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A unifying energy-based approach to stability of

power grids with market dynamics
Tjerk Stegink, Claudio De Persis, Member, IEEE, and Arjan van der Schaft, Fellow, IEEE

Abstract—In this paper a unifying energy-based approach
is provided to the modeling and stability analysis of power
systems coupled with market dynamics. We consider a standard
model of the power network with a third-order model for the
synchronous generators involving voltage dynamics. By applying
the primal-dual gradient method to a social welfare optimization,
a distributed dynamic pricing algorithm is obtained, which can
be naturally formulated in port-Hamiltonian form. By intercon-
nection with the physical model a closed-loop port-Hamiltonian
system is obtained, whose properties are exploited to prove
asymptotic stability to the set of optimal points. This result is
extended to the case that also general nodal power constraints are
included into the social welfare problem. Additionally, the case of
line congestion and power transmission costs in acyclic networks
is covered. Finally, a dynamic pricing algorithm is proposed that
does not require knowledge about the power supply and demand.

Index Terms—port-Hamiltonian, frequency regulation, optimal
power dispatch, dynamic pricing, social welfare, distributed
control, convex optimization.

I. INTRODUCTION

PROVISIONING energy has become increasingly compli-

cated due to several reasons, including the increased share

of renewables. As a result, the generators operate more often

near their capacity limits and transmission line congestion

occurs more frequently.

One effective approach to alleviate some of these challenges

is to use real-time dynamic pricing as a control method

[1]. This feedback mechanism can be used to encourage the

consumers to change their usage when in some parts of the

grid (control areas) it is difficult for the generators and the

network to match the demand.

Real-time dynamic pricing also allows producers and con-

sumers to fairly share utilities and costs associated with the

generation and consumption of energy among the different

control areas. The challenge of achieving this in an optimal

manner while the grid operates within its capacity limits, is

called the social welfare problem [2], [3].

Many of the existing dynamic pricing algorithms focus on

the economic part of optimal supply-demand matching [2],

[4]. However, if market mechanisms are used to determine

the optimal power dispatch (with near real-time updates of
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the dispatch commands) dynamic coupling occurs between

the market update process and the physical response of the

physical power network dynamics [5].

Consequently, under the assumption of market-based dis-

patch, it is essential to consider the stability of the coupled

system incorporating both market operation and electrome-

chanical power system dynamics simultaneously.

While on this subject a vast literature is already available,

the aim of this paper is to provide a rigorous and unifying

passivity-based stability analysis. We focus on a more accurate

and higher order model for the physical power network than

conventionally used in the literature. In particular, we use a

third-order model for the synchronous generators including

voltage dynamics. As a result, market dynamics, frequency dy-

namics and voltage dynamics are considered simultaneously.

Finally, we propose variations of the basic controller design

that, among other things, allow the incorporation of capacity

constraints on the generation and demand of power and on

the transmission lines, and enhance the transient dynamics of

the closed-loop system. The approach taken in this paper is to

model both the dynamic pricing controller as well as the phys-

ical network in a port-Hamiltonian way, emphasizing energy

storage and power flow. This provides a unified framework for

the modeling, analysis and control of power networks with

market dynamics, with possible extensions to more refined

models of the physical power network, including for example

turbine dynamics.

A. Literature review

The coupling between a high-order dynamic power network

and market dynamics has been studied before in [5]. Here

a fourth-order model of the synchronous generator is used

in conjunction with turbine and exciter dynamics, which is

coupled to a simple model describing the market dynamics.

The results established in [5] are based on an eigenvalue

analysis of the linearized system.

It is shown in [6] that the third-order model (often called the

flux-decay model) for describing the power network, as used

in the present paper, admits a useful passivity property that

allows for a rigorous stability analysis of the interconnection

with optimal power dispatch controllers, even in the presence

of time-varying demand.

A common way to solve a general optimization problem

like the social welfare problem is by applying the primal-

dual gradient method [7], [8], [9]. Also in power grids this

is a commonly used approach to design optimal distributed

controllers, see e.g. [10], [11], [12], [13], [14], [15]. The
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problem formulations vary in these papers, with the focus

being on either the generation side [10], [12], the load side

[11], [16], [17] or both [13], [14], [18], [15]. We will elaborate

on these references in the following two paragraphs.

A vast literature focuses on linear power system models

coupled with gradient-method-based controllers [10], [12],

[11], [17], [13], [19]. In these references the property that

the linear power system dynamics can be formulated as a

gradient method applied to a certain optimization problem is

exploited. This is commonly referred to as reverse-engineering

of the power system dynamics [13], [10], [12]. However, this

approach falls short in dealing with models involving nonlinear

power flows.

Nevertheless, [14], [18], [15], [16] show the possibility to

achieve optimal power dispatch in power networks with non-

linear power flows using gradient-method-based controllers.

On the other hand, the controllers proposed in [14], [18], [15]

have restrictions in assigning the controller parameters and in

addition require that the topology of the physical network is

a tree.

B. Main contributions

The contribution of this paper is to propose a novel energy-

based approach to the problem that differs substantially from

the aforementioned works. We proceed along the lines of

[20], [21], where a port-Hamiltonian approach to the design

of gradient-method-based controllers in power networks is

proposed. In those papers it is shown that both the power

network as well as the controller designs admit a port-

Hamiltonian representation which are then interconnected to

obtain a closed-loop port-Hamiltonian system.

After showing that the third-order dynamical model describ-

ing the power network admits a port-Hamiltonian represen-

tation, we provide a systematic method to design gradient-

method-based controllers that is able to balance power supply

and demand while maximizing the social welfare at steady

state. This design is carried out first by establishing the opti-

mality conditions associated with the social welfare problem.

Then the continuous-time gradient method is applied to obtain

the port-Hamiltonian form of the dynamic pricing controller.

Then, following [20], [21], the market dynamics is coupled to

the physical power network in a power-preserving manner so

that all the trajectories of the closed-loop system converge

to the desired synchronous solution and to optimal power

dispatch.

Although the proposed controllers share similarities with

others presented in the literature, the way in which they are

interconnected to the physical network, which is based on

passivity, is to the best of our knowledge new. Moreover, they

show several advantages.

1) Physical model: Since our approach is based on passiv-

ity and does not require to reverse-engineer the power system

dynamics as a primal-dual gradient dynamics, it allows to deal

with more complex nonlinear models of the power network.

More specifically, the physical model for describing the power

network in this paper admits nonlinear power flows and time-

varying voltages, and is more accurate and reliable than the

classical second-order model [22], [23], [24].

In addition, most of the results that are established in the

present paper are valid for the case of nonlinear power flows

and cyclic networks, in contrast to e.g. [13], [10], [12], [19],

[19], where the power flows are linearized and e.g. [15], [18],

[14] where the physical network topology is a tree. Moreover,

in the aforementioned references the voltages are assumed

to be constant. While the third-order model for the power

network as considered in this paper has been studied before

using passivity based techniques [6], the combination with

gradient method based controllers is novel. In addition, the

stability analysis does not rely on linearization and is based on

energy functions which allow us to establish rigorous stability

results.

2) State transformation: In [10], [12] it is shown how a

state transformation of the closed-loop system can be used to

eliminate the information about the demand from the controller

dynamics, which improves implementation of the resulting

controller. We pursue this idea and show that the same kind

of state transformation can also be used for more complex

physical models as considered in this paper. This avoids the

requirement of knowing the demand to determine the market

price.

3) Controller parameters: In the present paper we show

that both the physical power network as well as the dynamic

pricing controllers admit a port-Hamiltonian representation,

and in particular are passive systems. As a result, the inter-

connection between the controller and the nonlinear power

system is power-preserving, implying passivity of the closed-

loop system as well. Consequently, we do not have to impose

any condition on controller design parameters for guaranteeing

asymptotic stability, contrary to [14], [18], [15].

4) Port-Hamiltonian framework: Because of the use of the

port-Hamiltonian framework, the proposed controller designs

have the potential to deal with more complex models for

the power network compared to the model described in this

paper. As long as the more complex model remains port-

Hamiltonian, the results continue to be valid. This may lead

to inclusion of, for example, turbine dynamics or automatic

voltage regulators in the analysis, although this is beyond the

scope of the present paper. Furthermore, higher order models

for the synchronous generator could be considered.

In addition, we propose various extensions to the basic con-

troller design that have not been investigated in the aforemen-

tioned references.

5) Transmission costs: In addition to nodal power con-

straints and line congestion, we also consider the possibility

of including power transmission costs into the social welfare

problem. Including such costs may in particular be useful in

reducing energy losses or the risk of a breakdown of certain

transmission lines.

6) Non-strict convex objective functions: By relaxing the

conditions on the objective function, we show that also non-

strict convex/concave cost/utility functions can be considered

respectively. In addition, the proposed technique allows to add

damping in the gradient method based controller which may

improve the convergence rate of the closed-loop system.
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7) Barrier functions: We highlight the possibility to use

barrier functions to enforce the trajectories to stay withing the

feasible region, which allows operation within the capacity

constraints for all time, even during transients. This permits a

more realistic application of the proposed controller design.

The remainder of this paper is organized as follows. In

Section II the preliminaries are stated. Then the basic dynamic

pricing algorithm is discussed in Section III and convergence

of the closed-loop system is proven. Variations of the basic

controller design are discussed in Section IV where in Section

IV-A nodal power congestion is included into the social

welfare problem, and in Section IV-B the case line congestion

for the acyclic power networks is discussed. A dynamic pricing

algorithm is proposed in Section IV-C which does not require

knowledge about the power supply and demand. In Section

IV-D the possibility to relax the convexity assumption and

to improve the transient dynamics of the basic controller is

discussed. Finally, the conclusions and suggestions for future

research are discussed in Section V.

II. PRELIMINARIES

A. Notation

Given a symmetric matrix A ∈ R
n×n, we write A > 0 (A ≥

0) to indicate that A is a positive (semi-)definite matrix. The

set of positive real numbers is denoted by R>0 and likewise

the set of vectors in R
n whose elements are positive by R

n
>0.

We write A∨B to indicate that either condition A or condition

B holds, e.g., a > 0∨ b > 0 means that either a > 0 or b > 0
holds. Given v ∈ R

n then v � 0 denotes the element-wise

inequality. The notation 1 ∈ R
n is used for the vector whose

elements are equal to 1. Given a twice-differentiable function

f : Rn → R
n then the Hessian of f evaluated at x is denoted

by ∇2f(x). Given a vector η ∈ R
m, we denote by sin η ∈ R

m

the element-wise sine function. Given a differentiable function

f(x1, x2), x1 ∈ R
n1 , x2 ∈ R

n2 then ∇f(x1, x2) denotes the

gradient of f with respect to x1, x2 evaluated at x1, x2 and

likewise ∇x1
f(x1, x2) denotes the gradient of f with respect

to x1. Given a solution x of ẋ = f(x), where f : Rn → R
n

is a Lebesgue measurable function and locally bounded, the

omega-limit set Ω(x) is defined as [25]

Ω(x) :=
{

x̄ ∈ R
n | ∃{tk}

∞
k=1 ⊂ [0,∞)

with lim
k→∞

tk = ∞ and lim
k→∞

x(tk) = x̄
}

.

B. Power network model

Consider a power grid consisting of n buses. The network is

represented by a connected and undirected graph G = (V, E),
where the nodes, V = {1, ..., n}, is the set of buses and the

edges, E = {1, . . . ,m} ⊂ V × V , is the set of transmission

lines connecting the buses. The k-th edge connecting nodes i
and j is denoted as k = (i, j) = (j, i). The ends of edge k

are arbitrary labeled with a ‘+’ and a ‘-’, so that the incidence

matrix D of the resulting directed graph is given by

Dik =











+1 if i is the positive end of edge k

−1 if i is the negative end of edge k

0 otherwise.

Each bus represents a control area and is assumed to have a

controllable power supply and demand. The dynamics at each

bus is assumed to be given by [22], [6]

δ̇i = ωi

Miω̇i = −
∑

j∈Ni

BijE
′
qiE

′
qj sin δij −Aiωi + Pgi − Pdi

T ′
diĖ

′
qi = Efi − (1− (Xdi −X ′

di)Bii)E
′
qi

− (Xdi −X ′
di)
∑

j∈Ni

BijE
′
qj cos δij ,

(1)

which is commonly referred to as the flux-decay model. Here

we use a similar notation as used in established literature on

power systems [22], [23], [26], [24]. See Table I for a list of

symbols used in the model (1) and throughout the paper.

δi Voltage angle

ωb
i Frequency

ωn Nominal frequency

ωi Frequency deviation ωi := ωb
i − ωn

E′

qi q-axis transient internal voltage

Efi Excitation voltage
Pdi Power demand
Pgi Power generation
Mi Moment of inertia
Ni Set of buses connected to bus i
Ai Asynchronous damping constant
Bij Negative of the susceptance of transmission line (i, j)
Bii Self-susceptance
Xdi d-axis synchronous reactance of generator i
X′

di
d-axis transient reactance of generator i

T ′

di
d-axis open-circuit transient time constant

Table I
PARAMETERS AND STATE VARIABLES OF MODEL (1).

Assumption 1. By using the power network model (1) the

following assumptions are made, which are standard in a broad

range of literature on power network dynamics [22].

• Lines are purely inductive, i.e., the conductance is zero.

This assumption is generally valid for the case of high

voltage lines connecting different control areas.

• The grid is operating around the synchronous frequency

which implies ωb
i ≈ ωn for each i ∈ V .

• In addition, we assume for simplicity that the excitation

voltage Efi is constant for all i ∈ V .

Define the voltage angle differences between the buses by

η = DT δ. Further define the angular momenta by p := Mω,

where ω = ωb−1ωn are the (aggregated) frequency deviations

and M = diagi∈V{Mi} are the moments of inertia. Let

Γ(E′
q) = diagk∈E{γk} and γk = BijE

′
qiE

′
qj = BjiE

′
qiE

′
qj
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where k corresponds to the edge between node i and j. Then

we can write (1) more compactly as [6]

η̇ = DTω

Mω̇ = −DΓ(E′
q) sin η −Aω + Pg − Pd

T ′
dĖ

′
q = −F (η)E′

q + Ef

(2)

where A = diagi∈V{Ai}, Pg = coli∈V{Pgi}, Pd =
coli∈V{Pdi}, T

′
d = diagi∈V{T

′
di}, E

′
q = coli∈V{E

′
qi}, Ef =

coli∈V{Efi}. For a given η, the components of the matrix

F (η) ∈ R
n×n are defined as

Fii(η) =
1

Xdi −X ′
di

+Bii, i ∈ V

Fij(η) = −Bij cos ηk = Fji(η), k = (i, j) ∈ E

(3)

and Fij(η) = 0 otherwise. Since for realistic power networks

Xdi > X ′
di, and Bii =

∑

j∈Ni
Bij > 0 for all i ∈ V , it

follows that F (η) > 0 for all η [22], [23].

Considering the physical energy1 stored in the generator and

the transmission lines respectively, we define the Hamiltonian

as

Hp =
1

2

∑

i∈V

(

M−1
i p2i +

(E′
qi − Efi)

2

Xdi −X ′
di

)

+
1

2

∑

k=(i,j)∈E

Bij

(

(E′
qi)

2 + (E′
qj)

2 − 2E′
qiE

′
qj cos ηk

)

(4)

where ηk = δi − δj . The first term of the Hamiltonian Hp

represents the shifted kinetic energy stored in the rotors of the

generators and the second term corresponds to the magnetic

energy stored in the generator circuits. Finally, the last term of

Hp corresponds to the magnetic energy stored in the inductive

transmission lines.

By (4), the system (2) can be written in port-Hamiltonian

form [27] as

ẋp =





0 DT 0
−D −A 0
0 0 −Rq



∇Hp +





0 0
I −I
0 0



up

yp =

[

0 I 0
0 −I 0

]

∇Hp =

[

ω
−ω

]

(5)

where xp = col(η, p, E′
q), up = col(Pg, Pd) and

Rq = (T ′
d)

−1(Xd −X ′
d) > 0,

T ′
d = diagi∈V{T

′
di} > 0,

Xd −X ′
d = diagi∈V{Xdi −X ′

di} > 0.

For a study on the stability and equilibria of the flux-decay

model (5), based on the Hamiltonian function (4), we refer to

[6]. The stability results established in [6] rely on the following

assumption.

Assumption 2. Given a constant input up = ūp. There exists

an equilibrium (η̄, p̄, Ē′
q) of (5) that satisfies η̄ ∈ imDT , η̄ ∈

(−π/2, π/2)m and ∇2H(η̄, p̄, Ē′
q) > 0.

1For aesthetic reasons we define the Hamiltonian Hp as ωn times the
physical energy as the factor 1/ωn appears in each of the energy functions.
As a result, Hp has the dimension of power instead of energy.

The assumption η̄ ∈ (−π/2, π/2)m is standard in studies on

power grid stability and is also referred to as a security con-

straint [6]. In addition, the Hessian condition guarantees the

existence of a local storage function around the equilibrium.

The following result, which establishes decentralized condi-

tions for checking the positive definiteness of the Hessian,

was proven in [28]:

Proposition 1. Let Ē′
qi ∈ R

n
>0 and η̄ ∈ (−π/2, π/2)m. If for

all i ∈ V we have

1

Xdi −X ′
di

+Bii +
∑

k=(i,j)∈E

Bij

E′
qj sin

2 η̄k

E′
qi cos η̄k

>
∑

k=(i,j)∈E

Bij cos η̄k

(

1 +
Ēqi

Ēqj

tan2 η̄k

)

> 0

then ∇2Hp(x̄p) > 0.

It can be verified that the condition stated in Proposition 1 is

satisfied if the following holds [28]:

• the generator reactances are small compared to the trans-

mission line reactances

• the voltage (angle) differences are small.

Remarkably, these conditions hold for a typical operation point

in power transmission networks.

C. Social welfare problem

We define the social welfare by S(Pg, Pd) := U(Pd) −
C(Pg), which consists of a utility function U(Pd) of the power

consumption Pd and the cost C(Pg) associated to the power

production Pg . We assume that C(Pg), U(Pd) are strictly

convex and strictly concave functions respectively.

Remark 1. It is also possible to include mutual costs and

utilities among the different control areas, provided that the

convexity/concavity assumption is satisfied.

The objective is to maximize the social welfare while

achieving zero frequency deviation. By analyzing the equi-

libria of (1), it follows that a necessary condition for zero

frequency deviation is 1TPd = 1
TPg [6], i.e., the total supply

must match the total demand. It can be noted that (Pg, Pd) is

a solution to the latter equation if and only if there exists a

v ∈ R
mc satisfying Dcv−Pg+Pd = 0 where Dc ∈ R

n×mc is

the incidence matrix of some connected communication graph

with mc edges and n nodes. Because of the latter equivalence,

we consider the following convex minimization problem:

min
Pg,Pd,v

− S(Pg, Pd) = C(Pg)− U(Pd) (6a)

s.t. Dcv − Pg + Pd = 0. (6b)

Remark 2. Although this paper focuses on optimal active

power sharing, we stress that it is also possible to consider

(optimal) reactive power sharing simultaneously, see e.g. [28]

for more details.

The Lagrangian corresponding to (6) is given by

L = C(Pg)− U(Pd) + λT (Dcv − Pg + Pd) (7)
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with Lagrange multipliers λ ∈ R
n. The resulting first-order

optimality conditions are given by the Karush–Kuhn–Tucker

(KKT) conditions

∇C(P̄g)− λ̄ = 0,

−∇U(P̄d) + λ̄ = 0,

DT
c λ̄ = 0,

Dcv̄ − P̄g + P̄d = 0.

(8)

Since the minimization problem is convex, strong duality holds

and it follows that (P̄g, P̄d, v̄) is an optimal solution to (6) if

and only if there exists an λ̄ ∈ R
n that satisfies (8) [29].

III. BASIC PRIMAL-DUAL GRADIENT CONTROLLER

In this section we design the basic dynamic pricing al-

gorithm which will be used as the starting point for the

controllers designs discussed in Section IV. Its dynamics is

obtained by applying the primal-dual gradient method [7],

[10], [14] to the minimization problem (6), resulting in

τgṖg = −∇C(Pg) + λ+ ug
c (9a)

τdṖd = ∇U(Pd)− λ+ ud
c (9b)

τv v̇ = −DT
c λ (9c)

τλλ̇ = Dcv − Pg + Pd. (9d)

Here we introduce additional inputs uc = col(ug
c , u

d
c)

which are to be specified later on, and τc :=
blockdiag(τg, τd, τv, τλ) > 0 are controller design parameters.

Recall from Section II-C that there is freedom in choosing a

communication network and the associated incidence matrix.

Depending on the application, one may prefer all-to-all

communication where the underlying graph is complete, or

communication networks where its associated graph is a star,

line or cycle graph. In addition, τc determines the converge

rate of the dynamics (9); a large τc gives a slow convergence

rate whereas a small τc gives a fast convergence rate.

Observe that the dynamics (9) has a clear economic inter-

pretation [1], [2], [5]: each power producer aims at maximiz-

ing their own profit, which occurs whenever their individual

marginal cost is equal to the local price λi+ug
ci. At the same

time, each consumer maximizes its own utility but is penalized

by the local price λi − ud
ci.

The equations (9c), (9d) represent the distributed dynamic

pricing mechanism where the quantity v represents a virtual

power flow along the edges of the communication graph

with incidence matrix Dc. We emphasize virtual, since v
may not correspond to the real physical power flow as the

communication graph may be different than the physical

network topology. Equation (9d) shows that the local price

λi rises if the power demand plus power outflow at node

i ∈ V is greater than the local power supply plus power

inflow of power at node i and vice versa. The inputs ug
c , u

d
c are

interpreted as additional penalties or prices that are assigned to

the power producers and consumers respectively. These inputs

can be chosen appropriately to compensate for the frequency

deviation in the physical power network as we will show now.

To this end, define the variables xc = (xg, xd, xv, xλ) =
(τgPg, τdPd, τvv, τλλ) = τczc and note that, in the sequel,

we interchangeably write the system dynamics in terms of

both xc and zc for ease of notation. In these new variables the

dynamics (9) admits a natural port-Hamiltonian representation

[20], which is given by

ẋc =









0 0 0 I
0 0 0 −I
0 0 0 −DT

c

−I I Dc 0









∇Hc(xc) +∇S(zc)

+









I 0
0 I
0 0
0 0









uc (10)

yc =

[

I 0 0 0
0 I 0 0

]

∇Hc(xc) =

[

Pg

Pd

]

,

Hc(xc) =
1

2
xT
c τ

−1
c xc. (11)

Note that the system (10) is indeed a port-Hamiltonian system2

since S is concave and therefore satisfies the incremental

passivity property

(z1 − z2)
T (∇S(z1)−∇S(z2)) ≤ 0, ∀z1, z2 ∈ R

3n+mc .

The port-Hamiltonian controller (10) is interconnected to the

physical network (5) by taking uc = −yp, up = yc. Define the

extended vectors of variables by

x :=





















I 0 0 0 0 0 0
0 M 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 τg 0 0 0
0 0 0 0 τd 0 0
0 0 0 0 0 τv 0
0 0 0 0 0 0 τλ









































η
ω
E′

q

Pg

Pd

v
λ





















=: τz. (12)

Then the closed-loop port-Hamiltonian system takes the form

ẋ =





















0 DT 0 0 0 0 0
−D −A 0 I −I 0 0
0 0 −Rq 0 0 0 0
0 −I 0 0 0 0 I
0 I 0 0 0 0 −I
0 0 0 0 0 0 −DT

c

0 0 0 −I I Dc 0





















∇H(x)

+∇S(z),
(13)

where H = Hp+Hc is equal to the sum of the energy function

(4) corresponding to the physical model, and the controller

Hamiltonian (11). In the sequel we write (13) more compactly

as

ẋ = (J −R)∇H(x) +∇S(z),

where R = RT ≥ 0, J = −JT . We define the equilibrium set

of (13), expressed in the variable z, by

Z1 = {z̄ | z̄ is an equilibrium of (13)}. (14)

Note that each z̄ ∈ Z1 satisfies the optimality conditions

(8) and simultaneously the zero frequency constraints of the

2Strictly speaking, (10) is an incremental port-Hamiltonian system [27].
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physical network (5) given by ω̄ = 0. Hence, Z1 corresponds

to the desired equilibria, and the next theorem states the

convergence to this set of optimal points.

Theorem 1. For every z̄ ∈ Z1 satisfying Assumption 2 there

exists a neighborhood Υ around z̄ where all trajectories z
satisfying (13) with initial conditions in Υ converge to the set

Z1. In addition, the convergence of each such trajectory is to

a point.

Proof. Let z̄ ∈ Z1 and define the shifted Hamiltonian H̄
around x̄ := τ z̄ as [27], [6]

H̄(x) = H(x)− (x− x̄)T∇H(x̄)−H(x̄). (15)

After rewriting, the closed-loop port-Hamiltonian system (13)

is equivalently described by

ẋ = (J −R)∇H̄(x) +∇S(z)−∇S(z̄).

The shifted Hamiltonian H̄ satisfies

˙̄H = −ωTAω + (z − z̄)T (∇S(z)−∇S(z̄))

− (∇E′

q
H̄)TRq∇E′

q
H̄ ≤ 0,

(16)

where equality holds if and only if ∇E′

q
H̄(x) = ∇E′

q
H(x) =

0, ω = 0, Pg = P̄g, Pd = P̄d since S(z) is strictly concave in

Pg and Pd. Bearing in mind Assumption 2, it is observed

that ∇2H(x) = ∇2H̄(x) > 0 for all x in a sufficiently

small open neighborhood around x̄. Hence, as ˙̄H ≤ 0, there

exists a compact sublevel set Υ of H̄ around z̄ contained in

such neighborhood, which is forward invariant. By LaSalle’s

invariance principle, each the solution with initial conditions

in Υ converges to the largest invariant set S contained in

Υ ∩ {z | ∇E′

q
H(x) = 0, ω = 0, Pg = P̄g, Pd = P̄d}.

On such invariant set λ = λ̄ and η, v, E′
q are constant. Hence,

z converges to S ⊂ Z1 as t → ∞.

Finally, we prove that the convergence of each solution of

(13) initializing in Υ is to a point. This is equivalent to proving

that its omega-limit set Ω(x) is a singleton. Since the solution

x is bounded, Ω(x) 6= ∅ by the Bolzano-Weierstrass theorem

[30]. By contradiction, suppose now that there exist two

distinct point in Ω(x), say x̄1, x̄2 ∈ Ω(x), x̄1 6= x̄2. Then there

exists H̄1(x), H̄2(x) defined by (15) with respect to x̄1, x̄2

respectively and scalars c1, c2 ∈ R>0 such that H̄−1
1 (≤ c1) :=

{x | H̄1(x) ≤ c1}, H̄
−1
2 (≤ c2) := {x | H̄2(x) ≤ c2} are

disjoint and compact as the Hessian of H̄1, H̄2 is positive def-

inite in the neighborhood Υ. Since each trajectory z converges

to Z1 as proven above, it follows that τ−1x̄1, τ
−1x̄2 ∈ Z1.

Together with x̄1 ∈ Ω(x), this implies that there exists a finite

time t1 > 0 such that x(t) ∈ H̄−1
1 (≤ c1) for all t ≥ t1 as

the set H̄−1
1 (≤ c1) is invariant by the dissipation inequality

(16). Similarly, there exists a finite time t2 > 0 such that

x(t) ∈ H̄−1
2 (≤ c2) for all t ≥ t2. This implies that the

solution x(t) satisfies x(t) ∈ H̄−1
1 (≤ c1) ∩ H̄−1

1 (≤ c1) = ∅
for t ≥ max(t1, t2) which is a contradiction. This concludes

the proof.

IV. VARIATIONS IN THE CONTROLLER DESIGN

In this section we propose several variations and extensions

of the controller designed in the previous section. These

include, among other things, the possibility to incorporate

nodal power constraints, and line congestion in conjunction

with transmission costs into the social welfare problem.

A. Including nodal power constraints

The results of Section III can be extended to the case where

nodal constraints on the power production and consumption

are included into the optimization problem (6). To this end,

consider the social welfare problem

min
Pg,Pd,v

− S(Pg, Pd) := C(Pg)− U(Pd) (17a)

s.t. Dcv − Pg + Pd = 0, (17b)

g(Pg, Pd) � 0 (17c)

where g : R2n → R
l is a convex function.

Remark 3. Note that (17c) captures the convex inequality

constraints considered in the existing literature. For example,

by choosing g as

g(Pg, Pd) =









g1(Pg, Pd)
g2(Pg, Pd)
g3(Pg, Pd)
g4(Pg, Pd)









=









Pg − Pmax
g

Pmin
g − Pg

Pd − Pmax
d

Pmin
d − Pd









,

the resulting inequality constraints (17c) become Pmin
g �

Pg � Pmax
g , Pmin

d � Pd � Pmax
d which, among others, are

used in [13], [14], [18].

In the sequel, we assume that (17) satisfies Slater’s condition

[29]. As a result, (P̄g, P̄d, v̄) is an optimal solution to (17)

if and only if there exists λ̄ ∈ R
n, µ̄ ∈ R

l
≥0 satisfying the

following KKT optimality conditions:

∇C(P̄g)− λ̄+
∂g

∂Pg

(P̄g, P̄d)µ̄ = 0,

−∇U(P̄d) + λ̄+
∂g

∂Pd

(P̄g, P̄d)µ̄ = 0,

Dcv̄ − P̄g + P̄d = 0, DT
c λ̄ = 0,

g(P̄g, P̄d) � 0, µ̄ � 0, µ̄T g(P̄g, P̄d) = 0.

(18)

Next, we introduce the following subsystems [20], [9]

ẋµi
= (gi(wi))

+
µi

:=

{

gi(wi) if µi > 0

max{0, gi(w)} if µi = 0

yµi
= ∇gi(wi)∇Hµi

(xµi
), Hµi

(xµi
) =

1

2
xT
µi
τ−1
µi

xµi

(19)

with state xµi
:= τµi

µi ∈ R≥0, outputs yµi
∈ R

l, inputs

wi ∈ R
2n, and i ∈ I := {1, . . . , l}. Here gi(.) is the i’th entry

of the vector-valued function g(.) = coli∈V{gi(.)}. Note that,

for a given i ∈ I and for a constant input w̄i, the equilibrium

set Zµi
of (19) is characterized by all (µ̄i, w̄i) satisfying

gi(w̄i) ≤ 0, µ̄i ≥ 0, µ̄i = 0 ∨ gi(w̄i) = 0. (20)

More formally, for i ∈ I the equilibrium set Zµi
of (19) is

given by

Zµi
:= {(µ̄i, w̄i) | (µ̄i, w̄i) satisfies (20)}.
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Remark 4. In case the inequality constraints of Remark 3 (e.g.

Pg � Pmax
g ) are considered, the subsystems (19) take the

decentralized form

ẋµi
= (Pgi − Pmax

gi )+µi
=

{

Pgi − Pmax
gi if µi > 0

max{0, Pgi − Pmax
gi } if µi = 0

yµi
= ∇Hµi

(xµi
), Hµi

(xµi
) =

1

2
xT
µi
τ−1
µi

xµi
, i ∈ V,

(21)

and similar expressions can be given for the remaining in-

equalities Pmin
g � Pg, Pmin

d � Pd � Pmax
d .

The subsystems (19) have the following passivity property

[20].

Proposition 2 ([20]). Let i ∈ I, (µ̄i, w̄i) ∈ Zµi
and define

ȳµi
:= ∇gi(w̄i)µ̄i. Then (19) is passive with respect to the

shifted external port-variables w̃i := wi−w̄i, ỹµi
:= yµi

−ȳµi
.

Additionally, (µi, wi) → Zµi
as t → ∞ for (µi, wi), wi = w̄i

satisfying (19).

Consider again system (13)

ẋ = (J −R)∇H(x) +∇S(z) +GTu

y = G∇H(x) =

[

Pg

Pd

]

, G =

[

0 0 I 0 0 0
0 0 0 I 0 0

]

(22)

with the state x defined by (12), where we introduce an

additional input u ∈ R
2n and output y ∈ R

2n.

Remark 5. Note that for any steady state (x̄, ū) of (22), the

latter system is passive with respect to the shifted external

port-variables ũ := u − ū, ỹ = y − ȳ, ȳ := G∇H(x̄), using

the storage function

H̄(x) := H(x)− (x− x̄)T∇H(x̄)−H(x̄). (23)

We interconnect the subsystems (19) to (22) in a power-

preserving way by

wi = w = y ∀i ∈ I, u = −
∑

i∈I

yµi

to obtain the closed-loop system

η̇ = DTω (24a)

Mω̇ = −DΓ(E′
q) sin η −Aω + Pg − Pd (24b)

T ′
dĖ

′
q = −F (η)E′

q + Ef (24c)

τgṖg = −∇C(Pg) + λ−
∂g

∂Pg

(Pg, Pd)µ− ω (24d)

τdṖd = ∇U(Pd)− λ−
∂g

∂Pd

(Pg, Pd)µ+ ω (24e)

τv v̇ = −∇CT (v)−DTλ (24f)

τλλ̇ = Dv − Pg + Pd (24g)

τµi
µ̇i = (gi(Pg, Pd))

+
µi
, i ∈ I. (24h)

Observe that the equilibrium set Z2 of (24), if expressed in the

co-energy variables, is characterized by all (z̄, µ̄) that satisfy

(18) in addition to ω̄ = 0, −DΓ(Ē′
q) sin η̄ + P̄g − P̄d =

0,−F (η̄)Ē′
q + Ef = 0, and therefore corresponds to the

desired operation points.

Since both the subsystems (19) and the system (13) admit

an incrementally passivity property with respect to their steady

states, the closed-loop system inherits the same property

provided that an equilibrium of (24) exists.

Theorem 2. For every (z̄, µ̄) ∈ Z2 satisfying Assumption 2

there exists a neighborhood Υ of (z̄, µ̄) where all trajectories

z satisfying (24) with initial conditions in Υ converge to the

set Z2 and the convergence of each such trajectory is to a

point.

Proof. Let (z̄, µ̄) ∈ Z2 and consider the shifted Hamiltonian

H̄e around (x̄, x̄µ) = (τ z̄, τµµ̄) defined by

H̄e(x, xµ) := H̄(x) +
∑

i∈I

H̄µi
(xµi

) = H̄(x) +
1

2
x̃T
µ τ

−1
xµ

x̃µ

where x̃µ := xµ−x̄µ and H̄ is defined by (23). By Proposition

2 and Remark 5, the time-derivative of H̄e satisfies

˙̄He ≤ ũT ỹ + w̃T
∑

i∈I

ỹµi
= ũT ỹ − ũT ỹ = 0

where equality holds only if Pg = P̄g, Pd = P̄d, ω =

0,∇E′

q
H(x) = 0. On the largest invariant set where ˙̄He = 0 it

follows by the second statement of Proposition 2 that µ = µ̄.

As a result, λ = λ̄ and v, η, E′
q are constant on this invariant

set. Since the right-hand side of (19) is discontinuous and takes

the same form as in [25], we can apply the invariance principle

for discontinuous Caratheodory systems [25, Proposition 2.1]

to conclude that (z, µ) → Z2 as t → ∞. By following

the same line of arguments as in the proof of Theorem 1,

convergence of each trajectory to a point is proven.

Remark 6. Theorem 2 uses the Caratheodory variant of the

Invariance Principle which requires that the Caratheodory

solution of (24) is unique and that its omega-limit set is

invariant [25]. These requirements are indeed satisfied by

extending Lemmas 4.1-4.4 of [25] to the case where equality

constraints and nonstrict convex/concave (utility) functions are

considered in the optimization problem [25, equation (3)],

noting that these lemmas only require convexity/concavity

instead of their strict versions. In particular, by adding a

quadratic function of the Lagrange multipliers associated with

the equality constraints to the Lyapunov function, it can be

proven that monotonicity of the primal-dual dynamics with

respect to primal-dual optimizers as stated in [25, Lemma 4.1]

holds for this more general case as well, see also [20], [31].

Remark 7. Instead of using the hybrid dynamics (19) for

dealing with the inequality constraints (17c), we can in-

stead introduce the so called barrier functions Bi =
−ν log(−gi(Pg, Pd)) that are added to the objective function

[29]. Simultaneously, the corresponding inequalities in the

social welfare problem (17) are removed to obtain the modified

convex optimization problem

min
Pg,Pd,v

− S(Pg, Pd)− ν
∑

i∈V

log(−gi(Pg, Pd))

s.t. Dcv − Pg + Pd = 0.

(25)

Here ν > 0 is called the barrier parameter and is usually

chosen small. By applying the primal-dual gradient method to
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(25) it can be shown that, if the system is initialized in the

interior of the feasible region, i.e. where (17c) holds, then the

trajectories of the resulting gradient dynamics remain within

the feasible region and the system converges to a suboptimal

value of the social welfare [7], [29], [32]. However, if Slater’s

condition holds, this suboptimal value which depends on ν
converges to the optimal value of the social welfare problem as

ν → 0 [29]. The particular advantage of using barrier functions

is to avoid the use of an hybrid controller and to enforce that

the trajectories remain within the feasible region for all future

time.

B. Including line congestion and transmission costs

The previous section shows how to include nodal power

constraints into the social welfare problem. In case the network

is acyclic, line congestion and power transmission costs can

be incorporated into the optimization problem as well.

To this end, define the (modified) social welfare by U(Pd)−
C(Pg)−CT (v) where the convex function CT (v) corresponds

to the power transmission cost. If security constraints on

the transmission lines are included as well, the optimization

problem (6) modifies to

min
Pg,Pd,v

− S(Pg, Pd, v) := C(Pg) + CT (v)− U(Pd) (26a)

s.t. Dv − Pg + Pd = 0 (26b)

− κ � v � κ, (26c)

where κ ∈ R
m satisfies the element-wise inequality κ ≻ 0.

Note that in this case the communication graph is chosen to

be identical with the topology of the physical network, i.e.,

Dc = D. As a result, the additional constraints (26c) bound

the (virtual) power flow along the transmission lines as |vk| ≤
κk, k ∈ E . The corresponding Lagrangian is given by

L = C(Pg) + CT (v)− U(Pd) + λT (Dv − Pg + Pd)

+ µT
+(v − κ) + µT

−(−κ− v)

with Lagrange multipliers λ ∈ R
n, µ+, µ+ ∈ R

m
≥0. The

resulting KKT optimality conditions are given by

∇C(P̄g)− λ̄ = 0, −∇U(P̄d) + λ̄ = 0,

∇CT (v̄) +DT λ̄+ µ̄+ − µ̄− = 0,

−κ � v̄ � κ, Dv̄ − P̄g + P̄d = 0,

µ̄+, µ̄− � 0, µ̄T
+(v̄ − κ) = 0, µ̄T

−(−κ− v̄) = 0.

(27)

Suppose that Slater’s condition holds. Then, since the opti-

mization problem (26) is convex, it follows that (P̄g, P̄d, v̄)
is an optimal solution to (26) if and only if there exists

λ̄ ∈ R
n, µ̄ = col(µ̄+, µ̄−) ∈ R

2m
≥0 satisfying (27) [29].

By applying the gradient method to (26) in a similar

manner as before and connecting the resulting controller with

the physical model (2), we obtain the following closed-loop

system:

η̇ = DTω (28a)

Mω̇ = −DΓ(E′
q) sin η −Aω + Pg − Pd (28b)

T ′
dĖ

′
q = −F (η)E′

q + Ef (28c)

τgṖg = −∇C(Pg) + λ− ω (28d)

τdṖd = ∇U(Pd)− λ+ ω (28e)

τv v̇ = −∇CT (v)−DTλ− µ+ + µ− (28f)

τλλ̇ = Dv − Pg + Pd (28g)

τ+µ̇+ = (v − κ)+µ+
(28h)

τ−µ̇− = (−κ− v)+µ−
. (28i)

The latter system can partially be put into a port-Hamiltonian

form, since equations (28a)-(28g) can be rewritten as

ẋ = (J −R)∇H(x) +∇S(z) +Nµ

N =

[

0 0 0 0 −I 0
0 0 0 0 I 0

]T

,
(29)

where the variables x, z and the Hamiltonian H are re-

spectively defined by (12) and (13) as before, and µ =
col(µ+, µ−).

Since the network topology is a tree (i.e. kerD = {0}),

the equilibrium of (28) satisfies v̄ = Γ(Ē′
q) sin η̄. Hence, the

controller variable v corresponds to the physical power flow

of the network if the closed-loop system is at steady state.

Consequently, the constraints and costs on v correspond to

constraints and costs of the physical power flow if the system

converges to an equilibrium.

Theorem 3. Let the network topology be acyclic and let (z̄, µ̄)
be an (isolated) equilibrium of (28) satisfying Assumption 2.

Then all trajectories (z, µ) of (28) initialized in a sufficiently

small neighborhood around (z̄, µ̄) converge asymptotically to

(z̄, µ̄)

Proof. Let (z̄, µ̄) be the equilibrium of (28). By defining the

shifted Hamiltonian H̄(x) around x̄ := τ z̄ by

H̄(x) = H(x)− (x− x̄)T∇H(x̄)−H(x̄)

one can rewrite (29) as

ẋ = (J −R)∇H̄(x) +∇S(z)−∇S(z̄) +Nµ̃ (30)

where µ̃ := µ− µ̄. Consider candidate Lyapunov function

V (x, µ) = H̄(x) +
1

2
µ̃+τµ+

µ̃+ +
1

2
µ̃T
−τµ−

µ̃−

and observe that

µ̃T
+(v − κ)+µ+

≤ µ̃T
+(v − κ) = µ̃T

+(v̄ − κ+ ṽ) ≤ µ̃T
+ṽ

µ̃T
−(−κ− v)+µ−

≤ µ̃T
−(−κ− v)

= µ̃T
−(−κ− v̄ − ṽ) ≤ −µ̃T

−ṽ.
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Bearing in mind (30), the time-derivative of V amounts to

V̇ = −ωTAω − (∇E′

q
H(x))TRq∇E′

q
H(x)

+ (z − z̄)T (∇S(z)−∇S(z̄))

− ṽT µ̃+ + ṽT µ̃− + µ̃T
+(v − κ)+µ+

+ µ̃T
−(−κ− v)+µ−

≤ −ωTAω + (z − z̄)T (∇S(z)−∇S(z̄))

− (∇E′

q
H(x))TRq∇E′

q
H(x) ≤ 0

where equality holds only if ∇E′

q
H(x) = 0, ω = 0, Pg =

P̄g, Pd = P̄d. On the largest invariant set S where ∇E′

q
H(x) =

0, ω = 0, Pg = P̄g, Pd = P̄d it follows that, since the graph

contains no cycles λ = λ̄, v = v̄, µ = µ̄ and that η,E′
q are

constant, which corresponds to an equilibrium. In particular

∇V (x, µ) = 0 for all (z, µ) ∈ S and (z̄, µ̄) ∈ S . Since

by Assumption 2 we have ∇2V (x̄, µ̄) > 0, it follows that

(z̄, µ̄) is isolated. By the invariance principle for discontinu-

ous Caratheodory systems [25] all trajectories (z, µ) of (28)

initializing in a sufficienly small neighborhood around (z̄, µ̄)
satisfy µ → µ̄, z → z̄ as t → ∞.

Remark 8. It is possible to include nodal power constraints,

line congestion and transmission costs simultaneously. How-

ever, as the results in this section are only valid for acyclic

graphs, it should also be assumed for the more general case

that the physical network is a tree.

C. State transformation

Consider again the minimization problem (6). As shown

before, by applying the gradient method to the social welfare

problem, the closed-loop system (13) is obtained.

Note that in the λ-dynamics the demand Pd appears, which

in practice is often uncertain. A possibility to eliminate the de-

mand from the controller dynamics is by a state transformation

[10], [12]. To this end, define the new variables

x̂ :=





















η
p
E′

q

xg

xd

xv

xθ





















=





















I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 I 0 0 0 0 I





















x = τ̂





















η
p
E′

q

Pg

Pd

v
θ





















=: τ̂ ẑ,

i.e., xθ := τθθ = p + xλ. Then the port-Hamiltonian system

(13) transforms to

˙̂x =





















0 DT 0 0 0 0 DT

−D −A 0 I −I 0 −A
0 0 −Rq 0 0 0 0
0 −I 0 0 0 0 0
0 I 0 0 0 0 0
0 0 0 0 0 0 −DT

c

−D −A 0 0 0 Dc −A





















∇Ĥ(x̂)

+∇S(ẑ)
(31)

with Hamiltonian

Ĥ(x̂) = Hp +
1

2
xT
g τ

−1
g xg +

1

2
xT
d τ

−1
d xd

+
1

2
xT
v τ

−1
v xv +

1

2
(xθ − p)τ−1

λ (xθ − p).

By writing the system of differential equations (31) explicitly

we obtain

η̇ = DTω

Mω̇ = −DΓ(E′
q) sin η −Aω + Pg − Pd

T ′
dĖ

′
q = −F (η)E′

q + Ef

τgṖg = −∇C(Pg) + τ−1
λ (τθθ −Mω)− ω

τdṖd = ∇U(Pd)− τ−1
λ (τθθ −Mω) + ω

τv v̇ = −DT
c τ

−1
λ (τθθ −Mω)

τθ θ̇ = Dcv −DΓ sin η −Aω.

(32)

Define Z4 as the set of all ẑ∗ := (η̄, ω̄, P̄g, P̄d, v̄, θ̄) that are

an equilibrium of (32). Using the previous established tools

we can prove asymptotic stability to the set of optimal points

Z4.

Theorem 4. For every ẑ∗ ∈ Z4 satisfying Assumption 2 there

exists a neighborhood Υ around ẑ∗ where all trajectories ẑ
satisfying (32) (or equivalently (31)) and initializing in Υ
converge to Z4. In addition, the convergence of each such

trajectory is to a point.

Proof. We proceed along the same lines as in the proof of

Theorem 1. Since the stability result of Theorem 1 is preserved

after a state transformation, the proof is concluded.

Note that the latter result holds for all τg, τd, τv, τλ, τθ > 0.

The controller appearing in (32) can be simplified by choosing

τλ = τθ = M . As a result, the controller dynamics is described

by

τgṖg = −∇C(Pg) + θ − 2ω (33a)

τdṖd = ∇U(Pd)− θ + 2ω (33b)

τv v̇ = −DT
c (θ − ω) (33c)

Mθ̇ = Dcv −DΓ(E′
q) sin η −Aω. (33d)

The main advantage of controller design (33) is that no

information about the power supply and demand is required

in the dynamic pricing algorithm (33c), (33d), where we

observe that the quantity θ − 2ω acts here as the electricity

price for the producers and consumers. Another benefit of the

proposed dynamic pricing algorithm is that, contrary to [16],

no information is required about ω̇.

On the other hand, knowledge about the physical power

flows and the power system parameters M,A is required.

Determining the radius of uncertainty of these parameters

under which asymptotic stability is preserved remains an open

question [10]; see [17] for results in a similar setting where

only the damping term A is assumed to be uncertain.

D. Relaxing the strict convexity assumption

By making a minor modification to the social welfare

problem (6), it is possible to relax the condition that the
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functions C,U are strictly convex and concave respectively.

To this end, consider the optimization problem

min
Pg,Pd,v

C(Pg)− U(Pd) +
1

2
ρ||Dcv − Pg + Pd||

2 (34a)

s.t. Dcv − Pg + Pd = 0, (34b)

where ρ > 0, C(Pg) is convex and U(Pd) is concave, which

makes the optimization problem (34) convex. Suppose that

there exists a feasible solution to the minimization problem,

then the set of optimal points of (34) is identical with the

set of optimal points of (6) which is characterized by set of

points satisfying the KKT conditions (8). The corresponding

augmented Lagrangian of (34) is given by

Lp = C(Pg)− U(Pd)− λT (Dcv + Pg − Pd)

+
1

2
ρ||Dcv + Pg − Pd||

2.

Consequenctly, the distributed dynamics of the primal-dual

gradient method applied to (34) amounts to

τgṖg = −∇C(Pg) + λ− ρ(Dcv + Pg − Pd)

τdṖd = ∇U(Pd)− λ+ ρ(Dcv + Pg − Pd)

τv v̇ = DT
c λ− ρDT

c (Dcv + Pg − Pd)

τλλ̇ = −Dcv − Pg + Pd,

(35)

which can be written in the same port-Hamiltonian form as

(13) where in this case

S(Pg, Pd, v) = U(Pd)− C(Pg)−
1

2
ρ||Dcv − Pg + Pd||

2.

(36)

This leads to the following result.

Theorem 5. Consider the system (13) where S is given by

(36) and suppose that C,U are convex and concave functions

respectively. Then for every z̄ ∈ Z1 satisfying Assumption 2,

where Z1 is defined by (14), there exists a neighborhood Υ
around z̄ wherein each trajectory z satisfying (13) converges

to a point in Z1.

Proof. Let z̄ ∈ Z1. By the proof of Theorem 1 it follows that

˙̄H = −ωTAω + (z − z̄)T (∇S(z)−∇S(z̄))

− (∇E′

q
H̄)TRq∇E′

q
H̄,

where the second term can be written as

P̃T
d (∇U(Pd)−∇U(P̄d))− P̃T

g (∇C(Pg)−∇C(P̄g))

− ρ





P̃g

P̃d

ṽ





T 



−I I −Dc

I −I Dc

−DT
c DT

c −DT
c Dc









P̃g

P̃d

ṽ



 ≤ 0 (37)

where P̃g = Pg − P̄g, P̃d = Pd − P̄d, ṽ = v − v̄. Hence,

we obtain that ˙̄H ≤ 0 where equality holds only if ω =
0,∇E′

q
H̄(x) = 0 and Dcṽ + P̃g − P̃d = Dcv + Pg − Pd = 0.

On the largest invariant set S where ˙̄Hc = 0 we have ω = 0
and η,E′

q are constant and (Pg, Pd, v, λ) satisfy the KKT

optimality conditions (8). Therefore S ⊂ Z1 and by LaSalle’s

invariance principle there exists a neighborhood Υ around z̄
where all trajectories z satisfying (13) converge to the set

S ⊂ Z1. By continuing along the same lines as the proof

of Theorem 1, convergence of each trajectory to a point is

proven.

Remark 9. Adding the quadratic term in the social welfare

problem as done in (34a) provides an additional advantage.

As this introduces more damping in the resulting gradient-

method-based controller, see (37), it may improve the con-

vergence properties of the closed-loop dynamics [33], [34].

Moreover, the amount of damping injected into the system

depends on parameter ρ, which can be chosen freely.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper a unifying and systematic energy-based ap-

proach in modeling and stability analysis of power networks

has been established. Convergence of the closed-loop system

to the set of optimal points using gradient-method-based

controllers have been proven using passivity based arguments.

This result is extended to the case where nodal power con-

straints are included into the problem as well. However,

for line congestion and power transmission cost the power

network is required to be acyclic to prove asymptotic stability

to the set of optimal points.

The results established in this paper lend themselves to

many possible extensions. One possibility is to design an

additional (passive) controller that regulates the voltages to the

desired values or achieves alternative objectives like (optimal)

reactive power sharing. This could for example be realized by

continuing along the lines of [28].

Recent observations, see [35], suggest that the port-

Hamiltonian framework also lends itself to consider higher-

dimensional models for the synchronous generator than the

third-order model used in this paper, while the same controllers

as designed in the present paper can be used in this case

as well. In addition, current research includes extending the

results of the present paper to network-preserving models

where a distinction is made between generator and load nodes.

One of the remaining open questions is how to deal with

line congestion and power transmission costs in cyclic power

networks with nonlinear power flows. In addition, all of

the results established for the nonlinear power network only

provide local asymptotic stability to the set of optimal points.

Future research includes determining the region of attraction.
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