/K, we can
write for each block ym

ν [n′], m ∈ IM
5:

ym
ν [n′] =

∑

k∈EK

Hν [k]dm
k e2π kn′

K +ỹm
ν [n′] + ηm

ν [n′], (14)

n′ ∈ IK .

Applying a K-points discrete Fourier transform (DFT) on
the previous compensated received block, one obtains the
following spectral representation:

Y m
ν [k] =Hν [k]dm

k + Ỹ m
ν [k] + Ξm

ν [k], k ∈ EK , (15)

with Ỹ m
ν , DFT{ỹm

ν } and Ξm
ν , DFT{ηm

ν }.

It is proved (Subsection A of the Appendix) that ∀k ∈
EK and ∀ν,

lim
M→+∞

1

M

∑

m∈IM

Ỹ m
ν [k]

dm
k

= 0 (16)

and lim
M→+∞

1

M

∑

m∈IM

Ξm
ν [k]

dm
k

= 0. (17)

Hence,

Ĥν [k] ,
1

M

∑

m∈IM

Y m
ν [k]

dm
k

, k ∈ EK (18)

is an asymptotically unbiased estimator of the ν−Doppler
channel frequency response Hν . Thereafter, an estimation
of the corresponding impulse response ĥν is obtained by a
simple Inverse Discrete Fourier transform (IDFT)

ĥν [n] =
1

K

∑

n∈IK

Ĥν [k] ej2π kn
K . (19)

Finally, a parametric sweep over the Doppler frequency
shift ν, allows to define the so-called channel detector
CHAD through the following range-frequency function:

D(τ, ν) , |ĥν [n]|2, with τ = nTu/K. (20)

Note that, since a DVB-T signal is bandlimited, the
coefficients Ĥν [k], k ∈ IK\EK are non-observable and
have then to be replaced by zero. This leads to (squared)
sinc-shaped detection peaks (instead of Dirac pulses),
limiting the resolution along the range axis.

5In practice, ym
ν [n′] is built from the sampled version of the

received signal, that is to say ym
ν [n′] = ym[n′] e−2πν(n′+m)

Tu
K .

Finally, for the Doppler-shifted frequencies ν we are
interested in6, the OFDM symbol duration Tu given by the
DVB-T standard can be considered small enough to ensure
that the phase rotation within one OFDM remains almost
constant: ej2πνn Tu

K ≈ 1 for all n′ ∈ IK [15], [16]. Hence, it
is reasonable to make the following approximation simpli-
fying the computation of each compensated signal block

ym
ν [n] ≈ ym[n] e−2πνmTs , ∀n ∈ IK . (21)

Based on the previous derivations, the detection scheme
practical main steps can now be detailed as follows:

1) From the different blocks of the sampled surveillance
signal, form the M following vectors, ∀m ∈ IM :

ym =
[

ym[0], . . . , ym[n], . . . , ym[K − 1]
]T

.

2) Compute the K-points discrete Fourier transforms
of each vector ym:

Ym =
[

Y m[0], . . . , Y m[k], . . . , Y m[K − 1]
]T

,

with ∀m ∈ IM , ∀k ∈ IK :

Y m[k] =
1

K

∑

n∈IK

ym[n] e−j2π kn
K .

3) Compute the M channel frequency responses corre-
sponding to the different blocks

Hm =
[

Hm[0], . . . , Hm[k], . . . , Hm[K − 1]
]T

,

with ∀m ∈ IM :

Hm[k] = Y m[k]/dm
k , ∀k ∈ EK ,

Hm[k] = 0, ∀k ∈ IK\EK .

4) Choose a value ν for the Doppler compensation and
compute the associated channel frequency response
using the following linear combination (see (18) and
(21))

Ĥν =
1

M

∑

m∈IM

e−j2πνmTs Hm. (22)

5) Compute the detection function corresponding to
the Doppler shift ν: D(τ, ν) = |ĥν [n]|2, where ĥν [n] is
obtained by IDFT of vector Ĥν (see (19)) and where
τ = nTu/K.

6) Repeat steps 4) and 5) for different values of param-
eter ν.

C. Performance Analysis

In this subsection, we compare for the two studied
detectors (CAF and CHAD), the detection peak mean
shape, and the floor mean levels for clutter and noise.
The study will be conducted considering dm

k as a random
variable and neglecting the effect of the pilot deterministic
sequences inserted in the data stream.

Let us consider that the surveillance antenna is im-
pinged by a single DVB-T signal i whose coordinates are
(ni

Tu

K , fpi
) in the delay-Doppler plane. This signal should

6−500 Hz < ν < 500 Hz
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be seen as a potential source of disturbance (secondary
lobes and a clutter floor) for the detection of a weaker
target.
Assuming that the bistatic propagation delay ni

Tu

K is less
than the guard interval duration, an mth noise-free, power-
normalized, received sampled block yields, ∀n′ ∈ IK

ym[n′] = sm[n′ − ni] e
2πfpi

(

(n′
−ni)Tu

K
+mTs

)

, (23)

where the unit-variance reference signal s is assumed to
be stationary block m by block m i.e. E{|dm

k |2} does not
depend on m. Now since in the DVB-T standard, one has
E{|dm

k |2} = 1, it comes that ∀m

sm[n′] =
1√

#EK

∑

k∈EK

dm
k e2π n′k

K , (24)

ensuring the unit-variance assumption.

1) CAF based detector: the cross-ambiguity function
A is here defined as the squared modulus of the cross-
correlation function X :

A = |X [n, ν]|2, (25)

where

X [n, ν] =
1

MK

∑

m∈IM

∑

n′∈IK

ym[n′](sm[n′ − n])∗ e−2πνmTs ,

(26)

is computed from the symbol useful parts (MK samples)
with a constant phase rotation within a symbol (see [14]).
The two parameters under test (n Tu

K , ν) are respectively
the bistatic propagation delay (bistatic range) and the
Doppler-shifted frequency.

Using (23), the expression (26) yields

X [n, ν] =
γ

MK

∑

m∈IM

e2π(fpi
−ν)mTs

∑

n′∈IK

sm[n′ − ni](s
m[n′ − n])∗ e2πfpi

n′Tu
K ,

(27)

with γ = e−2πfpi

niTu
K .

Finally, replacing the expression of sm using (24), it
comes

X [n, ν] =
γ

MK#EK

∑

m∈IM

e2π(fpi
−ν)mTs

∑

k,k′∈E2
K

dm
k (dm

k′)∗ e
2π(nk′

−nik)

K skk′(fpi
), (28)

where

skk′(fpi
) ,

∑

n′∈IK

e
2π(k−k′+fpi

Tu)n′

K

=
sin π(k − k′ + fpi

Tu)

sin π(k − k′ + fpi
Tu)/K

. (29)

Note that skk(fpi
) does not depend on k.

Now, observing a CAF detection output, for example in
Figure 5, one can clearly distinguish, in the range-Doppler
plane, both a non-stationary part and a stationary part.
The non-stationary part (a squared sinc-like function) cor-
responds to the detection peak shape while the stationary
part is a random variable we shall refer as the clutter floor.
This behavior can be explained using the following decom-
position:

A[n, ν] = |X e[n, ν] + X d[n, ν]|2, (30)

with X e[n, ν] = X [n, ν] when k = k′ in (28), (31)

and X d[n, ν] = X [n, ν] when k 6= k′. (32)

Let us study the behavior of E{A[n, ν]}. First, the random
variables dm

k and dm
k′ being zero-mean and uncorrelated

for all k 6= k′ [17], it can easily be shown that X d[n, ν]
is centered for all (n, ν). Second, it is proved in Appendix
B that X e and X d are uncorrelated. Then, introducing
the zero-mean random function Y , X e − E{X e} + X d, it
comes

E{A[n, ν]} =
∣

∣E{X e}
∣

∣

2
+ Var{Y}. (33)

As we will see subsequently, only the first right-hand side
term of (33) varies with (n, ν): it corresponds to the peak
shape; the second (constant) term matches the clutter
floor level.

a) Peak shape: the CAF peak average shape is given
by (see Appendix C for detailed derivations):

|E {X e[n, ν]}|2 =

sin2 πfpi
Tu

sin2 πfpi
Tu/K

(MK)2(#EK)2

sin2 π(fpi
− ν)MTs

sin2 π(fpi
− ν)Ts

sin2 π(n − ni)#EK/K

sin2 π(n − ni)/K
.

(34)

As expected and due to the limited bandwidth, the peak
shape corresponds to a squared sinc-like function (a
Dirichlet kernel) limiting the resolution along the range
axis. Similar secondary lobes are observed along the
Doppler axis, depending on the number M of OFDM
symbols used.

Replacing n by ni and ν by fpi
in the latter equation

and considering the approximation
sin2 πfpi

Tu

sin2 πfpi
Tu/K ≈ K2,

one obtains the detection peak mean level
∣

∣E
{

X e[ni, fpi
]
}∣

∣

2 ≈ 1

M2(#EK)2
M2(#EK)2 i.e. 0dB.

(35)

b) Clutter floor mean level: we have

Var{Y} = Var{X e} + Var{X d}.

The calculations of the variances of X e and X d are detailed
respectively in Appendix D and Appendix E. We get

Var{X e[n, ν]} =

sin2 πfpi
Tu

sin2 πfpi
Tu/K

MK2#EK

(

E
{

|dm
k |4

}

− 1
)

(36)
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(Note that for QAM signals, E
{

|dm
k |4

}

never exceeds
1.381),
and

Var
{

X d
}

=
1

MK2(#EK)2

∑

k

∑

k′ 6=k

|skk′(fpi
)|2. (37)

It follows that Var{Y} does not depend on (n, ν).
Note that Var

{

X d
}

< Var
{

X e
}

and the variable

|X e[n, ν] − E{X e[n, ν]}
∣

∣

2
remains the main source of

clutter.

c) Noise floor mean level: let us consider now that
the received signal is white noise only: ym[n′] = ηm[n′].
One can then write using (26)

X [n, ν] =
1

MK
√

#EK

∑

m∈IM

e−2πνmTs

∑

k∈EK

(dm
k )∗ e

2πnk

K

∑

n′∈IK

ηm[n′] e
−2πn′k

K . (38)

Since the two independent random variables dm
k and ηm[n′]

are assumed to be i.i.d. sequences, computing the modulus
squared then the mathematical expectation, the noise floor
mean level yields using E{|dm

k |2} = 1

E{A[n, ν]} =
1

M2K2

∑

m∈IM

∑

n′∈IK

E{|ηm[n′]|2} (39)

=
E{|ηm[n′]|2}

MK
. (40)

2) CHAD: applying a DFT on a received symbol

ym, Y m[k′] ,
∑

n′∈IK
ym[n′] e

−2πn′k′

K , and dividing by√
#EKdm

k′ , k′ ∈ EK , one obtains after some derivations
(see the Appendix F) the expression of the frequency
response of the propagation channel corresponding to the
reception of the mth symbol:

Hm[k′] ,
Y m[k′]√
#EKdm

k′

=

γ

#EK
e2πfpi

(mTs)
∑

k∈EK

dm
k

dm
k′

e
−2πnik

K skk′(fpi
), (41)

where γ = e
−2πfpi

niTu

K .

Applying now the Doppler correction e−2πν(mTs) for
each symbol m and averaging over the M available sym-
bols, one has

Hν [k′] ,
1

M

∑

m∈IM

e−2πν(mTs) Hm[k′] = (42)

γ

M#EK

∑

m∈IM

e2π(fpi
−ν)mTs

∑

k∈EK

dm
k

dm
k′

e
−2πnik

K skk′(fpi
).

(43)

The corresponding impulse response is obtained by IDFT:

hν [n] =
γ

MK#EK

∑

m∈IM

e2π(fpi
−ν)mTs

∑

k′∈EK

e
2πnk′

K

∑

k∈EK

dm
k

dm
k′

e
−2πnik

K skk′(fpi
). (44)

Let us consider the detection function

D[n, ν] = |hν [n]|2 ,

with the following decomposition:

hν [n] = he
ν [n] + hd

ν [n] (45)

where he
ν gathers the terms in (44) with k = k′ and where

hd
ν stands for the remaining terms (k 6= k′). Since he

ν is
deterministic (it does not depends on data dm

k ) and hd
ν is

a centered random variable (here E{ dm
k

dm

k′

} = 0), it comes

E{D} = |he
ν |2 + E

{

|hd
ν |2

}

, (46)

were the deterministic function |he
ν |2 corresponds to the

detection peak and the mean value of the random variable
|hd

ν |2 corresponds to the clutter floor mean level.

a) Peak shape: let us study the deterministic part
corresponding to the terms where k = k′ in (44)

he
ν [n] =

γ

MK#EK

∑

m∈IM

e2π(fpi
−ν)mTs

∑

k∈EK

e
2π(n−ni)k

K skk(fpi
). (47)

Since skk(fpi
) depends no more on k, it comes

he
ν [n] = (48)

γ
MK#EK

eπ(fpi
−ν)(M−1)Ts eπ(n−ni)

KM +Km−1

K eπfpi
Tu

K−1
K

sin π(fpi
− ν)MTs

sin π(fpi
− ν)Ts

sin π(n − ni)#EK/K

sin π(n − ni)/K

sin πfpi
Tu

sin πfpi
Tu/K

.

Using |γ| = 1, we straightforwardly obtain the CHAD
detection peak shape as the squared modulus of the latter
expression:

|he
ν [n]|2 =

sin2 πfpi
Tu

sin2 πfpi
Tu/K

M2K2(#EK)2

sin2 π(n − ni)#EK/K

sin2 π(n − ni)/K

sin2 π(fpi
− ν)MTs

sin2 π(fpi
− ν)Ts

. (49)

which appear identical to that obtained with classical
CAF.

b) Clutter floor mean level: as for CAF, the clutter
forms a stochastic pedestal. The difference is that, here,
only the terms where k 6= k′ contribute to the clutter floor.
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Using (44), one finds:

E

{

∣

∣hd
ν [n]

∣

∣

2
}

=
1

(MK#EK)2

∑

m,m′∈I2
M

e2π(fpi
−ν)(m−m′)Ts

(50)

∑

k2,k′

2∈E2
K

e
2πn(k2−k′

2
)

K

∑

k1 6=k2,k′

1 6=k′

2∈E2
K

E

{

dm
k1

dm
k2

(dm′

k′

1
)∗

(dm′

k′

2
)∗

}

e
2πni(k′

1
−k1)

K sk1k2
(fpi

)s∗
k′

1k′

2
(fpi

).

Since E {dm
k } = 0 and E

{

1
dm

k

}

= 0, then E

{

dm
k1

dm
k2

(dm′

k′

1
)∗

(dm′

k′

2

)∗

}

=

0 for m 6= m′. Additionally, it can be shown that for QAM

signals E

{

dm
k

(dm
k

)∗

}

= 0, hence only the terms with k1 = k′
1

and k2 = k′
2 are not null in the previous expression and

the clutter mean level yields

Var
{

hd
ν [n]

}

=
E

{

1
|dm

k
|2

}

M(K#EK)2

∑

k

∑

k′ 6=k

s2
kk′(fpi

). (51)

c) Noise floor mean level: as for CAF, let us consider
that the received signal is white noise only: ym[n′] =
ηm[n′]. One obtains the following Doppler channel fre-
quency response

Hν [k] =
1

M

∑

m∈IM

Y m[k]√
#EKdm

k

e−2πνmTs (52)

=
1

M
√

#EK

∑

m∈IM

1

dm
k

e−2πνmTs

∑

n′∈IK

ηm[n′] e
−2πn′k

K .

Applying a IDFT, we get the corresponding impulse re-
sponse

hν [n] =
1

MK
√

#EK

∑

k∈EK

∑

m∈IM

1

dm
k

e−2πνmTs

∑

n′∈IK

ηm[n′] e
2π(n−n′)k

K . (53)

The two independent random variables dm
k and ηm[n′]

being zero mean and temporally white, variance of hν [n]
yields

E{|hν [n]|2} =
1

(MK)2#EK

∑

m∈IM

∑

k∈EK

E

{

1

|dm
k |2

}

∑

n′∈IK

E{|ηm[n′]|2} (54)

= ρ
E{|ηm[n′]|2}

MK
, (55)

where ρ = 1
#EK

∑

k∈EK
E

{

1
|dm

k
|2

}

≈ E

{

1
|dm

k
|2

}

.

This latter expression indicates that the noise floor
mean level depends on the QAM type. On can note
that for 4-QAM, CAF and CHAD exhibits the same

noise floor level (ρ = 1). For other types of QAM, the
noise floor is unfortunately higher, since one has ρ = 1.8
for 16-QAM (+2.5dB), and ρ = 2.6 for 64-QAM (+4.1dB).

D. Performance comparison

From the clutter floor theoretical mean level of each
studied detector (37) for CAF and (51) for CHAD, we will
evaluate the improvement brought by CHAD compared to
CAF.
Let us consider the two zero mean complex variables:
Y = X e −E{X e}+X d (for CAF) and Z , hd

ν (for CHAD),
and the clutter floor attenuation coefficient defined by
cZ/Y(fpi

) , Var{Z}
Var{Y} .

The attenuation cZ/Y(fpi
), depends on the absolute value

of the Doppler-shifted frequency fpi
of the disturbance

source (skk′

(

fpi

)

is an even function) and is parametrized
by the number of subcarriers and the QAM type. One has
after some developments:

cZ/Y(fpi
) =

Var{hd
ν}

Var{X e} + Var{X d} = (56)

E

{

1
|dm

k
|2

}

∑

k

∑

k′ 6=k

s2
kk′(fpi

)

#EK sin2 πfpi
Tu

sin2 πfpi
Tu/K

(

E
{

|dm
k |4

}

− 1
)

+
∑

k

∑

k′ 6=k

s2
kk′(fpi

)
.

Figure 2 presents plots of the attenuation cZ/Y according
to the disturbing path Doppler shift fpi

, for 64-QAM with
the two DVB-T K-modes.

Fig. 2. CHAD/CAF clutter floor attenuation coefficient cZ/Y (dB).

One can see that, using CHAD, the clutter floor level
remains lower than that obtained with a CAF for low
frequencies (up to about 300Hz for the 8K mode). In
particular and very interestingly, since skk′(0) = 0, the
clutter floor induced by the set of zero-Doppler paths
reduces to zero.

The variables Y (CAF) and Z (CHAD) are ob-
tained by summing a large number (MK) of inde-
pendent data dm

k . Hence, invoking the central limit
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theorem, it can be considered that these variables
are normally distributed. Moreover, since Re{dm

k } and
Im{dm

k } are independent random variables with the
same variance, one has for the two following real ran-

dom vectors: (Re{Y}, Im{Y}) ∼ N
(

0,
√

Var{Y}
2 I2

)

and

(Re{Z}, Im{Z}) ∼ N
(

0,
√

Var{Z}
2 I2

)

. The two variables
2

Var{Y} |Y|2 and 2
Var{Z} |Z|2 are then chi-squared distributed

with 2 degrees of freedom (χ2
2) and we get the two following

results

Prob

{

|Y|2 >
9.21 Var{Y}

2

}

= 1%, (57)

Prob

{

|Z|2 >
9.21 Var{Z}

2

}

= 1%, (58)

giving a 1% confidence interval for the clutter floor level
of each detector.

As an example, Figure 3 presents, for a 64-QAM - 8K, 90
symbols emission, the clutter floor 1% confidence intervals
(in dB) for both CAF and CHAD.

Fig. 3. Clutter floor level for a unit-power
source, 90 symbols, 64-QAM, 8K (1%
confidence interval in dB).

E. Short study of the case: τi > Tcp

Without any loss of generality, we consider a single
delayed static contribution, such that Tcp < τi < Tu (
i.e 0 < ni < K − 1). It follows an overlapping of symbol
m+1 on the mth received block. For a noise-free case, one
has from Equation (14)

ym[n′] =
∑

k′∈EK

H0[k′]dm−1
k′ ej2π k′n

K n′ = 0, . . . , ni − 1

(59)

+
∑

k′∈EK

H0[k′]dm
k′ej2π k′n′

K n′ = ni, . . . , K − 1.

After DFT and data division, we obtain

Y m[k]

dm
k

=
1

K

K−1
∑

n′=0

ym[n′]

dm
k

e−j2π kn′

K (60)

=
1

K

ni−1
∑

n′=0

∑

k′∈EK

H0[k′]
dm−1

k′

dm
k

ej2π
(k′

−k)n′

K

+
1

K

K−1
∑

n′=ni

∑

k′∈EK

H0[k′]
dm

k′

dm
k

ej2π
(k′

−k)n′

K ,

whose the expectation value is

E

{

Y m[k]

dm
k

}

=
1

K

ni−1
∑

n′=0

∑

k′∈EK

H0[k′] E

{

dm−1
k′

dm
k

}

ej2π
(k′

−k)n′

K

(61)

+
1

K

K−1
∑

n′=ni

∑

k′∈EK

H0[k′] E

{

dm
k′

dm
k

}

ej2π
(k′

−k)n′

K

=
1

K

K−1
∑

n′=ni

H0[k] =
K − ni

K
H0[k].

Thus, when τi varies from Tcp to Ts, the corresponding
channel frequency response linearly decreases. When
τi > Ts, it remains null. This result is still valid for any
Doppler echo.

IV. ZDC rejection from static channel
estimation

Whether with CHAD or CAF, the static echo secondary
lobes remain and their strong amplitude can still compro-
mise the detection of the weakest targets. This disturbing
zero-Doppler contribution has then to be removed and we
therefore propose two ways.

A. ZDC rejection preprocessing

A classical strategy is to implement the ZDC rejection
as a preprocessing basically applied on the received signal
y[k] (see e.g. [6], [8], [9]). As in [9], it can be done here
using the estimation Ĥ0[k] of the zero-Doppler channel fre-
quency response (obtained using (18) with ν = 0). Then,
we directly get the estimate of the spectral representation
of the dynamic part, computing for each block m ∈ IM :

Ỹ m[k] ≃ Y m[k] − Ĥ0[k]dm
k , k ∈ EK . (62)

This ZDC-free signal can be used to detect most of the
formerly hidden targets, implementing a classical CAF or
a CHAD detector.

Note that, similarly to the approach in [8], the computa-
tional cost (the number of complex multiplications) of such
a preprocessing is only O(MK log2(K)) while the least
mean squares (LMS) method [6] exhibits a complexity
having a cubic growth with K (O(MK3)).
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B. Online ZDC rejection

The CHAD approach allows to directly implement the
ZDC rejection during the estimation of the Doppler chan-
nel frequency response. From (62), it can be done replacing
(22) by

Ĥν =
1

M

∑

m

(Hm − Ĥ0) e−2πνmTs , (63)

where Ĥ0 = 1
M

∑

m Hm corresponds to the static channel

vector estimation and where Ĥν stands now for the ZDC-
free stationarized Doppler channel. After some derivations,
it can be rewritten as

Ĥν =
1

M

∑

m

(

e−2πνmTs − 1 − e−2πνMTs

M(1 − e−2πνTs)

)

Hm, (64)

unifying in one and the same step the ZDC rejection
and the detector construction while not increasing the
computational complexity.

V. CHAD algorithm

Based on the previous derivations, the resulting channel
detector algorithm (CHAD) is given in Table I.

TABLE I
CHAD (Channel Detector)

0) Inputs

dm =
[

dm
0 , . . . , dm

k , . . . , dm
K−1

]T
, m ∈ IM

ym =
[

ym[1], . . . , ym[n′], . . . , ym[K − 1]
]T

, m ∈ IM

1) Compute Hm = DFT[ym] ⊙ 1
dm

where ⊙ stands for the element-wise product
2) Estimation of the Doppler channel impulse responses
for l = −L/2, . . . , L/2

a. ν[l] = l∆ν

b. Hν = 1
M

∑

m
Hmwm,

wm =

{

e−2πνmTs for a straightforward detection

e−2πνmTs − 1−e−2πνMTs

M(1−e−2πνTs )

detection including
ZDC rejection

c. hν = IDFT[Hν ]
end
3) Echo detection
Construct the K × L detection map D such that D[n, l] =
|hν[l][n]|2.

Note that since 1
dm

k

=
(dm

k )∗

|dm
k

|2 , we retrieve here the

approach in [13] where the reference signal is mismatched
by dividing by the squared modulus of each datum dm

k

(modulus equalization). As outlined in section I, Searle et
al. [13] propose to ignore the secondary lobes by computing
the “mismatched reference signal” CAF with a Doppler
shift resolution such that “any Fourier bin exists at a
zero of any other bin”, that is to say using ∆ν = 1

MTs
.

It is very interesting because ZDC sidelobes (artificially)
disappear and ZDC mitigation may appear now useless.
However, it follows a detection loss and consequently we
preferred to keep in most of the numerical results, both
an oversampling on the Doppler dimension and a ZDC

cancellation. Note that as suggested in [14], [13], an ad hoc
Doppler shift range allows the straightforward estimate of
Hν by FFT.

VI. Numerical Simulations

We consider a simulation scenario where four moving
targets are illuminated by a 8K, 64-QAM, DVB-
T emission with Tcp = Tu/16. The target echoes
Tg1, Tg2,Tg3 and Tg4 are received with respectively a
40 dB, 60 dB, 65 dB and 90 dB power attenuation
(relatively to the LOS emission). Their coordinates in the
range-frequency plane are respectively: (3 km, 30 Hz),
(6 km, 90 Hz), (7 km, -150 Hz) and (12 km, -100 Hz).
Additionally, we simulate the presence of about 30 static
echoes with a minimal attenuation of 30 dB. These echoes
are randomly distributed in a bistatic range less than 16
km and have consequently bistatic propagation delays
less than the guard interval. A 50 dB attenuation AWGN
channel is considered. Finally, the Doppler shift step ∆ν

is set to 1 Hz.

Figure 4 presents a CAF output computed over 90
consecutive OFDM symbols (i.e. a 85 ms duration and
90 × 8192 = 737280 samples) from the original received
sequence (y[n])n∈IN

.

Fig. 4. CAF using the original received signal.

The stochastic pedestal level induced by the LOS
corresponding peak does not exceed (1% confidence
interval) about -55 dB (see Figure 3 for a null Doppler-
shifted frequency). Consequently, and as it can be seen
in the figure, only the most powerful target Tg1 remains
visible while the other three Doppler echoes are hidden
by the LOS clutter level.

Three ZDC rejection preprocessings have been imple-
mented and tested before the CAF detection. Figure 5
shows a CAF output obtained using the approach pro-
posed in subsection IV-A .
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Fig. 5. CAF after a ZDC rejection prior stage.

The stochastic floor level induced by the new dominant
echo Tg1 (30 Hz) reduces to −95 dB, corresponding to
the theoretical value obtained by combining its power
attenuation (-40 dB) and the CAF clutter level for a unit-
power source (-55 dB, see the zoomed view in Figure
3). The targets Tg2 and Tg3 are now detected, but Tg4

outcrops the clutter level and is then not clearly visible.
A false detection peak betraying the presence of pilot
signals, appears (ghost target on the figure). Note that
this ambiguity peak could be reduced using a reference
signal synthesized with a pilot level reduction [10], [11].

Very close results are obtained by the other two
preprocessings we tested: the LMS-based method [6]
and the zero-Doppler orthogonal projection [8]. For the
LMS-based method, both a high computational load
(O(MK3)), and a high memory load are necessary since
a MK × Tcp = MK × K/16 dimensional matrix has to
be pseudo-inverted.

Figure 6 presents the detection map obtained using
CHAD (90 symbols) without ZDC rejection (22).

Fig. 6. CHAD output D without ZDC rejection.

Since the stochastic pedestal induced by the static
emissions is now null, the three most powerful targets
are clearly detected but the weakest target remains
hidden by the secondary lobes of the LOS detection peak.
Finally, one can see that, since CHAD detection peak is

data-independent (see eq. (49)), the ghost peak appears
no more.

Figure 7 corresponds to the detection map obtained
with CHAD using an H0 compensation (64) in order
to remove the LOS secondary lobes. The clutter level
induced by the most powerful remaining target Tg1 is
-113.25 dB (obtained by combining the -40 dB power
attenuation and the -73.25 dB CHAD theoretical clutter
level of Figure 3), that is to say less than the noise floor
(−50−10 log10(90×8192) ≈ −108 dB) which becomes the
main hiding effect.

Fig. 7. CHAD output D including H0 compensation.

The weakest target Tg4 is now detected.

VII. Experimental Data

We present here a detection result obtained with an
acquisition system located near the city of Rennes in
France. The target is a ferryboat illuminated by the DVB-
T transmitter “Bécherel” whose modulation parameters
are: 8K mode, 64-QAM and Tcp = Tu/32. In the range-
frequency plane, the target bistatic coordinates are about
(46 km, -67 Hz).

The figure 8 presents the detection maps obtained with-
out ZDC rejection with both CAF (left) and CHAD (right)
using M = 190 OFDM symbols and ∆ν = 1 Hz.

Fig. 8. CAF (left) and CHAD (right) on real data without ZDC
rejection.
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The ferryboat location conducts to a bistatic delay
higher than six times the CP duration and consequently
out of the τi < Tcp assumption. It follows (see
III-E) a detection loss depending on the amount
of data outside the guard interval i.e. here about
10 log10((32 − 6)2/322) ≈ −1.8 dB, see eq. (61). One can
see that despite this slight loss of detection, the clutter
level being greatly attenuated (about 30 dB), the target
is clearly visible (lower right corner) with CHAD while
classical CAF fails.
Note that the clutter reduction level obtained with CHAD
is apparently lower than in the previous simulations. This
can be explained by a higher noise floor which is reached
here, limiting the performance.

The last figure 9 presents the detection maps obtained
by each detector after a ZDC rejection.

Fig. 9. CAF (left) and CHAD (right) on real data with ZDC
rejection.

The results are close to each other but one can observe
that, as expected, CHAD exhibits a noise floor level
slightly higher than the classical CAF.

VIII. Conclusion and Perspectives

In this paper, we introduce the notion of “Doppler
channel”. We show how its associated impulse response
can be efficiently computed for DVB-T emissions and
used as a new performing target detection tool, we named
CHAD (channel detector). We theoretically compare the
performance of CHAD to that of classical CAF. In par-
ticular, we demonstrate that, very interestingly, for low
Doppler-shifted contributions, the induced clutter level
remains significantly inferior to that of CAF. This level
even reaches zero for zero-Doppler contributions.
CHAD actually appears to be equivalent to a CAF based
on the mismatched reference signal proposed in [12], [13].
However, this new interpretation in terms of Doppler

channels opens a much wider range of possibilities. For
example, one can now directly merge the ZDC rejection
with the detector without increasing the computational
load. In the Doppler channel domain, the detection prob-
lem becomes a simple harmonic analysis problem and
one can imagine that we might improve the performance,
using e.g. high-resolution spectrum-estimation methods.
Finally, a CHAD extension to spatial array-processing is
still possible.

Appendix

This appendix provides details of the longest derivations
referred to throughout the text.

A. Estimation of the static channel

With no loss of generality, the mathematical derivations
will be conducted with a null Doppler compensation (ν =
0) and a single Doppler path i (fpi

6= 0). From (15), we
then have, ∀k ∈ IK

1

M

∑

m∈IM

Y m
0 [k]

dm
k

=H0[k] +
1

M

∑

m∈IM

Ỹ m
0 [k]

dm
k

+
1

M

∑

m∈IM

Ξm
0 [k]

dm
k

.

To simplify the notations, the subscript 0 will be omitted
in the sequel.

1) Study of 1
M

∑

m∈IM

Ỹ m[k]
dm

k

: this sum has to be con-

sidered as a source of disturbance (in addition to the noise)
for the channel H estimation. Its contribution to the LOS-
synchronized received signal yields

ỹ(t) = αis (t − τi) e2πfpi
t,

where the relative propagation delay τi is assumed to be
less than Tcp.

The received signal being sampled and cut off according
to the OFDM structure, the corresponding mth sampled
received block ỹm[n′] can then be written as

ỹm[n′] = αis
m

(

n′ Tu

K
− τi − mTs

)

e2πfpi(n′ Tu
K

−τi−mTs),

n′ ∈ IK .

with

s

(

n′ Tu

K
− τi − mTs

)

=
1

K

∑

k∈EK

dm
k e2π k

Tu
(n′ Tu

K
−τi−mTs) .

It comes

ỹm[n′] = α′
i

∑

k∈EK

e−2π
kτi
Tu dm

k e2π kn′

K e2πfpi(n′ Tu
K

−mTs),

n′ ∈ IK ,

where α′
i = αi

K e−2πfpi
τi .

The Doppler-shifted frequencies fpi
we deal with,

are assumed sufficiently low so that the phase rotation
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e2πfpi
n′ Tu

K can be considered as constant
(

e2πfpi
n′ Tu

K ≈ 1,
∀n ∈ IK

)

. We can then write

ỹm[n′] = α′
i

∑

k∈EK

e−2π
kτi
Tu dm

k e2π kn′

K e−2πfpi
mTs ,

n′ ∈ IK .

Now applying a K−points DFT, one obtains

Ỹ m[k′] = α′
i

∑

k∈EK

e−2π
kτi
Tu dm

k

∑

n′∈IK

e2π
(k−k′)n′

K e−2πfpi
mTs ,

k′ ∈ EK . (65)

Since
∑

n′∈IK
e2π

(k−k′)n′

K is null except for k = k′, then

Ỹ m[k′] simplifies to

Ỹ m[k′] = α′′
i dm

k′ e−2πfpi
mTs , k′ ∈ EK , (66)

with α′′
i = Kα′

i e−2π
k′τi
Tu .

1

M

∑

m∈IM

Ỹ m[k′]

dm
k′

=
α′′

i

M

∑

m∈IM

e−2πfpi
mTs ,

=
α′′

i

M

1 − exp
(

−2πfpi
MTs

)

1 − exp
(

−2πfpi
Ts

) ,

∝ 1

M

sin
(

πfpi
MTs

)

sin
(

πfpi
Ts

) .

Now, since | sin
(

πfpi
MTs

)

| ≤ 1 , it comes

lim
M→+∞

1

M

∑

m∈IM

Ỹ m[k]

dm
k

= 0.

2) Study of 1
M

∑

m∈IM

Ξm[k]
dm

k

: from the strong law of

large numbers, one has (see [18] pp. 151–152)

1

M

∑

m∈IM

Ξm[k]

dm
k

a.s.−−−−−→
M→+∞

E

{

Ξm[k]

dm
k

}

.

The zero-mean random variables Ξm[k] and 1
dm

k

being

uncorrelated, it comes

E

{

Ξm[k]

dm
k

}

= E {Ξm[k]} E

{

1

dm
k

}

= 0,

and consequently

lim
M→+∞

1

M

∑

m∈IM

Ξm[k]

dm
k

a.s.
= 0.

B. Study of the cross-correlation between X e and X d

One has using (28) both with k = k′ and k 6= k′ :

E
{

X e(X d)∗
}

=

E

{

sk1k1
(fpi

)

MK#EK

∑

m1∈IM

e2π(fpi
−ν)m1Ts

∑

k1∈EK

|dm1

k1
|2 e

2π(n−ni)k1
K

1

MK#EK

∑

m2∈IM

e−2π(fpi
−ν)m2Ts

∑

k2,k′

2 6=k2

(dm2

k2
)∗dm2

k′

2
e

−2π(nk′

2
−nik2)

K sk2k′

2
(fpi

)







.

Since E

{

|dm1

k1
|2(dm2

k2
)∗dm2

k′

2

}

= 0 for any triplet (k1, k2, k′
2)

such that k2 6= k′
2, we get

E
{

X e(X d)∗
}

= 0,

and the random variables X e and X d are then
uncorrelated.

C. CAF peak shape - equation (34)

Since skk(fpi
) does not depend on k, it comes using (28)

with k = k′:

E {X e[n, ν]} =
γskk(fpi

)

MK#EK

∑

m∈IM

e2π(fpi
−ν)mTs

KM
∑

k=Km

e
2π(n−ni)k

K

=
γskk(fpi

)

MK#EK

∑

m∈IM

e2π(fpi
−ν)mTse

2π(n−ni)Km
K

KM−Km
∑

k=0

e
2π(n−ni)k

K

=
γskk(fpi

)

MK#EK
eπ(fpi

−ν)(M−1)Ts eπ(n−ni)
KM+Km−1

K

sin π(fpi
− ν)MTs

sin π(fpi
− ν)Ts

sin π(n − ni)#EK/K

sin π(n − ni)/K
.

Taking the squared modulus, then using (29) and |γ| = 1,
we finally obtain the expression of the detection peak mean
shape

|E {X e[n, ν]}|2 =

sin2 πfpi
Tu

sin2 πfpi
Tu/K

(MK#EK)2

sin2 π(fpi
− ν)MTs

sin2 π(fpi
− ν)Ts

sin2 π(n − ni)#EK/K

sin2 π(n − ni)/K
.
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D. CAF clutter floor mean level - equation (36)

One has, using (28) with k = k′:

Var{X e} = E

{

∣

∣X e − E{X e}
∣

∣

2
}

= E

{

∣

∣

∣

skk(fpi
)

MK#EK

∑

m∈IM

e2π(fpi
−ν)mTs

∑

k∈EK

(|dm
k |2 − E{|dm

k |2}) e
2π(n−ni)k

K

∣

∣

∣

2
}

=
|skk(fpi

)|2
(MK#EK)2

∑

m,m′∈I2
M

e2π(fpi
−ν)(m−m′)Ts

∑

k,k′∈E2
K

E

{

(

|dm
k |2 − E{|dm

k |2}
)(

|dm′

k′ |2 − E{|dm′

k′ |2}
)

}

e2π(n−ni)
(k−k′)

K

This expression is clearly null for m 6= m′ or k 6= k′ and
one finally obtains

Var{X e[n, ν]}

=
|skk(fpi

)|2
(MK#EK)2

∑

m∈IM

∑

k∈EK

(

E
{

|dm
k |4

}

− E
{

|dm
k |2

}2
)

=

sin2 πfpi
Tu

sin2 πfpi
Tu/K

MK2#EK

(

E
{

|dm
k |4

}

− 1
)

.

E. CAF clutter floor level - equation (37)

Using (28) with k 6= k′, one has:

Var
{

X d
}

=

1

(MK#EK)2

∑

m∈IM

e2π(fpi
−ν)mTs

E







∑

k1,k′

1 6=k1∈E2
K

dm
k1

(dm
k′

1
)∗ e

2π(nk′

1
−nik1)

K sk1k′

1
(fpi

)

∑

m′∈IM

e−2π(fpi
−ν)m′Ts

∑

k2,k′

2 6=k2∈E2
K

dm′

k′

2
(dm′

k2
)∗ e

−2π(nk′

2
−nik2)

K (sk2k′

2
(fpi

))∗







,

since E{dm
k1

(dm
k′

1
)∗(dm′

k2
)∗dm′

k′

2
} = 0 for m 6= m′ and since a

QAM signal is second-order circular (E{(dm
k )2} = 0) [19],

only the terms with k1 = k2 and k′
1 = k′

2 remain. Hence,
it comes using (Var {dm

k })2 = 1:

Var
{

X d
}

=
1

MK2(#EK)2

∑

k∈EK

∑

k′∈EK , k′ 6=k

s2
kk′(fpi

).

F. Equation (41)

Hm[k′] ,
Y m[k′]√
#EKdm

k′

=
∑

n′,k∈IK×EK

dm
k

#EKdm
k′

e
2π(n′

−ni)k

K

e
2πfpi

(

(n′
−ni)Tu

K
+mTs

)

e
−2πn′k′

K

= e
2πfpi

(

−niTu
K

+mTs

)

∑

k∈EK

dm
k

#EKdm
k′

e
−2πnik

K

∑

n′∈IK

e
2π

(

k−k′

K
+fpi

Tu
K

)

n′

.

We recognize in the latter summation, the expression of
the function skk′(fpi

) defined in (29). It comes

Hm[k′] =
γ

#EK
e2πfpi

(mTs)
∑

k∈EK

dm
k

dm
k′

e
−2πnik

K skk′(fpi
),

where γ = e
−2πfpi

niTu

K .
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